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Abstract

We present an adaptive mesoscale model for carbon nanotube (CNT) systems. In

our model, CNTs are represented as a chain of nodes connected by tensile and torsion

springs to describe stretching and bending of the chain with intermolecular interac-

tions being calculated using a mesoscopic Lennard-Jones potential. Computational

adaptivity was achieved by dynamically adjusting node spacing and number during

the simulation to optimise the number of simulated particles and lower computational

effort. Adaptive simulations were up to five times faster than non-adaptive ones whilst

quantitatively preserving all system dynamics. In particular, the model enables the

study of the timescale of CNT bundling that leads to the formation of dilute CNT net-

works, so-called aerogels. These aerogels constitute the first step in the direct spinning

of CNT fibres from chemical vapour deposition synthesis. Understanding the factors

governing CNT bundling and network formation is key to controlling CNT fibre mi-

crostructure, and therefore optimising their properties. Using the model, we simulated

the bundling dynamics of two CNTs with an initial point contact at varying angles for

CNT lengths of up to 10 µm. We find that bundling times are an increasing function

of initial collision angle and follow a power law with increasing CNT length that range

from 10−1 to 103 ns. We postulate that when this bundling time becomes of the same

order as the CNT bundle collision time, the aerogel will form.

Introduction

Chemical vapour deposition (CVD) processes are the most common method of high-volume

carbon nanotube (CNT) production1 due to their scalability and simplicity. Among CVD

processes, the floating catalyst chemical vapour deposition (FCCVD) process is of consid-

erable academic and industrial interest for bulk CNT material production, as it produces a

self-assembled macroscopic CNT aerogel which refers to dilute networks of CNTs. The FC-

CVD process allows single step production by combining nucleation, growth and aggregation

of CNTs to form a hierarchical aerogel consisting of CNTs formed into bundles, and bundles
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interconnected within the aerogel. The aerogel of continuous CNT fibres is extracted from

the CVD system and is continuously wound up. Its main disadvantages have been the low

density of reaction, requiring large reactor volumes for relatively low production rates,2 as

well as the presence of impurities. However, recent optimisation has greatly reduced impu-

rities and their resulting effects.3 Therefore developing an understanding of how the aerogel

forms is critical in further process intensification and macroscopic property manipulation.

Iron, sulphur, and carbon precursors

Formation of iron catalyst particles
Fibre 
Synthesis

Fibre 
spinning

Fibre 

Condensation

Decomposition and Particle Formation

CNT Reactor

τ
B

>E0 adhE

200 nm

Bundles, typically 
~10 CNTs

Nanotube growth on catalyst particles

Figure 1: The phenomena occuring in the FCCVD process. Iron, sulphur and carbon pre-
cursors decompose to form catalyst nanoparticles, on which individual CNTs grow. They
subsequently collide and reorient to form bundles. Bundle collisions lead to the formation
of the CNT aerogel, which is subequently spun into CNT fibre. The bundles found in the
aerogel typically consist of around 10 CNTs. In order to determine the bundling time τB, the
intermolecular energy E of the CNT pair is used as a metric that indicates the completion
of bundling.

The FCCVD process was initially developed by the Macromolecular Materials Laboratory

at the University of Cambridge4 and a schematic of the process, as well as scanning electron

microscope images of the product are shown in Figure 1. The figure provides an overview of

the process, which provides the context for this work. The reaction occurs in a hydrogen-
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filled cylindrical furnace in the 1000 ◦C to 1300 ◦C temperature range. Methane, ferrocene,

and thiophene are continuously injected into the furnace and decompose to form carbon and

sulphur precursors as well as catalyst nanoparticles, on which individual CNTs grow. The

CNTs undergo collisions which are governed by the thermal diffusion of the CNTs within the

furnace and the corresponding collision kernel has recently been determined.5 After collision,

the intermolecular attractive van der Waals (vdW) forces cause the molecules to align and

agglomerate into bundles. This process is illustrated on the lower left corner of Figure

1, where two individual CNTs align themselves, lowering their intermolecular energy from

an initial value of E0 to form a bundle with a final adhesion energy Eadh over a bundling

time τB. It is experimentally observed that these bundles consist of about 3-20 close-packed

CNTs and may be considerably longer than the individual CNTs.5 Subsequently, the bundles

collide and entangle to form a network of bundles, which is then drawn out of the furnace

as fibre spun on a rotating drum, or as CNT sheets. The process of a dilute CNT aerosol

to gel transition is referred to as a CNT aerogel in line with work for gas-phase spherical

aggregates6 and colloidal sol-gel systems.

Further understanding of the physical phenomena occurring in the FCCVD process is

key to obtaining the desired CNT product and optimising and scaling the process further.

Therefore, recent work has focused on theoretically, computationally, and experimentally

investigating the principles governing the steps indicated in Figure 1.2,7,8 The decomposition

of chemical precursors and nucleation and growth of nanoparticles has been explored.9 It was

observed that catalyst nanoparticles nucleate, grow, in some cases disappear, and re-nucleate

in the reactor, which affects the aerogel formation. The effect of sulphur in the chemical

precursors on catalyst particle dynamics has also been explored.10 The influence of the

carbon source and catalyst nanoparticles on CNT growth has also been investigated.11 It has

additionally been shown that CNT growth rate increases rapidly with furnace temperature.12

The CNT collision rate was recently investigated by Langevin Dynamics modelling of

collisions of single and multi-joint rods, which represent individual CNTs.5 The results were
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shown to agree with previous work on agglomeration of arbitrarily shaped particles,13–15

which extends collision kernel theory to account for the collisions of arbitrarily shaped par-

ticles. Apart from collision frequencies, the distributions of collision position and collision

angle were investigated.

Modelling the dynamics after collision is an area that has not been investigated in depth.

Identifying the timescales that govern the various phenomena of Figure 1 is vital for modeling

the aerogelation process. More specifically, comparing the bundling timescale τB with the

timescale of CNT collisions is necessary to understand the bundle and aerogel formation

process. Due to the flexibility of CNTs when the aspect ratio is high, treating them as

rigid rods is not appropriate. A useful technique that captures the critical properties of

interacting molecules is a Molecular Dynamics (MD) simulation which tracks the motion of

each carbon atom. In MD, the computational cost scales approximately linearly with the

number of atoms, thus simulating CNTs, whose length can be of the order of 100 µm or

1 mm is too computationally expensive. MD has been extensively used in CNT research to

calculate elastic16,17 and thermal properties,18 as well as interactions with interfaces.19

An alternative to MD simulations for larger molecules is a mesoscale model in which

atoms are lumped into larger masses in order to reduce the number of degrees of freedom

of the system. Bead-spring mesoscale models have been used to model polymers where each

molecule is treated as a series of massive beads connected by massless springs. Bead-spring

models were pioneered by Rouse and Zimm20 to model long flexible polymer chains. They

treated long polymer molecules as a series of masses, joined by Hookean springs. Bead-spring

Brownian mesoscale models have had numerous applications for polymers, nucleotides, pro-

teins, and even CNTs.21–23 Buehler exploited this technique to investigate the mechanical

behaviour of CNTs.24 Due to the high bending stiffness of CNTs, his model included rota-

tional springs at each bead and the bead spacing was kept small to capture the physics of

the interaction of different chains. Thus, the use of a coarse-grained model for the prediction

of the mechanical properties of CNT systems has been established. Volkov et al.25,26 later
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developed a mesoscopic interaction potential to model CNT-CNT interactions. Combining

this interaction potential with a model similar to Buehler’s provides a useful framework

for CNT dynamics simulations. The computational cost again scales with the number of

simulated particles in the system, which brings a limit to the lengths of CNTs that can be

investigated efficiently.

Motivated by the need to understand and model the physical phenomena in the FCCVD

process, this work focuses on investigating the bundling of CNTs in said process. We present

a framework for simulation of CNT bundling for high aspect ratio CNTs with lengths exceed-

ing 10 µm, which are not able to be modelled due to the high cost of other current modelling

frameworks. The simulations involve the post-collision dynamics of individual CNTs, which

reorient to form bundles. A mesoscale and an adaptive mesoscale model which discretise

CNTs into series of nodes are developed and compared with atomistic simulations. These

models account for relevant dynamic parameters, such as CNT bending stiffness and inter-

molecular attraction. The bundling time is found for individual CNTs of varying lengths

and initial collision angles, in order to determine the bundle formation process resulting from

individual CNT-CNT collision. The resulting bundling times are compared to CNT collision

times, as the relative timescales determine the onset of aerogel formation. The adaptive

mesoscale model can be applied to other one-dimensional high-aspect-ratio materials, such

as boron nitride nanotubes or metallic nanowires, thus is of more general interest than solely

for CNT applications.
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Figure 2: Illustration of initial CNT geometry with two CNTs at a specified collision position
and angle. The CNTs are separated into cylindrical segments and each segment is represented
by a node in the mesoscale model. The nodes are connected with massless axial and rotational
springs.

Methods

Bundling Dynamics — Mesoscale Model

Derivation of Model Parameters

Here we present our method for deriving the relevant parameters for the mesoscale simulation,

drawing on the methods developed by Buehler24 and Volkov, Zhigilei et al.25,26 The newly-

defined method allows for adaptive modelling of the CNT interaction with higher particle

resolution at the interface between CNTs and lower resolution at locations that are far from

the advancing interface.

Node Mass

As shown in Figure 2, each molecule is treated as a series of nodes in the mesoscale model.

The CNT is separated into cylindrical segments with the nodes sitting at a junction between

two segments. The mass in the mesoscale model is concentrated only at the nodes and is

evaluated as half the mass of the two segments that are attached to the node.27 The axial
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and rotational springs are massless.

Axial Stiffness

The axial stiffness of the CNT is represented with Hookean springs between consecutive

nodes. The axial stiffness can be calculated with the assumption that the CNT is an elastic

rod in tension and compression. Axial deformation is therefore associated with potential

energy:

Vax = kr∆r
2 (1)

with stiffness kr given by:

kr =
1

2

EA

ro
(2)

where E is the CNT Young’s Modulus, A is the cross-sectional area, ro is the natural node

spacing and ∆r is the dynamically measured displacement from the natural node spacing.

E is chosen as 1 TPa, which is appropriate for individual nanotubes28and A is calculated by

treating one nanotube as a concentric graphene tube with radius RCNT and wall thickness

dG = 3.35 Å29 with the following equation:

A = π
[
R2

CNT − (RCNT − dG)2
]
. (3)

Bending Stiffness

The bending stiffness is represented with Hookean rotational springs at each node. The

assumption that a CNT behaves like an Euler beam is made.30 Bending deformation is

associated with potential energy:

Vrot = kθ∆θ
2 (4)

with bending stiffness kθ given by:

kθ =
1

2

EIA
ro

(5)
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where IA is the second moment of area of the cross-section which can be computed as:

IA =
π

4

[
R4

CNT − (RCNT − dG)4
]
. (6)

Existing CNT and polymer bead-spring models use regularly spaced beads, in which ro

is equal to the bead spacing. This work expands this result to irregularly spaced beads or

nodes, which are necessary for the adaptive mesoscale model, explained later in this section.

In the adaptive modeling case, ro takes the average value of the two node spacings on either

side of the considered node. We determined this result by equating the bending potential

energy of an Euler beam of length L and angle of curvature φ and the bending potential

energy of a series of three nodes connected with two rigid links of total length L and bending

angle ∆θ (from eq. (4)).

Intermolecular Forces

A mesoscopic Lennard-Jones (LJ) potential based on the work by Volkov26 is used to model

the intermolecular vdW interactions between cylindrical CNT segments. The potential is

based on the assumption that the carbon atoms of two CNT segments interact via a 12-6

Lennard-Jones31 potential density of the form:

vLJ =
4ε

n2
C

[(σ
r

)12
−
(σ
r

)6]
, (7)

where ε is an energy term, σ is a distance term and nC is the surface number density of

carbon atoms. The parameter r denotes the distance between two surface elements in the

corresponding CNT segments. The interaction energy of two CNT segments is then given

by:

VLJ =

∫∫
S1S2

dS1dS2vLJ, (8)
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where S1,S2 denote the respective CNT surfaces. This expression corresponds to a quadruple

integral. Volkov and Zhigilei26 applied a series of approximations to accelerate the evaluation

of the interaction potential such that it can be efficiently used for computer simulations.

They provide optimised expressions for armchair single-walled CNTs (SWCNTs) with chiral

vectors of the form cH = (n, n) where n is an integer between 5 and 20. For the full

expressions of the approximated potential and implementation details, the reader is referred

to the work of the original authors.25,26

Numerical Implementation

The simulation is performed in the canonical ensemble in a box with fixed boundaries.

A Verlet integration algorithm32 is used to time-march and obtain the trajectory of the

nodes. A Nosé-Hoover thermostat chain33 of length three is used to ensure rapid thermal

equilibration of the simulation at all times. Specifically, the thermostat replaces the missing

internal degrees of freedom of the CNT as a heat sink. The velocity of the particles is

initialised to match the temperature of the surrounding gas which is implicitly modelled via

the thermostat. The CNTs are initially placed such that their minimum separation is equal

to the equilibrium distance of two parallel CNTs.

The model is implemented using the massively parallel software package LAMMPS,34

which initializes the simulation according to the defined parameters and time-marches, while

outputting the state at different time steps. The simulations were performed on the CSD3

supercomputer at the University of Cambridge.

Adaptive Mesoscale Model

In existing CNT mesoscale modeling work, a uniform particle placement is used. The equi-

librium distance between adjacent nodes is the same as24 or close to25 the CNT diameter.

Increasing the spacing does affect the intermolecular forces as the straight cylinder approxi-

mation deviates too far from a smooth curve. If two CNTs are parallel however, the potential
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becomes invariant under translation along the respective CNT axes.26 Therefore, changing

the spacing of the nodes will have a vanishing effect on the computed intermolecular forces

once CNTs have aligned. The accuracy reduces significantly however when the spacing is

uniformly increased for all nodes. Indeed, early simulations confirmed that sparse node

placement leads to large overestimates in the bundling time.

The problem with uniform fine spacing is the large computational cost associated with

longer CNTs. Calculation time for each time step scales with the number of nodes and

more significantly with the number of nodes for which an intermolecular potential is to be

calculated. In addition, longer CNTs require more time to bundle, thus simulations with

longer molecules require more time steps. This leads to traditional bead-spring simulations

becoming too costly to model (simulations longer than years) for longer CNTs (LCNT >

10µm).

We propose an adaptive mesoscale model, which uses a significantly reduced number of

nodes and a spatially varying node resolution to capture the bundling dynamics accurately.

We place a greater number of nodes where intermolecular forces are causing an attraction

between the two chains and fewer nodes in the sections of chains that are spatially isolated.

In addition, we also use fewer nodes for the sections of the chains that have formed a bundle.

These sections tend to remain static over the course of the simulation and do not greatly

affect the bundling dynamics, thus allowing for a lower resolution. We choose to employ three

different node spacings with each spacing increasing by a factor of two from the previous

spacing. The node spacing is adapted during the simulation to reduce the overall number of

nodes that needs to be simulated. A smoother transition from a fine to a coarse resolution

is employed to conserve system dynamics.

Determining Node Spacings

We denote the position of a node j in CNT i as ri,j. In our case, i = 1, 2; the method

also fully generalises to arbitrary numbers of CNTs where i can correspondingly take larger
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values. Node spacings are now indirectly determined by the CNT length associated with

each node, which we will call the node size li,j. Node sizes and the spacing between two

consecutive nodes r0,i,j are related as follows:

r0,i,j =
1

2
(li,j + li+1,j). (9)

We first find the minimum distance between node i, j and all nodes in the other CNT. This

distance d can be formally written as:

d(ri,j) = min
k 6=i,l
{||ri,j − rk,l||}, (10)

where || · || refers to the Euclidean norm. The actual node sizes li,j are chosen from a list

of preset values Li which are linked to M distance ranges. These ranges are defined before

the simulation by the end points of each range {d0, . . . , dM−2}. This suffices to determine

the node sizes for non-bundled CNTs. To re-coarsen CNTs once they are bundled, we

define another threshold dCG below which a node is marked for coarsening. In this case, the

distance to determine the node size is the approximate minimum distance along the CNT

of the considered node to the closest node which has not been marked for coarsening. We

denote this distance by d̃(r) and formally define:

d̃(ri,j) = min
{
d̃−(ri,j), d̃+(ri,j)

}
, (11)

where the previously described distance up and down the chain are given by:

d̃+(ri,j) = max
k 6=j

{
k∑

l=j+1

||ri,l−1 − ri,l||
∣∣∣∣ d(ri,l) < dCG, j + 1 ≤ l ≤ k

}
, (12)

d̃−(ri,j) = max
k 6=j

{
j∑

l=k+1

||ri,l−1 − ri,l||
∣∣∣∣ d(ri,l) < dCG, k + 1 ≤ l ≤ j

}
, (13)
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respectively. This definition also takes into account the existence of chain ends which results

in the refinement of the ends. If one does not desire to always refine the CNT ends, the

distances d̃+(ri,j) and d̃−(ri,j) can be set to infinity if the respective chain end is reached

in the sum. In this work however, we chose to refine CNT ends in order to maintain the

correct CNT length throughout the simulation. We switch between the two defined distance

measures based on the distance defined in eq. (10) according to:

d(ri,j) =


d(ri,j), if d(ri,j) ≥ dCG,

d̃(ri,j), else.

(14)

The particle size li,j is then determined by:

li,j =


L0, if 0 < d(ri,j) ≤ d0,

Lk, if dk−1 < d(ri,j) ≤ dk,

LM−1, if d(ri,j) > dM−2.

(15)

Cell Indexing

Practically, determining the distance d(ri,j) requires computing the distances between all

nodes in the system which scales quadratically in the number of nodes. This problem can

be alleviated by using cell indexing.35 In this method, the CNT structure is placed on a grid

with spacing b = dM−2 and the individual nodes are then sorted into cells on this grid. By

construction of the grid, only distances between neighbouring cells need to be computed. If

no nodes are found in the neighbouring cells then the computed distance defaults to being

greater than dM−2. With cell indexing, the number of distance computations scales linearly

instead of quadratically.35 The steps to determine the node sizes can then be summarised

as follows:

1. Perform cell indexing for all CNTs in the structure.
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2. Compute the distance d(ri,j) for all nodes in the system by considering pairwise dis-

tances of nodes in neighbouring cells.

3. For nodes with d(ri,j) < dCG, compute the distances d̃+(ri,j) and d̃−(ri,j). Starting

at node j, iterate up the chain until a particle k with d(ri,j) ≥ dCG or the end of the

chain is reached. Whilst iterating, add the distances between two consecutive nodes to

d̃+(ri,j). Repeat the same procedure with iterating down the chain to compute d̃−(ri,j)

and choose the minimum to obtain d̃(ri,j).

4. Set the final distance d(ri,j) according to eq. (14).

5. Choose the node size by finding the correct distance bin using the rule described in eq.

(15).

6. Compute the spacing between two neighbouring nodes using eq. (9).

This method has the benefit of being history independent and can also be readily parallelised

with MPI by splitting the distance computation in the second step of the algorithm across

multiple processes and choosing the minimum over all processes.

Adaptive Structure Regeneration

The node sizes can be dynamically adjusted over the course of the simulation. This occurs

when the previous coarse-graining level does not match the predicted coarse-graining level

based on the distance calculation described in the previous section. Nodes sizes are coarsened

by combining several smaller nodes and placing a new node in the previous centre of mass.

This approximation is sufficient as particles are usually coarsened either at the start of

the simulation or once bundling and alignment have occurred. In both cases, the CNTs

tend to be straight and the nodes will be close to their equilibrium positions. Inversely,

node sizes are refined by evenly filling the available space occupied by the coarse nodes

between the previous and next node within the chain. We found that linear interpolation
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of the node positions works best. Attempts to use cubic spline interpolation led to violated

energy conservation as new nodes were placed off-centre, increasing the potential energy

of the system. Furthermore, the new velocities of the regenerated nodes are chosen such

that linear momentum is conserved. The choice of velocity is unique during coarsening,

whereas during refinement all refined nodes are chosen to have the same velocity. Conserving

linear momentum during adaptive coarse-graining was found to be key to qualitatively and

quantitatively preserve the dynamics of the simulation. The adaptive structure regeneration

method is visualised with an example simulation of two 1 µm CNTs at a collision angle of 20◦

in Figure 3. By considering the nodes as point particles, it is possible to apply standard MD

20°

coarse
spacing

medium
spacing

fine
spacing

node spacing
increased
at centre

node 
refinement

refined
chain end

Figure 3: Time progression for a mesoscale simulation of two 1 µm CNTs at a collision angle
of 20◦. Individual points represent nodes in the mesoscale model. Coarse (black), medium
(blue) and fine (red) node spacings were used. Annotations describe the adaptive structure
regeneration method. Visualisation in VMD.36

methodology do measure thermodynamic quantities. Instantaneous temperature is computed

based on the equipartition theorem33 while the stress tensor can be calculated using the

tensor-valued virial theorem37. The deformation energy can be instantaneously computed

based on the position of the nodes as described by eqs. (1) and (2). While the number

of nodes as well as node positions change during structure regeneration, the previously

mentioned quantities are not strictly conserved. However, we found that the discontinuities
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arising from the adaptive mesoscale model do not exceed the order of thermal fluctuations.

Atomistic Model

In order to validate the mesoscale model, we employed atomistic molecular dynamics sim-

ulations to simulate short SWCNTs. We used the Adaptive Intermolecular Reactive Em-

pirical Bond Order (AIREBO) potential38 to describe the forcefield of the system with two

CNTs, where the short-range interaction is derived from the Reactive Empirical Bond Order

(REBO) Potential39 and the longer-range interaction is charaterised by a Lennard-Jones

potential with a cut-off distance of 10.2 Å. The system is initialised such that the simulation

begins at the starting point of the bundling process. Hence, we set the shortest distance

between two CNT molecules to 3.5 Å, slightly more than the standard equilibrium distance

of C-C in AIREBO potential which is 3.4 Å. After performing an energy minimization on the

system, a simulation is performed in the canonical ensemble where the same Nosé-Hoover

thermostat chain is used as in the mesoscale model. The time step is chosen as 2 fs.

Bundling Characterisation

A natural way to characterise the degree of bundling is to consider the intermolecular energy

due to vdW interactions. Bundling occurs due to the tendency of the system to minimise its

intermolecular potential energy. This energy should therefore decrease during a simulation,

reaching a clearly defined minimum once bundling has finished. For the mesoscopic CNT

potential employed in the presented model, two bundled CNTs can be assumed to be parallel.

Girifalco et al.40 have computed the adhesion energy per unit length of two infinitely long

parallel CNTs to be:

Eadh/Å =

(
0.0378

√
RCNT/Å− 3.13× 10−3

)
eV/Å. (16)

16



The adhesion energy provides a theoretical lower limit for the intermolecular energy of two

bundled CNTs. The actual adhesion energy can then be determined by multiplying the

value given by eq. (16) by the length over which two CNTs form a bundle. This value

corresponds to the minimum intermolecular energy after bundle formation for 500 nm and

longer CNTs. Shorter CNTs demonstrate finite length effects and the minimum of the

intermolecular energy obtained during the simulation can be used. We can then define a

bundling parameter β as the ratio of the instantaneous interaction energy and the minimum

interaction energy of the system. We define the bundling time τB as the time at which β

reaches 0.95.

Simulation Parameters

Unless stated otherwise, the parameters used in LAMMPS simulations are presented in

Table 1. They are based on experimental observation, the setup of the FCCVD process

and derivations described in this work. The effect of the choice of time step, thermostat

relaxation time, minimum node spacing and coarse-graining parameters were studied to

determine suitable values for the simulations. Adaptive coarse-graining was not considered

while studying the first three parameters. The effect of the time step on bundling times was

studied in a system of two 500 nm CNTs at a collision angle of 20◦. For different time step

values, the resulting intermolecular energy curves are shown in Figure 4a where a strong

dependence of the bundling time on the time step can be observed. Indeed, Figure 4b shows

that bundling time decreases with smaller time step and converges as the time step goes to

zero, justifying our choice of 0.2 fs. Furthermore, the relaxation time τNH of the Nosé-Hoover

thermostat was found to have no measurable effect on bundling dynamics.

Similarly, we considered two 200 nm CNTs at a collision angle of 20◦ and varied the

minimum node size. Two different regimes can be observed in the energy curves and resulting

bundling times shown in Figures 5a and 5b respectively. For large node sizes, bundling

is nearly discrete as large segments suddenly come into range of the intermolecular force
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Figure 4: (a) Intermolecular energy versus simulation time for different time steps. (b)
Bundling time versus logarithmic time step. Simulations were performed for two 500 nm
CNTs at a collision angle of 20◦ with a node spacing of 2 nm.

field. Decreasing the segment length also accelerates bundling as the inertia of individual

segments decreases. Bundling times then visibly plateau before they enter a second regime

where bundling times are significantly lower compared to the first regime. This regime is

characterised by correctly resolving wave reflections in the CNTs which has previously been

reported in the literature for a segment size of 1 nm.27 Waves are induced by the release of

deformation potential energy and reflected by the CNT ends, causing bundling to reverse

once the reflected wave hits the CNT intersection. This can be observed by an increase

in intermolecular energy, thus delaying the bundling process. As segment sizes decrease

further below 3 nm, bundling times begin to increase again. We suspect this is due to

an overestimation of attractive forces for smaller segments as the mesoscale approximation

begins to break down. In turn, this leads to stronger attractions which inhibit the reversal

of bundling. Nevertheless, we choose 2 nm as the minimum node spacing as it ensures

reasonable simulation times while still resolving wave reflections. This choice also agrees

with the original segment size employed by Volkov et al.25 We further note that decreasing
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segment sizes lead to a lower final adhesion energy. We theorise this is due to finite size effects

of the segments preventing perfect parallel alignment. Small deviations in the relative angle

can then significantly decrease the adhesion energy. For our final choice of 2 nm however,

the adhesion energy is in good agreement with the theoretical value provided in eq. (16) as

can be seen in Figure 4a.
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Figure 5: (a) Intermolecular energy versus simulation time for different node spacings. (b)
Bundling time versus node spacing. Simulations were performed for two 200 nm CNTs at a
collision angle of 20◦.

Results and Discussion

The simulation methods used are compared in figure 6. The mesoscale model is compared

with an atomistic simulation of SWCNTs, also performed with LAMMPS, in Figure 6a. The

simulation results for the atomistic and mesoscale model are also visualised in Figures 7a and

7b respectively. The potential energy of the system decreases with time as the two CNTs

bundle and their intermolecular energy decreases. The reduction in intermolecular energy

takes longer for larger collision angles between the CNTs. Timescales for bundling are of the

order 0.1 to 1 ns for both simulations. While the results for both models agree very well for
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Table 1: Parameters used in LAMMPS simulations.

Parameter Symbol Value

Chiral vector ch (10,10)
CNT radius RCNT 6.79 Å
Effective CNT wall thickness dG 3.35 Å
Fine node spacing L0 20.0 Å
Medium node spacing L1 40.0 Å
Coarse node spacing L2 80.0 Å
Coarsening threshold dCG 60.0 Å
Fine spacing threshold d0 500.0 Å
Medium spacing threshold d1 1000.0 Å
Temperature T 1200.0 K
Time step dt 0.2 fs
Nosé-Hoover relaxation time τNH 10.0 fs
Young’s Modulus E 1.0 TPa

Mass per unit length m′ 195.17 u Å
−1

Fine axial spring stiffness kr 268.90 N m−1

Fine rotational spring stiffness kθ 290.62 eV rad−1

small collision angles, they begin to deviate for angles above 20◦. The atomistic model also

drops to a lower final intermolecular energy compared to the mesoscopic model.

We theorise that the atomistic model leads to faster bundling as the CNTs can deform

along the diameter, deviating from the perfect cylindrical shape assumed by the mesoscopic

model.26 Hence, the interface between the two bundled CNTs has a greater area, leading to

stronger attraction and a greater adhesion energy. The bending stiffness computed based

on Euler beam theory as listed in Table 1 is about 50 % lower than the value reported for

atomistic simulations27 . However, this reported value is only valid for perfectly cylindrical

CNTs. Since the deformation after alignment leads to a decreased width of the CNT along

the bending axis and the second moment of area scales cubically in said width, the bending

stiffness should also decrease significantly. In turn, the weak attractions have to overcome

a reduced stiffness, therefore leading to accelerated bundling. We further note that the

stretching stiffness provided in Table 1is approximately 14 %lower than the corresponding

value for the atomistic model27and should therefore not cause any significant differences in
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Figure 6: (a) Intermolecular bundling energy of 100 nm SWCNTs at different collision an-
gles, predicted by atomistic (solid lines) and mesoscale (dashed lines) simulations shown
for different collision angles. (b) Comparison of the adaptive mesoscale model with the non-
adaptive mesoscale simulation with uniformly placed nodes. The simulations were performed
for 500 nm CNTs at 20◦.

bundling behaviour.

The adaptive mesoscale model is compared with the non-adaptive mesoscale model in

Figure 6b. The reduction in intermolecular energy for both cases follows nearly the same

trajectory. While the resulting bundling times of both models are within 1.5 %, the compu-

tational run time for the adaptive mesoscale model was 46 % of the non-adaptive case. We

found that computational speed-up increases with increasing CNT length. For the bundling

of two 10 µm CNTs, we obtained a speed-up of nearly five times compared to the non-

adaptive model. The adaptive mesoscale model thus allows the simulation of CNTs in the

µm order. Results for CNTs whose length is equal to or longer than 500 nm are henceforth

obtained with the adaptive method unless stated otherwise.

The agreement of the time evolution trend for CNT intermolecular energy during bundling

validates the use of the mesoscale and the adaptive mesoscale models for bundling simula-

tions. The models are designed to capture structural effects and intermolecular interactions,
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Figure 7: (a) Simulation progression of atomistic CNT bundling for two 100 nm SWCNTs
at 45◦. (b) Simulation progression of mesoscale CNT bundling for two 100 nm SWCNTs
at 45◦. Points represent the individual nodes in the model, dashed line and arrows with
annotations indicate where the system transitions from the central rotation to the zipping
regime. Visualisation in VMD.36

which allow the efficient simulation of CNT bundling.

Figure 8 shows the bundling of CNTs of different lengths at different collision angles. As

expected, smaller collision angles result in faster bundling, as vdW forces are stronger and

the CNTs have to travel a shorter distance overall.

In general, the motion of the CNTs can be divided into two regimes. Initially, the centres

of the CNTs rotate and approach each other, as seen in Figures 7a and 7b for the first 0.4 ns.

During this ”central rotation”, no significant bending of the CNTs can be seen. However,

one does observe a drift in the collision position and a decrease in the relative angle between

the CNTs. This is accompanied by the bundling parameter of the arrangement staying close

to zero and only increasing slowly which can be seen for the 45◦ case in Figure 8a up to
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approximately 0.5 ns. This motion requires increasing amounts of time with increasing CNT

length, as the vdW attraction has to overcome an increasing moment of inertia. Larger

collision angles also extend this phase as the CNT ends have to travel a greater distance.

After the centres have aligned, a bundle starts forming and the bundled region extends in a

”zipping” motion. Here, neighbouring segments begin to align into a bundle and the bending

stiffness of the CNT causes the entire chain to drift towards the effective bundle axis. For

two 100 nm CNTs, the transition to the zipping regime occurs at about 0.5 ns, In Figures

7a and 7b, bending and zipping of the CNTs can be seen for simulation times greater than

0.4 ns which is accompanied by an abrupt change in the rate at which the bundling parameter

increases in Figure 8a. The same transition can be seen in the later parts of figures 8a to d

for collision angles greater than 30◦ when the bundling parameter suddenly starts to increase

after visually remaining close to zero during the first 0.5–1.5 ns of the simulation. Another

example of a mesoscale simulation in the zipping regime is also visualised in Figure 3. For

small collision angles, the central rotation regime vanishes as the system is already initialised

in a state where zipping can occur. With increasing collision angles however, the bundling

behaviour is beginning to be dominated by central rotation. For a collision angle of 60◦,

CNTs of lengths starting at 500 nm do not enter the zipping regime in the simulated time.

Likewise, for CNT lengths greater or equal to 2 µm, a collision angle of 45◦ is large enough for

the system to remain in the central rotation regime in the considered time frame. In these

cases, the bundling parameter remains well below 1 % over the course of the simulation.

Therefore, Figure 8 only depicts the results of simulations where the CNTs did enter the

zipping regime during the simulation. The results indicate that the collision angle both

increases the duration of the central and zipping regimes.

The bundling of CNTs of dissimilar lengths is presented in Figure 9a. The intermolecular

energy decreases to its minimum value in a very similar time interval (0.1 to 0.15 ns) for all

lengths. When the one CNT is longer than the other CNT, the bundling time is effectively

only a function of the shorter CNT length. For 20◦, the CNTs are already in the zipping
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regime, thus the segments quickly align regardless of the length of the longer CNT. Due to

its greater inertia, the long CNT remains almost stationary, while the short CNT reorients

itself to become parallel with the long CNT. For the 100 nm–100 nm pair, one observes a

short ”dip” in the bundling parameter after initially reaching unity in Figure 9a. This can

be explained by the CNT ends undergoing an elastic collision, causing them to rebound. As

CNT ends attract other CNTs more weakly than the interior of a CNT, this effect is only

observed for the 100 nm–100 nm pair. In the other cases, the vdW attractions outweigh the

inertia of the CNT ends and no rebound event can be seen in Figure 9a.

Figure 9b shows the evolution of bundling parameter for two 500 nm CNTs colliding at

different positions at an angle of 20◦. No clear trend for the bundling time with respect to

the initial position can be observed within the simulation uncertainty. All bundling times

are between 1.23 and 1.48 ns and therefore of the same order. We conclude the collision

position has little effect on the bundling dynamics as the length over which the CNTs are

finally bundled is nearly constant for all cases and only subject to statistical fluctuation.

Figure 10 summarises key results. The bundling time is obtained as explained in the

Methods section, by determining the time at which the system approaches 95 % of the

minimum intermolecular energy. Up to lengths of 1 µm, the final value is determined from

the simulation results. For the longer CNTs, the theoretical value from eq. (16) is used. The

results for 45◦ and 60◦ have fewer data points as bundling is dominated by central rotation

for these angles. Above CNT lengths of 500 nm and 2 µm respectively, the CNTs did not

leave the central rotation domain over the course of the simulation. Beginning at 2 µm

CNTs at 20◦, all subsequent bundling times have been estimated by linear extrapolation of

the bundling parameter as a function of time. For the linear extrapolation, we used the last

available nanosecond of simulation results. In all cases, the asymptotic standard error of the

linear regression fit was less than 1 % of the obtained fitting parameters. As the bundling

process tends to slow down with progressing simulation time as seen in Figures 8e and f,

the linear extrapolation provides a conservative lower bound for the real bundling times.
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As expected, we find that bundling times scale strongly with the length of bundling CNTs.

Fitting a power law to the data obtained for the 30◦ case yields the following expression:

τB(LCNT) = 10−4.28±0.43 × (LCNT/nm)1.80±0.14ns, (17)

where the uncertainty terms give the asymptotic standard error.

In order to gain insight into aerosol formation, it is useful to compare the bundling

times with CNT collision times. Using previously calculated collision kernels,5 the charac-

teristic collision time, τcol, can be directly obtained from the collision kernel, β, and the

number density, N , of CNTs in the system by the well-known relation,41 τcol = 2/(βN).

For a number density of N = 1× 1011 m−3, 100 nm and 1 mm CNTs experience collision

times of τcol = 3× 103 s and τcol = 4× 102 s, respectively. At a number density equal to

N = 1× 1014 m−3, the collision times are decreased by a factor of 1000, namely to τcol = 3 s

and τcol = 0.3 s, respectively. These collision times are much longer than the bundling times

of Figure 10. Thus, the formation of bundles occurs almost immediately upon collision of

the CNTs allowing for large bundles to form (up to 20 CNTs per bundle) before long-range

aerogel structure is produced, which is consistent with TEM studies of the material as shown

in Figure 1.

Conclusions

The adaptive mesoscale models predict how individual CNTs align to form bundles. Com-

putational adaptivity allows the simulation of long CNTs, which would have been very

computationally expensive with a non-adaptive approach. The adaptive mesoscale model

can be applied to other one-dimensional materials.

The bundling simulation results give significant new insight in the aerogel formation

process. The bundling of CNTs is manifested in two regimes. Initially, the centres of

the CNTs rotate towards each other and reduce their intersection angle near the collision
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location. This is described here as central rotation. When the intersection angle is small,

the CNTs start forming a bundle. The central region of the CNTs forms the bundle and the

bundled region expands towards the ends of the CNTs, which we refer to as zipping. The

central rotation regime is attributed to large initial collision angles and vanishes for collision

angles below 20◦. For collision angles above 30◦, central rotation begins to dominate the

bundling process for CNTs longer than 1 µm. A higher collision angle increases bundling

time by affecting both bundling regimes, namely central rotation and zipping. Its effect

on central rotation appears to be more drastic, changing the bundling time by about one

order of magnitude in the 100 and 200 nm cases and preventing longer CNTs to enter the

zipping regime altogether for collision angles above 30◦. Bundling time increases according

to a power law of the CNT length, as both parts of the bundling mechanism take longer.

The initial alignment phase takes longer due to the increased inertia presented by the long

CNTs, and the second bundle growth phase needs more time as the bundle length is longer.

Collision position does not affect the bundling time and behaviour, as the overlapping

chain length is the same for all collision positions. For collisions of CNTs of different lengths,

bundling time is only a function of the short CNT length, as long as the second CNT is longer

such that end-end interactions become negligible. We conclude that bundling dynamics are

thus mainly determined by the length of the shorter CNT.

CNT bundling times are significantly faster than the characteristic collision time, thus

CNTs form bundles at a fast rate after every collision. This explains the existence of bundles

in the experimentally observed aerogel, as opposed to a network of individual CNTs.
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Figure 8: Bundling parameter, β(t) = E(t)/Eadh, versus simulation time for different CNT
lengths and at different collision angles.
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Figure 9: (a) Collision of a 100 nm CNT with other CNTs of different lengths at 20◦. (b)
Bundling of two 500 nm CNTs with different collision positions at 20◦. Pictograms in the
legend visualise the initial configurations at different collision positions.
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Figure 10: Log-log plot of bundling times versus CNT lengths for different collision angles.
Circled points represent extrapolated values. The dashed line shows the power law fit from
eq. 17 and the shaded area represents the 95 % confidence interval for the corresponding
linear regression fit.
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