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Abstract

We present an analysis of the null geodesics of the static, spherically symmet-

ric, vacuum solution to the equations of conformal (Weyl) gravity. We classify

the full range of exotic spacetimes arising from the parameter space of the met-

ric. The nature of various notable features of these spacetimes is investigated

including light spheres, horizons and physical singularities.
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1. Introduction

For over one hundred years Einstein’s theory of general relativity has dominated the narrative

in our understanding of space, time, matter and energy in �elds from planetary dynamics to

cosmology. Its longevity has been due to its originality, relative simplicity and tremendous

success in explaining a wide range of astrophysical phenomena.

At the scale of the Solar System such phenomena include: radar echo delay from planets in

conjunction [1]; de�ection of starlight near the Sun [2]; redshift of light leaving the gravita-

tional potential of the earth [3] and perihelion precession of elliptical orbits [4]. A great many

more distant observations also seem to validate general relativity: changing orbital periods of

binary pulsars [5]; redshift of light leaving the gravitational potential of white dwarfs [6] and

gravitational waves released by merging black holes [7].

For all its success, however, general relativity on galactic and cosmological scales requires

the invocation of extra matter and energy to explain observations. This extra content in the

Universe has so far resisted investigation and has, therefore, been referred to as dark. Dark

matter is required at galactic scales to explain the asymptotic �atness of galaxy rotation curves
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[8], the extent of gravitational lensing [9] and the hydrostatic equilibriumof x-ray gas in galaxy

clusters [10]. Dark energy, meanwhile, is required to explain the accelerating expansion of the

Universe [11].

Research into alternative gravitational theories is often motivated in part by the desire to

do away with the need for these dark substances. Other reasons may include the potential

for quantisation or uni�cation of gravity with other fundamental forces. The consequences of

various alternative theories have profound implications for both cosmology (such as the energy

content, origin and fate of the Universe) and astrophysics (such as the feasibility and nature

of black holes). Regardless of the theory, however, to be viable it must replicate the predictive

success of general relativity and for this extensive testing is required.

One candidate theory to have been advanced in recent decades is conformal (Weyl) grav-

ity [12, 13]. General relativity relies on the symmetry of Lorentz invariance, developed in

Einstein’s special relativity, and prioritises the simplicity of second-order �eld equations

Gµν = 8πGTµν − Λgµν , (1)

where Gµν is the Einstein tensor. Conformal gravity, on the other hand, prioritises the symme-

try of local conformal invariance (a property shared by the other fundamental forces). Local

conformal invariance means invariance to local isotropic stretching of the spacetime geometry

with metric tensor gµν(x) of the form gµν(x)→ Ω2(x)gµν(x), where Ω(x) is a smooth, positive

function—a Weyl transformation. An unfortunate consequence of this extra symmetry is that

conformal gravity is characterised by fourth-order �eld equations [12] given by

4αgWµν = Tµν , (2)

where αg is a parameter for the strength of the gravitational �eld. These equations differ from

those used in general relativity because both the Bach tensor Wµν and the energy-momentum

tensor Tµν are traceless in conformal gravity and the only constant αg is dimensionless. The

lack of conformal invariance exhibited by the Einstein tensor Gµν and the dimensions of the

constants G and Λ prevent conformal scaling of general relativity.

While a number of solutions to the �eld equation (2) have been found [14], the focus of

this paper is on the static, spherically symmetric, vacuum solution (with equivalents in general

relativity such as Schwarschild, de Sitter and anti-de Sitter). This solution to the source-free,

fourth-order Poisson equation is commonly known as the Mannheim–Kazanas (MK) metric

[12] and is given by

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2(dθ2 + sin2 θdφ2), (3)

where

B(r) = 1−
β(2− 3βγ)

r
− 3βγ + γ r − κ r2,

with parametersβ, γ and κ picked up during integration. For the metric given (3) and all further

calculations we adopt geometrised units where c = 1.

How then does conformal gravity hold up under the same tests applied to general relativ-

ity? At the Solar System scale, conformal gravity can match all the results of general relativity

with the constraint that γ and κ are very small [15–17]. In this limit, with β proportional to

the mass of a central body, the MK metric (3) reduces to the Schwarzschild metric of general

relativity. At the galactic scale, rotation curves have been �tted with constraints on the magni-

tude of γ and κ consistent with Solar System tests and without the need for dark matter [18].
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Gravitational lensing effects, however, have been thought to require γ < 0 [15, 16, 19] as

opposed to γ > 0 found in the rotation curve �tting. The wrong sign for γ would result in

gravitational lensing away frommassive objects which is contrary to observations.Much work

has gone into resolving this from a variety of perspectives [20–22].

The parameters of the MK metric (3), β, γ and κ, characterise a wide variety of spacetimes

containing features such as light spheres, horizons (coordinate singularities of the metric) and

physical singularities. The values of the parameters alter the position, con�guration and nature

of these features and any deviation from the familiar γ = κ = 0 of the Schwarzschild metric

introduces more exotic cases. A light sphere occurs at a radius in a curved spacetime where

photons follow a circular orbit. In the Schwarzschild case there exists one unstable light sphere

at r = 3β. Any deviation from the circular orbit of an unstable light sphere causes the photon to

either fall into the singularity or escape to in�nity. Other values of γ and κ, however, can give
rise to stable light spheres or ‘accumulation points’ [23]. A build up of photons in such a stable

light sphere could alter the geometry further—providing a potential formation mechanism for

a self-gravitating shell of photons or orbiting radiation star [24]. The other notable feature of

the Schwarzschild case is the black hole event-horizon at r = 2β. This is a causal boundary in
spacetime across which light can only travel in one direction (towards r = 0). As with the light

spheres, however, different values of γ and κ can result in other horizons at different positions

and acting in different directions [25].

While exotic features such as stable light spheres [23] and multiple horizons [25] have

been previously identi�ed, we present a complete exploration of the spacetimes described by

the 3-parameter MK metric. This paper will �rst introduce the features of the MK spacetime

(section 2) before classifying all the possible con�gurations of these features allowed by the

parameter space of β, γ and κ (section 3). We will then conclude by discussing the nature of

these features in greater detail (section 4).

2. Features of the spacetime geometry of the MK metric

Four key features of spacetimes characterised by the MK metric are discussed in this section:

light spheres, horizons, physical singularities and large-scale curvature. For the �rst two of

these, signi�cant insight can be gained by de�ning an effective potential for photons in orbit

around a compact gravitational source. This was done using the null geodesic equation and

Killing vectors to produce an equation of motion for photon orbits,

(

dr

dφ

)2

= r4
(

1

b2
− Veff(r)

)

, (4)

where

Veff(r) =
B(r)

r2
=

1− 3βγ

r2
−

β(2− 3βγ)

r3
+

γ

r
− κ, (5)

is the effective radial potential of photon orbits. These orbits are characterised by quantities

conserved by the Killing vectors: L and E, the orbital angular momentum and energy of orbit

respectively. The constants are combined into a single quantity by de�ning an impact parameter

b = L/E.
The effective potential (plus constant parameterκ) as a function of the dimensionless param-

eter r/β is plotted in �gure 1 for a range of values of the dimensionless parameter βγ. We

focus initially on β > 0 due to its association with mass, however, β 6 0 will be considered in

section 3.
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Figure 1. Effective potential plus constant parameter κ of photon orbits as a function
of radius for a range of the parameter βγ. The positions of light spheres are marked by
dots.

2.1. Light spheres

The circular photon orbits or light spheres occur at the stationary points of the effective

potential.

dVeff

dr
= −

2(1− 3βγ)

r3
+

3β(2− 3βγ)

r4
−

γ

r2
= 0 (6)

can be rearranged to give the quadratic equation

γ r2 + 2(1− 3βγ)r − 3β(2− 3βγ) = 0, (7)

with solutions at r = 3β and r = 3β − 2/γ. These then correspond to the radii of two light

spheres with positions independent of κ. The effective potential informs the stability of the

light spheres since the maximum in Veff at r = 3β corresponds to an unstable light sphere

while the minimum at r = 3β − 2/γ corresponds to a stable light sphere. The unstable light

sphere is at r = 3β independent of γ and κ. For γ = 0, the Schwarzschild case, the stable

light sphere is at r = ∞. For βγ < 0 the stable light sphere at r = 3β − 2/γ lies outside the

unstable light sphere and for βγ > 2/3 there is a stable light sphere interior to the unstable

one. For smaller positive values of βγ only the unstable light sphere exists.

2.2. Horizons

The horizons of the metric occur at coordinate singularities where B(r) = 0 [25]. Rearranging

this in terms of dimensionless parameters r/β, βγ and β2κ, the horizons are found at

−β2 κ

(

r

β

)3

+ βγ

(

r

β

)2

+ (1− 3βγ)

(

r

β

)

− (2− 3βγ) = 0. (8)

Crucially, this is dependent on κ and so, unlike light spheres, the existence, nature and positions

of these key features of the spacetime geometry are strongly affected by its value.
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Since horizons occur where B(r) = 0, from the form of the effective potential (5) we have

horizons where Veff = 0. A change in κ, therefore, corresponds to adding or subtracting a

constant to the effective potential seen in �gure 1, with the potential to drastically change the

positions of horizons. From �gure 1 it is clear that for κ = 0, there are a variety of spacetime

geometries characterised by the value of βγ. Some have no horizons (βγ < −1/3 andβγ > 1),

others only the relatively familiar black hole event horizon (0 < βγ < 2/3) while still more

have either exterior, cosmological horizons (−1/3 < βγ < 0) or interior, Cauchy horizons

(2/3 < βγ < 1). Further, by visualising the variation of κ as moving the zero point on the

vertical axis, we can predict even more exotic spacetimes for κ 6= 0.

Due to the diverse nature and positions of horizons in theMKmetric it is necessary to de�ne

precisely what we mean by each of them and to classify them consistently. To this end we will

cease to refer to horizons as Cauchy or black hole: this system changes if you view them from

the other side (i.e. cosmological horizons). Instead, we will use ‘in’ and ‘out’ horizons which

can be either ‘interior’ or ‘exterior’ to the unstable light sphere at r = 3β (for β > 0). We

establish the nature (in or out) of these horizons by analogy with the Schwarzschild horizon.

A transition from B(r) > 0 to B(r) < 0 as radius decreases, like in the Schwarzschild case,

corresponds to an in-horizon. Conversely, a transition from B(r) > 0 to B(r) < 0 as radius

increases corresponds to an out-horizon.

An examination of various possible arrangements of these horizons and the positions of

stable and unstable light spheres is presented in section 3.

2.3. Physical singularities and large-scale curvature

The �nal features of spacetime that need explaining are the behaviours of the metric at the

limits of r. To accomplish this we shall analyse the scalar curvature as r→ 0 and as r→∞.

Our initial analysis will focus only on the Einstein frame in which the metric takes the form

(3) without aWeyl transformation. This will prove helpful when interpreting the null geodesics

and causal structure (both of which are invariant underWeyl transformations).We will discuss

the effects of conformal scaling of the metric in section 4.2.

Beginning with the behaviour at r = 0 it is immediately clear that for the MK metric (3),

just as for the Schwarzschild metric, there is a singularity. Importantly, this singularity is

not merely a coordinate singularity as no coordinate transformation can make it disappear.

A physical singularity is then a singularity that exists independent of coordinate system. We

can check this is the case by �nding a curvature scalar that diverges at the position of the

singularity.

The most simple of these is the Ricci scalar Rµ
µ derived from contractions of the Riemann

tensor,

Rµ
µ = 12κ−

6γ

r
+

6βγ

r2
. (9)

This clearly diverges unless γ = 0 and therefore all spacetimes with γ 6= 0 contain physical

singularities. There are, however, other curvature scalars we might examine to investigate the

case where γ = 0 and indeed one such scalar is required to prove the existence of a physical

singularity for the Schwarzschild metric where γ = 0 and κ = 0. The Kretschmann scalar,

K = RλµνκR
λµνκ, for the MK metric takes the form

K = 24κ2 −
24γκ

r
+

24βγκ

r2
+

6γ2

r2
−

24βγ2

r3

+
36β2γ2

r4
+

24β2γ(2− 3βγ)

r5
+

12β2(2− 3βγ)2

r6
.

(10)
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Having already shown a singularity exists for γ 6= 0 all that remains is to take γ = 0 such that

K = 24κ2
+

48β2

r6
, (11)

where it is clear that the curvature diverges at r = 0 unless we also have β = 0 (this will be

discussed further in section 4.1). The MK metric, therefore, has a physical singularity at the

origin and none elsewhere as long as both γ and β are not equal to zero.

At the other extreme, as r→∞, the curvature scalars (9) and (10) depend only on the

parameter κ. It is for this reason that κ is associated with the large scale curvature of spacetime.

Indeed, from the linear dependence of the Ricci scalar Rµ
µ on κ it is clear that a negative value

of κ corresponds to an hyperbolic, open Universe while a positive value of κ corresponds

to a spherical, closed Universe. κ = 0, meanwhile, indicates no large scale curvature and an

asymptotically �at Universe.

3. Exploration of spacetime geometries in the parameter space of the MK

metric

All twenty distinct con�gurations of features permitted by the MKmetric are shown in table 1

including the signs of β, γ and κ for which they are permitted. Figure 2 shows the locations of

the light spheres and horizons as a function of the dimensionless parameter βγ. Each horizon-
tal line on either side of r/β = 0 corresponds to a spacetime containing some con�guration

of features. Figure 2 shows clearly that varying κ only affects the horizons (blue) and not the

stable or unstable light spheres (orange and red respectively). The stable light spheres tend

towards the unstable light sphere at r = 3β as βγ →±∞. Figure 3, meanwhile, maps the

domains of the β2κ–βγ parameter space for β > 0 and β < 0. Each of the 20 domains cor-

respond to an entry in table 1 and each point in �gure 3 corresponds to a horizontal line in

�gure 2.

The wide variety of interesting spacetimes described by the MK metric have in common

some combination of the features outlined above in section 2. They all contain a physi-

cal singularity at r = 0 (unless γ, β = 0) and the large-scale geometry may be hyperbolic,

spherical or �at. With the restriction of β > 0, they also all contain an unstable light sphere

at r = 3β. Beyond this they may contain up to one stable light sphere at either a larger or

smaller radius than the unstable one and some combination of up to three of the four possible

horizons.

β < 0 can be associated with some gravitational source of either negative density or pres-

sure as required by many dark energy theories. With β < 0 there are no unstable light spheres

although there may be up to one stable light sphere and two horizons. Without an unstable

light sphere to provide a reference point our naming system breaks down, however, as these

features can exist arbitrarily close to the singularity, we record them in table 1 as interior

features.

For κ = 0 in �gure 2, the horizon and light sphere curves tend to zero as r/β →∞ but the

horizon curve tends faster. The blue curve indicating the horizons does not �atten off in the

large-r limit for non-zero κ, it either continues to rise or fall depending on the sign of κ and β.
It should also be noted that, with the exception of r = 0, the light sphere curves intersect the

horizon curve at its stationary points: stable light spheres at maxima and unstable light spheres

at minima for r/β > 0 and the reverse for r/β < 0. A brief calculation reveals the horizons

cross the unstable light sphere at r/β = 3 when

6
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Table 1. Possible radial con�gurations of light spheres (LS) and horizons (H) in the
β–γ–κ parameter space of the MK metric. The four leftmost columns contain the signs
of parameters and domain labels to identify each case in �gure 3. I/O= in/out horizons.
S/U = stable/unstable light spheres. E = empty. The singularities at r = 0 are timelike
(T) or spacelike (S), and naked (N) or concealed (C).

β γ κ Domain r = 0

Interior

Unstable LS

Exterior

Out-H Stable LS In-H Out-H Stable LS In-H

+ + + SUO T/N x x x

+ + + OSIUO T/C x x x x x

+ + + OSU T/N x x x

+ + + IUO S/C x x x

+ + + U S/N x

+ + − SU T/N x x

+ + − OSIU T/C x x x x

+ + − IU S/C x x

+ − + IUOS S/C x x x x

+ − + US S/N x x

+ − − IUS S/C x x x

+ − − IUOSI S/C x x x x x

+ − − USI S/N x x x

− + + O T/N x

− + − E T/N

− − + E S/N

− − + OS T/N x x

− − − I S/C x

− − − OSI T/C x x x

− − − S T/N x

β2κ =
1+ 3βγ

27
. (12)

This has important implications forwhich con�gurationof features occurs in a particular space-

time. Indeed, (12) gives the domain boundary IUO→U in �gure 3. Other domain boundaries

(OSI → S) in �gure 3 can be derived similarly where the horizon curves intersect the stable

light spheres in �gure 2 giving

β2κ =
βγ − 1

(

3− 2
βγ

)2 . (13)

The �nal domain boundaries in �gure 3 occur at βγ = 0, βγ = 2/3 and β2κ = 0 for reasons

that are clear from �gure 2.

To better understand �gures 2 and 3 we investigate the six domains and �ve boundaries

which occur along β2κ = −0.05. These are found in the top panel of �gure 3 (β > 0) and

the horizons are given by the darkest blue curve in �gure 2. Starting with βγ ≫ 1, the SU

case containing a stable and an unstable light sphere, we decrease βγ until at βγ = 0.958
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Figure 2. Dimensionless plot of the parameter space of βγ against the radius r/β show-
ing features of the spacetime geometry. The horizons are in blue, stable light spheres in
orange and unstable light spheres in red. The lightest blue corresponds to β2κ = 0.05,
the darkest to β2κ = −0.05 and the third to κ = 0.

we reach the domain boundary corresponding to the maximum of the horizon curve, coin-

cident with the interior stable light sphere. Crossing the boundary changes SU → OSIU as

we introduce interior in and out-horizons on either side of the stable light sphere. The next

boundary, OSIU→ IU, occurs at βγ = 2/3, where the interior out-horizon and the stable light
sphere reach r = 0 (OS → 0) leaving IU (an interior in-horizon and unstable light sphere).

Crossing the IU → IUS boundary at βγ = 0 then introduces an exterior stable light sphere

from r/β = ∞ (S →∞ in reverse). At βγ = −0.705 the exterior maximum of the horizon

curve in �gure 2, coincident with the exterior stable light sphere, again introduces in and

out-horizons via the domain boundary. This time, however, they are exterior to the unstable

light sphere giving IUS → IUOSI. Finally, at βγ = −47/60, we encounter the minimum of

the horizon curve corresponding to the domain boundary IUOSI→USI where the interior in-

horizon and exterior out-horizonmeet at the unstable light sphere. To summarise, forβ > 0 and

β2κ = −0.05, as we lower βγ from+∞ to −∞ we encounter �ve domain boundaries effect-

ing space-time transitions in the sequence SU→ OSIU→ IU→ IUS→ IUOSI→ USI. This

sequence can be traced in �gure 3 in the upper panel (β > 0) as we move from right to left with

β2κ = −0.05.
A second example can explain what occurs when β2κ is changed and some of the cases

which occur on the boundaries. We start with β2κ = 0.05 such that the horizons are given by

the lightest blue curve in �gure 2 and βγ = 0.1: small enough that we are in the U domain

of �gure 3. Decreasing β2κ then brings the minimum of the horizon curve through βγ = 0.1
crossing the domain boundary U→ IUO. A further decrease �attens the large-scale curvature

until as κ→ 0, we arrive at the domain boundary IUO → IU where the exterior out-horizon

tends to in�nite radius (O→∞). Staying on the boundary we now consider the medium blue

horizon curve in �gure 2 for which κ = 0. Moving along the domain boundary by decreasing

8
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Figure 3. Dimensionless plot of the parameter space β2κ against βγ showing domains
and their boundaries; each corresponding to spacetimes in table 1. I/O= in/out horizons.
S/U = stable/unstable light spheres. E = empty. The top plot is for β > 0 while the
bottom is for β < 0.

βγ then gradually increases the radius of the interior in-horizon until, where γ = κ = 0, we

have the Schwarzschild case. This occurs at the intersection of domain boundaries in the top

panel of �gure 2 and, consistent with GR, the interior in-horizon occurs at r = 2β and the

unstable light sphere at r = 3β.
We have so far neglected to mention the cases where β = 0, however, using the tools devel-

oped above this becomes relatively simple. In the limit β → 0 there is no unstable light sphere,

the stable light sphere occurs at r = −2/γ and the horizons occur where

B(r) = 1+ γ r − κr2 = 0. (14)

Plots of γ against r and κ against γ can then be constructed and interpreted the same way as

the dimensionless plots (�gures 2 and 3 respectively). In effect the κ–γ parameter space looks

very similar to the bottom panel of �gure 3. The OS→ 0 domain boundary does not exist for

β = 0 and neither do the I and E domains on the large βγ side of it. The absence of β < 0 also

inverts the horizontal axis and the curved domain boundary OSI→ S is given by κ = −γ2/4.
The �ve domains occurring in the limit β → 0 also all occur for β < 0.

While all these spacetimes are found at the β = 0 intersection of the domain boundaries in

the bottom panel of �gure 3, we can also consider the domain boundaries in the κ–γ parameter

space. Speci�cally, the S→∞ boundary at γ = 0 hosts de Sitter and anti-de Sitter spacetimes

9
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depending on the sign of κ and if we then take κ = 0 as well (β = γ = κ = 0) we discover

Minkowski spacetime at the intersection of domain boundaries. It should be noted, however,

that care must be taken when taking the limits of parameters describing a family of spacetimes

and an accurate analysis of the MKmetric in the limits of β, γ and κmay require a coordinate-

free approach [26].

The full β–γ–κ parameter space which spans the MK metric contains twenty unique

arrangements of features (including repetition of the empty case E due to large-scale curva-

ture). Many of these have strict restrictions on the parameter ranges which produce them while

others occur more freely. The �ve astrophysically signi�cant cases are tightly constrained

to the region near γ = κ = 0 in the top panel of �gure 3 while cosmologically signi�cant

cases may even include β 6 0. Conformal invariance also allows this theory to scale to much

smaller length scales where even more exotic regions of the parameter space might become

important.

4. Discussion

In this section we investigate in more depth some of the features of MK spacetimes using

speci�c examples drawn from �gures 2 and 3.

4.1. Physical singularities

If we return to consider the curvature scalars in section 2.3, we �nd (in the Einstein frame) they

are �nite everywhere in spacetime only if β = γ = 0. As mentioned above, these conditions

reduce the MK metric to the de Sitter, anti-de Sitter or Minkowski metrics depending on κ.
These are the only conditions under which the MK spacetime does not contain a physical

singularity at r = 0.

It should be obvious that any spacetime with βγ 6= 0 not containing an interior in-horizon

contains a naked singularity. Whether the singularity is naked or concealed behind a horizon is

not, however, the only way in which the various singularities at r = 0 can differ. Depending on

the sign of B(r) in the region containing r = 0, the singularity could be timelike or spacelike

[27]. If the singularity is in a regionwhereB(r) < 0 it is spacelike—like the Schwarschild black

hole—but if B(r) > 0 the singularity is timelike. For β > 0 there are timelike singularities

where βγ > 2/3 and spacelike singularities where βγ < 2/3. The reverse is true for β < 0

with timelike singularities where βγ < 2/3 and spacelike singularities where βγ > 2/3. These
conditions coincide with the OS→ 0 transition in �gure 3.

Examples of these singularities can be found in �gure 4 where the OSI plot (on the left)

contains a timelike singularity and the IUS plot (on the right) contains a spacelike singu-

larity. Anything in the B(r) < 0 region around a spacelike singularity will reach r = 0 in

�nite time. The timelike singularities in B(r) > 0 regions, on the other hand, can be avoided

and indeed all non-radial, null geodesics are eventually de�ected away from the singular-

ity. Not all MK spacetimes with spacelike singularities have interior in-horizons like the

Schwarschild black hole; some have only an exterior in-horizon or even no horizons at all.

Similarly, timelike singularities can exist with or without an interior out-horizon (a Cauchy

horizon).

4.2. Conformal scaling

Having used the presence of spacelike and timelike singularities in the Einstein frame

of the MK metric (3) to explain the behaviour of null geodesics, we now consider what

happens when we use a Weyl transformation to conformally scale the metric. Under

10
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Figure 4. Polar plots of null geodesics. The horizons are in blue, stable light spheres
in orange and unstable light spheres in red. Left: the domain OSI with parameters
β2κ = −0.08 and βγ = 0.4. Three null geodesics are shown including the unique,
radial trajectory which reaches the timelike singularity. All null geodesics terminating
at in�nity will cross both horizons exactly twice while photons bound by the stable light
sphere may cross repeatedly. Right: the domain IUS with parameters β2κ = −0.08 and
βγ = −0.8. Two photon trajectories are shown: one bound by the stable light sphere
and the other captured by the spacelike singularity.

transformations of the form gµν → Ω2(r)gµν much of the geometry changes (i.e. massive

geodesics and curvature scalars). Crucially, however, the null geodesics, light cones and causal

structure remain invariant. This means the radial order of light spheres and horizons is unaf-

fected and the con�gurations of features presented in table 1 are preserved under conformal

scaling.

On the other hand because the curvature scalars are affected, the physical singularities

present in the Einstein frame are not necessarily present in a spacetime which is related to

the MK metric (3) by a conformal factor Ω2(r). Indeed, studies of other conformally invariant

theories have demonstrated that singularities can be removed from various spacetimes by the

use of appropriate Weyl transformations [28–30].

By way of example we pick a previously used conformal factor [29] which should remove

singularities at r = 0 while retaining the dimensions of the metric,

Ω
2(r) =

(

1+
L4

r4

)

=
1

r4

(

r4 + L4
)

, (15)

where L is a length scale parameter. With a conformal factor of this form, the curvature scalars

can be factorised while taking care to keep track of powers of r. This results in,

R =
−r

(r4 + L4)3

[

polynomial in r of degree 11
]

(16)

and

K =
r2

(r4 + L4)6

[

polynomial in r of degree 22
]

, (17)

neither of which are singular at r = 0. This demonstrates that a suitable conformal transforma-

tion can remove curvature singularities in the same way a suitable coordinate transformation

11
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can remove coordinate singularities. Spacetimes with singularities removed in this way have

been shown to be geodesically complete, with massive and null particles approaching r = 0

taking in�nite proper time (or af�ne parameter value) to get there [29]. If L is suf�ciently small,

a conformal factor of this form could provide a singularity-free metric which is indistinguish-

able from the MK metric in the Einstein frame. Constraining L, as has been done for other

theories [31], could be an avenue for further research.

4.3. Horizons and causal structure

The horizons occurring at B(r) = 0 also have an effect on the causal structure of the spacetime.

The interior in-horizon in the IU case for example has an event horizon which light can only

cross in one direction—it is causally equivalent to the Schwarzschild spacetime. Similarly, the

addition of an interior out-horizon and an interior stable light sphere in the OSIU case makes it

causally equivalent to the Reissner–Nordström spacetime with an outer event horizon and an

inner Cauchy horizon. This is also causally equivalent to the Reissner–Nordströmanti-de Sitter

spacetime for which a study of the null geodesic effective potential [32] proves instructive for

understanding the possible photon trajectories of our effective potential in �gure 1. From here

the domain boundaryOSIU→SU is equivalent to the extremalReissner–Nordström spacetime

beyond which the timelike singularity is naked.

The exterior out-horizon can be considered equivalent to the de Sitter cosmological horizon.

In the coordinates we have used, as in the static patch of de Sitter spacetime, the horizon is sta-

tionary. A more cosmologically appropriate metric on a time-evolving manifold S3 equivalent

to the Freidmann–Robertson–Walker metric could reveal further similarities or differences

leading to cosmological tests of conformal gravity. In our analysis, however, the exterior out-

horizon appears as an event horizon; like the Schwarzschild horizon turned inside-out. By

extension we might expect the exterior in-horizon to be equivalent to an inside-out Cauchy

horizon.

The OSI case in �gure 4 shows how the existence of a pair of in/out-horizons on either side

of a stable light sphere permits null geodesics to cross multiple times. This behaviour occurs in

a total of four cases with either interior or exterior in/out-horizon pairs: IUOSI, OSIUO, OSIU

and OSI. Photons in precessing, bound orbits around the stable light sphere may repeatedly

cross both horizons.

To understand this behaviour in �gure 4 we consider a photon falling towards the singularity

from the region where B(r) > 0 outside the in-horizon. In the B(r) > 0 region the time coor-

dinate always increases and the radial coordinate can increase or decrease. Crossing a horizon

into a region with B(r) < 0, however, changes the sign of the temporal and radial terms in the

metric (3). In the B(r) < 0 region the time coordinate can increase or decrease and the radial

coordinate always decreases. An in-falling photon would then cross the in-horizon and, having

crossed, it must by necessity cross the out-horizon on its approach to the singularity (being in

a spacetime where time travels forward). Once in the B(r) > 0 region containing the singu-

larity the radial and time terms resume their familiar con�guration and the photon is turned

back towards the interior out-horizon. Crossing this for the second time it �nds itself in the

B(r) < 0 region but this time it has emerged into a new spacetime where time �ows in the

opposite direction and thus it must continue to travel outwards through the interior in-horizon.

If the photon is bound around the stable light sphere it will turn back and repeat this many

times.

Further analysis of all horizons in MK spacetimes using other coordinates or Penrose

diagrams such as that carried out for the β = 0 metric (14) [33] is warranted.

12
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4.4. Stable light spheres and photon accumulation

While any stationary point of the effective potential (5) can have circular photonorbits; only at a

minimumare these stable. Away froma circular orbit, these stable light spheres can contain pre-

cessing null geodesics similar to themassive geodesics followed by planets in the Solar System.

Any photons emitted on a trajectory with suf�ciently large impact parameter b from an object

in the vicinity of a stable light sphere will enter a stable orbit. As more photons enter bound

orbits, they could eventually contribute a non-negligible amount to the energy-momentum in

the spacetime. The solution to the Einstein �eld equations for a radially distributed spherical

shell of photons has been found [24]. Perturbatively adding this form of the energy-momentum

tensor to the �eld equation (2) should provide a starting point for understanding how photon

accumulation might distort spacetime.

Most MK metric spacetimes containing stable light spheres exist away from the �ve

domains permitted by the astrophysical constraints on γ and κ. Further, for the spacetimes

IUOS and IUOSI, the stable light sphere lies beyond an exterior out-horizon and thus can-

not be seen by observers living between the interior in and exterior out-horizons, though it is

accessible to observers outside the exterior out-horizon. This leaves IUS as the only domain

that could contain an astrophysically observable, stable light sphere. A bound, null geodesic

in an IUS spacetime is plotted in the right panel of �gure 4 alongside another terminating at

r = 0. It should be noted, however, that given the astrophysical constraints on γ any such sta-

ble light sphere could form only at galactic scales and due to the photons being bound, any

observation would not be direct but via the lensing of light through and around it [24]. A lack

of evidence for stable light spheres could provide further constraints on the parameters of the

MK metric.

5. Conclusions

Having investigated the null geodesics of theMKmetric using an effective potential, we identi-

�ed several distinct features arising from the full β–γ–κ parameter space of the metric. These

include stable and unstable light spheres, four varieties of horizons, and spacelike and time-

like singularities. Twenty domains in the MK metric parameter space were identi�ed, each

of which corresponds to a unique arrangement of features. We linked a few further extremal

cases occurring on the domain boundaries to more widely studied metrics in general relativity.

Interesting properties of some of the features were also highlighted along with directions for

future theoretical and observational work.
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