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Abstract. In this paper we prove the local well-posedness and global well-posedness with small initial data of

the strong solution to the reduced 3D primitive geostrophic adjustment model with weak dissipation. The term

reduced model means that the relevant physical quantities depend only on two spatial variables. The weak
dissipation helps us overcome the ill-posedness of the original model. We also prove the global well-posedness

of the strong solution to the Voigt α-regularization of this model, and establish the convergence of the strong

solution of the Voigt α-regularized model to the corresponding solution of the original model. Furthermore,
we derive a criterion for existence of finite-time blow-up of the original model with weak dissipation based on

Voigt α-regularization.
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1. Introduction

It is commonly believed that the dynamics of ocean and atmosphere adjusts itself toward a geostrophic
balance. The following reduced 3D primitive geostrophic adjustment system is one of the main diagnostic
models for studying geostrophic adjustment (cf. e.g., [28, 34, 52]):

ut + uux + wuz − f0 v + px = 0, (1)

vt + u vx + wvz + f0 u = 0, (2)

pz + T = 0, (3)

ux + wz = 0, (4)

Tt + uTx + wTz = 0, (5)

where the velocity field (u, v, w), the temperature T and the pressure p are the unknown functions of horizontal
variable x, vertical variable z, and time t, and f0 is the Coriolis parameter. System (1)–(5) is reduced from the
3D inviscid primitive equations model by assuming that the flow is independent of the third spatial variable.
This system has been a standard framework for studying geostrophic adjustment of frontal anomalies in a
rotating continuously stratified fluid of strictly rectilinear fronts and jets (cf. e.g., [2, 27, 28, 33, 34, 36, 52, 54]
and references therein).

The first systematically mathematical studies of the viscous primitive equations (PEs) were carried out in
the 1990s by Lions–Temam–Wang [45, 46, 47]. They considered the PEs with both full viscosities and full
diffusivities and established the global existence of weak solutions. The uniqueness of weak solutions in the
3D viscous case is still an open problem, while the weak solutions in 2D turn out to be unique, see Bresch,
Guillén-González, Masmoudi and Rodŕıguez-Bellido [5]. Concerning the strong solutions for the 2D case, the
local existence result was established by Guillén-González, Masmoudi and Rodŕıguez-Bellido [30], while the
global existence for 2D case was proved by Bresch, Kazhikhov and Lemoine in [6], and by Temam and Ziane

Date: March 26, 2020.
*Corresponding author. Department of Mathematics, Texas A&M University, College Station, TX 77840, USA. E-mail address:

abellyn@hotmail.com.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/305110146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 C. CAO, Q. LIN, AND E.S. TITI

in [60]. The global existence of strong solutions for 3D case was established by Cao and Titi in [16] and later
by Kobelkov in [35], see also the subsequent articles of Kukavica and Ziane [40, 41] for different boundary
conditions, as well as Hieber and Kashiwabara [32] for some progress towards relaxing the smoothness on the
initial data by using the semigroup method. On the other hand, it was proved that smooth solutions to the
inviscid 2D or 3D PEs, with or without coupling to the temperature equation, can develop singularities in
finite time, see Cao et al. [8] and Wong [61]. Motivated by physical considerations, it is of great interest to
investigate the well-posedness, finite-time blow-up, or even ill-posedness of the PEs with only partial viscosities
or partial diffusivities. There have been several mathematical studies of these models. The global existence and
uniqueness of strong solutions for the PEs with full viscosities and with either only horizontal or only vertical
diffusivity have been established by Cao–Titi [18] and Cao–Li–Titi [9, 10]. Concerning partial viscosities,
global well-posedness of the PEs with only horizontal viscosity and with either only horizontal or only vertical
diffusivity was established by Cao–Li–Titi in [11, 12] and [13]. On the other hand, there are no results
concerning the well-posedness or finite-time blow-up for the PEs with only vertical viscosity, even in 2D. In
this paper, we are interested in this case. More specifically, we are interested in system (1)–(5) with only
vertical viscosity and full diffusivity:

ut − νuzz + uux + wuz − f0 v + px = 0, (6)

vt − νvzz + u vx + wvz + f0 u = 0, (7)

pz + T = 0, (8)

ux + wz = 0, (9)

Tt − κ∆T + uTx + wTz = 0. (10)

The main difficulty in proving well-posedness of system (6)–(10) is the lack of control over the horizontal
derivatives. The case with only vertical viscosity, i.e. system (6)–(10), is more difficult than the situation
with only horizontal viscosity, for which the global well-posedness was established. In fact, system (1)–(5) and
system (6)–(10) turn out to be ill-posed. By assuming f0 = 0, v ≡ 0, and T ≡ 0 in system (1)–(5) and system
(6)–(10), we end up with the so-called 2D hydrostatic Euler equations:

ut + uux + wuz + px = 0, (11)

pz = 0, (12)

ux + wz = 0, (13)

and 2D hydrostatic Navier-Stokes equations:

ut + uux + wuz + px − νuzz = 0, (14)

pz = 0, (15)

ux + wz = 0, (16)

correspondingly. The linear ill-posedness of system (11)–(13) near certain shear-flows was established by
Renardy in [53]. The author of [53] has also indicated, without providing details, that one should be able to
show the linear ill-posedness of system (14)–(16) in any Sobolev space by using matched asymptotics. The
nonlinear ill-posedness of system (11)–(13) was established by Han-Kwan and Nguyen in [31], where they
built an abstract framework to show that the hydrostatic Euler equations are ill-posed in any Sobolev space.
One might be able to argue that the main reason for the ill-posedness in these is again the lack of control
over the horizontal derivatives. From a mathematical perspective, system (14)–(16) is reminiscent of the 2D
Prandtl system in the upper half space. Ill-posedness of Prandtl system in Sobolev spaces was established by
Gérard-Varet and Dormy [24], and by Gérard-Varet and Nguyen [26]. The existence of finite-time blow-up for
Prandtl system was shown in [22]. On the other hand, well-posedness results of hydrostatic Euler equations
and Prandtl system have been obtained by assuming either real analyticity or some special structures of the
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initial data [3, 4, 29, 37, 38, 39, 48, 49, 50]. Recently, the authors in [25] showed the local well-posedness for
system (14)–(16) with convex initial data in a Gevrey class.

All the results and discussions above suggest that, in order to prove the well-posedness for system (6)–(10)
in Sobolev spaces, without assuming any special structures, some additional horizontal dissipation terms are
necessary. In the derivation of system (14)–(16) from the Navier-Stokes equations, only vertical viscosity has
survived. This suggests instead of strong dissipation, i.e., horizontal viscosity, we should consider some weaker
horizontal dissipation. Inspired by Samelson and Vallis [55], and Salmon [56, p. 150], by introducing the
linear (Rayleigh-like friction) damping in both horizontal momentum equation (6) and vertical hydrostatic
approximation (7), we consider the following system:

ut + uux + wuz + ε1u− f0 v + px − νuzz = 0, (17)

vt + u vx + wvz + ε1v + f0 u− νvzz = 0, (18)

ε2w + pz + T = 0, (19)

ux + wz = 0, (20)

Tt − κ∆T + uTx + wTz = 0 (21)

in the horizontal channel {(x, z) : 0 ≤ z ≤ H,x ∈ R}, with the following boundary conditions:

(uz, vz, w, T )|z=0,H = 0,

u, v, w, T are periodic in x with period 1. (22)

Here ε1 and ε2 are positive constants representing the linear (Rayleigh-like friction) damping coefficients, and
ν is positive constant that stands for the vertical viscosity of the horizontal momentum equations. Unlike
the strong horizontal dissipation, i.e., horizontal viscosity, we regard the linear damping term ε2w as a weak
dissipation. With this weak dissipation, we are able to prove the local well-posedness and global well-posedness
with small initial data. Accordingly, when ε2 > 0, one can view the term ε2w in (19) as having a “regularizing”
effect, since it annihilates the possible ill-posedness as indicated in [53] when ε2 = 0. This also indicates that
the damping term ε2w has a nonnegligible effect on the dynamics and leads to a reliable numerical scheme. In
terms of physical motivation, the damping terms ε1u, ε1v, and ε2w can be interpreted as the Rayleigh friction
with the bottom of ocean in the original model with physical boundaries, and hence produce weak dissipation.
Furthermore, in [17], the authors consider the 3D Salmon’s planetary geostrophic oceanic dynamics model,
which is the three-dimensional version of system (17)–(21), and with (17)–(18) replaced by geostrophic balance
equations. Indeed, it is well known that when ε2 = 0 the planetary geostrophic model of ocean circulation is
ill-posed (see, e.g., [17] and reference therein). This in turn motivated Salmon to introduce the friction term
ε2w, with ε2 > 0, in the planetary geostrophic model to overcome this problem. Consequently, this provides
an additional motivation for taking ε2 > 0 in our system.

In order to study the possible finite-time blow-up of system (17)–(21), and to give a more reliable numer-
ical model/scheme, we also study the Voigt α-regularization with respect to z variable of (17)–(21). More
specifically, we consider the following model:

(u− α2uzz)t − νuzz + uux + wuz + ε1u− f0v + px = 0, (23)

(v − α2vzz)t − νvzz + u vx + wvz + ε1v + f0u = 0, (24)

ε2w + pz + T = 0, (25)

ux + wz = 0, (26)

Tt − κ∆T + uTx + wTz = 0 (27)

in the horizontal channel {(x, z) : 0 ≤ z ≤ H,x ∈ R}, with boundary conditions (22). We show the global
well-posedness of system (23)–(27) with ν = 0. The same result holds for ν > 0. Based on this, we show the
convergence of the strong solution of system (23)–(27) to the corresponding solution of system (17)–(21) on
the interval of existence of the latter, as α→ 0. Furthermore, we derive, based on this Voigt α-regularization,
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a criterion for existence of finite-time blow-up in system (17)–(21) . For more details of Voigt α-regularization
of the 3D Euler equations, we refer the reader to [19, 42, 43].

The paper is organized as follows. In section 2, we introduce the main notations and collect some preliminary
results. In section 3, we show the local well-posedness and global well-posedness with small initial data for
the system (17)–(21). In section 3.3, by assuming f0 = 0, v ≡ 0, and T ≡ 0, we reduce to the 2D hydrostatic
Navier-Stokes equations (14)–(16) with damping, for which we obtain local well-posedness by requiring less
on the initial conditions. In section 4, we show the global well-posedness of system (23)–(27). In section 5,
by assuming f0 = 0, v ≡ 0, and T ≡ 0, we show the convergence of the strong solution of system (23)–(27)
to the corresponding solution of system (17)–(21) on the interval of existence of the latter, as α → 0. The
assumptions that f0 = 0, v ≡ 0, and T ≡ 0 were made for simplicity. The same convergence result holds
without these assumptions. In section 6, by assuming f0 = 0, v ≡ 0, and T ≡ 0, we derive, based on Voigt
α-regularization, a criterion for finite-time blow-up in system (17)–(21).

2. Preliminaries

In this section, we introduce some notations and collect some preliminary results which will be used in
the rest of this paper. For domain Ω ⊂ R2, we denote by Lp(Ω), for p ≥ 1, the Lebesgue space of functions

f satisfying
∫

Ω
|f |pdxdz < ∞, and denote the corresponding norm by ‖f‖Lp := ‖f‖Lp(Ω) = (

∫
Ω
|f |pdxdz)

1
p .

For the space L2(Ω), we denote its inner product by (·, ·). Similarly, for m ≥ 1 an integer, we denote
by Hm(Ω) = Wm,2(Ω) the Sobolev space of functions f satisfying

∑
|α|≤m

‖Dαf‖2L2 < ∞, and denote the

corresponding norm by ‖f‖Hm := (
∑
|α|≤m

‖Dαf‖2L2)
1
2 . Given time T > 0, we denote by Lp(0, T ;X) the space

of functions f : [0, T ] → X satisfying
∫ T

0
‖f(t)‖pXdt < ∞, where X is a Banach space and ‖ · ‖X represents

its norm. Similarly, we denote by C([0, T ];X) the space of continuous functions f : [0, T ] → X. We write
Lp(0, T ;L2) and Lp(0, T ;Hm) instead of Lp(0, T ;L2(Ω)) and Lp(0, T ;Hm(Ω)), respectively, for simplicity.
When Ω = T2 is the unit two-dimensional flat torus, we denote by L2(T2), Hm(T2) the set of all periodic
functions in x, z with period 1, which have bounded L2(T2) norm or Hm(T2) norm, respectively. We start by
recalling the following:

Lemma 1. (cf. [14]) Assume that f, g, h, gz, hx ∈ L2(T2). Then∫
T2

|fgh|dxdz ≤ C‖f‖L2‖g‖
1
2

L2(‖g‖
1
2

L2 + ‖gz‖
1
2

L2)‖h‖
1
2

L2(‖h‖
1
2

L2 + ‖hx‖
1
2

L2).

Proof. First, recall that by one-dimensional Agmon’s inequality (or Gagliardo–Nirenberg interpolation inequal-
ity), for φ ∈ H1(0, 1), one has

‖φ‖L∞(0,1) ≤ C
(
‖φ‖L2(0,1) + ‖φ‖

1
2

L2(0,1)‖φx‖
1
2

L2(0,1)

)
. (28)

Therefore, by Hölder’s inequality and Agmon’s inequality (28),∫
T2

|fgh|(x, z)dxdz ≤ C
∫ 1

0

[(∫ 1

0

|f(x, z)|2dx
) 1

2
(∫ 1

0

|g(x, z)|2dx
) 1

2
(

sup
0≤x≤1

|h(x, z)|
)]
dz

≤ C
∫ 1

0

{(∫ 1

0

|f(x, z)|2dx
) 1

2
(∫ 1

0

|g(x, z)|2dx
) 1

2

[(∫ 1

0

|h(x, z)|2dx
) 1

4
(∫ 1

0

|hx(x, z)|2dx
) 1

4

+
(∫ 1

0

|h(x, z)|2dx
) 1

2

]}
dz

≤ C‖f‖L2 sup
0≤z≤1

(∫ 1

0

|g(x, z)|2dx
) 1

2 ‖h‖
1
2

L2(‖h‖
1
2

L2 + ‖hx‖
1
2

L2). (29)
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By Minkowski’s inequality, Agmon’s inequality (28), and Hölder inequality,

sup
0≤z≤1

(∫ 1

0

|g(x, z)|2dx
) 1

2 ≤ C
(∫ 1

0

sup
0≤z≤1

|g(x, z)|2dx
) 1

2

≤ C
(∫ 1

0

[(∫ 1

0

|g(x, z)|2dz
) 1

2
(∫ 1

0

|gz(x, z)|2dz
) 1

2

+

∫ 1

0

|g(x, z)|2dz
]
dx

) 1
2

≤ C‖g‖
1
2

L2(‖g‖
1
2

L2 + ‖gz‖
1
2

L2). (30)

Inserting (30) to (29) yields the desired inequality. �

Next we prove the following:

Lemma 2. Assume that f ∈ H1(T2) and fxz ∈ L2(T2). Then f ∈ L∞(T2). Moreover,

‖f‖L∞ ≤ C
(
‖f‖2H1 + ‖fxz‖2L2

) 1
2 .

Proof. Let {f̂k}k∈Z2 be the Fourier coefficients of f . By Cauchy–Schwarz inequality, we have

‖f‖L∞ ≤
∑
k∈Z2

|f̂k| =
∑
k∈Z2

|f̂k|(1 + k2
1 + k2

2 + k2
1k

2
2)

1
2

(1 + k2
1 + k2

2 + k2
1k

2
2)

1
2

≤

(∑
k∈Z2

|f̂k|2(1 + k2
1 + k2

2 + k2
1k

2
2)

) 1
2
(∑
k∈Z2

1

(1 + k2
1)(1 + k2

2)

) 1
2

≤ C
(
‖f‖2H1 + ‖fxz‖2L2

) 1
2

<∞.

Therefore, f ∈ L∞(T2). �

We also need the following Aubin-Lions theorem.

Proposition 3. (Aubin-Lions Lemma, cf. Simon [57] Corollary 4) Assume that X, B and Y are three Banach
spaces, with X ↪→↪→ B ↪→ Y . Then it holds that

(i) If F is a bounded subset of Lp(0, T ;X), where 1 ≤ p < ∞, and Ft := {∂f∂t |f ∈ F} is bounded in

L1(0, T ;Y ), then F is relative compact in Lp(0, T ;B).

(ii) If F is a bounded subset of L∞(0, T ;X) and Ft is bounded in Lq(0, T ;Y ), where q > 1, then F is
relative compact in C([0, T ];B).

3. Well-posedness of system (17)–(21)

In this section we study the system (17)–(21) in the horizontal channel {(x, z) : 0 ≤ z ≤ H,x ∈ R}. We
complement this system with the boundary conditions (22) and the initial condition

(u, v, T )|t=0 = (u0, v0, T0). (31)

In particular, without loss of generality, we choose H = 1
2 . Instead of considering this physical problem, in this

section, we consider another problem, that is, system (17)–(21) in the unit two dimensional torus T2, subject
to the following symmetric boundary conditions and initial conditions:

u, v, w, p and T are periodic in x and z with period 1; (32)

u, v, p are even in z, and w, T are odd in z; (33)

(u, v, T )|t=0 = (u0, v0, T0). (34)

The periodicity and symmetry are valid due to the fact that the periodic subspace H, give by
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H := {(u, v, w, p, T ) | u, v, w, p and T are spatially periodic in both x and z variables with period 1,

and are even, even, odd, even, odd with respect to z variable, respectively},
is invariant under the evolution system (17)–(21). After solving this problem in the flat torus, the solution
restricted on original horizontal channel {(x, z) : 0 ≤ z ≤ 1

2 , x ∈ R} will solve the original physical problem
with corresponding boundary conditions (22) and initial conditions (31).

3.1. Reformulation of The Problem. First, let us reformulate the system (17)–(21) by deriving equations
for w, px and pz in terms of u, v and T . For the sake of simplicity, we drop the argument t in functions when
there is no confusion. First, from (20) and by boundary condition (33), i.e., w(x, 0) = 0, we have

w(x, z) = −
∫ z

0

ux(x, s)ds. (35)

From (19) and (35), we have

pz(x, z) = −T (x, z)− ε2w(x, z) = −T (x, z) + ε2

∫ z

0

ux(x, s)ds. (36)

Next, we will derive equation for px. Notice that since w(x, 0) = w(x, 1) = 0, from (35), one has the compati-
bility condition ∫ 1

0

ux(x, z)dz = 0. (37)

Let us denote by c(t) :=
∫ 1

0
u(x, z, t)dz and d(x, t) :=

∫ 1

0
v(x, z, t)dz. Integrating (17) with respect to z over

(0, 1), using boundary condition (32) and (33), one has:

ċ(t) + ε1c(t) +

∫ 1

0

(
uux(x, z) + wuz(x, z) + px(x, z)

)
dz = f0d(x, t).

By integration by parts and using (20), (32) and (33), we get

ċ(t) + ε1c(t) +

∫ 1

0

(
(u2)x(x, z) + px(x, z)

)
dz = f0d(x, t). (38)

Integrating (38) with respect to x over (0, 1), using compatibility condition (37), we have

ċ(t) + ε1c(t) +

∫ 1

0

∫ 1

0

(
(u2)x(x, z) + px(x, z)

)
dxdz = f0

∫ 1

0

d(x, t)dx.

Thanks to (32), we have

ċ(t) + ε1c(t) = f0

∫ 1

0

d(x, t)dx. (39)

Plugging (39) back into (38) yields∫ 1

0

px(x, z)dz = f0

∫ 1

0

v(x, z)dz − f0

∫ 1

0

∫ 1

0

v(x, z)dxdz −
∫ 1

0

2uux(x, z)dz. (40)

Next, from (35) and (36), we have

p(x, z) = ps(x) + ε2

∫ z

0

∫ s

0

ux(x, ξ)dξds−
∫ z

0

T (x, s)ds, (41)
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where ps(x) = p(x, 0) is the pressure at z = 0. By differentiating (41) with respect to x, and integrating
respect to z over (0, 1), by virtue of (40), we have

(ps)x(x) =

∫ 1

0

[ ∫ z′

0

Tx(x, s)ds− ε2
∫ z′

0

∫ s

0

uxx(x, ξ)dξds+ f0v(x, z′)− 2uux(x, z′)
]
dz′

−f0

∫ 1

0

∫ 1

0

v(x′, z′)dx′dz′. (42)

Therefore, by differentiating (41) with respect to x, and using (42), we have

px(x, z) = ε2

∫ z

0

∫ s

0

uxx(x, ξ)dξds−
∫ z

0

Tx(x, s)ds

+

∫ 1

0

[ ∫ z′

0

Tx(x, s)ds− ε2
∫ z′

0

∫ s

0

uxx(x, ξ)dξds+ f0v(x, z′)− 2uux(x, z′)
]
dz′

−f0

∫ 1

0

∫ 1

0

v(x′, z′)dx′dz′. (43)

By virtue of (35), (36) and (43), and since p is determined up to a constant, the unknowns for system (17)–(21)
are only (u, v, T ). Therefore, we reformulate system (17)–(21) to the following system:

ut − νuzz + uux + wuz + ε1u− f0v + px = 0, (44)

vt − νvzz + u vx + wvz + ε1v + f0u = 0, (45)

Tt − κ∆T + uTx + wTz = 0, (46)

with w, px, pz defined by:

w(x, z) := −
∫ z

0

ux(x, s)ds, (47)

px(x, z) := ε2

∫ z

0

∫ s

0

uxx(x, ξ)dξds−
∫ z

0

Tx(x, s)ds

+

∫ 1

0

[ ∫ z′

0

Tx(x, s)ds− ε2
∫ z′

0

∫ s

0

uxx(x, ξ)dξds+ f0v(x, z′)− 2uux(x, z′)
]
dz′

−f0

∫ 1

0

∫ 1

0

v(x′, z′)dx′dz′, (48)

pz(x, z) := −T (x, z) + ε2

∫ z

0

ux(x, s)ds. (49)

In this section, we are interested in system (44)–(46) with (47)–(49) in the unit two dimensional torus Ω = T2,
subject to the following symmetry boundary conditions and initial conditions:

u, v and T are periodic in x and z with period 1; (50)

u, v are even in z, and T is odd in z; (51)

(u, v, T )|t=0 = (u0, v0, T0). (52)

It’s worth mentioning again that our system (44)–(46) with (47)–(49) satisfies the compatibility condition (37).
By virtue of (47)–(49) and (50), (51), we obtain that w, p also satisfy the symmetry conditions:

w and p are periodic in x and z with period 1; (53)

p is even in z, and w is odd in z. (54)



8 C. CAO, Q. LIN, AND E.S. TITI

From (47) and (49), and by differentiating (47) with respect to z, we have

ε2w + pz + T = 0, (55)

ux + wz = 0. (56)

Therefore, we conclude system (44)–(46) with (47)–(49) and subject to (50)–(52) is equivalent to original
system (17)–(21) subject to (32)–(34).

3.2. Local Well-posedness. In this section, we will show the local regularity of strong solutions to the system
(44)–(46) with (47)–(49), subject to boundary and initial conditions (50)–(52). First, we give the definition of
strong solution to system (44)–(46) with (47)–(49).

Definition 4. Suppose that u0, v0, T0, ∂xu0, ∂xv0, ∂xT0 ∈ H1(T2) satisfy the symmetry conditions (50) and

(51), with the compatibility condition
∫ 1

0
∂xu0dz = 0. Given time T > 0, we say (u, v, T ) is a strong solution

to system (44)–(46) with (47)–(49), subject to (50)–(52), on the time interval [0, T ], if

(i) u, v and T satisfy the symmetry conditions (50) and (51);

(ii) u, v and T have the regularities

u, v, T, ux, vx, Tx ∈ L∞(0, T ;H1), uz, vz, uxz, vxz ∈ L2(0, T ;H1), T, Tx ∈ L2(0, T ;H2),

u, v, T ∈ L∞(0, T ;L∞) ∩ C([0, T ];L2), ∇u,∇v,∇T ∈ L2(0, T ;L∞), ∂tu, ∂tv, ∂tT ∈ L2(0, T ;L2);

(iii) u, v and T satisfy system (44)–(46) in the following sense:

∂tu− νuzz + uux + wuz + ε1u− f0v + px = 0 in L2(0, T ;L2);

∂tv − νvzz + uvx + wvz + ε1v + f0u = 0 in L2(0, T ;L2);

∂tT − κ∆T + uTx + wTz = 0 in L2(0, T ;L2),

with w, px, pz defined by (47)–(49), and fulfill the initial condition (52).

We have the following result concerning the existence and uniqueness of strong solutions to system (44)–(46)
with (47)–(49), subject to (50)–(52), on T2 × (0, T ), for some positive time T .

Theorem 5. Suppose that u0, v0, T0, ∂xu0, ∂xv0, ∂xT0 ∈ H1(T2) satisfy the symmetry conditions (50) and (51),

with the compatibility condition
∫ 1

0
∂xu0dz = 0. Then there exists some time T > 0 such that there exists a

unique strong solution (u, v, T ) of system (44)–(46) with (47)–(49), subject to (50)–(52), on the interval [0, T ].
Moreover, the unique strong solution (u, v, T ) depends continuously on the initial data.

In section 3.2.1, we establish the existence of solutions to system (44)–(46) with (47)–(49) by employing
the standard Galerkin approximation procedure. In section 3.2.2, we establish formal a priori estimates for
the solutions of system (44)–(46) with (47)–(49). These estimates can be justified rigorously by deriving them
first to the Galerkin approximation system and then passing to the limit using the Aubin-Lions compactness
theorem. In section 3.2.3, we establish the uniqueness of strong solutions, and its continuous dependence on
the initial data.

3.2.1. Galerkin approximating system. In this section, we employ the standard Galerkin approximation pro-
cedure. Let

φk = φk1,k2 :=

{√
2 exp (2πik1x) cos(2πk2z) if k2 6= 0

exp (2πik1x) if k2 = 0,
(57)

ψk = ψk1,k2 :=
√

2 exp (2πik1x) sin(2πk2z), (58)
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and

E := {φ ∈ L2(T2) | φ =
∑
k∈Z2

akφk, a−k1,k2 = a∗k1,k2 ,
∑
k∈Z2

|ak|2 <∞},

O := {ψ ∈ L2(T2) | ψ =
∑
k∈Z2

akψk, a−k1,k2 = a∗k1,k2 ,
∑
k∈Z2

|ak|2 <∞}.

Observe that functions in E and O are even and odd with respect to z variable, respectively. Moreover, E
and O are closed subspace of L2(T2), orthogonal to each other and consist of real valued functions. For any
m ∈ N, denote by

Em := {φ ∈ L2(T2) | φ =
∑
|k|≤m

akφk, a−k1,k2 = a∗k1,k2},

Om := {ψ ∈ L2(T2) | ψ =
∑
|k|≤m

akψk, a−k1,k2 = a∗k1,k2},

the finite-dimensional subspaces of E and O, respectively. For any function f ∈ L2(T2), we denote by f̂j =

(f, φ̄j) and f̃j = (f, ψ̄j), and we write Pmf :=
∑
|k|≤m f̂kφk and Πmf :=

∑
|k|≤m f̃kψk. Then Pm and Πm are

the orthogonal projections from L2(T2) to Em and Om, respectively. Now let

um =

m∑
|k|=0

ak(t)φk(x, z), vm =

m∑
|k|=0

bk(t)φk(x, z), Tm =

m∑
|k|=0

ck(t)ψk(x, z),

and consider the following Galerkin approximation system for our model (44)–(46), with (47)–(49):

∂tum − ν∂zzum + Pm[um∂xum + wm∂zum] + ε1um − f0vm + ∂xpm = 0, (59)

∂tvm − ν∂zzvm + Pm[um∂xvm + wm∂zvm] + ε1vm + f0um = 0, (60)

∂tTm − κ∆Tm + Πm[um∂xTm + wm∂zTm] = 0, (61)

with wm, ∂xpm, ∂zpm defined by:

wm(x, z) := −
∫ z

0

∂xum(x, s)ds, (62)

∂xpm(x, z) := ε2

∫ z

0

∫ s

0

∂xxum(x, ξ)dξds−
∫ z

0

∂xTm(x, s)ds

+

∫ 1

0

[ ∫ z′

0

∂xTm(x, s)ds− ε2
∫ z′

0

∫ s

0

∂xxum(x, ξ)dξds+ f0vm(x, z′)
]
dz′

−Pm
∫ 1

0

2um∂xum(x, z′)dz′ − f0

∫ 1

0

∫ 1

0

vm(x′, z′)dx′dz′, (63)

∂zpm(x, z) := −Tm(x, z) + ε2

∫ z

0

∂xum(x, s)ds, (64)

subject to the following initial conditions:

um(0) = Pmu0, vm(0) = Pmv0, Tm(0) = ΠmT0. (65)

Observe that the definitions of wm, ∂xpm and ∂zpm are inspired by (47)–(49). Moreover, notice that

(∂xpm)z(x, z) = −∂xTm(x, z) + ε2

∫ z

0

∂xxum(x, s)ds = (∂zpm)x(x, z),

and hence (63) and (64) are compatible. For each m ≥ 1, the Galerkin approximation, system (59)–(61),
together with (62)–(64) corresponds to a first order system of ordinary differential equations, in the coefficients
ak, bk and ck for 0 ≤ |k| ≤ m, with quadratic nonlinearity. Therefore, by the theory of ordinary differential
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equations, there exists some tm > 0 such that system (59)–(61) together with (62)–(64) admit a unique
solution (um, vm, Tm) on the interval [0, tm]. Observe that from (65), we have ak(0), bk(0), ck(0) ∈ C satisfying
a−k1,k2(0) = a∗k1,k2(0), b−k1,k2(0) = b∗k1,k2(0), and c−k1,k2(0) = c∗k1,k2(0). Thanks to the uniqueness of the

solutions of the ODE system, we conclude that a−k1,k2(t) = a∗k1,k2(t), b−k1,k2(t) = b∗k1,k2(t), and c−k1,k2(t) =

c∗k1,k2(t), for t ∈ [0, tm]. Therefore, um, vm ∈ Em, and Tm ∈ Om. In the next section, we perform formal

a priori estimates for the original system (44)–(46) with (47)–(49). These formal a priori estimates can be
justified rigorously by establishing them first to the Galerkin approximation system and then passing to the
limit using the Aubin-Lions compactness theorem.

3.2.2. A priori estimates. The constant C appears in the following inequalities may change from line to line.
By taking the L2-inner product of equation (44) with u,−∆u,∆uxx, equation (45) with v,−∆v,∆vxx, equation
(55) with w,−∆w,∆wxx and equation (46) with T,−∆T,∆Txx, and by integration by parts, thanks to (50)
and (53), we have

1

2

d

dt

(
‖u‖2L2 + ‖∇u‖2L2 + ‖v‖2L2 + ‖∇v‖2L2 + ‖∇ux‖2L2 + ‖∇vx‖2L2 + ‖T‖2L2 + ‖∇T‖2L2 + ‖∇Tx‖2L2

)
+ν
(
‖uz‖2L2 + ‖vz‖2L2 + ‖∇uz‖2L2 + ‖∇vz‖2L2 + ‖∇uxz‖2L2 + ‖∇vxz‖2L2

)
+ε1

(
‖u‖2L2 + ‖∇u‖2L2 + ‖v‖2L2 + ‖∇v‖2L2 + ‖∇ux‖2L2 + ‖∇vx‖2L2

)
+ε2

(
‖w‖2L2 + ‖∇w‖2L2 + ‖∇wx‖2L2

)
+ κ
(
‖∇T‖2L2 + ‖∆T‖2L2 + ‖∆Tx‖2L2

)
=

∫
T2

[uux + wuz − f0v + px] (−u+ ∆u−∆uxx) + [uvx + wvz + f0u] (−v + ∆v −∆vxx)

+ (pz + T ) (−w + ∆w −∆wxx) + (uTx + wTz) (−T + ∆T −∆Txx) dxdz. (66)

By integration by parts, thanks to (50), (53) and (56), we have∫
T2

(−f0v + px) (−u+ ∆u−∆uxx) + f0u (−v + ∆v −∆vxx) + pz (−w + ∆w −∆wxx)

+ (uux + wuz) (−u+ uzz) + (uvx + wvz)(−v) + (uTx + wTz)(−T ) dxdz = 0.

Therefore, the right-hand side of (66) becomes∫
T2

(uux + wuz) (uxx − uxxxx − uxxzz) + (uvx + wvz) (∆v − vxxxx − vxxzz)

+T (−w + ∆w −∆wxx) + (uTx + wTz) (∆T −∆Txx) dxdz =: I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8.

Let us denote by

Y := 1 + ‖u‖2L2 + ‖∇u‖2L2 + ‖v‖2L2 + ‖∇v‖2L2 + ‖∇ux‖2L2 + ‖∇vx‖2L2 + ‖T‖2L2 + ‖∇T‖2L2 + ‖∇Tx‖2L2 ,

F := ‖uz‖2L2 + ‖vz‖2L2 + ‖∇uz‖2L2 + ‖∇vz‖2L2 + ‖∇uxz‖2L2 + ‖∇vxz‖2L2 ,

G := ‖w‖2L2 + ‖∇w‖2L2 + ‖∇wx‖2L2 , K := ‖∇T‖2L2 + ‖∆T‖2L2 + ‖∆Tx‖2L2 . (67)

From (35), by Hölder inequality and Minkowski inequality, we have

‖w‖L2 =

(∫ 1

0

∫ 1

0

|
∫ z

0

ux(x, s)ds|2dxdz
) 1

2

≤
∫ z

0

(∫ 1

0

∫ 1

0

|ux(x, s)|2dxdz
) 1

2

ds

≤
∫ 1

0

(∫ 1

0

∫ 1

0

|ux(x, s)|2dxdz
) 1

2

ds ≤
(∫ 1

0

∫ 1

0

∫ 1

0

|ux(x, s)|2dxdzds
) 1

2

= ‖ux‖L2 . (68)

Similarly, one can get

‖wx‖L2 ≤ ‖uxx‖L2 . (69)
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Let us estimate terms I1–I8. By integration by parts, using Cauchy–Schwarz inequality, Young’s inequality
and Lemma 1, thanks to (50), (53), (56), (68) and (69), we have

|I1| =
∣∣∣∣∫

T2

(uux + wuz)uxxdxdz

∣∣∣∣ ≤ C‖u‖ 1
2

L2(‖u‖
1
2

L2 + ‖uz‖
1
2

L2)‖ux‖
1
2

L2(‖ux‖
1
2

L2 + ‖uxx‖
1
2

L2)‖uxx‖L2

+C‖uz‖
1
2

L2(‖uz‖
1
2

L2 + ‖uxz‖
1
2

L2)‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wz‖
1
2

L2)‖uxx‖L2 ≤ CY 3
2 ≤ CY 3,

|I2| =
∣∣∣∣∫

T2

[uux + wuz] uxxxx dxdz

∣∣∣∣ =

∣∣∣∣∫
T2

[3uxuxx + wxxuz + 2wxuxz] uxx dxdz

∣∣∣∣
≤ C

[
‖ux‖

1
2

L2(‖ux‖
1
2

L2 + ‖uxx‖
1
2

L2)‖uxx‖
3
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖wxx‖L2‖uz‖
1
2

L2(‖uz‖
1
2

L2 + ‖uxz‖
1
2

L2)‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖wx‖L2‖uxz‖
1
2

L2(‖uxz‖
1
2

L2 + ‖uxxz‖
1
2

L2)‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)
]

≤ ε2
6
‖wxx‖2L2 +

ν

6
‖uxxz‖2L2 + CY 3 ≤ ν

10
F +

ε2
6
G+ CY 3,

|I3| =
∣∣∣∣∫

T2

[uux + wuz] uxxzz dxdz

∣∣∣∣ =

∣∣∣∣∫
T2

(uxuxz + wxuzz) uxz dxdz

∣∣∣∣
≤ C

[
‖ux‖

1
2

L2(‖ux‖
1
2

L2 + ‖uxz‖
1
2

L2)‖uxz‖
3
2

L2(‖uxz‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖uxz‖L2‖wx‖
1
2

L2(‖wx‖
1
2

L2 + ‖wxz‖
1
2

L2)‖uzz‖
1
2

L2(‖uzz‖
1
2

L2 + ‖uxzz‖
1
2

L2)

≤ ν

10
(‖uzz‖2L2 + ‖uxxz‖2L2 + ‖uxzz‖2L2) + CY 2 ≤ ν

10
F + CY 3,

|I4| =
∣∣∣∣∫

T2

[uvx + wvz] ∆v dxdz

∣∣∣∣ ≤ C(‖u‖L2 + ‖uz‖L2)(‖vx‖L2 + ‖vxx‖L2)(‖vxx‖L2 + ‖vzz‖L2)

+C(‖w‖L2 + ‖wz‖L2)(‖vz‖L2 + ‖vxz‖L2)(‖vxx‖L2 + ‖vzz‖L2) ≤ ν

10
‖vzz‖2L2 + CY 2 ≤ ν

10
F + CY 3,

|I5| = |
∫
T2

[uvx + wvz] vxxxxdxdz| = |
∫
T2

[uxxvx + wxxvz + 2uxvxx + 2wxvxz] vxxdxdz|

≤ C
[
‖vxx‖L2‖vx‖

1
2

L2(‖vx‖
1
2

L2 + ‖vxx‖
1
2

L2)‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖wxx‖L2‖vz‖
1
2

L2(‖vz‖
1
2

L2 + ‖vxz‖
1
2

L2)‖vxx‖
1
2

L2(‖vxx‖
1
2

L2 + ‖vxxz‖
1
2

L2)

+‖vxx‖
3
2

L2(‖vxx‖
1
2

L2 + ‖vxxz‖
1
2

L2)‖ux‖
1
2

L2(‖ux‖
1
2

L2 + ‖uxx‖
1
2

L2)

+‖wx‖
1
2

L2(‖wx‖
1
2

L2 + ‖wxz‖
1
2

L2)‖vxz‖
1
2

L2(‖vxz‖
1
2

L2 + ‖vxxz‖
1
2

L2)‖vxx‖L2

]
≤ ε2

6
‖wxx‖2L2 +

ν

10
(‖uxxz‖2L2 + ‖vxxz‖2L2) + CY 3 ≤ ν

10
F +

ε2
6
G+ CY 3,

|I6| = |
∫
T2

[uvx + wvz] vxxzzdxdz| = |
∫
T2

[uxzvx + vxxuz − vzuxx + wxvxz] vxzdxdz|

≤ C
[
‖vxz‖L2‖vx‖

1
2

L2(‖vx‖
1
2

L2 + ‖vxz‖
1
2

L2)‖uxz‖
1
2

L2(‖uxz‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖vxz‖L2‖uz‖
1
2

L2(‖uz‖
1
2

L2 + ‖uxz‖
1
2

L2)‖vxx‖
1
2

L2(‖vxx‖
1
2

L2 + ‖vxxz‖
1
2

L2)

+‖vxz‖L2‖vz‖
1
2

L2(‖vz‖
1
2

L2 + ‖vxz‖
1
2

L2)‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖vxz‖L2‖wx‖
1
2

L2(‖wx‖
1
2

L2 + ‖wxz‖
1
2

L2)‖vxz‖
1
2

L2(‖vxz‖
1
2

L2 + ‖vxxz‖
1
2

L2)
]

≤ ν

10
(‖uxxz‖2L2 + ‖vxxz‖2L2) + CY 2 ≤ ν

10
F + CY 3,
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|I7| = |
∫
T2

T (−w + ∆w −∆wxx) dxdz|

≤ ‖T‖L2‖w‖L2 + ‖∇T‖L2‖∇w‖L2 + ‖∇Tx‖L2‖∇wx‖L2 ≤ ε2
6
G+ CY,

|I8| = |
∫
T2

[uTx + wTz] (∆T −∆Txx)dxdz|

≤ |
∫
T2

[uTx + wTz] ∆Tdxdz|+ |
∫
T2

[uxTx + uTxx + wTxz + wxTz] ∆Txdxdz|

≤ C
[
‖u‖

1
2

L2(‖u‖
1
2

L2 + ‖ux‖
1
2

L2)‖Tx‖
1
2

L2(‖Tx‖
1
2

L2 + ‖Txz‖
1
2

L2)

+‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wz‖
1
2

L2)‖Tz‖
1
2

L2(‖Tz‖
1
2

L2 + ‖Txz‖
1
2

L2)
]
‖∆T‖L2

+C
[
‖ux‖

1
2

L2(‖ux‖
1
2

L2 + ‖uxx‖
1
2

L2)‖Tx‖
1
2

L2(‖Tx‖
1
2

L2 + ‖Txz‖
1
2

L2)

+‖u‖
1
2

L2(‖u‖
1
2

L2 + ‖uz‖
1
2

L2)‖Txx‖
1
2

L2(‖Txx‖
1
2

L2 + ‖Txxx‖
1
2

L2)

+‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wx‖
1
2

L2)‖Txz‖
1
2

L2(‖Txz‖
1
2

L2 + ‖Txzz‖
1
2

L2)

+‖wx‖
1
2

L2(‖wx‖
1
2

L2 + ‖wxz‖
1
2

L2)‖Tz‖
1
2

L2(‖Tz‖
1
2

L2 + ‖Txz‖
1
2

L2)
]
‖∆Tx‖L2

≤ κ

2
(‖∆T‖2L2 + ‖∆Tx‖2L2) + CY 3 ≤ κ

2
K + CY 3.

From the estimates above, (66) becomes

dY

dt
+ νF + ε2G+ κK ≤ CY 3. (70)

Therefore, we have dY
dt ≤ CY

3, and this implies that

Y (t) ≤

√
Y (0)2

1− Y (0)2Ct
.

Choose

T =
3

4CY (0)2
.

From above, we have Y (t) ≤ 2Y (0) on [0, T ]. Plugging it in (70), we have

dY

dt
+ νF + ε2G+ κK ≤ 8CY (0)3, for t ∈ [0, T ]. (71)

Integrating above from 0 to t for any time t ∈ [0, T ], we obtain

Y (t) +

∫ t

0

(
νF (s) + ε2G(s) + κK(s)

)
ds ≤ Y (0) + 8CtY (0)3.

Therefore, we have

u, v, T, ux, vx, Tx ∈ L∞(0, T ;H1), uz, vz, uxz, vxz ∈ L2(0, T ;H1), T, Tx ∈ L2(0, T ;H2). (72)

By virtue of (72) and (68), we have

w ∈ L∞(0, T ;H1). (73)

Thanks to Lemma 2, from (72), we also have

u, v, T ∈ L∞(0, T ;L∞), ∇u,∇v,∇T ∈ L2(0, T ;L∞). (74)
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3.2.3. Uniqueness of solutions and its continuous dependence on the initial data. In this section, we will show
the continuous dependence on the initial data and the uniqueness of the strong solutions. Let (u1, v1, w1, p1, T1)
and (u2, v2, w2, p2, T2) be two strong solutions of system (44)–(46) with (47)–(49), with the initial data
((u0)1, (v0)1, (T0)1) and ((u0)2, (v0)2, (T0)2), respectively. Denote by u = u1 − u2, v = v1 − v2, w = w1 − w2,
p = p1 − p2, T = T1 − T2. It is clear that

∂tu− νuzz + u1ux + w1uz + u(u2)x + w(u2)z + ε1u− f0v + px = 0, (75)

∂tv − νvzz + u1vx + w1vz + u(v2)x + w(v2)z + ε1v + f0u = 0, (76)

ε2w + pz + T = 0, (77)

ux + wz = 0, (78)

∂tT − κ∆T + u1Tx + w1Tz + u(T2)x + w(T2)z = 0. (79)

By taking the inner product of equation (75) with u, (76) with v, (77) with w, and (79) with T , in L2(T2),
and by integration by parts, thanks to (50), (56), and (78), we get

1

2

d(‖u‖2L2 + ‖v‖2L2 + ‖T‖2L2)

dt
+ ε1(‖u‖2L2 + ‖v‖2L2) + ν(‖uz‖2L2 + ‖vz‖2L2) + ε2‖w‖2L2 + κ ‖∇T‖2L2

≤
∣∣∣∣∫

T2

[u(u2)x + w(u2)z] u dxdz

∣∣∣∣+

∣∣∣∣∫
T2

[u(v2)x + w(v2)z] v dxdz

∣∣∣∣
+

∣∣∣∣∫
T2

wT dxdz

∣∣∣∣+

∣∣∣∣∫
T2

[u(T2)x + w(T2)z] T dxdz

∣∣∣∣ =: I + II + III + IV.

By integration by parts, using Hölder inequality and Young’s inequality, thanks to (50), (56), and (78), we
have

I =

∣∣∣∣∫
T2

[u(u2)x + w(u2)z] u dxdz

∣∣∣∣ ≤ ε2
8
‖w‖2L2 + (‖(u2)x‖L∞ + ‖(u2)z‖2L∞)‖u‖2L2 ,

II =

∣∣∣∣∫
T2

[u(v2)x + w(v2)z] v dxdz

∣∣∣∣ ≤ ε2
8
‖w‖2L2 + (‖(v2)x‖L∞ + ‖(v2)z‖2L∞)(‖u‖2L2 + ‖v‖2L2),

III =

∣∣∣∣∫
T2

wT dxdz

∣∣∣∣ ≤ ε2
8
‖w‖2L2 + C‖T‖2L2 ,

IV =

∣∣∣∣∫
T2

[u(T2)x + w(T2)z] T dxdz

∣∣∣∣ ≤ ε2
8
‖w‖2L2 + (‖(T2)x‖L∞ + ‖(T2)z‖2L∞)(‖u‖2L2 + ‖T‖2L2).

From the estimates above, we obtain

d(‖u‖2L2 + ‖v‖2L2 + ‖T‖2L2)

dt
+ ε1(‖u‖2L2 + ‖v‖2L2) + ν(‖uz‖2L2 + ‖vz‖2L2) + ε2‖w‖2L2 + κ ‖∇T‖2L2

≤ CK
(
‖u‖2L2 + ‖v‖2L2 + ‖T‖2L2

)
,

where

K = 1 + ‖∇u2‖2L∞ + ‖∇v2‖2L∞ + ‖∇T2‖2L∞ .

Thanks to (74), we obtain K ∈ L1(0, T ). Therefore, by Gronwall inequality, we obtain

‖u(t)‖2L2 + ‖v(t)‖2L2 + ‖T (t)‖2L2 ≤ (‖u(t = 0)‖2L2 + ‖v(t = 0)‖2L2 + ‖T (t = 0)‖2L2)eC
∫ t
0
K(s)ds,

The above inequality proves the continuous dependence of the solutions on the initial data, and in particular,
when u(t = 0) = v(t = 0) = T (t = 0) = 0, we have u(t) = v(t) = T (t) = 0, for all t ≥ 0. Therefore, the strong
solution is unique.
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3.3. The Special Case: f0 = 0,v ≡ 0 and T ≡ 0. In this section, we assume that f0 = 0, v ≡ 0 and T ≡ 0.
In this case, system (17)–(21) will be reduced to:

∂tu− νuzz + uux + wuz + ε1u+ px = 0, (80)

ε2w + pz = 0, (81)

ux + wz = 0, (82)

Remark 1. There are two reasons why we consider this special case. Firstly, notice that when ε1 = ε2 = 0,
system (80)–(82) is exactly the hydrostatic Navier-Stokes equations (14)–(16). So we can regard system (80)–
(82) as the hydrostatic Navier-Stokes equations with damping. Secondly, as we will see later, we can show the
local regularity of strong solution to system (80)–(82) for initial conditions with less regularity. The reason why
we need to assume more regularity for initial data to system (44)–(46) is that we need to bound terms which
contain vxx. For uxx, we can use incompressible condition uxx = −wxz to avoid such an issue. Therefore, in
the case when we do not have the evolution equation for v, we can require less for the initial data.

As in section 3.2, our domain is T2, and the boundary and initial condition are

u, w and p are periodic in x and z with period 1, (83)

u and p are even in z, and w is odd in z, (84)

u|t=0 = u0. (85)

Using an analogue argument to that in section 3.1, system (80)–(82) subject to (83)–(85) is equivalent to the
following:

ut − νuzz + uux + wuz + ε1u+ px = 0, (86)

with w, px, pz defined by:

w(x, z) := −
∫ z

0

ux(x, s)ds, (87)

px(x, z) := ε2

∫ z

0

∫ s

0

uxx(x, ξ)dξds+

∫ 1

0

[
− ε2

∫ z′

0

∫ s

0

uxx(x, ξ)dξds− 2uux(x, z′)
]
dz′, (88)

pz(x, z) := ε2

∫ z

0

ux(x, s)ds, (89)

subject to the following symmetry boundary condition and initial condition:

u is periodic in x and z with period 1, and is even in z; (90)

u|t=0 = u0. (91)

By virtue of (87)–(89) and (90), we obtain that w, p also satisfy the symmetry conditions:

w and p are periodic in x and z with period 1; (92)

p is even in z, and w is odd in z. (93)

By virtue of (87) and (89), and by differentiating (87) with respect to z, we have

ε2w + pz = 0, (94)

ux + wz = 0. (95)

In this section, we are interested in system (86) with (87)–(89) in the unit two-dimensional flat torus T2,
subject to (90)–(91). First, we give the definition of strong solution to system (86) with (87)–(89).
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Definition 6. Suppose that u0 ∈ H1(T2) satisfies the symmetry conditions (90), with the compatibility condi-

tion
∫ 1

0
∂xu0dz = 0. Moreover, suppose that ∂xzu0 ∈ L2(T2). Given time T > 0, we say u is a strong solution

to system (86) with (87)–(89), subject to (90)–(91), on the time interval [0, T ], if

(i) u satisfies the symmetry condition (90);

(ii) u has the regularities

u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) ∩ C([0, T ], L2) ∩ L∞(0, T ;L∞), uz ∈ L2(0, T ;L∞)

uxz ∈ L∞(0, T ;L2), uxzz ∈ L2(0, T ;L2), ∂tu ∈ L2(0, T ;L2);

(iii) u satisfies system (86) in the following sense:

∂tu− νuzz + uux + wuz + ε1u+ px = 0, in L2(0, T ;L2),

with w, px, pz defined by (87)–(89), and fulfill the initial condition (91).

We have the following result concerning the locally existence and uniqueness of strong solutions to system
(86) with (87)–(89), subject to (90)–(91), on T2 × (0, T ), for some positive time T .

Theorem 7. Suppose that u0 ∈ H1(T2) satisfies the symmetry conditions (90), with the compatibility condition∫ 1

0
∂xu0dz = 0. Moreover, suppose that ∂xzu0 ∈ L2(T2). Then there exists some T > 0 such that there is a

unique strong solution u of system (86) with (87)–(89), subject to (90)–(91), on the interval [0, T ]. Moreover,
the unique strong solution u depends continuously on the initial data.

Proof. For sake of simplicity, we will only do a priori estimates formally here, and we can use Galerkin method,
as remarked in section 3.2, to prove the result rigorously. We denote by ‖ · ‖ := ‖ · ‖L2(T2). By taking the inner

product of equation (86) with u, −uzz, and equation (94) with w, −wzz, in L2(T2), we get

1

2

d

dt

(
‖u‖2 + ‖uz‖2

)
+ ν

(
‖uz‖2 + ‖uzz‖2

)
+ ε1

(
‖u‖2 + ‖uz‖2

)
+ ε2

(
‖w‖2 + ‖wz‖2

)
= −

∫
T2

(uux + wuz) (u− uzz) dxdz −
∫
T2

(
px (u− uzz) + pz (w − wzz)

)
dxdz.

By integration by parts, thanks to (90), (92) and (95), we have

−
∫
T2

(uux + wuz) (u− uzz) dxdz −
∫
T2

(
px (u− uzz) + pz (w − wzz)

)
dxdz = 0.

Thanks to Gronwall inequality, we obtain

‖u(t)‖2 + ‖uz(t)‖2 + 2

∫ t

0

[
ν
(
‖uz(s)‖2 + ‖uzz(s)‖2

)
+ ε2

(
‖w(s)‖2 + ‖wz(s)‖2

)]
ds ≤ ‖u(0)‖2 + ‖uz(0)‖2.

From the estimates above, we obtain

u, uz bounded in L∞(0, T ;L2),

w, uzz, wz = −ux bounded in L2(0, T ;L2), (96)

for arbitrary T > 0. By taking the inner product of equation (86) with −uxx, uxxzz and equation (94) with
−wxx, wxxzz in L2(T2), integrating by parts, thanks to (90) and (92) we get

1

2

d

dt
(‖ux‖2 + ‖uxz‖2) + ν (‖uxz‖2 + ‖uxzz‖2) + ε1(‖ux‖2 + ‖uxz‖2) + ε2(‖wx‖2 + ‖wxz‖2)

=

∫
T2

(uux + wuz) (uxx − uxxzz) dxdz +

∫
T2

(
px(uxx − uxxzz) + pz(wxx − wxxzz)

)
dxdz. (97)
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By integration by parts, thanks to (90), (92) and (95), we have∫
T2

(
px(uxx − uxxzz) + pz(wxx − wxxzz)

)
dxdz = 0.

Therefore, we have

1

2

d

dt
(‖ux‖2 + ‖uxz‖2) + ν (‖uxz‖2 + ‖uxzz‖2) + ε1(‖ux‖2 + ‖uxz‖2) + ε2(‖wx‖2 + ‖wxz‖2)

≤ |
∫
T2

(uux + wuz) (uxx − uxxzz) dxdz| =: |I1 + I2|.

Let us denote by
Y := 1 + ‖ux‖2 + ‖uxz‖2, F := ‖uxz‖2 + ‖uxzz‖2,

G := ‖wx‖2 + ‖wxz‖2, K := 1 + ‖u‖2 + ‖uz‖2 + ‖uzz‖2.
By integration by parts and Lemma 1, using Young’s inequality, thanks to (68), (69), (90), (92) and (95), we
have

|I1| =
∣∣∣∣∫

T2

(uux + wuz)uxxdxdz

∣∣∣∣ ≤ C‖u‖ 1
2

L2(‖u‖
1
2

L2 + ‖ux‖
1
2

L2)‖ux‖
1
2

L2(‖ux‖
1
2

L2 + ‖uxz‖
1
2

L2)‖wxz‖L2

+C‖uz‖
1
2

L2(‖uz‖
1
2

L2 + ‖uxz‖
1
2

L2)‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wz‖
1
2

L2)‖wxz‖L2 ≤ ε2
4
G+ CKY 2,

|I2| =
∣∣∣∣∫

T2

[uux + wuz] uxxzz dxdz

∣∣∣∣ =

∣∣∣∣∫
T2

(uxuxz + wxuzz) uxz dxdz

∣∣∣∣
≤ C

[
‖ux‖

1
2

L2(‖ux‖
1
2

L2 + ‖wxz‖
1
2

L2)‖uxz‖
3
2

L2(‖uxz‖
1
2

L2 + ‖uxzz‖
1
2

L2)

+‖uxz‖L2‖wx‖
1
2

L2(‖wx‖
1
2

L2 + ‖wxz‖
1
2

L2)‖uzz‖
1
2

L2(‖uzz‖
1
2

L2 + ‖uxzz‖
1
2

L2)
]
≤ ε2

4
G+

ν

2
F + CKY 2.

From the estimates above and by (96), we have

dY

dt
+ νF + ε2G ≤ CKY 2, with K ∈ L1(0, T ) for arbitrary T > 0. (98)

Therefore, we have dY
dt ≤ CKY

2, and this implies that

Y (t) ≤ Y (0)

1− Y (0)C
∫ t

0
Kds

.

Let T be such that ∫ T
0

Kds =
1

2Y (0)C
.

From above, we will have Y (t) ≤ 2Y (0) on [0, T ]. Plugging it in (98), we have

dY

dt
+ νF + ε2G ≤ 4CKY (0)2, for t ∈ [0, T ].

Integrating above from 0 to t for any time t ∈ [0, T ], we obtain

Y (t) +

∫ t

0

(νF (s) + ε2G(s)) ds ≤ Y (0) + 4CY (0)2

∫ t

0

K(s)ds.

From the estimates above, by virtue of (95), (96) and (68), we obtain

u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2), uxz ∈ L∞(0, T ;L2), uxzz ∈ L2(0, T ;L2), (99)

w,wz, wzz ∈ L∞(0, T ;L2), wx, wxz ∈ L2(0, T ;L2). (100)

Using Galerkin method, as remarked in section 3.2, we can obtain local existence of strong solution to system
(86) with (87)–(89), subject to (90)–(91). Next, we show the continuous dependence of solutions on the initial
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data and the uniqueness of the strong solutions. Let (u1, w1, p1) and (u2, w2, p2) be two strong solutions
of system (86) with (87)–(89), and initial data (u0)1 and (u0)2, respectively. Denote by u = u1 − u2, w =
w1 − w2, p = p1 − p2. It is clear that

∂tu+ u1ux + w1uz + u(u2)x + w(u2)z + ε1u− νuzz + px = 0, (101)

ε2w + pz = 0. (102)

By taking the inner product of equation (101) with u, (102) with w in L2(T2), we have

1

2

d‖u‖2

dt
+ ε1‖u‖2 + ε2‖w‖2 + ν‖uz‖2 =

∫
T2

u(u1ux + w1uz + u(u2)x + w(u2)z) + (pxu+ pzw) dxdz.

By integration by parts, thanks to (90), (92) and (95), we have∫
T2

u(u1ux + w1uz) + (pxu+ pzw) dxdz = 0.

Therefore, we have

1

2

d‖u‖2

dt
+ ε1‖u‖2 + ε2‖w‖2 + ν‖uz‖2 ≤ |

∫
T2

u
(
u(u2)x + w(u2)z

)
dxdz| =: |I1 + I2|.

From (99) and (100), and by lemma 2, we obtain that w2, (u2)z ∈ L2(0, T ;L∞). Therefore, using Young’s
inequality and Hölder inequality, we have

|I1| = |
∫
T2

u2(u2)xdxdz| = |
∫
T2

u2(w2)zdxdz| = |2
∫
T2

uuzw2 dxdz|

≤
∫
T2

(ν
2
|uz|2 + C|uw2|2

)
dxdz ≤ C‖w2‖2L∞‖u‖2 +

ν

2
‖uz‖2,

|I2| = |
∫
T2

uw(u2)zdxdz| ≤
∫
T2

(ε2
2
|w|2 + C|u(u2)z|2

)
dxdz ≤ C‖(u2)z‖2L∞‖u‖2 +

ε2
2
‖w‖2.

From the estimates above, we obtain

d

dt
‖u‖2 + ε1‖u‖2 + ε2‖w‖2 + ν‖uz‖2 ≤ C(‖w2‖2L∞ + ‖(u2)z‖2L∞)‖u‖2.

Thanks to Gronwall inequality, we have

‖u(t)‖2 ≤ ‖u(0)‖2 exp

(
C

∫ t

0

(
‖w2(s)‖2L∞ + ‖(u2)z(s)‖2L∞

)
ds

)
.

The above inequality proves the continuous dependence of the solutions on the initial data, and in particular,
when u(t = 0) = 0, we have u(t) = 0, for all t ∈ [0, T ]. Therefore, the strong solution is unique. �

3.4. Global Well-posedness with Small Initial Data. In this section, we will show the following result
concerning the global existence and uniqueness of strong solutions to system (44)–(46) with (47)–(49), subject
to boundary and initial conditions (50)–(52), provided that the initial data is small enough.

Theorem 8. Suppose that u0, v0, T0, ∂xu0, ∂xv0, ∂xT0 ∈ H1(T2) satisfy the symmetry conditions (50) and (51),

with the compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that

‖u0‖H1 + ‖v0‖H1 + C0‖T0‖H1 + ‖∂xu0‖H1 + ‖∂xv0‖H1 + C0‖∂xT0‖H1 << 1

is small enough, for some C0 > 0 determined in (105). Then for any time T > 0, there exists a unique strong
solution (u, v, T ) of system (44)–(46) with (47)–(49), subject to (50)–(52), on the interval [0, T ]. Moreover,
the unique strong solution (u, v, T ) depends continuously on the initial data.
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Proof. From Theorem 5, we know there exists time T ∗ > 0 such that there is a unique strong solution (u, v, T )
of system (44)–(46) with (47)–(49), subject to (50)–(52), on the interval [0, T ∗]. Assume the maximal time T
for existence of solution is finite, then it is necessary to have

lim sup
t→T −

(‖u(t)‖H1 + ‖v(t)‖H1 + ‖T (t)‖H1 + ‖ux(t)‖H1 + ‖vx(t)‖H1 + ‖Tx(t)‖H1) =∞.

We will prove this is not true for any finite time T > 0, and therefore T =∞. First, notice that since T is an
odd function with respect to z variable, we have∫

T2

T dxdz ≡ 0. (103)

By taking the L2-inner product of equation (44) with u,−∆u,∆uxx, equation (45) with v,−∆v,∆vxx, equation
(55) with w,−∆w,∆wxx and equation (46) with C0T,−C0∆T,C0∆Txx, in L2(T2), by integration by parts,
thanks to (50), (53) and (56), we have

1

2

d

dt

(
‖u‖2L2 + ‖∇u‖2L2 + ‖v‖2L2 + ‖∇v‖2L2 + ‖∇ux‖2L2 + ‖∇vx‖2L2 + C0‖T‖2L2 + C0‖∇T‖2L2 + C0‖∇Tx‖2L2

)
+ν
(
‖uz‖2L2 + ‖vz‖2L2 + ‖∇uz‖2L2 + ‖∇vz‖2L2 + ‖∇uxz‖2L2 + ‖∇vxz‖2L2

)
+ε1

(
‖u‖2L2 + ‖∇u‖2L2 + ‖v‖2L2 + ‖∇v‖2L2 + ‖∇ux‖2L2 + ‖∇vx‖2L2

)
+ε2

(
‖w‖2L2 + ‖∇w‖2L2 + ‖∇wx‖2L2

)
+ C0κ

(
‖∇T‖2L2 + ‖∆T‖2L2 + ‖∆Tx‖2L2

)
=

∫
T2

[uux + wuz − f0v + px] (−u+ ∆u−∆uxx) + [uvx + wvz + f0u] (−v + ∆v −∆vxx)

+ (pz + T ) (−w + ∆w −∆wxx) + C0 (uTx + wTz) (−T + ∆T −∆Txx) dxdz

=

∫
T2

(uux + wuz) (uxx − uxxxx − uxxzz) + (uvx + wvz) (∆v − vxxxx − vxxzz)

+T (−w + ∆w −∆wxx) + C0 (uTx + wTz) (∆T −∆Txx) dxdz =: I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8.

We denote by:

Y := ‖u‖2L2 + ‖∇u‖2L2 + ‖v‖2L2 + ‖∇v‖2L2 + ‖∇ux‖2L2 + ‖∇vx‖2L2 + C0‖T‖2L2 + C0‖∇T‖2L2 + C0‖∇Tx‖2L2 ,

F := ‖uz‖2L2 + ‖vz‖2L2 + ‖∇uz‖2L2 + ‖∇vz‖2L2 + ‖∇uxz‖2L2 + ‖∇vxz‖2L2 ,

G := ‖w‖2L2 + ‖∇w‖2L2 + ‖∇wx‖2L2 ,

H := ‖∇T‖2L2 + ‖∆T‖2L2 + ‖∆Tx‖2L2 ,

K := ‖u‖2L2 + ‖∇u‖2L2 + ‖v‖2L2 + ‖∇v‖2L2 + ‖∇ux‖2L2 + ‖∇vx‖2L2 .

By integration by parts, using Poincaré inequality, Young’s inequality and Lemma 1, thanks to (50), (53),
(56), (68), (69) and (103), we have

|I1| =
∣∣∣∣∫

T2

(uux + wuz)wxzdxdz

∣∣∣∣
≤ C‖u‖

1
2

L2(‖u‖
1
2

L2 + ‖uz‖
1
2

L2)‖ux‖
1
2

L2(‖ux‖
1
2

L2 + ‖uxx‖
1
2

L2)‖wxz‖L2

+C‖uz‖
1
2

L2(‖uz‖
1
2

L2 + ‖uxz‖
1
2

L2)‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wz‖
1
2

L2)‖wxz‖L2

≤ C(‖w‖2L2 + ‖wz‖2L2 + ‖wxz‖2L2)(‖u‖L2 + ‖uz‖L2 + ‖uxz‖L2) ≤ CGY 1/2,
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|I2| =
∣∣∣∣∫

T2

[uux + wuz] uxxxx dxdz

∣∣∣∣ =

∣∣∣∣∫
T2

[3wzwxz + wxxuz + 2wxuxz] uxx dxdz

∣∣∣∣
≤ C

[
‖wz‖

1
2

L2(‖wz‖
1
2

L2 + ‖wxz‖
1
2

L2)‖wxz‖L2‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖wxx‖L2‖uz‖
1
2

L2(‖uz‖
1
2

L2 + ‖uxz‖
1
2

L2)‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖wx‖L2‖uxz‖
1
2

L2(‖uxz‖
1
2

L2 + ‖uxxz‖
1
2

L2)‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)
]

≤ C(‖∇wx‖2L2 + ‖∇u‖2L2 + ‖∇ux‖2L2 + ‖uxxz‖2L2)(‖∇u‖L2 + ‖∇ux‖L2) ≤ C(F +G+K)Y 1/2,

|I3| =
∣∣∣∣∫

T2

[uux + wuz] uxxzz dxdz

∣∣∣∣ =

∣∣∣∣∫
T2

(uxuxz + wxuzz) uxz dxdz

∣∣∣∣
≤ C

[
‖ux‖

1
2

L2(‖ux‖
1
2

L2 + ‖uxz‖
1
2

L2)‖uxz‖
3
2

L2(‖uxz‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖uxz‖L2‖wx‖
1
2

L2(‖wx‖
1
2

L2 + ‖wxz‖
1
2

L2)‖uzz‖
1
2

L2(‖uzz‖
1
2

L2 + ‖uxzz‖
1
2

L2)
]
≤ C(F +G+K)Y 1/2,

|I4| =
∣∣∣∣∫

T2

[uvx + wvz] ∆v dxdz

∣∣∣∣
≤ C(‖u‖L2 + ‖uz‖L2)(‖vx‖L2 + ‖vxx‖L2)(‖vxx‖L2 + ‖vzz‖L2)

+C(‖w‖L2 + ‖wz‖L2)(‖vz‖L2 + ‖vxz‖L2)(‖vxx‖L2 + ‖vzz‖L2) ≤ C(K + F )Y 1/2,

|I5| = |
∫
T2

[uvx + wvz] vxxxxdxdz| = |
∫
T2

[uxxvx + wxxvz + 2uxvxx + 2wxvxz] vxxdxdz|

≤ C
[
‖vxx‖L2‖vx‖

1
2

L2(‖vx‖
1
2

L2 + ‖vxx‖
1
2

L2)‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖wxx‖L2‖vz‖
1
2

L2(‖vz‖
1
2

L2 + ‖vxz‖
1
2

L2)‖vxx‖
1
2

L2(‖vxx‖
1
2

L2 + ‖vxxz‖
1
2

L2)

+‖vxx‖
3
2

L2(‖vxx‖
1
2

L2 + ‖vxxz‖
1
2

L2)‖ux‖
1
2

L2(‖ux‖
1
2

L2 + ‖uxx‖
1
2

L2)

+‖wx‖
1
2

L2(‖wx‖
1
2

L2 + ‖wxz‖
1
2

L2)‖vxz‖
1
2

L2(‖vxz‖
1
2

L2 + ‖vxxz‖
1
2

L2)‖vxx‖L2

]
≤ C(K + F +G)Y 1/2,

|I6| = |
∫
T2

[uvx + wvz] vxxzzdxdz| = |
∫
T2

[uxzvx + vxxuz − vzuxx + wxvxz] vxzdxdz|

≤ C
[
‖vxz‖L2‖vx‖

1
2

L2(‖vx‖
1
2

L2 + ‖vxz‖
1
2

L2)‖uxz‖
1
2

L2(‖uxz‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖vxz‖L2‖uz‖
1
2

L2(‖uz‖
1
2

L2 + ‖uxz‖
1
2

L2)‖vxx‖
1
2

L2(‖vxx‖
1
2

L2 + ‖vxxz‖
1
2

L2)

+‖vxz‖L2‖vz‖
1
2

L2(‖vz‖
1
2

L2 + ‖vxz‖
1
2

L2)‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖vxz‖L2‖wx‖
1
2

L2(‖wx‖
1
2

L2 + ‖wxz‖
1
2

L2)‖vxz‖
1
2

L2(‖vxz‖
1
2

L2 + ‖vxxz‖
1
2

L2)
]
≤ C(K + F +G)Y 1/2,

|I7| = |
∫
T2

T (−w + ∆w −∆wxx) dxdz|

≤ ‖T‖L2‖w‖L2 + ‖∇T‖L2‖∇w‖L2 + ‖∇Tx‖L2‖∇wx‖L2

≤ ε2
2
G+

1

2ε2
(‖T‖2L2 + ‖∇T‖2L2 + ‖∇Tx‖2L2)

≤ ε2
2
G+

1

2ε2
(Cp‖∇T‖2L2 + ‖∇T‖2L2 + ‖∇Tx‖2L2) ≤ ε2

2
G+

1

2ε2
(Cp + 1)H,
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where, thanks to (103), we apply Poincaré inequality to obtain the last inequality.

|I8| = C0|
∫
T2

[uTx + wTz] (∆T −∆Txx)dxdz|

≤ |
∫
T2

[uTx + wTz] ∆Tdxdz|+ |
∫
T2

[uxTx + uTxx + wTxz + wxTz] ∆Txdxdz|

≤ C0C
[
‖u‖

1
2

L2(‖u‖
1
2

L2 + ‖uz‖
1
2

L2)‖Tx‖
1
2

L2(‖Tx‖
1
2

L2 + ‖Txx‖
1
2

L2)

+‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wz‖
1
2

L2)‖Tz‖
1
2

L2(‖Tz‖
1
2

L2 + ‖Txz‖
1
2

L2)
]
‖∆T‖L2

+C0C
[
‖ux‖

1
2

L2(‖ux‖
1
2

L2 + ‖uxz‖
1
2

L2)‖Tx‖
1
2

L2(‖Tx‖
1
2

L2 + ‖Txx‖
1
2

L2)

+‖u‖
1
2

L2(‖u‖
1
2

L2 + ‖uz‖
1
2

L2)‖Txx‖
1
2

L2(‖Txx‖
1
2

L2 + ‖Txxx‖
1
2

L2)

+‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wx‖
1
2

L2)‖Txz‖
1
2

L2(‖Txz‖
1
2

L2 + ‖Txzz‖
1
2

L2)

+‖wx‖
1
2

L2(‖wx‖
1
2

L2 + ‖wxz‖
1
2

L2)‖Tz‖
1
2

L2(‖Tz‖
1
2

L2 + ‖Txz‖
1
2

L2)
]
‖∆Tx‖L2 ≤ C0CHY

1/2.

From the estimates above, we obtain

|I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8| ≤ C(K +G+ F + C0H)Y
1
2 +

ε2
2
G+

1

2ε2
(Cp + 1)H.

Therefore, we obtain

1

2

dY

dt
+ ν(1− C

ν
Y

1
2 )F + ε1(1− C

ε1
Y

1
2 )K + ε2(

1

2
− C

ε2
Y

1
2 )G+ C0κ(1− C

κ
Y

1
2 − Cp + 1

2ε2κC0
)H ≤ 0. (104)

Choose

C0 =
Cp + 1

ε2κ
. (105)

Observe that if Y0 < min( ν
2

C2 ,
ε21
C2 ,

ε22
4C2 ,

κ2

4C2 ), there exists t∗ > 0 such that dY
dt ≤ 0 on [0, t∗], and hence Y (t) ≤ Y0

for t ∈ [0, t∗], and in particular, Y (t∗) < min( ν
2

C2 ,
ε21
C2 ,

ε22
4C2 ,

κ2

4C2 ). Thus we can repeat this procedure to arbitrary

time t > 0 to get Y (t) ≤ Y0 < min( ν
2

C2 ,
ε21
C2 ,

ε22
4C2 ,

κ2

4C2 ) for all time. This implies the required bound for the
global in time existence of strong solution. �

4. Global Well-posedness of system (23)–(27)

In this section we study system (23)–(27) with ν = 0. Similar as in section 3.1, our domain is T2, and the
boundary conditions and initial condition are

u, v, w, p and T are periodic in x and z with period 1, (106)

u, v and p are even in z, and w, T are odd in z, (107)

(u, v, T )|t=0 = (u0, v0, T0). (108)

Using analogue argument as in section 3.1, system (23)–(27) subject to (106)–(108) is equivalent to the fol-
lowing:

(u− α2uzz)t + uux + wuz + ε1u− f0v + px = 0, (109)

(v − α2vzz)t + u vx + wvz + ε1v + f0u = 0, (110)

Tt − κ∆T + uTx + wTz = 0, (111)



PRIMITIVE GEOSTROPHIC ADJUSTMENT MODEL 21

with w, px, pz defined by (47)–(49), subject to the symmetry boundary conditions and initial conditions (50)–
(52). We also have (55) and (56), for which we repeat here:

ε2w + pz + T = 0, (112)

ux + wz = 0. (113)

In this section, we are interested in system (109)–(111) with (47)–(49), subject to (50)–(52). We will show the
global regularity of strong solution to system (109)–(111) with (47)–(49), subject to (50)–(52). First, we give
the definition of strong solution to system (109)–(111) with (47)–(49), subject to (50)–(52).

Definition 9. Suppose that u0, v0 ∈ H2(T2) and T0 ∈ H1(T2) satisfy the symmetry conditions (50) and (51),

with the compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that ∂xxzu0, ∂xxzv0 ∈ L2(T2). Given time

T > 0, we say (u, v, T ) is a strong solution to the system (109)–(111) with (47)–(49), subject to (50)–(52), on
the time interval [0, T ], if

(i) u, v and T satisfy the symmetry conditions (50) and (51);

(ii) u, v and T have the regularities

u ∈ L∞(0, T ;H2) ∩ C([0, T ];H1), uxxz ∈ L∞(0, T ;L2), ∂tu ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1),

v ∈ L∞(0, T ;H2) ∩ C([0, T ];H1), vxxz ∈ L∞(0, T ;L2), ∂tv ∈ L∞(0, T ;H1),

T ∈ L2(0, T ;H2) ∩ L∞(0, T ;H1) ∩ C([0, T ];L2), ∂tT ∈ L2(0, T ;L2);

(iii) u, v and T satisfy system (44)–(46) in the following sense:

∂t(u− α2uzz) + uux + wuz + ε1u− f0v + px = 0 in L∞(0, T ;L2) ∩ L2(0, T ;H1);

∂t(v − α2vzz) + uvx + wvz + ε1v + f0u = 0 in L∞(0, T ;H1);

∂tT − κ∆T + uTx + wTz = 0 in L2(0, T ;L2),

with w, px, pz defined by (47)–(49), and fulfill the initial condition (52).

We have the following result concerning the existence and uniqueness of strong solutions to system (109)–
(111) with (47)–(49), subject to (50)–(52), on T2 × (0, T ), for any positive time T .

Theorem 10. Suppose that u0, v0 ∈ H2(T2) and T0 ∈ H1(T2) satisfy the symmetry conditions (50) and (51),

with the compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that ∂xxzu0, ∂xxzv0 ∈ L2(T2). Let time

T > 0. Then there exists a unique strong solution (u, v, T ) of system (109)–(111) with (47)–(49), subject to
(50)–(52), on the interval [0, T ]. Moreover, the unique strong solution (u, v, T ) depends continuously on the
initial data.

Proof. We will only do a priori estimates formally here, and we can use Galerkin method as in section 3.2 to
prove the result rigorously. By taking the L2-inner product of equation (109) with u, equation (110) with v,
equation (112) with w and equation (111) with T , in L2(T2), by integration by parts, thanks to (50), we get

1

2

d

dt

(
‖u‖2L2 + ‖v‖2L2 + ‖T‖2L2 + α2 ‖uz‖2L2 + α2 ‖vz‖2L2

)
+ ε1‖u‖2L2 + ε1‖v‖2L2 + ε2‖w‖2L2 + κ ‖∇T‖2L2

= −
∫
T2

[uux + wuz] u dxdz −
∫
T2

[uvx + wvz] v dxdz

−
∫
T2

[upx + wpz + wT ] dxdz −
∫
T2

[uTx + wTz] T dxdz.
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By integration by parts, thanks to (50), (53) and (113), we have

−
∫
T2

[uux + wuz] u dxdz −
∫
T2

[uvx + wvz] v dxdz

−
∫
T2

[upx + wpz] dxdz −
∫
T2

[uTx + wTz] T dxdz = 0.

By Cauchy–Schwarz inequality and Young’s inequality, we have

−
∫
T2

wTdxdz ≤ ‖w‖L2‖T‖L2 ≤ ε2
2
‖w‖2L2 + C‖T‖2L2 .

As a result of the above, we have

d

dt

(
‖u‖2L2 + ‖v‖2L2 + ‖T‖2L2 + α2 ‖uz‖2L2 + α2 ‖vz‖2L2

)
+ 2ε1‖u‖2L2 + 2ε1‖v‖2L2 + ε2‖w‖2L2 + 2κ ‖∇T‖2L2

≤ C‖T‖2L2 ≤ C(‖u‖2L2 + ‖v‖2L2 + ‖T‖2L2 + α2 ‖uz‖2L2 + α2 ‖vz‖2L2).

Thanks to Gronwall inequality, we obtain

(‖u‖2L2 + ‖v‖2L2 + ‖T‖2L2 + α2 ‖uz‖2L2 + α2 ‖vz‖2L2)(t)

+

∫ t

0

(
2ε1‖u(s)‖2L2 + 2ε1‖v(s)‖2L2 + ε2‖w(s)‖2L2 + 2κ ‖∇T (s)‖2L2

)
ds

≤ (‖u0‖2L2 + ‖v0‖2L2 + ‖T0‖2L2 + α2 ‖∂zu0‖2L2 + α2 ‖∂zv0‖2L2)eCt.

Consequently, we have

u, v, uz, vz ∈ L∞(0, T ;L2),

w ∈ L2(0, T ;L2),

T ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1), (114)

for arbitrary T > 0. By taking the L2-inner product of equation (109) with −uzz and equation (112) with
−wzz in L2(T2), by integration by parts, thanks to (50) and (53), we get

1

2

d(‖uz‖2L2 + α2 ‖uzz‖2L2)

dt
+ ε1‖uz‖2L2 + ε2‖wz‖2L2

=

∫
T2

[uux + wuz − f0v]uzz + [uzzpx + wzzpz + wzzT ] dxdz.

By integration by parts, thanks to (50), (53) and (113), we have∫
T2

[uux + wuz]uzzdxdz +

∫
T2

[uzzpx + wzzpz] dxdz

= −
∫
T2

[uzux + uuxz + wzuz + wuzz]uzdxdz −
∫
T2

p(ux + wz)zzdxdz

= −1

2

∫
T2

u2
z(ux + wz)dxdz −

∫
T2

p(ux + wz)zzdxdz = 0.

By integration by parts, using Cauchy–Schwarz inequality and Young’s inequality, thanks to (50) and (53), we
have ∫

T2

(−f0vuzz + wzzT ) dxdz =

∫
T2

(f0vzuz − wzTz) dxdz ≤ f0‖vz‖L2‖uz‖L2 + ‖wz‖L2‖Tz‖L2

≤ ε2
2
‖wz‖2L2 + C‖Tz‖2L2 + C‖vz‖L2(1 + ‖uz‖2L2 + α2‖uzz‖2L2).
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As a result of the above, we have

d(1 + ‖uz‖2L2 + α2‖uzz‖2L2)

dt
+ ε1‖uz‖2L2 + ε2‖wz‖2L2 ≤ C‖vz‖L2(1 + ‖uz‖2L2 + α2‖uzz‖2L2) + C‖Tz‖2L2 .

Thanks to Gronwall inequality, we obtain

‖uz(t)‖2L2 + α2 ‖uzz(t)‖2L2 +

∫ t

0

(
2ε1‖uz(s)‖2L2 + ε2‖wz(s)‖2L2

)
ds

≤ C
(

1 +

∫ t

0

‖Tz(s)‖2L2ds+ ‖∂zu0‖2L2 + α2 ‖∂zzu0‖2L2

)
exp

(
C

∫ t

0

‖vz(s)‖L2ds

)
.

By virtue of (114) and the above, we have

uzz ∈ L∞(0, T ;L2), wz = −ux ∈ L2(0, T ;L2), (115)

for arbitrary T > 0. By taking the L2-inner product of equation (109) with −uxx and equation (112) with
−wxx, in L2(T2), by integration by parts, thanks to (50) and (53), we get

1

2

d(‖ux‖2L2 + α2 ‖uxz‖2L2)

dt
+ ε1‖ux‖2L2 + ε2‖wx‖2L2

=

∫
T2

[uux + wuz − f0v]uxx + [uxxpx + wxxpz + wxxT ] dxdz.

By integration by parts, thanks to (50), (53) and (113), we have∫
T2

[uxxpx + wxxpz] dxdz = 0.

By integration by parts, using Cauchy–Schwarz inequality and Young’s inequality, thanks to (50), (53) and
(113), we have

−
∫
T2

f0vuxxdxdz =

∫
T2

f0vwxzdxdz = −
∫
T2

f0vzwxdxdz ≤ C‖vz‖2L2 +
ε2
6
‖wx‖2L2 ,∫

T2

Twxx dxdz = −
∫
T2

Txwx dxdz ≤ C‖Tx‖2L2 +
ε2
6
‖wx‖2L2 .

By integration by parts, using Young’s inequality and Lemma 1, thanks to (50), (53) and (113), we have∫
T2

[uux + wuz] uxx dxdz = −
∫
T2

[
(ux)3 + wxuzux

]
dxdz

= −
∫
T2

[
−wz(ux)2 + wxuzux

]
dxdz = −

∫
T2

[2wuxuxz + wxuzux] dxdz

≤ C
[
‖w‖

1
2

L2(‖w‖
1
2

L2 + ‖wx‖
1
2

L2)‖ux‖
1
2

L2(‖ux‖
1
2

L2 + ‖uxz‖
1
2

L2)‖uxz‖L2

+‖wx‖L2‖uz‖
1
2

L2(‖uz‖
1
2

L2 + ‖uxz‖
1
2

L2)‖ux‖
1
2

L2(‖ux‖
1
2

L2 + ‖uxz‖
1
2

L2)
]

≤ C
(
1 + ‖w‖2L2 + ‖ux‖2L2 + ‖uz‖2L2

) (
1 + ‖ux‖2L2 + α2‖uxz‖2L2

)
+
ε2
6
‖wx‖2L2 .

From the estimates above, we have

d(1 + ‖ux‖2L2 + α2 ‖uxz‖2L2)

dt
+ ε1‖ux‖2L2 + ε2‖wx‖2L2

≤ C
(
1 + ‖w‖2L2 + ‖ux‖2L2 + ‖uz‖2L2

) (
1 + ‖ux‖2L2 + α2‖uxz‖2L2

)
+ C(‖vz‖2L2 + ‖Tx‖2L2).



24 C. CAO, Q. LIN, AND E.S. TITI

By Gronwall inequality, we obtain

‖ux(t)‖2L2 + α2 ‖uxz(t)‖2L2 +

∫ t

0

(
2ε1‖ux(s)‖2L2 + ε2‖wx(s)‖2L2

)
ds

≤ C
(

1 +

∫ t

0

(
‖vz(s)‖2L2 + ‖Tx(s)‖2L2

)
ds+ ‖∂xu0‖2L2 + α2 ‖∂xzu0‖2L2

)
× exp

(
C

∫ t

0

(
1 + ‖w(s)‖2L2 + ‖ux(s)‖2L2 + ‖uz(s)‖2L2

)
ds

)
.

By virtue of (114), (115) and the above, we have

u, uz ∈ L∞(0, T ;H1), w ∈ L2(0, T ;H1), (116)

for arbitrary T > 0. By virtue of (116), (68) and (69), we have

w ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1), (117)

for arbitrary T > 0. By taking the L2-inner product of equation (110) with −∆v in L2(T2), and by integration
by parts, thanks to (50), we have

1

2

d(‖∇v‖2L2 + α2 ‖∇vz‖2L2)

dt
+ ε1‖∇v‖2L2

=

∫
T2

[
(uvx + wvz) (vxx + vzz) + f0u∆v

]
dxdz =: I + II + III + IV + V.

By integration by parts, using Cauchy–Schwarz inequality and Lemma 1, thanks to (50), (53) and (113), we
have

|I| = |
∫
T2

uvxvxx dxdz| = |
∫
T2

1

2
uxv

2
x dxdz| = |

∫
T2

1

2
wzv

2
x dxdz| = |

∫
T2

wvxvxz dxdz|

≤ C‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wx‖
1
2

L2)‖vx‖
1
2

L2(‖vx‖
1
2

L2 + ‖vxz‖
1
2

L2)‖vxz‖L2 ,

|II| = |
∫
T2

uvxvzz dxdz| ≤ C‖u‖
1
2

L2(‖u‖
1
2

L2 + ‖ux‖
1
2

L2)‖vx‖
1
2

L2(‖vx‖
1
2

L2 + ‖vxz‖
1
2

L2)‖vzz‖L2 ,

|III| = |
∫
T2

wvzvxx dxdz| = |
∫
T2

vx(wxvz + wvxz) dxdz|

≤ C‖wx‖L2‖vx‖
1
2

L2(‖vx‖
1
2

L2 + ‖vxz‖
1
2

L2)‖vz‖
1
2

L2(‖vz‖
1
2

L2 + ‖vxz‖
1
2

L2)

+C‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wx‖
1
2

L2)‖vx‖
1
2

L2(‖vx‖
1
2

L2 + ‖vxz‖
1
2

L2)‖vxz‖L2 ,

|IV | = |
∫
T2

wvzvzz dxdz| ≤ C‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wx‖
1
2

L2)‖vz‖
1
2

L2(‖vz‖
1
2

L2 + ‖vzz‖
1
2

L2)‖vzz‖L2 ,

|V | = |
∫
T2

f0u∆v dxdz| = |
∫
T2

f0∇u∇v dxdz| ≤ C‖∇u‖L2‖∇v‖L2 .

As a result of the above and by Young’s inequality, we conclude

d(1 + ‖∇v‖2L2 + α2 ‖∇vz‖2L2)

dt
+ 2ε1‖∇v‖2L2

≤ C
(
1 + ‖u‖2L2 + ‖w‖2L2 + ‖∇u‖2L2 + ‖wx‖2L2

) (
1 + ‖∇v‖2L2 + α2 ‖∇vz‖2L2

)
.



PRIMITIVE GEOSTROPHIC ADJUSTMENT MODEL 25

Thanks to Gronwall inequality, we obtain

‖∇v(t)‖2L2 + α2 ‖∇vz(t)‖2L2 +

∫ t

0

2ε1‖∇v(s)‖2L2ds

≤
(
1 + ‖∇v0‖2L2 + α2 ‖∇∂zv0‖2L2

)
exp

(
C

∫ t

0

(
1 + ‖u‖2L2 + ‖w‖2L2 + ‖∇u‖2L2 + ‖wx‖2L2

)
(s) ds

)
.

By virtue of (114), (115), (116) and the above, we have

v, vz ∈ L∞(0, T ;H1), (118)

for arbitrary T > 0. By taking the L2-inner product of equation (111) with −∆T in L2(T2), and by integration
by parts, thanks to (50), we have

1

2

d‖∇T‖2L2

dt
+ κ ‖∆T‖2L2 =

∫
T2

(uTx + wTz)∆T.

By Lemma 1 and Young’s inequality, thanks to (113), we have∫
T2

(uTx + wTz)∆T

≤ C
(
‖u‖

1
2

L2(‖u‖
1
2

L2 + ‖uz‖
1
2

L2)‖Tx‖
1
2

L2(‖Tx‖
1
2

L2 + ‖Txx‖
1
2

L2)‖∆T‖L2

+‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wz‖
1
2

L2)‖Tz‖
1
2

L2(‖Tz‖
1
2

L2 + ‖Txz‖
1
2

L2)‖∆T‖L2

)
≤ κ

2
‖∆T‖2L2 + C

(
1 + ‖u‖4L2 + ‖uz‖4L2 + ‖w‖4L2 + ‖wz‖4L2

)
‖∇T‖2L2 ,

=
κ

2
‖∆T‖2L2 + C

(
1 + ‖u‖4L2 + ‖uz‖4L2 + ‖w‖4L2 + ‖ux‖4L2

)
‖∇T‖2L2 .

As a result of the above we conclude

d‖∇T‖2L2

dt
+ κ ‖∆T‖2L2 ≤ C

(
1 + ‖u‖4L2 + ‖uz‖4L2 + ‖w‖4L2 + ‖ux‖4L2

)
‖∇T‖2L2 .

Thanks to Gronwall inequality, we obtain

‖∇T (t)‖2L2 + κ

∫ t

0

‖∆T (s)‖2L2 ds

≤ C‖∇T0‖2L2 exp

(
C

∫ t

0

(
1 + ‖u‖4L2 + ‖uz‖4L2 + ‖w‖4L2 + ‖ux‖4L2

)
(s)ds

)
.

By virtue of (114), (115), (116), (117) and the above, we have

T ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2). (119)

By taking the L2-inner product of equation (109) with uxxxx, equation (110) with vxxxx, and equation (112)
with wxxxx in L2(T2), and by integration by parts, thanks to (50) and (53), we get

1

2

d(‖uxx‖2L2 + ‖vxx‖2L2 + α2 ‖uxxz‖2L2 + α2 ‖vxxz‖2L2)

dt
+ ε1‖uxx‖2L2 + ε1‖vxx‖2L2 + ε2‖wxx‖2L2

= −
∫
T2

[uux + wuz − f0v] uxxxx dxdz −
∫
T2

[uvx + wvz + f0u] vxxxx dxdz

−
∫
T2

[uxxxxpx + wxxxxpz + wxxxxT ] dxdz.

By integration by parts, thanks to (50), (53) and (113), , we have∫
T2

(−f0vuxxxx + f0uvxxxx) dxdz −
∫
T2

(uxxxxpx + wxxxxpz) dxdz = 0.
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By integration by parts, using Young’s inequality and Lemma 1, thanks to (50), (53) and (113), we have∣∣∣∣∫
T2

[uux + wuz] uxxxx dxdz

∣∣∣∣ =

∣∣∣∣∫
T2

[
5wuxxz −

1

2
wxxuz − 2wxuxz

]
uxx dxdz

∣∣∣∣
≤ C

[
‖w‖

1
2

L2(‖w‖
1
2

L2 + ‖wx‖
1
2

L2)‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)‖uxxz‖L2

+‖wxx‖L2‖uz‖
1
2

L2(‖uz‖
1
2

L2 + ‖uxz‖
1
2

L2)‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)

+‖wx‖L2‖uxz‖
1
2

L2(‖uxz‖
1
2

L2 + ‖uxxz‖
1
2

L2)‖uxx‖
1
2

L2(‖uxx‖
1
2

L2 + ‖uxxz‖
1
2

L2)
]

≤ ε2
6
‖wxx‖2L2 + C

(
1 + ‖w‖2L2 + ‖wx‖2L2 + ‖uz‖2L2 + ‖uxz‖2L2

) (
1 + ‖uxx‖2L2 + α2 ‖uxxz‖2L2

)
,

and

|
∫
T2

[uvx + wvz] vxxxxdxdz| = |
∫
T2

[uxxvx + wxxvz − 4wvxxz + 2wxvxz] vxxdxdz|

≤ |
∫
T2

[wxvxz + wxxvz − 4wvxxz + 2wxvxz] vxxdxdz|+ |
∫
T2

wxvxvxxz dxdz|

≤ C
[
‖wx‖L2‖vxx‖

1
2

L2(‖vxx‖
1
2

L2 + ‖vxxz‖
1
2

L2)‖vxz‖
1
2

L2(‖vxz‖
1
2

L2 + ‖vxxz‖
1
2

L2)

+‖wxx‖L2‖vz‖
1
2

L2(‖vz‖
1
2

L2 + ‖vxz‖
1
2

L2)‖vxx‖
1
2

L2(‖vxx‖
1
2

L2 + ‖vxxz‖
1
2

L2)

+‖w‖
1
2

L2(‖w‖
1
2

L2 + ‖wx‖
1
2

L2)‖vxx‖
1
2

L2(‖vxx‖
1
2

L2 + ‖vxxz‖
1
2

L2)‖vxxz‖L2

+‖wx‖L2‖vxz‖
1
2

L2(‖vxz‖
1
2

L2 + ‖vxxz‖
1
2

L2)‖vxx‖
1
2

L2(‖vxx‖
1
2

L2 + ‖vxxz‖
1
2

L2)

+‖wx‖
1
2

L2(‖wx‖
1
2

L2 + ‖wxz‖
1
2

L2)‖vx‖
1
2

L2(‖vx‖
1
2

L2 + ‖vxx‖
1
2

L2)‖vxxz‖L2

]
≤ ε2

6
‖wxx‖2L2 + C

(
1 + ‖w‖2L2 + ‖wx‖2L2 + ‖vx‖2L2 + ‖vz‖2L2 + ‖vxz‖2L2

) (
1 + ‖vxx‖2L2 + α2 ‖vxxz‖2L2

)
.

By integration by parts, using Cauchy-Schwarz inequality and Young’s inequality, thanks to (50) and (53), we
have

|
∫
T2

Twxxxxdxdz| = |
∫
T2

Txxwxxdxdz| ≤ ‖Txx‖L2‖wxx‖L2 ≤ ε2
6
‖wxx‖2L2 + C‖Txx‖2L2 .

As a result of the above, we conclude

d(1 + ‖uxx‖2L2 + ‖vxx‖2L2 + α2 ‖uxxz‖2L2 + α2 ‖vxxz‖2L2)

dt
+ 2ε1‖uxx‖2L2 + 2ε1‖vxx‖2L2 + ε2‖wxx‖2L2

≤ C
(
1 + ‖w‖2L2 + ‖wx‖2L2 + ‖uz‖2L2 + ‖uxz‖2L2 + ‖vx‖2L2 + ‖vz‖2L2 + ‖vxz‖2L2 + ‖Txx‖2L2

)
×
(
1 + ‖uxx‖2L2 + ‖vxx‖2L2 + α2 ‖uxxz‖2L2 + α2 ‖vxxz‖2L2

)
.

By Gronwall inequality, we obtain

‖uxx(t)‖2L2 + ‖vxx(t)‖2L2 + α2 ‖uxxz(t)‖2L2 + α2 ‖vxxz(t)‖2L2

+

∫ t

0

(
2ε1‖uxx(s)‖2L2 + 2ε1‖vxx(s)‖2L2 + ε2‖wxx(s)‖2L2

)
ds

≤ C(1 + ‖∂xxu0‖2L2 + ‖∂xxv0‖2L2 + α2 ‖∂xxzu0‖2L2 + α2 ‖∂xxzv0‖2L2) exp
(
C

∫ t

0

(1 + ‖w(s)‖2L2

+‖wx(s)‖2L2 + ‖uz(s)‖2L2 + ‖uxz(s)‖2L2 + ‖∇v(s)‖2L2 + ‖vxz(s)‖2L2 + ‖Txx(s)‖2L2)ds
)

From (114), (115), (116), (117), (118), (119) and the above, we have

u, v ∈ L∞(0, T ;H2), uxxz, vxxz ∈ L∞(0, T ;L2), w ∈ L2(0, T ;H2), (120)
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for arbitrary T > 0. By virtue of (120), thanks (68) and (69), we have

w ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2), (121)

for arbitrary T > 0. Using standard Galerkin method as in section 3.2, we can establish the existence result,
and we omit the details here. Next, we show the continuous dependence on the initial data and the the
uniqueness of the strong solutions. Let (u1, v1, w1, p1, T1) and (u2, v2, w2, p2, T2) be two strong solutions of the
system (109)–(111) with (47)–(49), and initial data ((u0)1, (v0)1, (T0)1) and ((u0)2, (v0)2, (T0)2), respectively.
Denote by u = u1 − u2, v = v1 − v2, w = w1 − w2, p = p1 − p2, T = T1 − T2. Thanks to (112) and (113), it is
clear that

∂t
(
u− α2uzz

)
+ u1ux + w1uz + u(u2)x + w(u2)z + ε1u− f0v + px = 0, (122)

∂t
(
v − α2vzz

)
+ u1vx + w1vz + u(v2)x + w(v2)z + ε1v + f0u = 0, (123)

ε2w + pz + T = 0, (124)

ux + wz = 0, (125)

∂tT − κ∆T + u1Tx + w1Tz + u(T2)x + w(T2)z = 0. (126)

By taking the inner product of equation (122) with u, (123) with v, (124) with w, and (126) with T in L2(T2),
and by integration by parts, thanks to (50), (113) and (125), we get

1

2

d(‖u‖2L2 + ‖v‖2L2 + ‖T‖2L2 + α2 ‖uz‖2L2 + α2 ‖vz‖2L2)

dt
+ ε1‖u‖2L2 + ε1‖v‖2L2 + ε2‖w‖2L2 + κ ‖∇T‖2L2

≤
∣∣∣∣∫

T2

[u(u2)x + w(u2)z] u dxdz

∣∣∣∣+

∣∣∣∣∫
T2

[u(v2)x + w(v2)z] v dxdz

∣∣∣∣
+

∣∣∣∣∫
T2

wT dxdz

∣∣∣∣+

∣∣∣∣∫
T2

[u(T2)x + w(T2)z] T dxdz

∣∣∣∣ =: I + II + III + IV.

By integration by parts, using Hölder inequality and Young’s inequality, thanks to (50), (113) and (125) and
Lemma 1,

I =

∣∣∣∣∫
T2

[u(u2)x + w(u2)z] u dxdz

∣∣∣∣ ≤ C ∫
T2

|wuzu2|+ |w(u2)zu| dxdz,

≤ ε2
8
‖w‖2L2 + C‖u2‖2L∞‖uz‖2L2 + C‖(u2)z‖L2(‖(u2)z‖L2 + ‖(u2)xz‖L2)(‖u‖2L2 + α2‖uz‖2L2),

II =

∣∣∣∣∫
T2

[u(v2)x + w(v2)z] v dxdz

∣∣∣∣ ≤ ε2
8
‖w‖2L2 + C‖(v2)x‖L∞(‖u‖2L2 + ‖v‖2L2)

+C‖(v2)z‖L2(‖(v2)z‖L2 + ‖(v2)xz‖L2)(‖v‖2L2 + α2‖vz‖2L2), (127)

III =

∣∣∣∣∫
T2

wT dxdz

∣∣∣∣ ≤ ε2
8
‖w‖2L2 + C‖T‖2L2 ,

IV =

∣∣∣∣∫
T2

[u(T2)x + w(T2)z] T dxdz

∣∣∣∣
≤ C‖T‖L2‖(T2)x‖

1
2

L2(‖(T2)x‖
1
2

L2 + ‖(T2)xx‖
1
2

L2)(‖u‖L2 + ‖uz‖L2)

+
ε2
8
‖w‖2L2 +

κ

2
‖Tz‖2L2 + C(1 + ‖(T2)z‖2L2)(‖(T2)z‖2L2 + ‖(T2)xz‖2L2)‖T‖2L2

≤ ε2
8
‖w‖2L2 +

κ

2
‖∇T‖2L2 + C(1 + ‖(T2)x‖L2 + ‖(T2)xx‖L2 + ‖(T2)z‖4L2 + ‖(T2)z‖2L2‖(T2)xz‖2L2)

×(‖u‖2L2 + ‖T‖2L2 + α2 ‖uz‖2L2). (128)
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From the estimates above, we obtain

d(‖u‖2L2 + ‖v‖2L2 + ‖T‖2L2 + α2 ‖uz‖2L2 + α2 ‖vz‖2L2)

dt
+ ε1‖u‖2L2 + ε1‖v‖2L2 + ε2‖w‖2L2 + κ ‖∇T‖2L2

≤ CK
(
‖u‖2L2 + ‖v‖2L2 + ‖T‖2L2 + α2 ‖uz‖2L2 + α2 ‖vz‖2L2

)
,

where

K = 1 + ‖u2‖2L∞ + ‖(v2)x‖L∞ + ‖(u2)z‖2L2 + ‖(u2)xz‖2L2 + ‖(v2)z‖2L2 + ‖(v2)xz‖2L2

+‖(T2)x‖L2 + ‖(T2)xx‖L2 + ‖(T2)z‖4L2 + ‖(T2)z‖2L2‖(T2)xz‖2L2 .

Using lemma 2, thanks to (119) and (120), we obtain K ∈ L1(0, T ). Therefore, by Gronwall inequality, we
obtain

‖u(t)‖2L2 + ‖v(t)‖2L2 + ‖T (t)‖2L2 + α2 ‖uz(t)‖2L2 + α2 ‖vz(t)‖2L2

≤ (‖u(t = 0)‖2L2 + α2‖uz(t = 0)‖2L2 + ‖v(t = 0)‖2L2 + α2‖vz(t = 0)‖2L2 + ‖T (t = 0)‖2L2)eC
∫ t
0
K(s)ds,

The above inequality proves the continuous dependence of the solutions on the initial data, and in particular,
when u(t = 0) = v(t = 0) = T (t = 0) = 0, we have u(t) = v(t) = T (t) = 0, for all t ≥ 0. Therefore, the strong
solution is unique. �

In the case when f0 = 0 and v ≡ 0, our system (23)–(27) will be reduced to the following system:

(u− α2uzz)t + uux + wuz + px = 0, (129)

ε2w + pz + T = 0, (130)

ux + wz = 0, (131)

Tt − κ∆T + uTx + wTz = 0, (132)

in T2. We impose similar boundary and initial conditions for this system:

u, w, p and T are periodic in x and z with period 1, (133)

u, p are even in z, and w, T are odd in z, (134)

(u, T )|t=0 = (u0, T0). (135)

Using analogue argument as in section 3.1, the system (129)–(132) subject to (133)–(135) is equivalent to the
following:

(u− α2uzz)t + uux + wuz + ε1u+ px = 0, (136)

Tt − κ∆T + uTx + wTz = 0, (137)

with w, px, pz defined by:

w(x, z) := −
∫ z

0

ux(x, s)ds, (138)

px(x, z) := ε2

∫ z

0

∫ s

0

uxx(x, ξ)dξds−
∫ z

0

Tx(x, s)ds

+

∫ 1

0

[ ∫ z′

0

Tx(x, s)ds− ε2
∫ z′

0

∫ s

0

uxx(x, ξ)dξds− 2uux(x, z′)
]
dz′, (139)

pz(x, z) := −T (x, z) + ε2

∫ z

0

ux(x, s)ds. (140)
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We are interested in the system (136)–(137) with (138)–(140) in the unit two dimensional torus T2, subject to
the following symmetry boundary conditions and initial conditions:

u and T are periodic in x and z with period 1; (141)

u is even in z, and T is odd in z; (142)

(u, T )|t=0 = (u0, T0). (143)

We have the global well-posedness for system (136)–(137) with (138)–(140), for initial condition with less
regularity. i.e., for u0, ∂zu0 ∈ H1 and T0 ∈ H1. Let us give the definition of strong solution first.

Definition 11. Suppose that u0 ∈ H1(T2) and T0 ∈ H1(T2) satisfy the symmetry conditions (141) and (142),

with the compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that ∂zu0 ∈ H1. Given time T > 0, we say

(u, T ) is a strong solution to the system (136)–(137) with (138)–(140), subjecto to (141)–(143), on the time
interval [0, T ], if

(i) u and T satisfy the symmetry conditions (141) and (142);

(ii) u and T have the regularities

u ∈ L∞(0, T ;H1) ∩ C([0, T ];L2), uz ∈ L∞(0, T ;H1), ∂tu ∈ L2(0, T ;L2),

T ∈ L2(0, T ;H2) ∩ L∞(0, T ;H1) ∩ C([0, T ];L2), ∂tT ∈ L2(0, T ;L2);

(iii) u, T satisfy system (136)–(137) in the following sense:

(u− α2uzz)t + uux + wuz + ε1u+ px = 0 in L2(0, T ;L2);

Tt − κ∆T + uTx + wTz = 0 in L2(0, T ;L2),

with w, px, pz defined by (138)–(140), and fulfill the initial condition (143).

Based on theorem 10, we have the following theorem on the existence and uniqueness of strong solutions
to system (136)–(137) with (138)–(140), subject to (141)–(143), on T2 × (0, T ), for any positive time T . The
proof is similar as theorem 10, and we omit the details here.

Theorem 12. Suppose that u0 ∈ H1(T2) and T0 ∈ H1(T2) satisfy the symmetry conditions (141) and (142),

with the compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that ∂zu0 ∈ H1. Given time T > 0. Then

there exists a unique strong solution (u, T ) of the system (136)–(137) with (138)–(140), subject to (141)–(143),
on the interval [0, T ]. Moreover, the unique strong solution (u, T ) depends continuously on the initial data.
Same result holds when T ≡ 0.

Remark 2. The reason why we need to assume more regularity for the initial data to system (109)–(111) is
that we need a bound for ‖(v2)x‖L∞ appears in (127). If we do not have the evolution equation in v, we can
require less for the initial data.

5. Convergence

In this section, we will prove the convergence of the strong solution of the following system

(uα − α2uαzz)t − νuαzz + uαuαx + wαuαz + ε1u
α + pαx = 0, (144)

ε2w
α + pαz = 0, (145)

uαx + wαz = 0, (146)
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subject to the following symmetric boundary conditions and initial condition

uα, wα and pα are periodic in x and z with period 1; (147)

uα, pα are even in z, and wα is odd in z; (148)

uα|t=0 = uα0 , (149)

to the strong solution of system (80)–(82) subject to (83)–(85), as α→ 0.

Remark 3. The global well-posedness of system (144)–(146) subject to (147)–(149) can be easily obtained
as in section 4. Moreover, as indicated in the last part of section 4, we only need to assume that uα0 and
uα0z ∈ H1(T2) since we do not have the evolution equation in vα.

Theorem 13. Suppose that u0, {uα0 }0<α≤1 ⊂ H1(T2) satisfy the symmetry conditions (83)–(84) and (147)–

(148), with the compatibility conditions
∫ 1

0
∂xu0dz = 0 and

∫ 1

0
∂xu

α
0 dz = 0, for ∀ 0 < α ≤ 1, and suppose that

∂xzu0 ∈ L2(T2), {∂zuα0 }0<α≤1 ⊂ H1(T2). Moreover, suppose there exists some constant M > 0 such that the
following uniform bound for initial data holds:

sup
0<α≤1

(
‖uα0 ‖L2 + ‖∂zuα0 ‖L2 + α‖∂zzuα0 ‖L2

)
≤M. (150)

Let T > 0 be such that u is the strong solution of system (80)–(82) on [0, T ] with initial data u0. Let uα be
the strong solution to system (144)–(146) on [0, T ] with initial data uα0 . If uα0 → u0 in L2, as α → 0, then
uα → u in L∞(0, T ;L2), and uαz → uz in L2(0, T ;L2), as α→ 0.

Proof. Let us first derive the uniform bounds of some norms of the strong solution uα. By taking the L2-inner
product of equation (144) with uα,−uαzz, and equation (145) with wα,−wαzz, in L2(T2), and by integration by
parts, thanks to (147), we get

1

2

d

dt

(
‖uα‖2L2 + (α2 + 1) ‖uαz ‖2L2 + α2 ‖uαzz‖2L2

)
+ ε1

(
‖uα‖2L2 + ‖uαz ‖2L2

)
+ε2

(
‖wα‖2L2 + ‖wαz ‖2L2

)
+ ν
(
‖uαz ‖2L2 + ‖uαzz‖2L2

)
= −

∫
T2

(uαuαx + wαuαz ) (uα − uαzz) dxdz −
∫
T2

(
pαx (uα − uαzz) + pαz (wα − wαzz)

)
dxdz.

By integration by parts, thanks to (146) and (147), we have

−
∫
T2

(uαuαx + wαuαz ) (uα − uαzz) dxdz −
∫
T2

(
pαx (uα − uαzz) + pαz (wα − wαzz)

)
dxdz = 0.

As a result of the above, we have

d

dt

(
‖uα‖2L2 + (α2 + 1) ‖uαz ‖2L2 + α2 ‖uαzz‖2L2

)
+ ν
(
‖uαz ‖2L2 + ‖uαzz‖2L2

)
+ ε2

(
‖wα‖2L2 + ‖wαz ‖2L2

)
≤ 0.

Thanks to Gronwall inequality, we obtain

‖uα(t)‖2L2 + ‖uαz (t)‖2L2 +

∫ t

0

[
ν
(
‖uαz (s)‖2L2 + ‖uαzz(s)‖2L2

)
+ ε2

(
‖wα(s)‖2L2 + ‖wαz (s)‖2L2

) ]
ds

≤ ‖uα0 ‖2L2 + (1 + α2)‖∂zuα0 ‖2L2 + α2‖∂zzuα0 ‖2L2 ,

for t ∈ [0, T ]. Thanks to the uniform bound for initial data (150), we have

sup
0<α≤1

(
‖uα‖L∞(0,T ;L2) + ‖uαz ‖L∞(0,T ;L2) + ν‖uαzz‖L2(0,T ;L2)

+ε2‖wα‖L2(0,T ;L2) + ε2‖wαz ‖L2(0,T ;L2)

)
≤ C(M), (151)
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where C(M) is a constant depending on M , but not on α. Now subtracting (80)–(81) from (144)–(145), we
obtain

∂t[(u
α − u)− α2(uαzz − uzz)]− ν(uαzz − uzz) + ε1(uα − u) + (pαx − px)

= (u− uα)ux + (ux − uαx)uα + (w − wα)uz + (uz − uαz )wα − α2∂tuzz, (152)

ε2(wα − w) + (pαz − pz) = 0. (153)

For simplicity, we denote ‖ · ‖ := ‖ · ‖L2 from now on. By taking the inner product of equation (152) with
uα − u and equation (153) with wα − w, by integration by parts, and using (82) and (146), we get

1

2

d

dt
(‖uα − u‖2 + α2‖uαz − uz‖2) + ν ‖uαz − uz‖2 + +ε1‖uα − u‖2 + ε2‖wα − w‖2

=

∫
T2

[
(u− uα)2wz + (uα − u)(ux − uαx)uα + (w − wα)(uα − u)uz + (uz − uαz )(uα − u)wα

+(px − pαx)(uα − u) + (pz − pαz )(wα − w) + α2∂tuzz(u− uα)
]
dxdz

=: I1 + I2 + I3 + I4 + I5 + I6 + I7.

By integration by parts, using Hölder inequality and Young’s inequality, thanks to (82), (83), (146) and (147),
we have

I1 =

∫
T2

(u− uα)2wzdxdz = −2

∫
T2

(uα − u)z(u
α − u)wdxdz ≤ ν

2
‖uαz − uz‖2 + C‖w‖2∞‖uα − u‖2,

I2 + I4 =

∫
T2

[
(uα − u)(ux − uαx)uα + (uz − uαz )(uα − u)wα

]
dxdz

=
1

2

∫
T2

(uα − u)2(uαx + wαz )dxdz = 0,

I3 =

∫
T2

(w − wα)(uα − u)uzdxdz ≤
ε2
2
‖wα − w‖2 + C‖uz‖2∞‖uα − u‖2,

I5 + I6 =

∫
T2

[
(px − pαx)(uα − u) + (pz − pαz )(wα − w)

]
dxdz

=

∫
T2

(p− pα)[(u− uα)x + (w − wα)z]dxdz = 0,

I7 = α2

∫
T2

∂tuzz(u− uα)dxdz = α2

∫
T2

ut(u− uα)zzdxdz ≤ Cα2‖ut‖(‖uαzz‖+ ‖uzz‖).

From all the estimates above, we obtain

d

dt
(‖uα − u‖2 + α2‖uαz − uz‖2) + ν‖uαz − uz‖2 + ε1‖uα − u‖2 + ε2‖wα − w‖2

≤ C(‖w‖2∞ + ‖uz‖2∞)(‖uα − u‖2 + α2‖uαz − uz‖2) + Cα2‖ut‖(‖uαzz‖+ ‖uzz‖).

Let us denote by

F := ‖w‖2∞ + ‖uz‖2∞, G := ‖ut‖(‖uαzz‖+ ‖uzz‖).

Therefore, we obtain

d

dt
(‖uα − u‖2 + α2‖uαz − uz‖2) + ν‖uαz − uz‖2 + ε1‖uα − u‖2 + ε2‖wα − w‖2

≤ CF (‖uα − u‖2 + α2‖uαz − uz‖2) + Cα2G.
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Notice that the constant C appears above may change from line to line, and may depend on ν, ε2, and T2, but
not on α. Thanks to Gronwall inequality, we obtain

‖uα − u‖2(t) + α2‖uαz − uz‖2(t) +

∫ t

0

(
ν‖uαz − uz‖2(s) + ε1‖uα − u‖2(s) + ε2‖wα − w‖2(s)

)
ds

≤ (‖uα0 − u0‖2 + α2‖∂zuα0 − ∂zu0‖2) exp
(
C

∫ t

0

F (s)ds
)

+ Cα2 exp
(
C

∫ t

0

F (s)ds
)∫ t

0

G(s)ds

=: (‖uα0 − u0‖2 + α2‖∂zuα0 − ∂zu0‖2) exp
(
C

∫ t

0

F (s)ds
)

+ Cα2H(t). (154)

By virture of the regularity of strong solution to system (80)–(82) as stated in Definition 6, and the uniform
bound (151), using Lemma 2, we have F,G ∈ L1(0, T ). By virtue of uniform bound (151), we have α2H(t)→ 0,
as α→ 0. Since uα0 → u0 in L2, and thanks to (150), we have uα → u in L∞(0, T ;L2), uαz → uz in L2(0, T ;L2),
and wα → w in L2(0, T ;L2), as α→ 0.

�

6. Blow-up Criterion

In this section we give a blow-up criterion for system (80)–(82) subjects to (83)–(85). The following result
follows the idea in [42].

Theorem 14. With the same assumptions in Theorem 13, and take uα0 = u0 for all α. Suppose there exists
some time T ∗ <∞ such that

lim sup
α→0+

(
α2 sup

t∈[0,T ∗]
‖uαz (t)‖2

)
> 0, (155)

then the solution for system (80)–(82) blows up on [0, T ∗].

Proof. Assume the solution for system (80)–(82) will not blow up on [0, T ∗], then u ∈ L∞(0, T ∗;H1) and
∂tu ∈ L2(0, T ∗;L2). By taking the inner product of equation (80) with u and equation (81) with w in L2(T2),
by integration by parts and thanks to (82) and (83), we have

1

2

d

dt
‖u‖2 + ν‖uz‖2 + ε1‖u‖2 + ε2‖w‖2 = 0. (156)

Integrating (156) from 0 to t for t ∈ [0, T ∗], we have

‖u(t)‖2 + 2

∫ t

0

(
ν‖uz(s)‖2 + ε1‖u(s)‖2 + ε2‖w(s)‖2

)
ds = ‖u0‖2. (157)

On the other hand, using analogue argument for system (144)–(146), we have

α2‖uαz (t)‖2 + ‖uα(t)‖2 + 2

∫ t

0

(
ν‖uαz (s)‖2 + ε1‖uα(s)‖2 + ε2‖wα(s)‖2

)
ds

= ‖uα0 ‖2 + α2‖∂zuα0 ‖2 = ‖u0‖2 + α2‖∂zu0‖2. (158)

From (154) and thanks to the fact that uα0 = u0, for any t ∈ [0, T ∗], we have

‖uα(t)‖ ≥ ‖u(t)‖ − CαH1/2(t) ≥ ‖u(t)‖ − CαH1/2(T ∗), (159)

since H1/2(t) is monotonically increasing. By virtue of (157), we know ‖u0‖ ≥ ‖u(t)‖ ≥ ‖u(T ∗)‖ for any

t ∈ [0, T ∗]. Therefore, we can take α < ‖u(T ∗)‖
CH1/2(T ∗) to guarantee the right hand side of (159) is positive. Take

square on (159), we obtain

‖uα(t)‖2 ≥ ‖u(t)‖2 − 2αCH1/2(T ∗)‖u(t)‖+ C2α2H(T ∗)
≥ ‖u(t)‖2 − 2αCH1/2(T ∗)‖u0‖+ C2α2H(T ∗). (160)
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Subtracting (158) from (157), we have

‖u(t)‖2 − ‖uα(t)‖2 = α2‖uαz (t)‖2 − α2‖∂zu0‖2

+2

∫ t

0

(
ν‖uαz (s)‖2 + ε1‖uα(s)‖2 + ε2‖wα(s)‖2

)
−
(
ν‖uz(s)‖2 + ε1‖u(s)‖2 + ε2‖w(s)‖2

)
ds. (161)

Combining (161) with (160), we obtain

α2‖uαz (t)‖2 ≤ α2‖∂zu0‖2 + 2αCH1/2(T ∗)‖u0‖ − C2α2H(T ∗)

+2

∫ t

0

(
ν‖uz(s)‖2 + ε1‖u(s)‖2 + ε2‖w(s)‖2

)
−
(
ν‖uαz (s)‖2 + ε1‖uα(s)‖2 + ε2‖wα(s)‖2

)
ds. (162)

By Cauchy–Schwarz inequality and Hölder inequality, thanks to (99)–(100) and the uniform bound (151), we
have the estimate for the last term in (162):

2

∫ t

0

(
ν‖uz(s)‖2 + ε1‖u(s)‖2 + ε2‖w(s)‖2

)
−
(
ν‖uαz (s)‖2 + ε1‖uα(s)‖2 + ε2‖wα(s)‖2

)
ds

= 2

∫ t

0

[
ν
(
uz − uαz , uz + uαz

)
+ ε1

(
u− uα, u+ uα

)
+ ε2

(
w − wα, w + wα

)]
ds

≤ 2

∫ t

0

[
ν‖uz − uαz ‖‖uz + uαz ‖+ ε1‖u− uα‖‖u+ uα‖+ ε2‖w − wα‖‖w + wα‖

]
ds

≤ C
(
‖uz − uαz ‖L2(0,T ∗;L2) + ‖u− uα‖L2(0,T ∗;L2) + ‖w − wα‖L2(0,T ∗;L2)

)
.

Plugging this back into (162), we have

α2‖uαz (t)‖2 ≤ α2‖∂zu0‖2 + 2αCH1/2(T ∗)‖u0‖ − C2α2H(T ∗)
+C

(
‖uz − uαz ‖L2(0,T ∗;L2) + ‖u− uα‖L2(0,T ∗;L2) + ‖w − wα‖L2(0,T ∗;L2)

)
. (163)

By virtue of Theorem 13, the right hand side of (163) is independent of t, and it converges to 0 as α → 0.
Therefore, by taking lim sup

α→0+

sup
t∈[0,T ∗]

on both hand sides of (163), we obtain

lim sup
α→0+

(
α2 sup

t∈[0,T ∗]
‖uαz (t)‖2

)
= 0,

which contradicts to (155). �

Remark 4. By considering the convergence for the whole system, i.e., the convergence of the strong solution of
system (23)–(27) to the corresponding solution of system (17)–(21), we can establish similar blow-up criterion
for system (17)–(21).
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