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In genotype-phenotype (GP) maps, the genotypes that map to the same phenotype are usually
not randomly distributed across the space of genotypes, but instead are predominantly connected
through one-point mutations, forming network components, that are commonly referred to as neutral
components (NCs). Due to their impact on evolutionary processes, the characteristics of these NCs,
like their size or robustness have been studied extensively. Here, we introduce a framework that
allows the estimation of NC size and robustness in the GP map of RNA secondary structure. The
advantage of this framework is that it only requires small samples of genotypes and their local
environment, which also allows experimental realisations. We verify our framework by applying it to
the exhaustively analysable GP map of RNA sequence length L = 15, and benchmark it against an
existing method by applying it to longer, naturally occurring functional non-coding RNA sequences.
Although it is specific to the RNA secondary structure GP map in the first place, our framework can
likely be transferred and adapted to other sequence-to-structure GP maps.

I. INTRODUCTION

Genotype-phenotype (GP) maps are of fundamental
importance to biological evolution and their properties
have been studied extensively in a range of biological
contexts. Examples include the mapping between RNA
sequences and their secondary structure [1–5], the GP
maps of transcription factor binding sites [6], gene regu-
latory [7, 8], and metabolic [9] networks, as well as more
abstract systems, like the GP maps of the HP lattice
model of protein folding [5, 10–12], the Polyomino model
[13, 14] of protein quaternary structure, and even digital
evolving organisms [15].

A GP map can be seen as a network, in which the
nodes correspond to genotypes and the edges to one-point
mutations between the genotypes [16, 17]. Genotypes
that map to the same phenotype form a ‘subnetwork’
that is commonly referred to a neutral network (NN) or
neutral set, as a ‘neutral’ one-point mutation does not
change the phenotype. A NN can be fully connected, or
consist of several disjoint connected components, which
are commonly referred to as neutral components (NCs).

Over the years, studies have revealed that GP maps
share several properties [5, 14, 18, 19] – which are be-
lieved to be universal for most GP maps – and that these
properties have a strong impact on evolutionary processes
[20, 21]. Most of these properties are related to global
characteristics of a GP map, like the size, robustness and
evolvability of phenotypes (NNs) and NCs. The size of
a phenotype (or NC) refers to the number of genotypes
that map to this phenotype (or that are part of the NC).
For phenotypes, the size is often normalised by the total
number of genotypes and referred to as the phenotype
frequency. The robustness of a phenotype (or NC) refers
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to the fraction of one-point mutations of a genotype that
are neutral, averaged over all genotypes mapping to this
phenotype (or that are part of the NC) [3]. The evolv-
ability of a phenotype (or NC) refers to the number of
distinct alternative phenotypes that are accessible through
one-point mutations from any genotype mapping to this
phenotype (or that is part of the NC) [3]. The properties
that are consistently observed across several different GP
maps are: (a) a highly skewed distribution of the phe-
notype (or NC) sizes, with a small number of very large
sizes, and many small ones [1, 3–5, 11, 12, 14, 22]; (b)
a linear scaling of the robustness with the logarithm of
the size [4, 14, 18, 22]; (c) a positive correlation between
the robustness and evolvability [3, 6, 14, 23]. All of these
properties have been found at both the phenotype and
NC level. Recently, simple analytical models have been
used to show that these properties are mainly caused by
the organisation of genotype sequences into constrained
and unconstrained parts, together with non-local effects
of mutations [24–26].

Quantifying the exact size, robustness or evolvability of
a phenotype or NC requires the exhaustive enumeration
of all respective genotypes and their one-point mutational
neighbourhood. In most cases, this is an unfeasible task
due to the extraordinary size and complexity of most GP
maps. This is a particular challenge for experimental
studies, which usually can only analyse small regions of
genotype space. As a result, there have been efforts to
estimate the characteristics from samples of the GP map.
Jörg et al. [22] introduced an algorithm and software that
allows NN size and robustness estimations of RNA sec-
ondary structure phenotypes. It uses an RNA secondary
structure prediction software and is based on a ‘Nested
Monte Carlo approach’. Drawbacks of this approach are
that it requires a large sample of genotypes and a sig-
nificant number of computational steps and that it does
not allow an estimation of NC characteristics. Aguirre et
al. [4] considered a simple analytical formula to estimate
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NC sizes in the RNA secondary structure GP map in
order to derive the scaling of the NC robustness with the
logarithm of the NC size. Recently, Garćıa-Mart́ın et
al. [27] verified another method to estimate NC sizes for
several computationally tractable GP maps. Both of the
latter methods are based on the exhaustive enumeration
of the full NCs, and not designed for estimates to be made
from small samples in the first place.

In this article, we introduce a framework to estimate
NC sizes and robustness values that does not require
the exhaustive enumeration of full NCs. Instead, it is
designed to allow estimations from small samples of geno-
types from the NCs of interest, thereby facilitating an
experimental applicability. We apply the framework to
the RNA secondary structure GP map, but it is likely
transferable and adaptable to other sequence-to-structure
GP maps.

Due to its computational tractability, the GP map
of RNA secondary structure is one of the most widely
studied GP maps. Readily available prediction software
can be used to predict the secondary structures (pheno-
types) of RNA sequences (genotypes), thereby allowing
an exhaustive enumeration of the GP map for short se-
quence lengths. Throughout the analysis in this article,
we use the so-called ViennaRNA package [28–30] as pre-
diction software. In detail, we use version 2.4.9, default
parameters, the Python implementation and the function
RNA.fold. For a given sequence, this function returns
the secondary structure with minimum free energy, which
we consider as the phenotype. Figure 1(A) shows ex-
amples of genotypes and phenotypes for the GP map of
sequence length L = 12, i.e. sequences consisting of twelve
nucleotides. For the RNA secondary structure GP map,
it has been shown that NN fragmentation into NCs is
common at least for short sequence lengths. Schaper et
al. [23] showed that a NN ‘typically fragments into at
least 2n NCs, often of similar size’, where n is the num-
ber of base pairs in the respective phenotype structure.
This is explained by the fact that out of the six possi-
ble nucleotide combinations for a base pair, only three
are connected through one-point mutations, respectively:
CG↔UG↔UA and GC↔GU↔AU, leading to potentially
two disconnected sequence sets for each base pair [23]. In
Figure 1(B), an example NC is shown.

This article is structured as follows. In the first part, we
introduce the theory of our framework. In the second part,
we verify it by applying it to the NCs of the exhaustively
analysable GP map of sequence length L = 15. Finally,
we consider naturally occurring functional non-coding
RNA sequences taken from the fRNA database [31, 32]
and use these to benchmark our framework against an
existing method.

II. THEORY

In our framework, the starting point for estimations is
a sample of S genotypes from the NC of interest. Later,

we will introduce and validate different sampling methods
to generate such a sample. Using a (small) sample limits
the information that can be used for the estimations, as
we are mostly restricted to the local properties of the
sample genotypes. We base our NC size and robustness
estimations on the neutral mutations per sequence site,
in particular their sample average and sample standard
deviation. These quantities can be determined from mea-
surements of the one-point mutational neighbourhoods of
the sample genotypes experimentally or computationally.

The procedure is schematically depicted in Figure 1(C).
Firstly, for each genotype in the sample, the number
of neutral mutations (i.e. mutations that do not change
the phenotype) per sequence site is measured. We label
these quantities xi,j , where i ∈ {1, . . . , S} runs over the
genotypes in the sample and j ∈ {1, . . . , L} over the sites
of the sequences of length L. By definition, for RNA
secondary structure, xi,j can only take the discrete values
0, 1, 2 and 3, while 0 corresponds to a fully constrained
site – likely a paired site – and 3 to a fully unconstrained
site – likely an unpaired site. Secondly, the sample average
xj and sample standard deviation σj of the number of
neutral mutations for each site j are computed as follows:

xj =
1

S

S∑
i=1

xi,j (1)

σj =

√√√√ 1

S − 1

S∑
i=1

(xi,j − xj)2 (2)

The division by S− 1 instead of S in the sample standard
deviation is a common correction accounting for the fact
that the sample is smaller than the source it is drawn
from, here the NC of interest.

A. NC size estimation

As mentioned in the introduction, NC size estimations
have been considered before, however not by using sam-
ples, but by using all genotypes of the NC. The simple
NC size estimation introduced by Aguirre et al. [4] for the
RNA secondary structure GP map is based on the group-
ing of sites into unpaired sites and base pairs. For each of
the two groups, the average number of neutral mutations
is considered, averaged over all genotypes of the NC and
all group members. Then, the NC size is estimated by the
product of the two quantities (each plus 1) to the power of
the number of group members, respectively. The NC size
estimation introduced by Garćıa-Mart́ın et al. [27] is not
specific to a particular GP map, less coarse-grained and
considers sites individually by estimating the NC size in
terms of the product of the versatility of each site, which
is related to the letter distribution at that site across all
genotypes of the NC. In principle, this method would also
work with samples but would require sample genotypes to
be significantly different, and larger sample sizes to obtain
meaningful letter distributions and versatility values.
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FIG. 1. (A) Example genotypes and phenotypes for the RNA secondary structure GP map of sequence length L = 12. (B)
Example NC together with highlighted samples of 30 genotypes generated by uniformly random sampling, random walk (RW)
sampling, and site scanning sampling. Each node represents a genotype, each edge a one-point mutation. The NC is one of the
NCs of the first phenotype in (A) (NC rank: 129, size: 4663). (C) Schematic depiction of the measurements on the sample
genotypes required for the NC size and robustness estimation: For each genotype of the S sample genotypes, the number of
neutral mutations per sequence site (xi,j , i ∈ {1, . . . , S}, j ∈ {1, . . . , L}) is measured in order to determine the respective sample
averages (xj , j ∈ {1, . . . , L}) and sample standard deviations (σj , j ∈ {1, . . . , L}).

Our estimation method is similar to the approach of [27]
in the sense that it also examines sites individually, but
it exploits local properties of the GP map. We estimate
the NC size sNC,est from a sample as follows:

sNC,est =

L∏
j=1

{
max (1 + xj + α · σj , 4) if j unpaired

max (1 + xj + α · σj , 2) if j paired

(3)
Without the term α · σj , the formula would simply as-
sume that each sequence site j can be occupied by 1 + xj
different letters (nucleotides) independent of the other
sites and that the estimate of the NC size is given by the
product of these factors over all sites. In fact, there can
be dependencies between individual sites, for example
epistatic effects, that affect the number of neutral muta-
tions of one site depending on the occupation of other
sites. This in turn means that the average of the number
of neutral mutations for a site can underestimate its full
versatility and so the NC size estimate. We account for
this by adding the standard deviation σj to the average
number of neutral mutations xj for each site j with a
factor α ≥ 0. We limit the factor 1 +xj +α ·σj to a max-
imum of 4 if the site is unpaired, and 2 if it is paired to
prevent unphysical factors. In the case of RNA secondary
structure, the alphabet consists of four letters and there
can only be a maximum of two different letters at a par-
ticular paired site across the sequences forming a NC. For
other GP maps, these values would need to be replaced
by the respective alphabet size and other constraints.

The correction factor α accounts for the amount of cor-
relation between sites, which we assume to be dependent
on the sequence length L: α = α(L). In a first step, we
validate the NC size estimation formula by applying it
to the exhaustively analysable RNA secondary structure

GP maps of sequence lengths L = 12 to L = 16, work-
ing with the full set of genotypes for each NC instead of
samples (see Supplementary Information I). In this case,
we find that the NC size estimation works very well and
optimal results (defined in terms of the minimal root-
mean-square deviation between estimated and true NC
sizes) are achieved for αopt ≈ 0.43 (L = 12), αopt ≈ 0.44
(L = 13), αopt ≈ 0.44 (L = 14), αopt ≈ 0.46 (L = 15) and
αopt ≈ 0.47 (L = 16). This shows the sequence length de-
pendence of the correction parameter and a likely increase
of correlations. Later in this article, we will address this
problem in more detail and derive an analytical formula
for this dependence when considering longer, naturally
occurring functional non-coding RNA sequences.

B. NC robustness estimation

For NCs of the RNA secondary structure GP map, it
has been shown that the degrees of the nodes in a NC
network follow a distribution that is single-peaked [4],
implying that the same holds for the distribution of the
robustness values of individual genotypes in a NC. Since
the robustness of a NC is just defined by the average
of the genotype robustness values, we estimate the NC
robustness rNC,est from a sample simply by averaging over
the robustness values of the sample genotypes:

rNC,est =
1

S

S∑
i=1

rg,i =
1

3L

L∑
j=1

xj (4)

where rg,i refers to the robustness of sample genotype
i, which can be calculated from the number of neutral
mutations per site, resulting in a formula only using the
average number of neutral mutations per site.
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III. APPLICATION TO EXHAUSTIVELY
ANALYSABLE NCS

We verify the framework by applying it to the NCs of
the L = 15 RNA secondary structure GP map. This GP
map and its NCs can be exhaustively analysed, allowing
an exact computation of the true NC sizes and robustness
values. In total, we find 8792 NCs ignoring the undefined
phenotype (unbound structure). We rank them according
to their size, with the largest having rank one.

A. Sampling methods

In general, we are interested in samples that broadly
cover and best represent the NCs and that allow to ex-
tract as much information as possible for the estimations.
Here, we compare three main sampling methods: uni-
formly random sampling, random walk (RW) sampling,
and site scanning sampling. In the following, we explain
the different methods, the detailed algorithms of which
can be found in the Supplementary Information II A. In
Figure 1(B), examples of samples generated using the
three different methods are highlighted in the NC shown.

Uniformly random sampling simply considers a sample
of genotypes from the NC of interest, chosen with equal
probability. It is only applicable if the full NC is known
and serves as a reference here.

RW sampling and site scanning sampling are always
applicable and generate connected samples through one-
point mutations. RW sampling considers steps comprising
the random selection of a site and the random selection
of a letter to which the letter at this site is mutated to.
The mutation is done if neutral, otherwise both steps
are repeated. Starting from a randomly selected start-
ing genotype on the NC, the process is repeated until a
sample of S genotypes is obtained. This sampling favours
mutations of less constrained sites over more constrained
sites, because those mutations are more likely to be neu-
tral. Site scanning sampling is a novel method that is
designed to overcome this effect. Starting again from
a randomly selected starting genotype on the NC, we
‘scan’ the sequence sites periodically from left to right for
neutral mutations in the following way: For the first site
of the initial genotype, we perform a random mutation.
If this turns out to be neutral, we retain this mutation
and continue with the second site of the new genotype. If
the mutation of the first site is not neutral, we randomly
test all remaining potential mutations for the first site
until a neutral one is found, and then continue with the
second site of the new genotype. If no neutral mutation
at all is found for the first site, we repeat the process with
the second site of the initial genotype, and so on. Again,
the process is repeated until a sample of S genotypes is
obtained. The periodic scanning of sites ensures that all
sites of a sequence are tested for potential neutral muta-
tions before an individual site is tested and potentially
mutated the next time.

For the GP map of RNA secondary structure, NC
networks have been found to be assortative and to exhibit
a community structure [4, 33], affecting dynamics on the
network [33–35]. The examples in Figure 1(B) show that
RW sampling tends to spread less broadly and is more
constrained to individual communities of the NC network
compared to site scanning sampling, which travels more
across the communities.

Alternative sampling approaches would be a depth- or
breadth-first search of the NC networks. While a depth-
first search would be quite similar to RW sampling for
small samples for the considered NC networks due to the
high node degrees, a breadth-first search would lead to
an even more local exploration for small samples.

For RW sampling and site scanning sampling, we ad-
ditionally consider a random subsampling step. This is
performed by randomly selecting Sr genotypes uniformly
from the generated sample of size S, and then only us-
ing these Sr genotypes for the NC size and robustness
estimation. This aims to reduce correlations between the
genotypes in the initially generated connected sample. It
also reduces the number of genotypes for which the one-
point mutational neighbourhood needs to be measured
in order to determine the number of neutral mutations
per site, required for the estimations. More details on
random subsampling, and how we measure the number
of neutral mutations per site at this stage can be found
in the Supplementary Information II A.

For each of the considered NCs, and for each of the
sampling methods, we generate NS = 100 independent
samples, respectively, for a range of genotype sample sizes
S and a fixed random subsample size Sr. For more details,
see the Supplementary Information II A.

B. Results

Figure 2 shows the estimation results for nine example
NCs. Details of these NCs can be found in the Supple-
mentary Information III. For the NC size estimations, eq.
(3) together with the found optimal value of αopt ≈ 0.46
for L = 15 (see Supplementary Information I) is used.
We find that there is an overall satisfactory agreement
between the estimations and true values, though there
are significant differences between the different sampling
methods, sample sizes and random subsampling, as well
as individual NCs.

In terms of the sampling methods, overall, uniformly
random sampling tends to lead to more accurate estima-
tions and less spread than site scanning sampling, which
itself tends to lead to better estimations than RW sam-
pling. For larger sample sizes, the differences tend to be
less significant. Of particular relevance is the observation
that the estimations from a random subsample from a
bigger full sample in the case of RW sampling and site
scanning sampling tend to be better than those from a
full sample of the same size (see Figure 2(iv) compared
to (i)).
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FIG. 2. (A) NC size and (B) NC robustness estimation results for nine example NCs of the L = 15 RNA secondary structure
GP map considering uniformly random sampling, random walk (RW) sampling, and site scanning sampling and a sample size
of (i) S = 10, (ii) S = 100, (iii) S = 1000, and (iv) S = 1000 reduced to a random subsample of size Sr = 10. Details of the
respective NCs can be found in the Supplementary Information III. For the NC size estimations, eq. (3) together with the found
optimal value of αopt ≈ 0.46 for L = 15 (see Supplementary Information I) is used. The violin plots indicate the spread for 100
independent samples, respectively. Overall, there is a satisfactory agreement between the estimations and true values, while the
accuracy tends to increase both with increasing sample size and from RW sampling over site scanning sampling to uniformly
random sampling. Further, random subsampling (iv) tends to lead to better estimations than simple samples of the same size (i).

The NC robustness estimations, in all cases, are centred
around the true values with narrowing spreads for larger
sample sizes. This is due to the similarity of our NC
robustness estimation method (average over sample) and
the way NC robustness is defined (average over NC).

In contrast, the NC size estimations tend to be slightly
too small for small sample sizes and also differ from the
true values for the larger sample sizes. The systematic
error for small sample sizes is likely due to the depen-
dence of our NC size estimation formula on sample size
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dependent quantities like the average and the standard
deviation of the number of neutral mutations per site that
do not fully reflect the NC for small sample sizes. For a
more detailed explanation see Supplementary Information
IV. The error for large sample sizes is because our NC size
estimation method never leads to fully exact estimations
even if the sample covers the full NC (see Supplementary
Information I).

The differences between individual NCs are likely the

result of differences in the size, the spread of genotype
diversity, and the topology of the NCs, which will affect
the effectiveness of our estimation framework as well as the
accessibility of different parts of the NC to the sampling
approaches, and therefore the accuracy of the estimations.

In a next step, we quantify the quality of the estimates
by considering the root-mean-square deviation (RMSD)
from the true values. For the NC size and robustness,
respectively, this is:

RMSDs =

√√√√√ 1

NRmax

NRmax∑
i=1

 1

NS

NS∑
j=1

(log10 (sNC,est,i,j)− log10 (sNC,true,i))
2

 (5)

RMSDr =

√√√√√ 1

NRmax

NRmax∑
i=1

 1

NS

NS∑
j=1

(rNC,est,i,j − rNC,true,i)
2

 (6)

In both cases, the first sum runs over the NCs from rank
1 to NRmax = 1000. For the quantification, we restrict
ourselves to the 1000 largest NCs, because they are all
significantly larger than the maximum considered sample
size (NC of rank 1000 has a size of 38579), and because
their sizes only span about two orders of magnitude and
so the RMSD is not affected by too much variation in the
considered NC sizes, though changing this threshold does
not affect the qualitative result. The 1000 largest NCs
cover about 94.2% of the genotype space that leads to a
defined phenotype (bound structure). The second sum
runs over the NS = 100 independent samples considered
for each NC, respectively. For the NC size estimations,
we consider order of magnitude deviations. In Figure 3,
these quantities are shown as a function of the sample
size and with and without random subsampling.

For the NC size, in all cases, the root-mean-square
deviation RMSDs decreases with sample size. This is
because the greater coverage of the NCs with increasing
sample size likely leads to a greater diversity of sample
genotypes, a better balancing of outliers, and therefore
to more accurate estimations.

For uniformly random sampling, the RMSDs most
strongly decreases with sample size and quickly starts
to saturate above a sample size of about S = 10. This
highlights that above a certain sample size no further
randomly selected genotypes are required to represent
the NCs for our size estimations. For RW sampling and
site scanning sampling, the decrease is less strong and
saturation sets in above larger sample sizes, likely due
to the slowed exploration of the NC and the less diverse
connected genotype samples generated by both sampling
methods. However, NC size estimations using site scan-
ning sampling perform significantly better than those
using RW sampling for sample sizes before saturation.
This is likely due to the broader spread of site scanning

samples over the NC network compared to RW samples,
which is by design as discussed earlier.

A further observation is that the results for full sam-
ples using RW sampling or site scanning sampling are
only slightly better than those achieved using random
subsamples from the same full samples, highlighting that
the subsamples suffice to represent the full sample from
which they are selected from. Furthermore, subsamples of
Sr = 10 genotypes taken from larger full samples, e.g. of
size S = 100 or S = 1000, lead to much lower RMSD val-
ues than full samples of size S = 10, likely because of the
greater diversity between genotypes in the subsamples.

For the NC robustness, the root-mean-square deviation
RMSDr shows a similar sample size dependence. However,
in contrast to the RMSDs of the NC size, the RMSDr

tends to zero with increasing sample size. As mentioned
before, this is because our NC robustness estimate as
calculated in eq. (4) approaches the NC robustness defini-
tion as the sample size approaches the NC size. If we use
random subsampling, the RMSDr tends to saturate at a
value above zero, because there is a ‘minimum’ spread
of the NC robustness estimations around the true values
for significantly small sample sizes. In this case the sat-
uration value of the RMSDr is about the same as the
RMSDr value for pure uniformly random sampling with
the same sample size.

An alternative way to quantify the quality of our esti-
mations is by considering the average difference between
the estimated and true values and by considering the
standard deviation of the differences. This is shown in
the Supplementary Information IV. The results confirm
that over a range of small sample sizes, our NC size esti-
mates tend to increase on average with sample size before
saturating. The results also indicate that for both RW
sampling and to a lesser degree site scanning sampling,
our approach tends to slightly overestimate on average
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FIG. 3. Root-mean-square deviation (RMSD) (see eqs. (5) and (6)) between the (A) NC size (order of magnitude) and (B) NC
robustness estimations and the true values for the 1000 largest NCs of the L = 15 RNA secondary structure GP map, as a
function of sample size S, for uniformly random sampling, random walk (RW) sampling, and site scanning sampling. For the
latter two, the dotted lines indicate random subsampling of fixed size Sr = 10 from respective full samples (sizes on the x-axis)
larger than S = 10. For the NC size estimations, eq. (3) together with the found optimal value of αopt ≈ 0.46 for L = 15 (see
Supplementary Information I) is used. The results confirm that apart from uniformly random sampling, site scanning sampling
leads to better estimation results than RW sampling at least for smaller sample sizes. Furthermore, random subsampling of
fixed size Sr = 10 from larger full samples (S > 10) produces better estimation results than simple full samples of size S = 10,
i.e. the dashed lines lie significantly below the RMSD values at S = 10.

NC robustness. By definition, a simple random walk on a
network is biased towards nodes with high degree, mean-
ing a high genotype robustness for NC networks. This
is likely the case for RW sampling and to a lesser degree
also for site scanning sampling. We will come back to
this result at a later point.

IV. APPLICATION TO FUNCTIONAL
NON-CODING RNA SEQUENCES

In the second part of this article, we apply our frame-
work to longer, naturally occurring functional non-coding
RNA sequences, for which an exhaustive analysis is not
feasible. We use the functional RNA database fRNAdb
[31, 32] (http://www.ncrna.org/) as source. For a set
of sequence lengths ranging from L = 20 to L = 100,
we extract all sequences stored in the fRNAdb. In a
filtering process, we remove all sequences for which the
function or relevance of the secondary structure is not
yet confirmed as well as all sequences that include non-
standard nucleotides or for which RNA.fold returns the
undefined phenotype (unbound structure). More details
on the dataset and the filtering can be found in the Sup-
plementary Information V. A similar dataset has been
used for previous NN size estimations [21].

A. Benchmark

Since the true values of the NC or NN size and robust-
ness of these sequences are not known, a new reference is
required to benchmark our approach. We use the frame-
work and software introduced by Jörg et al. [22], which
can be used to estimate the NN size and robustness of a

given RNA secondary structure. We will refer to the soft-
ware as the NNSE. The NNSE has been used previously
to estimate NN sizes of fRNAdb secondary structures
[21, 22]. Similar to [21], we proceed as follows: First, we
predict the secondary structure of the sequence of interest
using RNA.fold. We then use this predicted secondary
structure as an input for the NNSE using default param-
eters, apart from the number of measurements, which we
set from 10 to 1 in order to reduce the computation time.

By default, the NNSE only returns a NN size estimate,
which we label by sNN,NNSE. We apply the NNSE to all
sequences from the fRNAdb dataset introduced before,
but it does not converge in all cases (see Supplementary
Information V). The NNSE can also return a NN ro-
bustness estimate in addition to the size estimate, which
we label by rNN,NNSE. Because the robustness estimate
requires a significant amount of additional computation
time, we do not compute it for all sequences, but only for
100 randomly selected ones for each sequence length.

B. Modified sampling method

In the previous section, we showed that site scanning
sampling outperformed RW sampling (see Figure 3), as it
likely allows a broader exploration of the NC and therefore
results in a more diverse sample of genotypes.

In order to reduce the computational costs, we con-
sider an RNA-specific updated version of site scanning
sampling. The detailed algorithm can be found in the
Supplementary Information II B. Before, we could simply
check if a mutation is neutral by checking if the mutated
genotype is still in the fully known NC. Now, checking
if a mutation is neutral – in principle – requires a call
of RNA.fold on the mutated genotype and a comparison

http://www.ncrna.org/
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of the phenotype. The computational expense of this
step increases with sequence length [22]. Therefore, in
order to limit the number of calls to RNA.fold, we only
consider mutations that do not break one of the six RNA
secondary structure base pairs: CG, GC, AU, UA, GU,
and UG. Whenever a one-point mutation affects a paired
site, we only check the neutrality of the mutation if the
mutated base pair is still one of the six base pairs, and
otherwise consider the mutation as non-neutral. A simi-
lar restriction is used in the software of Jörg et al. [22].
We will refer to this approach below as ‘accelerated site
scanning sampling’.

As we showed above, random subsamples produce quite
similar estimation results to the full samples from which
they are taken, and better ones than full samples of the
same size. Since subsampling reduces the number of geno-
types for which the one-point mutational neighbourhood
needs to be explored, it also significantly reduces the
computational time required.

To even further reduce the computational costs, we ap-
ply the same base pair preserving principle as we employ
for the accelerated site scanning sampling approach when
measuring the one-point mutational neighbourhoods for
the random subsample genotypes. We still go through all
possible one-point mutations for every subsample geno-
type but whenever a one-point mutation affects a paired
site, we only check if the mutation is neutral if the mutated
base pair is still one of the six compatible combinations.
This method is similar to how the mutational robustness is
measured by the software of Jörg et al. [22]. More details
on how we measure the number of neutral mutations per
site at this stage, and on how we perform our simulations
can be found in the Supplementary Information II B.

C. NC–NN extrapolation

No direct comparison between our NC estimates and the
reference estimates from the NNSE is possible, because
the latter returns NN size and robustness estimates, while
our framework estimates NC size and robustness. For
this reason, we consider extrapolations of our estimated
NC characteristics to NNs.

We extrapolate our estimate of a NC size sNC,est to
a corresponding estimate of the NN size sNN,est of the
whole phenotype as follows:

sNN,est ≈ sNC,est · 2n (7)

where n is the number of base pairs in the secondary
structure phenotype corresponding to the NC. This is

based on the finding by Schaper et al. [23] that a NN
‘typically fragments into at least 2n NCs, often of similar
size’. They come to this conclusion by studying the RNA
secondary structure GP map exhaustively up to sequence
length L = 15. In order to confirm their result, they
consider sampling for length L = 20, for which they also
find that for selected phenotypes, the sizes of the largest
2n NCs do not differ more than one order of magnitude in
most cases. However, it is a matter of debate whether this
finding also holds for significantly longer sequence lengths.
Garćıa-Mart́ın et al. [27] argue that for longer sequence
lengths ‘either phenotypes are broken into few NCs, or
one of these components is much larger than the others
and dominates the abundance of the phenotype’. They
argue based on their findings on sequence site versatility
values across a range of sequence lengths and on work on
genetic correlations in NCs by other authors.

Nevertheless, we stick to the extrapolation for all our
considered sequence lengths up to L = 100. As we will
discuss later, for our framework, a reasonable comparison
with the reference NN size estimations by the NNSE
and a determination of the functional relation for the
correction parameter α is only possible when including
the extrapolation.

For the robustness, we do not consider an extrapola-
tion for the comparison. We simply assume that a NC
robustness estimate rNC,est by our framework is roughly
an estimate of the NN robustness rNN,est, too:

rNN,est ≈ rNC,est (8)

D. Size estimation optimisation

Our NC size estimation (see eq. (3)) contains a correc-
tion parameter α, which we observed to be dependent on
the sequence length for L = 12 to L = 16. In order to
apply our approach to longer sequence lengths, we would
need an appropriate value of α. To achieve this, we first
search for the optimal value of α for every sequence length
in our considered fRNAdb dataset. Then, we derive a
functional relationship for α that we use to study our size
estimations in more detail.

We search for the optimal value of α for a particular
sequence length by minimising the order of magnitude
root-mean-square deviation (RMSDs) between our esti-
mated and extrapolated NN sizes and the estimated NN
sizes by the NNSE for all considered sequences from the
fRNAdb of that sequence length. This is:

RMSDs =

√√√√ 1

NL

NL∑
i=1

(log10 (sNN,est,i)− log10 (sNN,NNSE,i))
2

(9)
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FIG. 4. Optimal values of the correction parameter α in the NC size estimation formula (see eq. (3)) that leads to minimum
order of magnitude root-mean-square deviations (RMSDs) (see eq. (9)) between the extrapolated NN size estimations by our
framework and the reference estimations by the NNSE for all considered sequences from the fRNAdb for a given sequence
length L for which the NNSE converges. The coloured dots indicate results for different sample sizes S and random subsample
sizes Sr considered for our framework. The black dots indicate the results for sequence lengths L = 12 to L = 16 from the
exhaustive analysis in the Supplementary Information I. After an initial increase, the optimal α tends to saturate for longer
sequence lengths. The lines indicate fits of the form A (1− exp (−B · L)), for which the results can be found in Table I.

where the sum runs over all considered sequences from
the fRNAdb of sequence length L for which the NNSE
converges (total number: NL). sNN,NNSE,i is the reference
NN size estimate by the NNSE and sNN,est,i the extrapo-
lated NN size estimate by our framework for sequence i,
respectively.

For our framework, we estimate the NC size with eq. (3)
(α dependent) and use the NC–NN extrapolation given
by eq. (7). In Figure 4, we plot the obtained optimal
values for α as a function of the sequence length and
various sample and random subsample size combinations
considered for our framework.

For fixed sequence length, the optimal α decreases and
saturates with increasing sample size. While there is a
significant difference between S = 100 and S = 1000
in particular for longer sequence lengths, there are only
small differences between S = 1000 and S = 10000 for all
sequence lengths, implying that our estimations do not
change significantly above S = 1000. This is similar to
the saturation in our NC size estimations with increasing
sample size that we have seen before for L = 15. Similarly,
increasing the random subsample size from Sr = 10 to
Sr = 100 decreases the optimal α slightly.

We also add the optimal α values that we obtained for
sequence lengths L = 12 to L = 16 from the exhaustive
analysis in the Supplementary Information I. For the short
sequence lengths, the optimal α tends to increase with
sequence length, while for the longer ones, it tends to
saturate. We introduced α in the NC size estimation
formula to account for correlations between sequence
sites. The findings suggest that these correlations only
exist across a limited sequence range and do not increase
further for sequences longer than this range. This is in
agreement with findings by Garćıa-Mart́ın et al. [27] that
the average versatilities of paired and unpaired sites in

RNA sequences do not change significantly for longer
sequence lengths and show an asymptotic behaviour.

One might argue that the observed saturation of the
optimal α values with increasing sequence length as well
as the whole optimisation is affected and biased by our
considered extrapolation from NC to NN size estimations,
since both the correction parameter α as well as the
extrapolation increase our NN size estimates. For this
reason, we also tested the optimisation without including
the extrapolation. The detailed results can be found in the
Supplementary Information VI. For some of the sequence
lengths and small sample or small random subsample sizes,
no reasonable optima are reached, as our non-extrapolated
size estimations do not increase with increasing α above
a certain value of α and are too small compared to the
reference NN size estimations by the NNSE. This is likely
because the maximum factors for individual sites in our
NC size estimation formula (see eq. (3)) are reached.
In addition, if optima are found, the optimal α values
are quite large and hard to reconcile with those found
for sequence lengths L = 12 to L = 16. In all cases,
the minimum RMSDs values are larger than the ones
obtained when including the extrapolation. Due to the
identified issues, we will stick to the extrapolation from
NC to NN size estimates in the following.

As discussed, for sample sizes above about S = 1000,
the optimal α seems to only depend on sequence length.
A very simple functional relation that describes the initial
increase and subsequent saturation with sequence length
is the following:

α(L) = A (1− exp (−B · L)) (10)

where A and B are parameters. This functional relation
is a simplified version of the fit function considered in [27]
to describe the sequence length dependence of the average



10

S Sr A fit B fit

100 10 1.24± 0.08 0.027± 0.004

100 100 1.00± 0.05 0.036± 0.005

1000 10 0.72± 0.01 0.071± 0.006

1000 100 0.65± 0.01 0.083± 0.007

10000 10 0.70± 0.01 0.076± 0.006

10000 100 0.64± 0.01 0.088± 0.007

TABLE I. Fit parameter results of fits of the functional form
A (1− exp (−B · L)) to the data in Figure 4 for different sam-
ple sizes S and random subsample sizes Sr considered for
our framework. The function describes the sequence length
L dependence of the correction parameter α in the NC size
estimation formula (see eq. (3)).

versatilities. A is the saturation value of α in the limit
L→∞. In Figure 4, we fitted the functional relation to
the data points. The results of the fit parameters and
their errors are summarised in Table I.

From now on, we will work with the following values of
A and B:

A = 0.68, B = 0.079 (11)

which we obtain by averaging over the fit results for
S = 1000 and S = 10000, i.e. the sample sizes for which
we observe a saturation.

In principle, more complex functional relations could
be fitted to the data as well. However, the used one is the
simplest one that we have found. In addition, for sequence
length L = 12 to L = 16, the α values obtained by eq.
(10) and the above parameters for A and B are in good
agreement with the optima found in the Supplementary
Information I. Furthermore, as we will see later, for the
longer fRNAdb sequences, α values obtained from the
functional relation will lead to estimation results close to
the optima, too.

E. Results

We now discuss the results for the sequences from the
fRNAdb dataset using the derived analytical expression
for the correction parameter α. In Figure 5, results for
the NC size and robustness estimations for all sequences
of length L = 50 and L = 100 in the dataset are shown
using a sample size of S = 1000 and a random subsample
size of Sr = 10. These results clearly reproduce the linear
scaling of the NC robustness with the logarithm of the
NC size. This is one of the properties previously found for
GP maps on the phenotype and NC level [4, 14, 18, 22],
and which here to some extent directly follows from the
form of the estimation formulas that we consider. The
results also highlight the remarkable range of estimated
NC sizes, which span about 21 orders of magnitude for
sequence length L = 100.

Next, we compare the extrapolated NN estimations for
both sequence lengths with the reference estimations by
the NNSE. The results are shown in Figure 6.

For the NN sizes, there is a good agreement between es-
timations by both frameworks. For L = 50, extrapolated
estimations by our framework tend to be slightly larger,
and for L = 100, slightly smaller on average than those
by the NNSE. This likely arises from the fact that the α
value determined from the functional relation is slightly
larger or smaller than the optimal one found before, re-
spectively (see Figure S7(B.i) compared to (A.i) in the
Supplementary Information VII, where the average differ-
ences are shown for using the α values from the functional
relation and the optimal ones, respectively). The results
also indicate a larger spread of the estimations around
the ideal case of full agreement for L = 100 compared to
L = 50.

For the NN robustness, we again find a good agree-
ment between estimations by both frameworks. For both
sequence lengths, our estimations tend to be marginally
larger on average than those by the NNSE.

In order to further quantify the agreement, we again
study the root-mean-square deviation between our esti-
mations and those by the NNSE.

For the NN size estimations, in Figure 7, the order of
magnitude root-mean-square deviation (RMSDs) (see eq.
(9)) is shown as a function of the sequence length and
various sample and random subsample size combinations
considered for our framework. For Figure 7(A), the op-
timal α values from the optimisation (see Figure 4) are
used for our NC size estimation, i.e. the α values that
minimise the RMSDs. In all cases, the RMSDs tends to
increase with sequence length. For fixed longer sequence
lengths, it tends to decrease with increasing sample size
from S = 100 to S = 1000, while there is only a marginal
difference between S = 1000 and S = 10000 similar to the
marginal differences of the respective optimal α values.
Similarly, for the longer sequence lengths, the RMSDs

tends to slightly decrease with increasing random subsam-
ple size. For the short sequence lengths, there is nearly no
difference in the RMSDs between the sample and random
subsample size combinations.

In Figure 7(B), the results are shown for using the α
values from the derived functional relation for our NC size
estimation, i.e. α values that only depend on the sequence
length but not on the sample and random subsample size.
In agreement with the fact that the parameters for the
functional relation were determined by averaging the fit
results for S = 1000 and S = 10000, the results for the
RMSDs are very similar to those in Figure 7(A) for both
sample sizes. This also explains the stronger increase in
the RMSDs for S = 100 compared to before, since for
this small sample size the functional relation for α differs
from the respective optimal α values.

In order to check if the increase in the RMSDs with
sequence length is in line with the increase of the NC
and so NN sizes with sequence length, we considered
what we refer to as the relative RMSDs. In this case,
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FIG. 5. NC robustness versus NC size estimations by our framework for all considered sequences from the fRNAdb of length
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observations in the literature [4, 14, 18, 22].
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FIG. 6. Extrapolated (A) NN size and (B) NN robustness estimations by our framework versus the reference estimations by the
NNSE for all considered sequences from the fRNAdb of length (i) L = 50 and (ii) L = 100. For the NN size estimations, all
sequences are considered for which the NNSE converges, while for the NN robustness estimations, only 100 randomly selected
sequences for each sequence length are considered. For our framework, in all cases, accelerated site scanning sampling with a
sample size of S = 1000 and random subsample size of Sr = 10 is used. For the NC size estimations, before extrapolation, we
use eq. (3) with α values from the derived functional relation (see eqs. (10) and (11)). The diagonal lines indicate the ideal
case of zero difference between both estimation frameworks. Overall, there is a good agreement between estimations by both
frameworks. For the NN size estimations, the spread around the diagonal increases for L = 100 compared to L = 50. The NN
robustness estimations by our framework tend to be marginally larger than those by the NNSE for both sequence lengths.

we examine the deviation between our extrapolated NN
size estimates from the reference NN size estimates by
the NNSE relative to the latter ones. The results can
be found in the Supplementary Information VII. We find
that relative RMSDs is roughly constant and does not
increase with sequence length.

A further alternative way to quantify the agreement is
by considering the average difference and the standard
deviation of the differences between NN size estimations

by both frameworks. This is shown in the Supplementary
Information VII similar to the cases in Figure 7. For using
the α values obtained from the derived functional relation,
the results highlight that for S = 1000 and S = 10000
the average difference fluctuates around zero, and that
there is no significant trend across the considered range of
sequence lengths. For a smaller random subsample size,
the average difference tends to be slightly smaller, which
means that our extrapolated NN size estimates are slightly
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relation (see eqs. (10) and (11)). For the larger sample sizes S = 1000 and S = 10000, which have been used to derive the
functional relation for α, the results for the RMSDs are very similar in (A) and (B). In all cases, the RMSDs increases with
sequence length. Up to a certain amount, it decreases with increasing sample or random subsample size for the longer sequence
lengths.

smaller on average. For S = 100, our extrapolated NN
size estimates tend to be increasingly smaller on average
than those by the NNSE with increasing sequence length,
highlighting again that this sample size is too small. The
results also show that in all cases the standard deviation of
the differences significantly increases with sequence length,
highlighting that it is mainly the spread of the differences
that causes the increase in the RMSDs with sequence
length. This likely originates from the fact that our NC
size estimation formula (see eq. (3)) as well as the NN size
estimation formula considered by the NNSE [22] consists
of a product for which the number of factors increases
with sequence length, leading to increasing uncertainties
in the estimations themselves. This is in agreement with
the roughly constant relative RMSDs across the sequence
lengths as discussed before.

For the NN robustness estimations, we also consider
the root-mean-square deviation RMSDr, this is:

RMSDr =

√√√√ 1

NL,r

NL,r∑
i=1

(rNN,est,i − rNN,NNSE,i)
2

(12)

where the sum runs over theNL,r = 100 randomly selected
sequences for each sequence length. Figure 8 shows the
results. As an alternative, in Supplementary Information
VII, the average difference and the standard deviation of
the differences between estimations by both frameworks
is shown.

The root-mean-square deviation RMSDr is roughly
independent of the sequence length, and as seen before
for the NN size estimations, decreases with increasing
sample size up to a certain amount. An increase in the
random subsample size also decreases the RMSDr to some
extent. As can be seen in Figure 6 as well as Figure S8,
our NN robustness estimates are marginally larger on
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FIG. 8. Root-mean-square deviation (RMSDr) (see eq. (12))
between the extrapolated NN robustness estimations by our
framework and the reference estimations by the NNSE for
100 randomly selected sequences from the fRNAdb for a given
sequence length L. The coloured lines indicate results for differ-
ent sample sizes S and random subsample sizes Sr considered
for our framework. The RMSDr is roughly independent of
the sequence length. In all cases, up to a certain amount, it
decreases with increasing sample or random subsample size.

average than those by the NNSE. There are two potential
reasons. First, we actually estimate NC and not NN
robustness and only assume that both are equal. In fact,
the robustness of a NC might be larger than of its NN
due to the fragmentation of the NN into NCs, leading to a
marginal overestimation of our NN robustness estimates.
Second, as addressed before, our site scanning sampling
approach is likely biased towards network nodes with high
degree and therefore with high robustness, potentially
also leading to marginally overestimated NC and NN
robustness.
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FIG. 9. Average number of calls of the folding function for
one estimation run by our framework. The results are aver-
aged over all considered sequences from the fRNAdb for a
given sequence length L. The coloured lines indicate results
for different sample sizes S and random subsample sizes Sr

considered for our framework. As reference, the expected
number of calls of the folding routine by the NNSE is shown:
The black line corresponds to pure NN size estimations (see
eq. (15)) and the shaded grey area to NN size and robustness
estimations (see eq. (16), βr ∈ [0, 1]). For our framework, the
number of calls of the folding function can be several orders
of magnitude smaller compared to the NNSE.

In Figures 7 and 8, as well as for the data points in
Figure 4, there is a lack of monotonicity in the sequence
length. This might arise due to certain biases in the sets
of fRNAdb sequences considered for each sequence length.
In addition, for the NN size estimates, it might also arise
from the fact that different numbers of fRNAdb sequences
are considered for each sequence length (see Table SII in
the Supplementary Information V).

F. Computational costs

In a final step, we compare the computational costs of
our approach to that of the benchmark. Jörg et al. [22]
argue that for their NNSE nearly all of the CPU time is
consumed by the RNA folding routine, the computational
cost of which grows as L3 with the sequence length L.
Similarly, for our framework, most of the computation
time is consumed by calling the folding function RNA.fold.
Therefore, to compare computational costs, it is sufficient
to compare the number of calls of the folding function
during one estimation run. For experiments, similarly, the
phenotype determination will likely be one of the most
demanding steps. Figure 9 shows the average number of
folding calls by our framework for one estimation run and
as reference the expected number by the NNSE.

For our framework, NC size and robustness estimations
require the same computational steps. Therefore, they can
be computed together and are associated with the same
computational costs. Furthermore, we can explicitly count
the number of calls of RNA.fold while running our code.
Considering a sample size of S and a random subsample

size of Sr, the number of calls C for one estimation run
for one sequence of length L can be described by:

C = βS · S + βr · Sr · 3L (13)

where βS ≥ 1 and βr ≤ 1 are parameters depending on
the start genotype, NC, phenotype and sampling process.

The second term in eq. (13) corresponds to the measure-
ment of the one-point mutational neighbourhoods of the
Sr genotypes in the random subsample. In principle, this
would require Sr · 3L times calling RNA.fold. However,
since we restrict ourselves to RNA secondary structure
compatible base pairs, fewer calls are required, given by
the factor βr ≤ 1. It can be described by:

βr =
3(L− 2n) + γ · 2n

3L
= 1− 2 (3− γ)

3

n

L
(14)

where n is the number of base pairs in the corresponding
phenotype. For the L− 2n unpaired sites, all 3 possible
one-point mutations are checked for neutrality by calling
RNA.fold. For the 2n paired sites, only the one-point
mutations are checked for neutrality that lead to a com-
patible base pair, we describe this number by γ. Assuming
that CG/GC base pairs are twice as frequent as AU/UA
base pairs, and three times more frequent than GU/UG
base pairs, the average number of one-point mutations for
a paired site that still lead to a compatible base pair is
given by 13

22 and so γ ≈ 13
22 ≈ 0.59 (for more details see the

Supplementary Information VIII). Comparing with the
true number of calls of RNA.fold across our considered
individual estimations shows that this is a valid approxi-
mation. For example, if half of the sites are paired, it is
βr ≈ 0.60, highlighting the significant reduction in compu-
tational costs by restricting to RNA secondary structure
compatible base pairs.

The first term in eq. (13) corresponds to the generation
of a sample of size S by our accelerated version of site
scanning sampling. Since not all one-point mutation steps
considered in the sampling process are likely to be neutral,
S or more calls of RNA.fold are required to generate a
sample of size S. This is given by the factor βS ≥ 1.

For βS , an analytical description has not been found
so far, though some analytical considerations are possible.
For an unpaired site, the number of calls to find a neutral
one-point mutation approximately scales with 3

xj
, where

xj is the average number of neutral mutations for that site.
For a paired site, the number of calls approximately scales
with γ

xj
, where γ is the number of compatible one-point

mutations for a paired site as discussed before. However,
βS cannot be simply approximated by the sequence av-
erage of these values as our accelerated version of site
scanning sampling is more advanced in the way that we do
not test every site ‘endlessly’ until a neutral mutation is
found but instead proceed to the next site if all mutations
are tested and are not successful, making an analytical
description harder. The sequence averaged numbers of
calls of RNA.fold in Figure 9 suggest an average value of
βS ranging from about 1.5 to about 2, though it strongly
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depends on the concrete start genotype, NC, phenotype
and sampling process considered.

Only the second term in eq. (13) scales directly with the
sequence length. Since the scaling depends on the random
subsample size, the costs can be significantly reduced by
using a small random subsample – as addressed before –
especially for longer sequences.

The NNSE software does not allow an explicit counting
of the number of calls of the folding routine. Therefore,
we deduce it with the best of our knowledge from the
information given in [22] and the C code.

For a pure NN size estimation, using default parameters,
we describe the number of calls CNNSE,s of the folding
routine for one estimation run for one structure of length
L by:

CNNSE,s = (2000 + 2000) · L (15)

The first term corresponds to 2000 thermalisation and the
second to 2000 measurement steps considered for each of
the L shells (volume ratios) in the genotype space used
to estimate the NN size.

A NN size together with a robustness estimation is
associated with additional computational costs. In this
case, the number of calls CNNSE,s+r of the folding routine
is given by:

CNNSE,s+r = (2000 + 2000) · L+ βr · 2000 · 3L (16)

The added term represents the measurement of the one-
point mutational neighbourhood of the genotype in the
innermost shell at every measurement step. The NNSE
also restricts to RNA secondary structure compatible base
pairs when measuring the neighbourhoods similarly as
we do. Therefore, a similar reduction factor βr ≤ 1 is
included. Its exact value cannot be determined as the
NNSE allows no explicit counting, but it will likely be
similar to our approximation considered before. In Figure
9, we plot eq. (16) for the full possible range βr ∈ [0, 1].

In both cases, the number of calls scales linearly with
L. Comparison with eq. (13) for individual estimations
as well as the average number of calls in Figure 9 high-
lights the significantly higher computational costs – up to
several orders of magnitude – associated with the NNSE
compared to our framework for the considered sample
and random subsample size combinations. It should be
noted that the NNSE also requires multiple calls of the
inverse folding routine in the initialisation procedure in
order to find sequences folding to the input structure.
This is associated with additional computational costs,
which we do not address here.

V. DISCUSSION AND CONCLUSION

In this article, we have introduced a framework for esti-
mating large-scale properties in the genotype-phenotype
(GP) map of RNA secondary structure – in detail the
size and robustness of neutral components (NCs) – by

only using small samples of genotypes. Our framework is
novel and advantageous compared to existing estimation
frameworks in several ways. Compared to the NNSE soft-
ware of Jörg et al. [22], our framework allows estimates
of NC instead of NN characteristics. The former are the
more essential neutral units for evolving populations due
to their full connectivity through one-point mutations.
In addition, our framework can be computationally up
to several orders of magnitude less expensive. In com-
parison to the NC size estimation method introduced by
Garćıa-Mart́ın et al. [27], our framework is – by default –
designed to make estimates from small samples of geno-
types. Furthermore, our framework allows NC size and
robustness estimates at the same time, and no different
(additional) measurements are required. In addition to the
estimation framework, we also propose a novel sampling
method to efficiently and broadly sample NCs: site scan-
ning sampling, a periodic scanning of sequence sites for
neutral mutations, which outperforms a simple random
walk sampling in terms of the accuracy of estimates.

The considered method for estimating the NC robust-
ness is simple and likely transferable to any other sequence-
to-structure GP map without changes. It produces re-
markably accurate estimates for small sample (and ran-
dom subsample) sizes. With site scanning sampling, our
NC robustness estimations tend to marginally overesti-
mate on average the true NC robustness values for short
sequence lengths or the respective NN robustness estima-
tions by the NNSE for the longer, naturally occurring
functional non-coding sequence lengths. However, this
effect is marginal, and the robustness of a NC likely may
be larger than of the respective NN as addressed in the
article.

Our NC size estimation method cannot be directly
transferred to other sequence-to-structure GP maps,
though the basic ideas behind the method are likely to
be universal. The NC size estimation formula includes a
correction factor that accounts for correlations between
sequence sites ‘suppressing’ the average number of neu-
tral mutations per site. We derive a sequence length
dependent functional relation of the correction factor by
optimising the NC size estimations with respect to the
true values for short sequence lengths and the extrapo-
lated NN size estimations with respect to those by the
NNSE for the longer sequence length. Here, specifically
for RNA, we find that the optimal correction factor sat-
urates with increasing sequence length, which suggests
that the correlations between sequence sites are limited
to a certain range. For other sequence-to-structure GP
maps, the functional relation for α would need to be mod-
ified, but the basic structure of the estimation formula
can likely be used in the same way. Using the derived
functional relation, our extrapolated NN size estimations
are in good agreement with those by the NNSE for the
longer sequences up to length L = 100.

A few caveats remain: Firstly, the used extrapolation
from NC to NN sizes is based on findings by Schaper
et al. [23] on NN fragmentation in the case of RNA sec-
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ondary structure. We use it across all considered sequence
lengths. However, as addressed in the article, it is a mat-
ter of debate whether this extrapolation still holds for
longer sequence lengths. The fact that our approach
yields more accurate NN size estimates when using the
extrapolation indicates that it does, but more research is
needed. Secondly, we use as reference the NNSE, which
has not yet been benchmarked itself for longer RNA se-
quence lengths for which the true values are not known.
Using the default settings for all sequence lengths might
lead to a systematic error in the estimations. Thirdly, all
of our analysis as well as the NNSE is based on using the
ViennaRNA package as prediction software and defining
the phenotype by the minimum free energy secondary
structure. This algorithm is not 100% accurate and may
deviate from the secondary structure of real biological
RNA molecules, especially for longer sequence lengths.

Compared to the NNSE, the computational costs – in
terms of the number of calls of the folding function –
can be up to several orders of magnitude smaller for our
framework. A major contributing factor is the fact that
small random subsamples of larger site scanning samples
are usually sufficient for accurate estimates. This also
opens a potential experimental realisability. If a small
and diverse sample of genotypes from the same NC is
known (either through sampling and random subsam-
pling or through a set of previous experiments), only the
one-point mutational neighbourhoods of these genotypes
need to be measured for neutrality to calculate the es-
timates. For long sequence lengths, this still can be a
quite large number of genotypes to be tested. However,
our framework only requires the knowledge whether or
not the phenotype changes by a one-point mutation, and
not which concrete alternative phenotype appears for a
non-neutral mutation. In addition, for RNA secondary
structure, some one-point mutations can be a priori called
non-neutral if they violate compatible base pair nucleotide
combinations, and neutrality might be measured by in-
vestigating changes in biological function related to RNA
secondary structure, which likely could further reduce the
experimental workload.

The introduced framework enables new applications. It
allows the quantitative and qualitative comparison of the
NCs of functional non-coding RNA sequences, which may
yield new insights into the evolution of RNA. In particular,

it can allow estimates for long RNA sequences, for which
an exhaustive analysis is far from being feasible, or for
which using the NNSE exceeds a reasonable computation
time. In future studies, the framework could also be
applied and adapted to other sequence-to-structure GP
maps, like that of the HP model, the Polyomino model [13,
14], or to more complex maps such as protein secondary
structure, thereby fostering the general understanding of
GP maps for long, non-exhaustively analysable sequence
lengths.

An unsolved problem that could be addressed in the
future is the estimation of NC evolvability from samples
of genotypes. Evolvability differs from size and robustness
in the way that it not only depends on the NC itself but
also its explicit mutational neighbourhood, i.e. all distinct
alternative phenotypes surrounding the NC. Therefore,
estimating the evolvability of a NC just from a sample of
genotypes is a more challenging problem.
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Supplementary Information

I. NC SIZE ESTIMATION VALIDATION

In section II A, we introduce a formula to estimate NC sizes (see eq. (3)) from a sample of genotypes from a NC of
interest. In the following, we will validate this formula, particularly in regards of the included correction parameter α.

Here, in all steps, we do not consider a sample of genotypes from a NC but instead the full set of genotypes of the
NC, the largest possible sample. I.e. we compute the average number of neutral mutations and its standard deviation
for a site j as follows:

xj =
1

GNC

GNC∑
i=1

xi,j (S1)

σj =

√√√√ 1

GNC

GNC∑
i=1

(xi,j − xj)2 (S2)

where both sums run over all genotypes of the NC of interest (total number: GNC). Note the difference of the standard
deviation to the sample standard deviation in eq. (2) for ‘incomplete’ samples.

As basis, we consider the NCs of the exhaustively analysable RNA secondary structure GP maps of sequence lengths
L = 12, L = 13, L = 14, L = 15 and L = 16. In all cases, we ignore the undefined phenotype (unbound structure),
leaving 431, 1236, 3311, 8792, and 23091 NCs, respectively.

A. Optimisation

In the NC size estimation formula, we include a correction factor α that we assume to be dependent on the sequence
length L and that accounts for the amount of correlations between sites. In this step, we compute the optimal value
of α for each sequence length. In detail, we are interested in minimising the order of magnitude root-mean-square
deviation (RMSDs) between estimated and true sizes of all NCs. This is:

RMSDs =

√√√√ 1

NL

NL∑
i=1

(log10 (sNC,est,i)− log10 (sNC,true,i))
2

(S3)

where the sum runs over all NCs of the GP map of sequence length L (total number: NL). sNC,true,i and sNC,est,i are
the true and estimated NC size of NC i, respectively. The NC size estimations are computed using eq. (3) (α dependent)
and the average numbers of neutral mutations per site and their standard deviations as introduced above. We find
αopt ≈ 0.43 (L = 12), αopt ≈ 0.44 (L = 13), αopt ≈ 0.44 (L = 14), αopt ≈ 0.46 (L = 15) and αopt ≈ 0.47 (L = 16).
In Figure S1(A), we plot for all considered sequence lengths how the RMSDs varies with the correction parameter
including the optimum. In all cases, the optimised RMSDs is quite small with about 0.1 orders of magnitudes.

B. Validation

In Figure S1(B), we plot the NC size estimations versus the true NC sizes for all NCs for each sequence length,
respectively, using the determined optimal values of α. The results highlight the very good agreement between the
estimated and true NC sizes.
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FIG. S1. (A) Order of magnitude root-mean-square deviation RMSDs (see eq. (S3)) between estimated and true NC sizes versus
the correction parameter α considered in the NC size estimation formula (see eq. (3)). The cross marks the optimum such that
RMSDs is minimised. (B) Estimated versus true NC sizes using the respective optimal value of α in the NC size estimation
formula (see eq. (3)). In all cases, all NCs of the RNA secondary structure GP map of sequence length (i) L = 12, (ii) L = 13,
(iii) L = 14, (iv) L = 15 and (v) L = 16 are considered, and the full set of NC genotypes instead of a sample is used for the NC
size estimation.
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II. METHODS

For the generation of a genotype sample from a NC of interest and the subsequent measurements of the one-point
mutational neighbourhoods, we consider different methods and algorithms. In the following, they will be specified.
Furthermore, we will specify how we perform our simulations. Throughout, we will use the following terminology:

NC: NC of interest = set of all NC genotypes
S: sample
S: (desired) sample size
Sr: random subsample
Sr: (desired) random subsample size
p: phenotype
g: genotype
g[j]: letter at jth site (counting from 1) of genotype g
xg: number of neutral mutations for genotype g
xg[j]: number of neutral mutations for jth site (counting from 1) for genotype g
A = {a1, a2, . . . , ak}: alphabet (for RNA: A = {A,C,G,U})
a: letter
k: alphabet size
L: sequence length

A. Methods for exhaustively analysable NCs

1. Sampling

In section III, we apply our framework to the NCs of the exhaustively analysable L = 15 RNA secondary structure
GP map. We consider three main sampling methods: uniformly random sampling, random walk (RW) sampling,
and site scanning sampling. For the latter two, we additionally consider a random subsampling step. Throughout
the following, it is assumed that the full GP map, i.e. the mapping of each genotype, and the full NC of interest are known.

Algorithm Uniformly random sampling

Input: NC, S
Output: S
S ← S random elements ∈ NC . S random genotypes from NC

Algorithm RW sampling

Input: NC, S, A, L
Output: S

g1 ← random element ∈ NC . random initial genotype from NC
S ← [g1] . sample genotype list
gref ← g1 . reference genotype that is mutated
while len(S) < S do

j ← random element ∈ {1, 2, . . . , L} . random site
a← random element ∈ A \ {gref[j]} . random letter
gmut ← gref
gmut[j]← a . one-point mutation
if gmut ∈ NC then . check if mutated genotype in NC
S.append(gmut) . append mutated genotype to sample
gref ← gmut . update reference genotype

end if
end while

Note: A generated sample S not necessarily consists of distinctive genotypes.
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Algorithm Site scanning sampling

Input: NC, S, A, L
Output: S

g1 ← random element ∈ NC . random initial genotype from NC
S ← [g1] . sample genotype list
gref ← g1 . reference genotype that is mutated
j ← 1 . site that is mutated
while len(S) < S do
A∗ ← A . ‘help alphabet’
while A∗ 6= {gref[j]} do

a← random element ∈ A∗ \ {gref[j]} . random letter
gmut ← gref
gmut[j]← a . one-point mutation
if gmut ∈ NC then . check if mutated genotype in NC
S.append(gmut) . append mutated genotype to sample
gref ← gmut . update reference genotype
j ← j + 1 mod (L+ 1) . update site
break

else
A∗ ← A∗ \ {a} . update ‘help alphabet’

end if
end while
if A∗ = {gref[j]} then

j ← j + 1 mod (L+ 1) . update site
end if

end while

Note: A generated sample S not necessarily consists of distinctive genotypes.

Algorithm Random subsampling

Input: S, Sr

Output: Sr
Sr ← Sr random elements ∈ S . Sr random genotypes from sample

Note: Given the input sample S, the random subsample Sr not necessarily consists of distinctive genotypes.

2. One-point mutational neighbourhood measurement

For the NC estimations, the sample average and sample standard deviation of the number of neutral mutations per
site are required. Therefore, the number of neutral mutations per site for all sample (random subsample) genotypes is
required. For the analysis in section III, we measure the one-point mutational neighbourhood and the number of
neutral mutations per site for a genotype as outlined in the algorithm below. Once repeated for every sample (random
subsample) genotype, we compute the sample average and sample standard deviation according to eqs. (1) and (2).

Algorithm One-point mutational neighbourhood measurement

Input: gref, NC, A, L
Output: xgref

xgref ← [0] · L . set number of neutral mutations for every site to 0
for j ∈ {1, 2, . . . , L} do

for a ∈ A \ {gref[j]} do
gmut ← gref
gmut[j]← a . one-point mutation
if gmut ∈ NC then . check if mutated genotype in NC

xgref [j]← xgref [j] + 1 . update number of neutral mutations for jth site
end if

end for
end for
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3. Simulations

For the results shown in Figures 2, 3 and S2, we perform our simulations as follows. For each of the considered
NCs, and for each of the sampling methods, we generate 100 independent samples, respectively, for a range of sample
sizes, respectively. For the different sample sizes, independent sampling procedures are considered, i.e. samples of
larger size do not (necessarily) include the genotypes from samples of smaller size. For RW sampling and site scanning
sampling, we additionally consider random subsampling of fixed size, i.e. whenever the sample size is larger or equal
than the considered random subsample size, for each sample, we additionally randomly select the fixed number of
random subsample genotypes uniformly from it.

B. Methods for functional non-coding RNA sequences

1. Sampling

In section IV, we apply our framework to longer, naturally occurring functional non-coding RNA sequences, for
which an exhaustive analysis is not feasible and the full NCs are not known. In this case, we consider an RNA-specific
accelerated version of site scanning sampling in order to reduce computational costs, i.e. calls of the function RNA.fold
to find the phenotype of a genotype. The algorithm starts from a given genotype from the fRNA database [S1, S2].

Algorithm Accelerated site scanning sampling (for functional non-coding RNA sequences)

Input: g1, S, A, L . g1: initial genotype from fRNAdb
Output: S
S ← [g1] . sample genotype list
pref ← RNA.fold(g1) . find reference phenotype of initial genotype
gref ← g1 . reference genotype that is mutated
j ← 1 . site that is mutated
while len(S) < S do
A∗ ← A . ‘help alphabet’
while A∗ 6= {gref[j]} do

a← random element ∈ A∗ \ {gref[j]} . random letter
gmut ← gref
gmut[j]← a . one-point mutation
if j unpaired site in pref or (j paired site in pref and mutated base pair ∈ {CG,GC,AU,UA,GU,UG}) then

pmut ← RNA.fold(gmut) . find phenotype of mutated genotype
if pmut = pref then
S.append(gmut) . append mutated genotype to sample
gref ← gmut . update reference genotype
j ← j + 1 mod (L+ 1) . update site
break

else
A∗ ← A∗ \ {a} . update ‘help alphabet’

end if
else
A∗ ← A∗ \ {a} . update ‘help alphabet’

end if
end while
if A∗ = {gref[j]} then

j ← j + 1 mod (L+ 1) . update site
end if

end while

Note: A generated sample S not necessarily consists of distinctive genotypes.

On the generated sample S, we apply random subsampling as specified before.
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Algorithm Random subsampling

Input: S, Sr

Output: Sr
Sr ← Sr random elements ∈ S . Sr random genotypes from sample

Again, given the input sample S, the random subsample Sr not necessarily consists of distinctive genotypes.

2. One-point mutational neighbourhood measurement

For the analysis in section IV, we also consider an RNA-specific accelerated version of the one-point mutational
neighbourhood measurement for all sample (random subsample) genotypes in order to reduce computational costs. We
proceed as outlined in the algorithm below. This algorithm is similar to how the mutational robustness is measured by
the software of Jörg et al. [S3]. Once repeated for every sample (random subsample) genotype, we compute the sample
average and sample standard deviation according to eqs. (1) and (2).

Algorithm One-point mutational neighbourhood measurement (for functional non-coding RNA sequences)

Input: gref, pref, A, L
Output: xgref

xgref ← [0] · L . set number of neutral mutations for every site to 0
for j ∈ {1, 2, . . . , L} do

for a ∈ A \ {gref[j]} do
gmut ← gref
gmut[j]← a . one-point mutation
if j unpaired site in pref or (j paired site in pref and mutated base pair ∈ {CG,GC,AU,UA,GU,UG}) then

pmut ← RNA.fold(gmut) . find phenotype of mutated genotype
if pmut = pref then

xgref [j]← xgref [j] + 1 . update number of neutral mutations for jth site
end if

end if
end for

end for

3. Simulations

For the results shown in Figures 4, 5, 6, 7, 8, 9, S3, S4, S5, S6, S7, S8 and Table I, we perform the simulations for our
framework as follows. For each of the considered functional non-coding RNA sequences, we generate a sample using
the accelerated version of site scanning sampling, for a range of sample and random subsample sizes, respectively. For
each sample size, an independent sampling procedure is considered, i.e. a sample of larger size does not (necessarily)
include the genotypes from a sample of smaller size. Then, for each fixed sample size, the random subsamples of
different size are randomly selected uniformly from the same sample, respectively.
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III. RNA L = 15 EXAMPLE NC DATASET

In section III B in Figure 2, we consider NC estimations for nine example NCs of the L = 15 RNA secondary
structure GP map. Details of these NCs are listed in Table SI.

NC rank phenotype NC size NC robustness

1 ((. . . .)) . . . . . . . 2329155 0.6112

125 . .((( . . . . . .))) . 735321 0.4691

250 . .(((( . . . .)))) . 465730 0.4575

375 .(((( . . . . .)))) . 327873 0.4164

500 ((((. . . . . . . )))) 176336 0.3967

625 .(((. . .))) . . . . . 129243 0.4887

750 .((((( . . .))))) . 96418 0.3747

875 . .((((( . . .))))) 57450 0.4081

1000 . .((((( . . .))))) 38579 0.3844

TABLE SI. Details of the nine example NCs of the L = 15 RNA secondary structure GP map considered in Figure 2.
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IV. ADDITIONAL FIGURES: APPLICATION TO EXHAUSTIVELY ANALYSABLE NCS

In section III B, we quantify the quality of our NC size and robustness estimations for the considered NCs of the
L = 15 RNA secondary structure GP map by considering the root-mean-square deviation (RMSD) from the true
values. An alternative way is to consider the average difference (D) and the standard deviation (σD) of the differences
between our estimated and true values. This is:

Ds =
1

NRmax

NRmax∑
i=1

 1

NS

NS∑
j=1

(log10 (sNC,est,i,j)− log10 (sNC,true,i))

 (S4)

σDs =

√√√√√ 1

NRmax

NRmax∑
i=1

 1

NS

NS∑
j=1

(
log10 (sNC,est,i,j)− log10 (sNC,true,i)−Ds

)2 (S5)

Dr =
1

NRmax

NRmax∑
i=1

 1

NS

NS∑
j=1

(rNC,est,i,j − rNC,true,i)

 (S6)

σDr =

√√√√√ 1

NRmax

NRmax∑
i=1

 1

NS

NS∑
j=1

(
rNC,est,i,j − rNC,true,i −Dr

)2 (S7)

The first sum runs over the NCs from rank 1 to NRmax = 1000 as we restrict ourselves to the 1000 largest ones for
the quantification as discussed in the main article. The second sum runs over the NS = 100 independent samples
considered for each NC, respectively. For the NC size estimations, we consider order of magnitude differences. In
Figure S2, these quantities are shown for the considered sampling methods as a function of the sample size and with
and without random subsampling.

For the NC size estimations, in all cases, over a range of sample sizes, the average difference Ds between our
estimations and the true values tends to increase with sample size before saturating at around zero. This means that
our NC size estimates are on average too small for small sample sizes, and tend to increase on average with sample size
before saturating around the true values. This increase presumably originates from our NC size estimation formula
(see eq. (3)). The larger the sample of genotypes, the more likely that there is a diversity between these genotypes
and so the more likely that the average numbers of neutral mutations per site deviate to some extent from the most
frequent values of 0 and 3 as well as that their standard deviations deviate to some extent from 0, leading to a more
likely larger NC size estimate (see e.g. (1 + 0.1)(1 + 2.9) = 4.29 > 4 = (1 + 0)(1 + 3)). Building on this argument, the
differences in the results between the sampling methods are likely caused by the differences in the diversity between
the sample genotypes generated by these methods, as discussed in the main article.

For the NC robustness estimations, for uniformly random sampling, the average difference Dr is constant and around
zero for all sample sizes. This is because the random selection of genotypes together with our NC robustness estimate
as calculated in eq. (4) is in line with the definition of the NC robustness. However, for both RW sampling and (to
a lesser degree) site scanning sampling, the Dr increases and marginally deviates from zero with increasing sample
size. This means that our NC robustness estimates tend to be marginally larger on average than the true values in
the considered sample size range for these two sampling methods. As mentioned in the article, this likely arises from
the fact that both sampling approaches are to some extent biased towards network nodes with high degree, which
correspond to genotypes with high robustness. However, it should also be noted that the standard deviations are larger
or roughly equal than the deviation of the average differences from zero in all cases.
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FIG. S2. (i) Average difference D (see eqs. (S4) and (S6)) and (ii) standard deviation σD of the differences (see eqs. (S5) and
(S7)) between the (A) NC size (order of magnitude) and (B) NC robustness estimations and the true values for the 1000 largest
NCs of the L = 15 RNA secondary structure GP map, as a function of sample size S, for considering uniformly random sampling,
random walk (RW) sampling, and site scanning sampling. For the latter two, the dotted lines indicate random subsampling of
fixed size Sr = 10 from respective full samples (sizes on the x-axis) larger than S = 10. For the NC size estimations, eq. (3)
together with the found optimal value of αopt ≈ 0.46 for L = 15 (see Supplementary Information I) is used.
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V. FRNADB DATASET

In section IV, we consider longer, naturally occurring functional non-coding RNA sequences. We use the functional
RNA database fRNAdb [S1, S2] as source, which can be accessed at http://www.ncrna.org/. It is an archived
database, which was last updated in 2011. We accessed it on October 3, 2018. A summary of the number of considered
sequences from the fRNAdb and their processing can be found in Table SII.

As the starting point, we extract all sequences stored in the fRNAdb of lengths L = 20, L = 40, L = 45, L = 50,
L = 55, L = 60, L = 65, L = 70, L = 75, L = 80, L = 85, L = 90, L = 95 and L = 100 (see second column). Then, we
filter the sequences. First, we remove all sequences that are labelled as ‘putative’ (see third column). Second, from the
remaining sequences, we remove all that are labelled as ‘piRNA’ (see fourth column). For both sequence types, the
function or relevance of the secondary structure is not yet confirmed [S4]. Third, from the remaining sequences, we
remove all that are incompatible (see fifth column), i.e. sequences that include non-standard nucleotides or for which
RNA.fold returns the undefined phenotype (unbound structure). A similar dataset has been used for previous NN size
estimations [S4].

To all remaining sequences, we apply our introduced estimation framework to estimate the NC size and
robustness (see sixth column). To the same sequences, we also apply the NNSE by Jörg et al. [S3] to estimate
the NN sizes of the phenotypes (see seventh column). Not for all input, the NNSE converges and returns an
estimate (see eighth column). To 100 randomly chosen sequences from those remaining after filtering, we apply the
NNSE (with relevant setting changed) to additionally estimate the NN robustness of the phenotypes (see ninth column).

L fRNAdb filtering NC estimations NNSE

# seq. # putative # piRNA # incompatible # applied # applied # converging # add. rob.

20 14350 -2384 -617 -4153 7196 7196 7190 100 (random)

40 662 -493 -1 -4 164 164 164 100 (random)

45 537 -397 0 -5 135 135 135 100 (random)

50 475 -265 0 -3 207 207 207 100 (random)

55 509 -292 0 -2 215 215 215 100 (random)

60 354 -246 0 -1 107 107 104 100 (random)

65 543 -212 0 -8 323 323 314 100 (random)

70 2304 -203 0 -28 2073 2073 2062 100 (random)

75 1430 -183 0 -11 1236 1236 1222 100 (random)

80 566 -187 0 -3 376 376 373 100 (random)

85 919 -195 0 -6 718 718 696 100 (random)

90 770 -224 0 -16 530 530 522 100 (random)

95 607 -230 0 -5 372 372 362 100 (random)

100 939 -216 0 -7 716 716 697 100 (random)

TABLE SII. Summary of the number of considered sequences from the fRNAdb and their processing.

http://www.ncrna.org/
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VI. OPTIMISATION WITHOUT NC–NN SIZE EXTRAPOLATION

In section IV D, we optimise our size estimation and search for the optimal value of the correction parameter α in the
NC size estimation formula (see eq. (3)) for every sequence length in our considered fRNAdb dataset and sample and
random subsample size combination, by extrapolating our NC size to NN size estimates (see eq. (7)) and minimising
the order of magnitude root-mean-square deviation (RMSDs) (see eq. (9)) from the estimated NN sizes by the NNSE.
In the following, we discuss the results of following the same optimisation procedure, but without considering the
NC–NN extrapolation, i.e. simply setting for our framework:

sNN,est ≈ sNC,est (S8)

In Figure S3, we plot the obtained optimal values for α as a function of the sequence length and the sample
and random subsample size combinations in a similar way as we did in Figure 4, where we considered the NC–NN
extrapolation. We find that the found optimal values for α strongly vary with sample and random subsample size.
In particular, for fixed small sample or small random subsample sizes, the found optimal values for α are identical
for many of the sequence lengths, respectively. In these cases, no reasonable optima are reached. This is because
our non-extrapolated size estimations do not increase with increasing α above a certain value of α and are too small
compared to the reference NN size estimations by the NNSE (for details see provided dataset). As discussed in
the article, this likely results from the fact that the maximum factors for individual sites in our NC size estimation
formula (see eq. (3)) are reached. The obtained identical values for the optimal α are likely an artefact of the used
Python function scipy.optimize.minimize due to the saturation of our size estimates with increasing α. The results also
highlight that the optimal α values – if reasonable optima are found – are quite large and hard to reconcile with those
found for sequence lengths L = 12 to L = 16, not allowing an appropriate functional relation to be fitted to the data.

In Figure S4, we compare the found minimum order of magnitude root-mean-square deviation (RMSDs) (see eq.
(9)) for considering the NC–NN size extrapolation (Figure S4(A), identical to Figure 7(A)) and for not considering it
(Figure S4(B)). In all cases without the extrapolation, the minimum RMSDs values are larger.

An alternative way to quantify the deviation is to consider the average difference (Ds) and the standard deviation
(σDs) of the differences between the size estimations by both frameworks. This is:

Ds =
1

NL

NL∑
i=1

(log10 (sNN,est,i)− log10 (sNN,NNSE,i)) (S9)

σDs
=

√√√√ 1

NL

NL∑
i=1

(
log10 (sNN,est,i)− log10 (sNN,NNSE,i)−Ds

)2
(S10)
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FIG. S3. Optimal values of the correction parameter α in the NC size estimation formula (see eq. (3)) that leads to minimum
order of magnitude root-mean-square deviations (RMSDs) (see eq. (9)) between the NN size estimations by our framework and
the reference estimations by the NNSE for all considered sequences from the fRNAdb for a given sequence length L for which
the NNSE converges. Different to Figure 4, we do not consider an extrapolation from NC to NN sizes in our framework, i.e. we
simply set them equal to each other (see eq. (S8)). The coloured dots indicate results for different sample sizes S and random
subsample sizes Sr considered for our framework. The black dots indicate the results for sequence lengths L = 12 to L = 16
from the exhaustive analysis in the Supplementary Information I. There is a strong variation in the optimal α with sample
and random subsample size. In addition, for fixed small sample or small random subsample sizes, the optimal α values are
identical for many of the sequence lengths, respectively. This is an artefact as no reasonable optima are reached in these cases.
No appropriate fits to the data are possible.
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FIG. S4. Minimum order of magnitude root-mean-square deviation (RMSDs) (see eq. (9)) between the optimised NN size
estimations (via optimised α values for the NC size estimations) by our framework and the reference estimations by the NNSE
for all considered sequences from the fRNAdb for a given sequence length L for which the NNSE converges, (A) with considering
a NC–NN size extrapolation (see eq. (7)) and (B) without considering a NC–NN size extrapolation (see eq. (S8)) for our
framework. The coloured lines indicate results for different sample sizes S and random subsample sizes Sr considered for our
framework. In all cases, the minimum RMSDs is larger if no NC–NN size extrapolation is considered compared to the case
when it is considered.
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FIG. S5. Order of magnitude (A) average difference Ds (see eq. (S9)) and (B) standard deviation σDs of the differences (see eq.
(S10)) between the optimised non-extrapolated NN size estimations (via optimised α values for the NC size estimations) by our
framework and the reference estimations by the NNSE for all considered sequences from the fRNAdb for a given sequence length
L for which the NNSE converges. The coloured lines indicate results for different sample sizes S and random subsample sizes Sr

considered for our framework. In comparison to the reference NN size estimates by the NNSE, in all cases, our optimised size
estimates are too small.

where the sums run over all considered sequences from the fRNAdb of sequence length L for which the NNSE converges
(total number: NL). sNN,NNSE,i is the reference NN size estimate by the NNSE and sNN,est,i the NN size estimate by
our framework for sequence i, respectively. In Figure S5, the results are shown using the optimal α values obtained
without considering the NC–NN size extrapolation. The results further highlight that in this case our optimised size
estimates are in all cases on average too small compared to the reference NN size estimates by the NNSE, with the
average differences significantly exceeding the standard deviations of the differences for sample size S = 100 and the
larger sequence lengths.

Due to all of these observations, we come to the conclusion that the NC–NN size extrapolation is required in our
framework, i.e. NNs significantly fragment into NCs, at least for sequence lengths up to L = 100.
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VII. ADDITIONAL FIGURES: APPLICATION TO FUNCTIONAL NON-CODING RNA SEQUENCES

In section IV E, we quantify the agreement between the extrapolated estimations by our framework and the reference
ones by the NNSE by considering the root-mean-square deviation (RMSD).

For the NN size estimations, a first alternative way is to consider the relative order of magnitude root-mean-square
deviation (RMSDs), which is given by:

relative RMSDs =

√√√√ 1

NL

NL∑
i=1

(
log10 (sNN,est,i)− log10 (sNN,NNSE,i)

log10 (sNN,NNSE,i)

)2

(S11)

where the sum runs over all considered sequences from the fRNAdb of sequence length L for which the NNSE converges
(total number: NL). sNN,NNSE,i is the reference NN size estimate by the NNSE and sNN,est,i the extrapolated NN size
estimate by our framework for sequence i, respectively. For our framework, we estimate the NC size with eq. (3) (α
dependent) and use the NC–NN extrapolation given by eq. (7). In Figure S6, the respective results are shown in a
similar way as for Figure 7. For Figure S6(A), the optimal α values from the optimisation (see Figure 4) are used for
our NC size estimation, i.e. the α values that minimise the (absolute) RMSDs, while for Figure S6(B), the α values
from the derived functional relation (see eqs. (10) and (11)) are used. For the former, in all cases, the relative RMSDs

is roughly constant across the considered range of sequence lengths. For the latter, this is true as well except for
sample size S = 100, for which the relative RMSDs is increasing with sequence length, though this small sample size
has also not been taken into account for the derivation of the functional relation. The constancy for the other sample
sizes demonstrates that the increase of the (absolute) RMSDs with sequence length is in line with the increase of the
NC sizes and so NN sizes with sequence length.

A further alternative way is to consider the average difference (D) and the standard deviation (σD) of the differences
between the estimations by both frameworks. For the NN size estimations, as already stated in the Supplementary
Information VI, this is given by eqs. (S9) and (S10). In Figure S7, the results are shown. Again, for Figure S7(A), the
optimal α values from the optimisation are used for our NC size estimation and for Figure S7(B), the α values from
the derived functional relation. In the former case, the average difference Ds is approximately zero across all sequence
lengths and sample and random subsample size combinations, highlighting that the optimisation not only leads to
minimal RMSDs, but also close to optimum agreement between NN size estimations by both frameworks on average.
In the latter case, for sample sizes S = 1000 and S = 10000, which have been used to derive the functional relation
for α, the average difference mainly ‘fluctuates’ around zero and there is no significant trend across the considered
range of sequence lengths. For a smaller random subsample size, the average difference tends to be slightly smaller,
i.e. our extrapolated NN size estimates slightly smaller. For S = 100, which has not been taken into account for the
derivation of the functional relation, the average difference tends to significantly decrease with increasing sequence
length, highlighting that this sample size is too small.
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FIG. S6. Relative order of magnitude root-mean-square deviation (RMSDs) (see eq. (S11)) between the extrapolated NN size
estimations by our framework and the reference estimations by the NNSE for all considered sequences from the fRNAdb for a
given sequence length L for which the NNSE converges. The coloured lines indicate results for different sample sizes S and
random subsample sizes Sr considered for our framework. For the NC size estimations, before extrapolation, we use eq. (3) and
in (A) the α values from the optimisation (see Figure 4), i.e. those that minimise the (absolute) RMSDs, and in (B) the α values
from the derived functional relation (see eqs. (10) and (11)). In all cases, except of (B) and sample size S = 100, which has not
been taken into account for the derivation of the functional relation for α, the relative RMSDs is roughly constant with sequence
length, and so the increase in (absolute) RMSDs in line with the increase of the NC sizes and so NN sizes with sequence length.
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FIG. S7. Order of magnitude (i) average difference Ds (see eq. (S9)) and (ii) standard deviation σDs of the differences (see
eq. (S10)) between the extrapolated NN size estimations by our framework and the reference estimations by the NNSE for
all considered sequences from the fRNAdb for a given sequence length L for which the NNSE converges. The coloured lines
indicate results for different sample sizes S and random subsample sizes Sr considered for our framework. For the NC size
estimations, before extrapolation, we use eq. (3) and in (A) the α values from the optimisation (see Figure 4), and in (B) the α
values from the derived functional relation (see eqs. (10) and (11)).

In Figure S7, the results also show that in all cases the standard deviation σDs
of the differences significantly

increases with sequence length, highlighting that it is mainly the spread of the differences that causes the increase in
the RMSDs with sequence length. As mentioned in the article, this likely originates from the fact that our NC size
estimation formula (see eq. (3)) as well as the NN size estimation formula considered by the NNSE [S3] consists of a
product for which the number of factors increases with sequence length, leading to increasing uncertainties in the
estimations themselves. It should be noted that for S = 1000 and S = 10000, in all cases, the standard deviation of the
differences is larger than the deviation of the average difference from zero, showing that the deviation is not significant.

For the NN robustness estimations, the alternative error measures are given by:

Dr =
1

NL,r

NL,r∑
i=1

(rNN,est,i − rNN,NNSE,i) (S12)

σDr
=

√√√√ 1

NL,r

NL,r∑
i=1

(
rNN,est,i − rNN,NNSE,i −Dr

)2
(S13)

where the sums run over the NL,r = 100 randomly selected sequences for each sequence length, for which we use the
NNSE to additionally estimate the NN robustness. In Figure S8, the results are shown.

In most cases, the average difference Dr is marginally larger than zero, i.e. our NN robustness estimates are marginally
larger on average than those by the NNSE. As mentioned in the article, there are two potential reasons. First, we
actually estimate NC and not NN robustness and only assume that both are equal. In fact, the robustness of a NC
might be larger than of its NN due to the fragmentation of the NN into NCs, leading to a marginal overestimation
of our NN robustness estimates. Second, the considered site scanning sampling is likely to some extent biased to
network nodes with high degree and so robustness, potentially leading to marginally overestimated NC and so NN
robustness by our method. Similarly, the standard deviation σDr

of the differences is roughly independent of the
sequence length and decreases with increasing sample or random subsample size up to a certain amount. Again, in all
cases, the standard deviation of the differences is larger than the deviation of the average difference from zero, showing
that the deviation is not significant.
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FIG. S8. (A) Average difference Dr (see eq. (S12)) and (B) standard deviation σDr of the differences (see eq. (S13)) between
the extrapolated NN robustness estimations by our framework and the reference estimations by the NNSE for 100 randomly
selected sequences from the fRNAdb of given fixed sequence length L. The coloured lines indicate results for different sample
sizes S and random subsample sizes Sr considered for our framework.
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VIII. RNA SECONDARY STRUCTURE ‘COMPATIBLE’ BASE PAIR MUTATIONS

In section IV F and eq. (13), we describe the computational costs for one estimation run for our framework in terms
of the number of calls of the folding function RNA.fold. The second term in eq. (13) corresponds to the measurement
of the one-point mutational neighbourhoods of the Sr genotypes in the random subsample. When doing so, we restrict
ourselves to RNA secondary structure compatible base pairs {CG,GC,AU,UA,GU,UG}, i.e. for a paired site, we only
check if a one-point mutation is neutral if the mutated base pair is still one of the six compatible combinations. For a
paired site, we describe the number of one-point mutations that are compatible by γ. In the following, we outline how
to derive an average approximate value for γ.

In simple algorithmic approaches to estimate the free energy of an RNA secondary structure, it is assumed that a
single CG/GC base pair is about two times as strong (two times the energy contribution) as a AU/UA base pair, and
about three times as strong (three times the energy contribution) as a GU/UG base pair [S5]. Based on this, we simply
assume that a CG/GC base pair is twice as frequent than a AU/UA base pair, and three times more frequent than a
GU/UG base pair. This implies that for a base pair the probability to be formed out of CG or GC is 3

11 , respectively,

to be formed out of AU or UA is 1
2 ·

3
11 , respectively, and to be formed out of GU or UG is 1

3 ·
3
11 , respectively. Using

this, the weighted average of the number of compatible one-point mutations for a paired site is given by 13
22 and so

γ ≈ 13
22 ≈ 0.59. See Table SIII for a detailed calculation.

base pair site 1 base pair site 2 assumed probability # compatible mutations site 1 # compatible mutations site 2

C G 3
11

1 (C→U) 0

G C 3
11

0 1 (C→U)

A U 1
2
· 3
11

1 (A→G) 0

U A 1
2
· 3
11

0 1 (A→G)

G U 1
3
· 3
11

1 (G→A) 1 (U→C)

U G 1
3
· 3
11

1 (U→C) 1 (G→A)

weighted average 13
22
≈ 0.59 13

22
≈ 0.59

TABLE SIII. Detailed calculation of the weighted average number of compatible one-point mutations for a paired site in an
RNA secondary structure phenotype, i.e. the weighted average number of one-point mutations of a paired site that still lead to
one of the six compatible base pairs {CG,GC,AU,UA,GU,UG}.
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