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Summary
Background CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use 
requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic 
importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types.

Methods Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60 centres across Europe. We trained and 
validated an initial convolutional neural network (CNN) on expert manual segmentations (dataset 1). This CNN was 
used to automatically segment a new dataset of scans, which we then corrected manually (dataset 2). From this 
dataset, we used a subset of scans to train a final CNN for multiclass, voxel-wise segmentation of lesion types. The 
performance of this CNN was evaluated on a test subset. Performance was measured for lesion volume quantification, 
lesion progression, and lesion detection and lesion volume classification. For lesion detection, external validation was 
done on an independent set of 500 patients from India.

Findings 98 scans from one centre were included in dataset 1. Dataset 2 comprised 839 scans from 38 centres: 
184 scans were used in the training subset and 655 in the test subset. Compared with manual reference, CNN-derived 
lesion volumes showed a mean difference of 0·86 mL (95% CI –5·23 to 6·94) for intraparenchymal haemorrhage, 
1·83 mL (–12·01 to 15·66) for extra-axial haemorrhage, 2·09 mL (–9·38 to 13·56) for perilesional oedema, and 
0·07 mL (–1·00 to 1·13) for intraventricular haemorrhage.

Interpretation We show the ability of a CNN to separately segment, quantify, and detect multiclass haemorrhagic 
lesions and perilesional oedema. These volumetric lesion estimates allow clinically relevant quantification of 
lesion burden and progression, with potential applications for personalised treatment strategies and clinical research 
in TBI.
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Introduction
With an estimated global incidence of more than 
60 million cases per year, traumatic brain injury (TBI) is 
the leading cause of mortality in young adults and a 
major cause of morbidity worldwide.1,2 CT is the imaging 
modality of choice to assess the extent and distribution of 
injury, provide input to prognostic models, and assess 
the requirement for surgery.3 Being able to automatically 
and accurately quantify lesion load and its progression 
would provide a more objective basis than qualitative 
assessment by visual inspection for medical and surgical 
treatment decision making.

A substantial focus of TBI research has been to 
refine the current classification schemes into more 
therapeutically meaningful categories by incorporating 
information on a patient’s genetic, blood, and cerebro spinal 

fluid biomarkers along with clinical and neuro imaging 
data.1,4 Hence, being able to reliably and efficiently 
differentiate lesion types and compute their spatial dis
tribution, number, and volumes would enable optimised 
and more individualised treatment strategies. Such 
automated assessment would also facilitate the analysis of 
large imaging datasets, which are emerging as an essential 
research resource. Finally, by far the greatest burden of 
TBI is in lowincome and middleincome countries,2 
where radiological expertise is likely to be be less easily 
available. Having automatic CT analysis algorithms would 
be of particular benefit in such contexts.2

Substantial intercentre variability and discordance by 
radiologists exists when reporting CT scan results from 
patients with TBI.5 Automating such quantitative meas
urements would, in theory, circumvent interobserver 
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variability and allow for analysis of largescale imaging 
datasets. Until recently, attempts to automate acute 
intracranial haemorrhage segmentation on CT have 
relied on techniques such as intensity thresholding and 
active contouring, which still require some degree of 
manual input, and have only been applied to small 
datasets, raising concerns about the robustness and 
generalisability of these models.6–9 Little past success in 
this context probably reflects two challenges in working 
with this patient population. First, the heterogeneity of 
radiographic phenotypes in TBI makes the development 
of accurate segmentation rules challenging. Second, the 
diffuse nature of the injury in a large proportion of 
patients with TBI renders the manual annotations 
required to establish a ground truth reference dataset 
difficult and time consuming.

Convolutional neural networks (CNNs) have emerged 
as a powerful tool for image segmentation, with the 
ability to learn complex nonlinear mappings between 
the input image and segmentation.10 Previous deep 
learning studies for segmentation of TBI lesions have 
focused on the segmentation of undifferentiated 
haemorrhagic lesions, with no attempts to differentiate 
pathoanatomical lesion types.11 Although such binary 
imagelevel detection of abnormalities might prove 
useful for triaging patients in need of urgent medical 
attention, it has little value in supporting precision 
medicine, quantifying lesion progression in trials of 
new therapies, or predictive modelling of clinical 
outcome. Other studies have focused on lesion detection 
at an image level with differentiation of intracranial 
haemorrhage types.12,13 In addition to detection, one 

study showed qualitative results for segmentation.13 
However, this study provided no quantitative metrics, 
did not specifically address TBI, and provided no 
assessment of oedema. Accurate quanti fication of lesion 
volumes can only be achieved when using voxelwise 
labels (ie, for segmentation of lesions) as opposed to 
imagelevel labels (ie, for classification of images). 
Voxelwise labels allow for both volume quantification 
and localisation of lesions, which may be important for 
improved understanding of the factors that lead to 
lesion progression and to more clinically relevant 
prognostic schemes.

We aimed to develop and validate a new, clinically 
relevant algorithm based on deep CNNs for multiclass, 
voxelwise segmentation, volumetric quantification, and 
detection of TBI lesion types visible in CT.

Methods
Study design and participants
The data used in this study were from the Collaborative 
European Neuro Trauma Effectiveness Research in TBI 
study (CENTERTBI, NCT02210221),14,15 accessed using 
the Neurobot platform (RRID/SCR_017004, core data 
version 2.0, release date May 15, 2019). Patients were 
recruited between Dec 9, 2014, and Dec 17, 2017, in 
60 centres across Europe. Data collection, handling, and 
storage are described in detail elsewhere.14,15 CT scans 
were collected as part of standard clinical practice, using 
various platforms and imaging parameters.5

Ethical approval was obtained in accordance with all 
relevant laws and regulations for each recruiting site, 
and informed consent by patients or their legal 

Research in context

Evidence before this study
We searched PubMed for machine learning or deep learning 
studies focusing on automated lesion quantification of 
traumatic brain injury (TBI) in head CT published before 
Jan 31, 2020, with the terms: (“traumatic brain injury” OR 
“TBI”) AND (“computed tomography” OR “CT” OR 
“neuroimaging”) AND (“deep learning” OR “convolutional 
neural network” OR “artificial intelligence” OR “machine 
learning”). This search was not restricted to any language. We 
supplemented this list with manuscripts from past knowledge 
of the literature and discussions with colleagues. We used these, 
as well as those identified in the initial PubMed search, as the 
basis for a further literature search. This process identified 
several publications addressing the use of machine learning for 
TBI in head CT. However, previous approaches to automated 
assessment of CT images after TBI have been largely limited to 
the undifferentiated detection of haemorrhagic lesions, with no 
routine volumetric analysis. Although such binary image-level 
detection of abnormalities can prove useful for triaging 
patients in need of urgent medical attention, it has little value 
for analysis of lesion progression and predictive modelling.

Added value of this study
In this study, we report quantitative multiclass segmentation 
results using a convolutional neural network (CNN) for 
intraparenchymal haemorrhage, extra-axial haemorrhage, 
intraventricular haemorrhage, and perilesional oedema. 
We show that these lesion types can be detected and measured 
with high accuracy. These attributes are relevant for image-
based diagnosis, assessment of injury type, quantification of 
injury burden, and measurement of lesion progression, both for 
clinical care and research. We have made the algorithm freely 
available to facilitate future research.

Implications of all the available evidence
CNN-based processing of CT images in TBI can be used to 
quickly and accurately detect the type, distribution, and extent 
of injury after TBI. Such algorithms are likely to be of use in 
research studies, facilitate clinical radiology workflows by 
flagging scans that require urgent attention, aid reporting in 
resource-constrained environments, and help to detect 
pathoanatomically relevant features for prognostication and 
characterisation of lesion progression.

For the study protocol see 
https://www.center-tbi.eu/

https://www.center-tbi.eu/
https://www.center-tbi.eu/
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representative or next of kin was obtained according 
to local laws and regulations.14 A complete ethics state
ment, which contains a comprehensive list of sites, 
ethical committees, and approval numbers, is available 
online.16

Procedures
For development and internal validation, we use two 
datasets from CENTERTBI: dataset 1 and dataset 2. We 
used a twostep process to acquire a large number of 
annotated scans (appendix p 4). The scans in dataset 1 
were annotated manually in a bespoke segmentation tool 
(ImSeg, version 1.9, BioMedIA, London, UK) by trained 
personnel (FM and KA) and checked by two other experts 
(VFJN and TD). These segmentations were used to 
develop the initial segmentation model and then 
excluded from any subsequent training or evaluation to 
avoid skewing the analysis of results.

With the model developed on dataset 1, we did 
automatic lesion segmentation on dataset 2. These 
automatic segmentations were refined manually by 
trained personnel (FM and KA) using ITKSNAP 

Figure 1: Qualitative and quantitative multiclass segmentation results
(A) Qualitative segmentation results. IPH is shown in red, EAH in green, perilesional oedema in blue, and IVH in 
yellow. (B) Per-class boxplots of DSC progressively including only lesions with volume greater than a threshold. For 
each individual boxplot, the central line represents the median and the black circle the mean. The box shows the 
IQR and is indented to indicate the 95% CI of the median. Whiskers adjacent to the boxes represent 1·5 times the 
IQR. Coloured circles are outliers. The corresponding table is available in the appendix (p 9). DSC=Dice similarity 
coefficient. EAH=extra-axial haemorrhage. IPH=intraparenchymal haemorrhage. IVH=intraventricular 
haemorrhage. *Not plotted owing to insufficient data.
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Dataset 1 
(n=27)

Dataset 2 
(n=512)

Age (years) 46 (16–77) 58 (6–89)

Sex

Female 5 (19%) 163 (32%)

Male 22 (81%) 349 (68%)

Mechanism of injury

Acceleration or deceleration 7 (26%) 111 (22%)

Blow to head or hit object 4 (15%) 77 (15%)

Fall from height 13 (48%) 208 (41%)

Multi-mechanistic 2 (7%) 99 (19%)

Unknown 1 (4%) 17 (3%)

Injury severity

Mild (GCS 13–15) 7 (26%) 299 (58%)

Moderate (GCS 9–12) 2 (7%) 57 (11%)

Severe (GCS <9) 18 (67%) 136 (27%)

Missing 0 20 (4%)

Time from injury to first CT scan (h) 2·4 (1·2–8·0) 2·0 (0·2–77·0)

Repeat scan done 26 (96%) 412 (80%)

Time from injury to second CT scan (h) 16·0 
(5·0–79·0)

19·0 
(0·9–190·0)

Interval between CT scans (h) 14·0 
(3·6–77·0)

16·0 
(0·1–190·0)

Marshall score

I 2 (7%) 120 (23%)

II 11 (41%) 234 (46%)

III 2 (7%) 29 (6%)

IV 0 6 (1%)

V 0 2 (<1%)

VI 12 (44%) 121 (24%)

Presence of:

Epidural haematoma 10 (37%) 54 (11%)

Acute subdural haematoma 13 (48%) 223 (44%)

Traumatic subarachnoid 
haemorrhage

20 (74%) 313 (61%)

Intraventricular haemorrhage 6 (22%) 88 (17%)

Intraparenchymal haemorrhage 18 (67%) 224 (44%)

Cisternal compression 9 (33%) 99 (19%)

Midline shift >5 mm 8 (30%) 71 (14%)

Glasgow Outcome Score at 6 months

1 6 (22%) 66 (13%)

2 0 0

3 9 (33%) 84 (16%)

4 7 (26%) 126 (25%)

5 2 (7%) 199 (39%)

Missing 3 (11%) 37 (7%)

Data are median (range) or number (%). Some percentages do not add up to 100 
because of rounding. GCS=Glasgow Coma Score. 

Table 1: Cohort details for both datasets
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(version 3.8.0beta), and the corrections were reviewed by 
two experts (VFJN and TD) to provide highquality, 
accurate ground truth lesion segmentations. The refined 
segmen tations contained four lesion types: intra paren
chymal haemorrhage; extraaxial haemorrhage, which 
includes subdural haematoma, extradural haematoma, 
and traumatic subarachnoid haemorrhage; perilesional 
oedema (hereafter referred to as oedema); and intraven
tricular haemorrhage. Small petechial haemorrhages, 
which probably arise from diffuse vascular injury and are 
thought to be a surrogate for accompanying diffuse 
axonal injury,17,18 were classified as intraparenchymal 
haemorrhage. 

To establish whether the semiautomatic annotation 
procedure of dataset 2 provided adequate reproducibility, 
we did repeat manual segmentation on 20 scans by a 
single expert (FM) to assess intrarater reproducibility, 
and on 25 scans by a second expert (DW) to assess 
interrater variability.

For the subsequent analyses, we split dataset 2 into a 
training and test set. Different scans from the same 
patient were placed together in either the training or the 
test set to avoid the correlation between repeat scans 
biasing the results. Only scans with more than 1 mL of 
lesion load were included in the training set to ensure 
that there was enough training signal for the CNN.

For the segmentation method, we used DeepMedic,19,20 
a threedimensional CNN with three parallel pathways 

that process the input at different resolutions. Details on 
the model and image preprocessing are provided in the 
appendix (p 2). To facilitate its use in future studies, our 
algorithm is available online.

For external validation, we used the CQ500 dataset, a 
publicly available, anonymised, TBI CT dataset provided 
by the Centre for Advanced Research in Imaging, 
Neurosciences and Genomics, New Delhi, India.12,21 This 
dataset provides imagelevel labels as opposed to voxel
wise segmentations. However, it is the largest labelled 
TBI cohort available publicly, and no other dataset 
provides voxelwise segmentations.

Outcomes
The primary outcome was the quantification of lesion 
volume. The secondary outcomes were lesion detection 
and the assessment of lesion progression.

Statistical analysis
Statistical analysis was done in Python 3.6.8 (appendix 
p 3). Classic sample size calculation is not directly 
applicable to CNNbased segmentation. The sample 
sizes in this work followed the common principle in 
current deep learning research whereby more data 
tends to yield better results. Thus, we attempted to 
maximise the number of scans for training and testing 
under the constraint of finite resources for expert 
annotations.

Evaluation metrics were computed and stratified by 
lesion class and volume. A virtual lesion class (any lesion) 
consisting of the combined lesion map that merged all 
lesion types into one was created to allow for evaluation 
in terms of lesion versus nonlesion.

To assess the performance of the algorithm, we used 
the Dice similarity coefficient (DSC), which measures 
the agreement between manual and automatic segmen
tation. Since the mean DSC is sensitive to lesions with 
small volumes or scans on which lesions are not present, 
we report DSC scores for lesions above several volume 
thresholds. DSC is a well accepted metric for assessing 
accuracy in image segmentation.22 However, it is not 
meaningful when assessing performance with respect to 
clinical utility (appendix pp 2–3). For a clinically relevant 
assessment, we have provided additional metrics such as 
lesion volume estimates and receiver operating character
istic (ROC) curves for lesion detection and lesion volume 
classification.

To assess the accuracy of the algorithm at estimating 
lesion volume, we extracted lesion volumes from the 
manual and predicted segmentations to calculate volume 
error, which we summarised in BlandAltman plots. We 
also assessed the accuracy of the algorithm at quantifying 
lesion progression. To obtain the error in volume change, 
we calculated the true volume difference and predicted 
volume difference between repeat scans for patients in 
the test set who had repeat scans for which both 
timepoints could be established. 

Figure 2: Bland-Altman plots for lesion volume estimation
The solid horizontal lines are means and the shaded regions are 95% CIs. The x-axes are on a logarithmic scale to 
improve visualisation. Axes are plotted on different scales across plots for clarity. Absolute volume errors are 
shown in the appendix (pp 9–10).
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For the study algorithm see 
https://github.com/biomedia-

mira/blast-ct/

https://github.com/biomedia-mira/blast-ct/
https://github.com/biomedia-mira/blast-ct/
https://github.com/biomedia-mira/blast-ct/
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The output of the segmentation algorithm can be used 
for lesion detection and lesion volume classification. We 
used the true lesion volume to set a classification target 
(eg, target is positive if the true volume is greater than 
1 mL and negative otherwise). We then used the predicted 
lesion volume as the score on which a threshold was 
varied to calculate ROC curves. We addressed three key 
lesion detection and lesion volume classification 
problems to assess the clinical applicability of the model: 
(1) ability to detect lesions, which is equivalent to 
classifying lesions with a volume greater than 0 mL; 
(2) classification of lesions with a volume greater than 
1 mL, to enable comparison with findings from datasets 
that did not contain small lesions; and (3) classification 
of lesions with a volume greater than 25 mL, equivalent 
to Marshall grade V/VI,23 which may indicate lesions 
requiring surgical intervention.

For each curve, we computed the area under the curve 
(AUC), its 95% CI using the Hanley and McNeil approach,24 
the sensitivity and specificity of the two operating points 
(sensitivity at a specificity of 0·90 and vice versa), and their 
95% CIs using the ClopperPearson method.25

We used our algorithm to segment the scans in the 
CQ500 dataset and to calculate lesion volumes. These are 
used as the classification score to compare with the 
ground truth imagelevel labels provided. This dataset was 
used only at the end for final validation, never during 
development. This approach validated the lesion detect ion 
performance of our algorithm on an external, independent 
dataset from a different patient population. CQ500 was 
not annotated for oedema, and so instead of our summated 
any lesion class we report on intracranial haemorrhage, 
which includes all haemorrhage classes in our analysis: 
intraparenchymal haemorrhage, extraaxial haemorrhage, 
and intraventricular haemorrhage.

Role of the funding source
The funders of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to all 
the data in the study and had final responsibility for the 
decision to submit for publication.

Results
Dataset 1 consisted of 98 different CT scanning sessions 
from 27 patients from one centre (Cambridge University 
NHS Foundation Trust, Cambridge, UK). Data from this 
centre were available first as part of a preliminary proof
ofconcept study. Dataset 2 consisted of 839 different CT 
scanning sessions from 512 patients and 38 different 
centres from which data were available at the time of 
the study, including Cambridge NHS Foudation Trust. 
The procedure of semiautomatic segmentation enabled 
the creation of a much larger dataset (839 vs 98 scans) 
without a commensurate increase in resource require
ments. Table 1 shows the cohort characteristics of both 
datasets, representing the broad spectrum of TBI. From 

dataset 2, 184 scans were included in the training subset 
and 655 scans were included in the test subset. Consistent 
with the known heterogeneity of TBI, 744 (89%) of 
839 scans did not contain all four lesion types.1,15  The 
distribution of lesions is available in the appendix (p 8). 

Figure 1A shows qualitative results for five different 
cases from our test set, showing the visual agreement 
between the true and predicted segmentations. Figure 1B 
shows DSC boxplots. The median DSC for the any lesion 
class was 36·0% (IQR 0·0–63·4) when including all 
599 scans (469 with lesions plus 130 with no lesions but 
where our model predicted a lesion). In addition to 
calculating DSCs using all the test scans, we chose the 
following preplanned thresholds to address different 
performance levels: 0 mL, 1 mL, and 5 mL  (appendix p 9). 
Limiting the analysis to the 469 scans with lesions 
increased the median DSC to 49·4% (IQR 21·5–67·1), 
and the exclusion of lesions of 1 mL or smaller further 
increased the DSC to 59·3% (42·6–73·1, n=328). A 
similar relationship between lesion volume and DSC was 
noted for individual lesion classes (figure 1B). For lesions 
with a volume greater than 1 mL, the median DSC was 
65·2% (IQR 50·6–77·8, n=167) for intraparenchymal 
haemor rhage, 55·3% (39·1–71·0, n=262) for extraaxial 
haemorrhage, 44·8% (15·5–64·1, n=208) for oedema, 
and 47·3% (38·1–60·3, n=21) for intraventricular 
haemorrhage; for lesion volumes greater than 5 mL, 
these numbers increased to 72·6% (58·1–81·6, n=90) for 
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Figure 3: Bland-Altman plots for lesion progression
The solid horizontal lines are means and the shaded regions are 95% CIs. The x-axes are on a logarithmic scale to 
improve visualisation. Axes are plotted on different scales across plots for clarity. Absolute volume change errors 
are shown in the appendix (pp 9–10).
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intraparenchymal haemorrhage, 67·5% (52·5–78·2, 
n=160) for extraaxial haemorrhage, and 54·6% (32·0–68·1, 
n=137) for oedema. To compare with previous literature, 
we combined intraparenchymal haemorrhage and extra
axial haemor rhage and obtained a median DSC of 72·0% 
(59·2–80·1, n=210) for lesion volume greater than 5 mL.

Figure 2 shows BlandAltman plots of the agreement 
between the true and predicted lesion volumes. The mean 
difference was 0·86 mL (95% CI –5·23 to 6·94) for 
intraparenchymal haemorrhage, 1·83 mL (–12·01 to 15·66) 
for extraaxial haemorrhage, 2·09 mL (–9·38 to 13·56) for 
oedema, and 0·07 mL (–1·00 to 1·13) for intraventricular 
haemorrhage. For lesions with a volume greater than 5 mL, 
the median absolute error was 3·57 mL (IQR 1·96 to 7·97, 
n=90) for intraparenchymal haemor rhage and 4·57 mL 
(2·18 to 8·88, n=160) for extraaxial haemorrhage. For 
further discussion regarding absolute volume error see the 
appendix (p 3). Regarding the reproducibility of the manual 
annotation procedure, for intrarater repro ducibility (n=20) 
and interrater variability (n=25), we obtained agreements 
in the range of 0·90–1·00 for all lesion types (appendix p 8).

98 patients in the test set who had repeat scans for 
which both timepoints could be established (196 scans) 
were included in the calculations of true and predicted 
volume difference. Figure 3 presents BlandAltman plots 

of the agreement between the true and predicted lesion 
volume change. The mean difference was 0·46 mL 
(95% CI –4·04 to 4·97) for intraparenchymal haemor
rhage, –0·37 mL (–5·42 to 4·69) for extraaxial 
haemorrhage, 0·68 mL (–9·03 to 10·39) for oedema, and 
0·12 mL (–1·48 to 1·71) for intraventricular haemorrhage. 
In the appendix (p 3), we show that our algorithm enables 
localisation of lesions (ie, the quantification of lesion 
volume by brain region). 

Table 2 and figure 4 show the results of lesion volume 
classification and lesion detection for external validation. 
For imagelevel detection of lesions, we obtained an AUC 
of 0·89 (95% CI 0·86–0·91) for the any lesion class, 0·87  
(0·85–0·90) for the intraparenchymal haemorrhage 
class, 0·89 (0·86–0·91) for the extraaxial haemorrhage 
class, 0·89 (0·86–0·92) for the oedema class, and 0·89  
(0·85–0·93) for the intraventricular haemorrhage class. 
For the 1 mL threshold, the AUCs increased to 0·96  
(0·95–0·98), 0·99 (0·98–1·00), 0·97 (0·95–0·98), 0·94 
(0·92–0·96), and 0·99 (0·95–1·00), indicating that most 
of the missed lesions are very small. For the classification 
of large lesions (>25 mL), the AUCs were 0·99 
(0·98–1·00) for any lesion, 0·99 (0·97–1·00) for intra
parenchymal haemor rhage, 0·99 (0·98–1·00) for extra
axial haemor rhage, and 0·98 (0·95–1·00) for oedema. 

Number of scans High-specificity operating point High-sensitivity operating point Area under the curve 
(95% CI)

Positives Negatives Mean sensitivity 
(95% CI)

Mean specificity 
(95% CI)

Mean sensitivity 
(95% CI)

Mean specificity 
(95% CI)

>0 mL

Any lesion 469 186 0·70 (0·66–0·74) 0·90 (0·85–0·94) 0·90 (0·87–0·93) 0·61 (0·54–0·68) 0·89 (0·86–0·91)

IPH 306 349 0·77 (0·72–0·82) 0·90 (0·87–0·93) 0·81 (0·76–0·85) 0·85 (0·80–0·88) 0·87 (0·85–0·90)

EAH 402 253 0·72 (0·67–0·76) 0·90 (0·86–0·94) 0·90 (0·87–0·93) 0·63 (0·57–0·69) 0·89 (0·86–0·91)

Perilesional oedema 287 368 0·80 (0·75–0·85) 0·90 (0·87–0·93) 0·85 (0·80–0·89) 0·82 (0·77–0·85) 0·89 (0·86–0·92)

IVH 96 559 0·70 (0·60–0·79) 0·90 (0·87–0·93) 0·90 (0·82–0·95) 0·75 (0·71–0·78) 0·89 (0·85–0·93)

>1 mL

Any lesion 328 327 0·89 (0·85–0·92) 0·90 (0·86–0·93) 0·90 (0·87–0·93) 0·87 (0·83–0·91) 0·96 (0·95–0·98)

IPH 167 488 0·96 (0·92–0·98) 0·90 (0·87–0·93) 0·90 (0·85–0·94) 0·97 (0·94–0·98) 0·99 (0·98–1·00)

EAH 262 393 0·89 (0·85–0·93) 0·90 (0·87–0·93) 0·90 (0·86–0·93) 0·89 (0·85–0·92) 0·97 (0·95–0·98)

Perilesional oedema 208 447 0·86 (0·80–0·90) 0·90 (0·87–0·93) 0·90 (0·86–0·94) 0·86 (0·83–0·89) 0·94 (0·92–0·96)

IVH 21 634 0·95 (0·76–1·00) 0·90 (0·87–0·92) 0·90 (0·70–0·99) 0·97 (0·95–0·98) 0·99 (0·95–1·00)

>25 mL

Any lesion 134 521 0·98 (0·94–1·00) 0·90 (0·87–0·92) 0·90 (0·84–0·95) 0·96 (0·94–0·98) 0·99 (0·98–1·00)

IPH 19 636 1·00 (0·82–1·00) 0·90 (0·88–0·92) 0·95 (0·74–1·00) 0·94 (0·92–0·96) 0·99 (0·97–1·00)

EAH 61 594 0·98 (0·91–1·00) 0·90 (0·87–0·92) 0·90 (0·80–0·96) 0·97 (0·96–0·99) 0·99 (0·98–1·00)

Perilesional oedema 36 619 0·89 (0·74–0·97) 0·90 (0·88–0·92) 0·92 (0·78–0·98) 0·89 (0·87–0·92) 0·98 (0·95–1·00)

External validation set CQ500

ICH 205 285 0·59 (0·51–0·65) 0·90 (0·86–0·93) 0·90 (0·85–0·94) 0·51 (0·45–0·56) 0·83 (0·79–0·87)

IPH 134 356 0·76 (0·68–0·83) 0·90 (0·87–0·93) 0·89 (0·82–0·94) 0·74 (0·69–0·79) 0·90 (0·86–0·94)

EAH 119 371 0·49 (0·39–0·58) 0·90 (0·87–0·93) 0·91 (0·84–0·95) 0·38 (0·33–0·43) 0·80 (0·75–0·85)

IVH 28 462 0·89 (0·72–0·98) 0·90 (0·87–0·93) 0·93 (0·76–0·99) 0·68 (0·63–0·72) 0·95 (0·89–1·00)

The high specificity and high sensitivity operating points were obtained using a cutoff of 0·90 or the closest possible available. The 0 mL threshold is equivalent to lesion detection. EAH=extra-axial haemorrhage. 
ICH=intracranial haemorrhage. IPH=intraparenchymal haemorrhage. IVH=intraventricular haemorrhage.

Table 2: Multiclass detection and classification results for three volume thresholds and detection results for the external validation dataset CQ500
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On the external validation set, we reported an AUC of 
0·83 (95% CI 0·79–0·87) for the intracranial haemor
rhage class, 0·90 (0·86–0·94) for the intra parenchymal 
haemorrhage class, 0·80 (0·75–0·85) for the extraaxial 
haemorrhage class, and 0·95 (0·89–1·00) for the intra
ventricular haemorrhage class.

Discussion
In this study, we found that the voxelwise segmentation 
pro duced by a CNN can be used for volumetric quantifi
cation and detection and classification of multiclass TBI 
lesions in head CT, as well as for the assessment of lesion 
progression. We were able to accurately quantify and 
detect lesions on an external, independent dataset. To our 
knowledge, this is the largest study so far to use a ground 
truth reference of manually annotated and manually 
corrected automatic segmentations of CT scans. The size 
and diversity of this multicentre dataset provide insights 
into the performance of deep learning in a realworld 
clinical scenario. We extend findings from previous 
studies11–13 by providing quantitative volumetric results 
separately for intraparenchymal haemorrhage, extra
axial haemorrhage, intraventricular haemorrhage, and 
perilesional oedema.

The CNN provided a well calibrated prediction of 
lesion volume since differences between the true and 
predicted volumes were small when compared with the 
overall lesion volume. The funnelling observed can be 
explained by lesions being predicted where there were 
none and vice versa, which mostly occurs for smaller 
lesions. For comparison, previous work11 reported a 
median absolute error of 8·83 mL (n=39) for intra
parenchymal haemorrhage and extraaxial haemor rhage 
lesions combined while considering only lesions with 
a volume greater than 5·5 mL. In our analysis, we 
did finegrained segmentation of these two classes 
individually and validated our CNN on a larger dataset. 
For lesions with a volume greater than 5 mL, our 
median absolute error was smaller than that reported 
previously11 for intraparenchymal haemorrhage and 
extraaxial haemorrhage. 

The potential clinical applicability of the volume 
estimates is further confirmed by our results on lesion 
progression. Such progression of intracranial lesions 
represents a major target for therapies in the acute phase. 
For example, cerebral contusions are common after TBI, 
occurring in up to twothirds of patients admitted to 
hospital,26,27 and progression of such lesions is common, 
occurring in up to half of patients within the first 
24–48 h.28–30 The ability to automatically monitor lesion 
progression offers key opportunities to improve patient 
stratification, guide and monitor management, and 
investigate potential causes and risk factors for lesion 
progression in large cohort studies such as CENTER
TBI.15 Until now, the identification of factors that predict 
or cause contusion progression, or both, has been 
hampered by the need to estimate lesion volume and 

change manually, restricting analyses to small sample 
sizes.28–30

Regarding the underlying lesion segmentation, the 
DSC increased with lesion volume, illustrating that the 
DSC is sensitive to small or nonexistent lesions, which 
is a limitation of the metric. The median DSC of 73·0% 
(n=39) reported previously for large intraparenchymal 
haemorrhage and extraaxial haemorrhage lesions com
bined (lesion volume >5·5 mL)11 is similar to that found 
in our study. 

The algorithm performed less well at quantifying 
perilesional oedema, and by extension mixed density 
lesions. However, the ability to undertake such quantifi
cation has not been reported previously; hence, we are 
unable to benchmark it against previous work. Although 
detection and delineation of highintensity haemorrhagic 
lesions are straightforward, precise delineation of 
hypointense oedema can be challenging, even for rad
iologists. The ability of our algorithm to do this task, in 
addition to quantifying other lesion types, may be 
important for prognostication, aid detection and avoidance 
of secondary injury, the evaluation of neuroprotective 
measures, and as an intermediate biomarker for clinical 
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Figure 4: Receiver operating characteristic curves for lesion detection and classification
Classification of lesions with a volume greater than 0 mL (A), greater than 1 mL (B), and greater than 25 mL (C) on 
the internal validation set, and detection of lesions on the external validation set CQ500 (D). AUC=area under the 
curve. EAH=extra-axial haemorrhage. IPH=intraparenchymal haemorrhage. IVH=intraventricular haemorrhage.
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trials aimed at the reduction of cerebral oedema and 
contusion growth.31

The accuracy of our CNN was lower in segmenting 
small haemorrhagic lesions. From a clinical perspective, 
however, this reduced accuracy is mitigated by the fact 
that the volume of these small lesions is less important 
in terms of prognostication or deciding on therapy. These 
small lesions are typically microhaemorrhages associated 
with diffuse vascular injury and are clinically used as a 
surrogate marker for diffuse axonal injury. Consequently, 
their clinical significance is dependent on number and 
distribution, rather than volume of individual lesions.17

Although our model was not designed for classification 
specifically, as a byproduct of the segmentation algorithm, 
it is able to do so with comparable performance to stateof
theart methods developed solely for detection.12,13 On the 
CQ500 dataset, previous work12 reported an AUC of 0·94 
(95% CI 0·92–0·97) for intracranial haemorrhage, 0·95 
(0·93–0·98) for intraparenchymal haemor rhage, 0·95 
(0·91–0·99) for subdural haematoma, 0·97 (0·91–1·00) 
for extradural haematoma, 0·97 (0·92–0·99) for traumatic 
subarachnoid haemorrhage, and 0·93 (0·87–1·00) for 
intraventricular haemorrhage.12 Apart from the intra
ventricular haemorrhage class, the AUCs we report on the 
same data are lower. However, our algorithm also has the 
ability to quantify lesion volume, shape, and location, 
which can be used to extract other radiological features of 
potential interest. Additionally, our results are not directly 
comparable with the previous work by Chilamkurthy and 
colleagues12 because they used certain rules to select the 
optimum scan per patient processed by their algorithm 
and we were not able to determine those rules for 
comparison. Instead, we processed all available scans for 
each patient (up to eight) and calculated the mean 
predicted volume for subsequent classification. Using a 
selected set of scans, as done in previous work, is likely to 
improve our results.

The ability to distinguish between different lesion types 
is important to aid understanding of pathophysiology and 
to implement personalised care. The heterogeneity of TBI 
is well described, encompassing a wide spectrum of 
pathologies, from axonal injury to focal contusions and 
extracranial bleeding. The large annotated dataset used in 
this study is representative of this clinical spectrum. The 
CENTERTBI study14,15 allowed a large variety of vendors 
and acquisition protocols to be used. Images in this 
analysis were contributed from 38 centres. Consequently, 
the perform ance is not manufacturer or acquisition 
dependent. The ability to generalise is supported by 
validation on an external, independent dataset from a 
different continent, for which the results for lesion 
detection were comparable with the results obtained on 
internal data.

Adding the ability to distinguish the different types of 
extraaxial haemorrhage is important, particularly given 
that extradural haematomas portend a better prognosis, 
and the presence of traumatic subarachnoid haemorrhage 

is a marker for worse outcomes in prognostic models.26,27,32 
Furthermore, expanding on the capability of lesion 
localisation may help answer key research questions and 
support clinical reporting of scans.

Future work needs to focus on the optimal incorporation 
of such algorithms into clinical practice, which must be 
accompanied by a rigorous assessment of performance, 
strengths, and weaknesses. Such algorithms will find 
clear research applications, and, if adequately validated, 
may be used to help facilitate radiology workflows by 
flagging scans that require urgent attention, aid reporting 
in resourceconstrained environments, and detect patho
anatomically relevant features for prognostication and a 
better understanding of lesion progression.
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