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Abstract  

We investigated SARS-CoV-2 tropism by surveying expression of viral entry-

associated genes in single-cell RNA-seq data from multiple tissues from healthy 

human donors. We co-detected these transcripts in specific respiratory, corneal, and 

intestinal epithelial cells, potentially explaining the high efficiency of SARS-CoV-2 

transmission. These genes are co-expressed in nasal epithelial cells with genes 

involved in innate immunity, highlighting the cells’ potential role in initial viral 

infection, spread and clearance. The study offers a useful resource for further lines 

of inquiry with valuable clinical samples from COVID-19 patients, and we provide our 

data in a comprehensive, open, and user-friendly fashion at covid19cellatlas.org.  

 

Main  



 

The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2)1. Detection of the virus was first reported in 

Wuhan2, China and has since spread worldwide, emerging as a global pandemic3.       

 

In symptomatic patients, nasal swabs have yielded higher viral loads than throat 

swabs4. The same distribution was observed in an asymptomatic patient4, implicating 

the nasal epithelium as a portal for initial infection and transmission. Cellular entry of 

coronaviruses depends on the binding of the spike (S) protein to a specific cellular 

receptor and subsequent S protein priming by cellular proteases. Similar to SARS-

CoV5,6, SARS-CoV-2 employs ACE2 as a receptor for cellular entry. The binding 

affinity of the S protein and ACE2 was found to be a major determinant of SARS-CoV 

replication rates and disease severity4,7. Viral entry also depends on TMPRSS2 

protease activity, and cathepsin B/L activity may be able to substitute for TMPRSS27.  

 

ACE2 and TMPRSS2 have been detected in both nasal and bronchial epithelium by 

immunohistochemistry8. Gene expression of ACE2 and TMPRSS2 has been reported 

to occur largely in alveolar epithelial type II (AT-2) cells9-11, which are central to SARS-

CoV pathogenesis, while a different study reported the absence of ACE2 in the upper 

airway12. To clarify the expression patterns of ACE2 and TMPRSS2, we analyzed their 

expression and the expression of other genes potentially associated with SARS-CoV-

2 pathogenesis at cellular resolution, using scRNA-seq datasets from healthy donors 

generated by the Human Cell Atlas consortium and other resources to inform and 

prioritize the use of precious, limited clinical material that is becoming available from 

COVID-19 patients.        



 

We investigated the gene expression of ACE2 in multiple scRNA-seq datasets from 

different tissues, including those of the respiratory tree, cornea, retina, esophagus, 

ileum, colon, heart, skeletal muscle, spleen, liver, placenta/decidua, kidney, testis, 

pancreas, prostate gland, brain, skin, and fetal tissues. We note that studies may lack 

specific cell types due to their sparsity, the challenges associated with isolation, or 

analysis methodology. Moreover, expression may be under-detected due to technical 

dropout effects. Thus, while positive (presence) results are highly reliable, absence 

should be interpreted with care. 

 

ACE2 expression was generally low in all analyzed datasets. Consistent with 

independent studies10,11, ACE2 was expressed in cells from multiple tissues, including 

airways, cornea, esophagus, ileum, colon, liver, gallbladder, heart, kidney, and testis 

(Fig. 1a; first column). TMPRSS2 was highly expressed with a broader distribution 

(Fig. 1a; second column), suggesting that ACE2, rather than TMPRSS2, may be a 

limiting factor for viral entry at the initial infection stage. Cells from the respiratory tree, 

cornea, esophagus, ileum, colon, gallbladder, and common bile duct expressed both 

genes in the same cell (Fig. 1a; third column). We also assessed ACE2 and TMPRSS2 

expression in developmental datasets from fetal tissues, including liver, thymus, skin, 

bone marrow, yolk sac, and lung, and found little to no expression of ACE2 in all but 

fetal liver and thymus (Fig. 1a) where there was no co-expression with TMPRSS2 

(data not shown) except for a cluster of medullary thymic epithelial cells (Fig. 1a). 

ACE2 expression is noticeable in certain cell types in placenta/decidua without 

TMPRSS2 (Fig. 1a). Additional fetal data across relevant tissues and stages are 

needed to determine the generality of these findings.  



 

To further characterize specific epithelial cell types expressing ACE2, we evaluated 

the ACE2 expression within the lung and airway epithelium. We found that, despite a 

low level of expression overall, ACE2 was expressed in multiple epithelial cell types 

across the airway, as well as in AT-2 cells in the parenchyma, consistent with previous 

studies9-11. Importantly, nasal epithelial cells, including two previously described 

clusters of goblet cells and one cluster of ciliated cells, show the highest expression 

among all investigated cells in the respiratory tree (Fig. 1b; left panel). We confirmed 

enriched ACE2 expression in nasal epithelial cells in an independent scRNA-seq study 

that includes nasal brushings and biopsies. The results were consistent: we found the 

highest expression of ACE2 in nasal secretory cells (equivalent to the two goblet cell 

clusters in the previous dataset) and ciliated cells (Fig. 1b; right panel).  

 

In addition, scRNA-seq data from an in vitro epithelial regeneration system from nasal 

epithelial cells corroborated the expression of ACE2 in goblet/secretory cells and 

ciliated cells in these air-liquid interface (ALI) cultures (Extended Data Fig. 1). 

Notably, the differentiating cells in ALI acquire progressively more ACE2 (Extended 

Data Fig. 1). The results also suggest that this in vitro culture system may be 

biologically relevant for the study of SARS-CoV-2 pathogenesis.  

 

It is worth noting that TMPRSS2 was only expressed in a subset of ACE2+ cells 

(Extended Data Fig. 2), suggesting that the virus might use alternative pathways. It 

was previously shown that SARS-CoV-2 could enter TMPRSS2- cells using cathepsin 

B/L7. Indeed, other proteases were more promiscuously expressed than TMPRSS2, 

especially cathepsin B, which was expressed in more than 70%-90% of ACE2+ cells 



(Extended Data Fig. 2). However, while TMPRSS2 activity is documented to be 

important for viral transmission13,14, the potential of cathepsin B/L or other proteases 

to functionally replace TMPRSS2 has not been determined. 

 

We next asked whether the enriched expression of viral receptors and entry-

associated molecules in the nasal region/upper airway might be relevant for viral 

transmissibility. Here, we assessed the expression of viral receptor genes that are 

used by other coronaviruses and influenza viruses in our datasets. We looked for 

ANPEP (used by HCoV-2294415) and DPP4 (used by MERS-CoV4516), as well as the 

enzymes ST6GAL1 and ST3GAL4, which are important for the synthesis of α(2,6)-

linked and α(2,3)-linked sialic acids recognized by influenza viruses17. Notably, their 

expression distribution coincided with viral transmissibility patterns based on a 

comparison to the basic reproduction number (R0), which estimates the number of 

people who can become infected from a single infected person. The skewed 

distribution of the receptors/enzymes towards the upper airway is observed in viruses 

with higher R0/infectivity, including those of SARS-CoV/SARS-CoV-2 (R0 ~ 1.4-5.018-

20), influenza (mean R0 ~1.34721) and HCoV-229E (unidentified R0; associated with 

common cold). This distribution is in distinct contrast with that of DPP4, the receptor 

for MERS-CoV (R0 ~0.3-0.822), a coronavirus with limited human-to-human 

transmission23, in which expression skews towards lower airway/lung parenchyma 

(Fig. 2a). Therefore, our data highlight the possibility that viral transmissibility is 

dependent on the spatial distribution of receptor accessibility along the respiratory 

tract. 

           



To gain more insight into the expression patterns of genes associated with ACE2, we 

performed Spearman’s correlation analysis with Benjamini-Hochberg-adjusted p-

values to identify genes associated with ACE2 across all cells within the lung epithelial 

cell datasets. While the correlation coefficients are relatively low (< 0.12), likely due to 

low expression of ACE2 and technical noise and dropout effects, the expression 

pattern of the top 50 ACE2-correlated genes across the respiratory tree is consistent 

with that of ACE2, with a skewed expression towards upper airway cells (Fig. 2b and 

Extended Data Fig. 3a,b). Interestingly, while some of the genes are associated with 

carbohydrate metabolism, possibly due to their role in goblet cell mucin synthesis, a 

number of genes associated with immune functions including innate and antiviral 

immune functions, are over-represented in the rank list, including IDO1, IRAK3, NOS2, 

TNFSF10, OAS1, and MX1 (Fig. 2b and Supplementary Table 1). Expression of 

these genes is highest in nasal goblet 2 cells (Fig. 2b), consistent with the phenotype 

previously described. Nonetheless, nasal goblet 1 and nasal ciliated 2 cells also 

significantly express these genes (Fig. 2b). Given their environmental exposure and 

high expression of receptor/receptor-associated enzymes (Fig. 2a), it is plausible that 

nasal epithelial cells are conditioned to express these immune-associated genes to 

reduce viral susceptibility. 

 

In this study, we explored multiple scRNA-seq datasets generated within the HCA 

consortium and other resources, and found that the SARS-CoV-2 entry receptor 

ACE2 and viral entry-associated protease TMPRSS2 are highly expressed in nasal 

goblet and ciliated cells. This finding implicates these cells as loci of original infection 

and possible reservoirs for dissemination within and between individuals. Co-

expression in other barrier surface tissues could also suggest further investigation 



into alternative transmission routes. For example, the co-expression in esophagus, 

ileum, and colon could explain viral fecal shedding observed clinically24, with 

implications for potential fecal-oral transmission, whereas the co-expression in 

superficial conjunctival cells could explain an ocular phenotype observed in a small 

portion of COVID-19 patients25 with the potential of spread through the nasolacrimal 

duct.  

 

The results confirmed the expression of ACE2 in multiple tissues shown in prior 

studies10,11 with added information on tissues not previously investigated, including 

nasal epithelium and cornea, and its co-expression with TMPRSS2. We clearly 

detected nasal ACE2 mRNA expression, for which protein confirmation is needed to 

resolve conflicting results in literature8,12. Our findings may have significant 

implications for understanding viral transmissibility, considering that the primary viral 

transmission is through infectious droplets. Moreover, as SARS-CoV-2 is an 

enveloped virus, its release does not require cell lysis. Thus, the virus might exploit 

existing secretory pathways in nasal goblet cells sustained at a pre-symptomatic 

stage. These discoveries could have translational implications. For example, given 

that nasal carriage is likely to be a key feature of transmission, drugs/vaccines 

administered intranasally could be highly effective in limiting spread. 

 

This is the first collaborative effort by a Human Cell Atlas Biological Network (the 

Lung), and illustrates the opportunities from integrative analyses of Human Cell Atlas 

data, with future examples of consortium work expected soon. 
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Figure Legends  

 

Fig. 1| Expression of ACE2 and TMPRSS2 across different tissues and its 

enrichment in nasal epithelial cells. a, RNA expression of SARS-CoV-2 entry 

receptor ACE2 (first column), entry-associated protease TMPRSS2 (second column), 

and their co-expression (third column) from multiple scRNA-seq datasets across 

different tissues. Raw expression values were normalized, log transformed and 

summarized by published cell clustering where available, or reproduced clustering 

annotated using marker genes and cell type nomenclature from the respective studies. 

The size of the dots indicates the proportion of cells in the respective cell type having 

greater-than-zero expression of ACE2 (first column), TMPRSS2 (second column) or 



both (third column), while the colour indicates the mean expression of ACE2 (first and 

third columns) or TMPRSS2 (second column). b, Schematic illustration depicts the 

major anatomical regions in the human respiratory tree demonstrated in this study: 

nasal, lower airway, and lung parenchyma (left panel). Expression of ACE2 is from 

airway epithelial cell datasets: Vieira Braga, Kar et al. 2019 (middle panel) and Deprez 

et al. 2019 (right panel). The datasets were retrieved from existing sources, and the 

cell clustering and nomenclature were retained based on the respective studies. For 

gene expression results in the dot plots: the dot size represents the proportion of cells 

within the respective cell type expressing the gene and the dot color represents the 

average gene expression level within the particular cell type. 

 

Fig. 2| Respiratory expression of viral receptor/entry-associated genes and 

implications for viral transmissibility and genes associated with ACE2 

expression. a, Expression of ACE2 (an entry receptor for SARS-CoV and SARS-CoV-

2), ANPEP (an entry receptor for HCoV-229E), ST6GAL1/ST3GAL4 (enzymes 

important for synthesis of influenza entry receptors), and DPP4 (an entry receptor for 

MERS-CoV) from the airway epithelial datasets: Vieira Braga, Kar et al. 2019 (left 

panel) and Deprez et al. 2019 (right panel). The basic reproductive number (R0) for 

respective viruses, if available, are shown. b, Respiratory epithelial expression of the 

top 50 genes correlated with ACE2 expression based on Spearman’s correlation 

analysis (with Benjamini-Hochberg-adjusted p-values) performed on all cells within the 

Vieira Braga, Kar et al. airway epithelial dataset. The colored gene names represent 

genes that are immune-associated (GO:0002376: immune system process or 

GO:0002526: acute inflammatory response). For gene expression results in the dot 

plots: the dot size represents the proportion of cells within the respective cell type 



expressing the gene and the color represents the average gene expression level within 

the particular cell type. 

 

Methods 

The datasets were retrieved from published and unpublished datasets in multiple 

human tissues, including airways26,27, cornea (personal communication; Lako lab, 

Newcastle), skeletal muscle (personal communication, Teichmann lab, Wellcome 

Sanger Insitute and Zhang lab, Sun-Yat-Sen University, Guangzhou, China), ileum28, 

colon29, pancreas30, liver31, gallbladder (personal communication; Vallier lab, 

University of Cambridge), heart (Teichmann lab, Hubner lab/Berlin, 

Seidmanns/Harvard, and Noseda lab/Imperial College London), kidney32, 

placenta/decidua33, testis34, prostate gland35, brain36, skin37, retina38, spleen39, 

esophagus39, and fetal tissues40,41. Raw expression values were normalized and log 

transformed. We retained the cell clustering based on the original studies when 

available.  

 

For each dataset where per-cell annotation is not available, we re-processed the data 

from raw or normalized (whichever was deposited alongside the original publication) 

quantification matrix. The standard scanpy (version 1.4.3) clustering procedure was 

followed. When batch information is available, harmony package was used to correct 

batch effects in the PC space and the corrected PCs were used for computing nearest 

neighbour graphs. To re-annotate the cells, multiple clusterings of different resolutions 

were generated among which the one best matching the published clustering was 

picked and manual annotation was undertaken using marker genes described in the 

original publication. Full details can be found in analysis notebooks available at  



github.com/Teichlab/covid19_MS1. 

 

Illustration of the results was generated using scanpy and Seurat (version 3.1). For 

correlation analysis with ACE2, we performed the Spearman’s correlation with 

statistical tests using the R Hmisc package (version 4.3-1) and the p values were 

adjusted with Benjamini-Hochberg method with the R stats package (version 3.6.1) on 

the Vieira Braga, Kar et al. airway epithelial dataset and the Deprez et al. airway 

dataset. We also tested multiple additional approaches, including Kendall’s 

correlation, data transformation by sctransform function in the Seurat package, and 

data imputation by the Markov Affinity-based Graph Imputation of Cells (MAGIC) 

algorithm, to compare correlation results. While the imputation significantly improved 

the correlations, the top genes correlated with ACE2 are largely the same as the 

analysis done on un-imputed data. With the uncertainty of the extent imputation 

artificially distorted the data, we reported the results with no imputation even though 

the correlations are low. The correlation coefficients for all genes are included as 

Supplementary Data 1. The top 50 genes in each dataset were characterized based 

on Gene Ontology classes from the Gene Ontology (GO) database and associated 

pathways in PathCards from the Pathway Unification database. 

 

Data Availability Statement 

The published datasets can be found as followed: pulmonary airways (European 

Genome-phenome Archive: EGAS00001001755, EGAS00001002649; 

lungcellatlas.org and www.genomique.eu/cellbrowser/HCA), ileum (NCBI: 

GSE134809), colon (Single Cell Portal: SCP259; 

portals.broadinstitute.org/single_cell), pancreas (NCBI: GSE84133), liver (NCBI: 



GSE115469), kidney (www.kidneycellatlas.org), placenta/decidua (EBI Array Express: 

E-MTAB-6701; maternal-fetal-interface.cellgeni.sanger.ac.uk), testis (NCBI: 

GSE120508), brain (www.gtexportal.org/home/data-sets), retina (NCBI: GSE135922), 

skin (European Genome-phenome Archive: EGAS00001002927), spleen and 

esophagus (tissuestabilitycellatlas.org) and fetal tissues (Array Express: E-MTAB-

7407 and E-MTAB-8581;  developmentalcellatlas.ncl.ac.uk).  

 

All of the published datasets and relevant data from unpublished sources in this study 

can be visualized and assessed through a website portal (covid19cellatlas.org). 

 

Code Availability Statement 

Analysis notebooks are available at github.com/Teichlab/covid19_MS1. 
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