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ABSTRACT The transmission bottleneck is defined as the number of viral particles that10

transmit from one host to establish an infection in another. Genome sequence data11

has been used to evaluate the size of the transmission bottleneck between humans12

infected with the influenza virus, however, the methods used to make these estimates13

have some limitations. Specifically, viral allele frequencies, which form the basis of14

many calculations, may not fully capture a process which involves the transmission of15

entire viral genomes. Here we set out a novel approach for inferring viral transmission16

bottlenecks; our method combines an algorithm for haplotype reconstruction with17

maximum likelihood methods for bottleneck inference. This approach allows for rapid18

calculation, and performs well when applied to data from simulated transmission19

events; errors in the haplotype reconstruction step did not adversely affect inferences20

of the population bottleneck. Applied to data from a previous household transmission21

study of influenza A infection we confirm the result that the majority of transmission22

events involve a small number of viruses, albeit with slightly looser bottlenecks being23

inferred, with between 1 and 13 particles transmitted in the majority of cases. While24

influenza A transmission involves a tight population bottleneck, the bottleneck is not25

so tight as to universally prevent the transmission of within-host viral diversity.26

IMPORTANCE Viral populations undergo a repeated cycle of within-host growth fol-27

lowed by transmission. Viral evolution is affected by each stage of this cycle. The28

number of viral particles transmitted from one host to another, known as the transmis-29

sion bottleneck, is an important factor in determining how the evolutionary dynamics30

of the population play out, restricting the extent to which the evolved diversity of the31

population can be passed from one host to another. Previous study of viral sequence32

data has suggested that the transmission bottleneck size for influenza A transmission33

between human hosts is small. Re-evaluating these data using a novel and improved34

method, we largely confirm this result, albeit that we infer a slightly higher bottleneck35

size in some cases, of between 1 and 13 virions. While a tight bottleneck operates36

in human influenza transmission, it is not extreme in nature; some diversity can be37

meaningfully retained between hosts.38

KEYWORDS: influenza A, transmission, population bottleneck39
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INTRODUCTION40

Viral populations experience large fluctuations in population size. During the course41

of an infection many thousands of viruses may be produced by each infected cell (1),42

yet in the process of transmission only a small number of viruses may get through to43

found a new infection (2). The size of the bottleneck undergone by a viral population at44

the moment of transmission has an important impact on the evolution of that virus.45

Where larger numbers of viral particles are involved in transmission, a greater amount46

of genetic diversity is preserved between hosts; where smaller numbers of particles47

are transmitted, between-host evolution becomes more of a stochastic process (3).48

Studying transmission at the scale of individual hosts therefore gives an insight into49

larger-scale patterns of viral evolution.50

51

Genetic data provides an invaluable insight into processes of viral evolution (4).52

Such data have been at the core of a variety of approaches for the quantitative analysis53

of population bottlenecks, typically using observations of minority variants, or their54

allele frequencies, to make a statistical inference. For example, counting the number55

of minority variants shared between hosts can be informative of whether transmission56

occurred between specific hosts (5, 6). If the route of transmission is known, shared57

variants can be used to estimate the size of the population bottleneck (7). A model58

of genetic drift may also be applied: smaller or larger changes in the composition of59

a viral population suggest that a larger or smaller number of viruses were transmit-60

ted (3, 8, 9, 10, 11). In some situations, engineered viruses with genetic markers have61

been used to directly evaluate transmission events (12, 13).62

63

Recent studies of influenza transmission between human hosts have used metrics64

based upon changes in allele frequencies to evaluate the bottleneck at transmis-65

sion (3, 11, 14, 15). Such metrics have limitations; transmission is ultimately an event66

in which whole viruses, rather than independent alleles, are passed from one host67

to another. Neglecting genetic linkage in this way can skew the results of inference68

methods (16). Inspired by this, a recent study on the assessment of viral transmissibility69

used sequence data to evaluate transmission at the level of viral genomes (17).70

71

Accounting for genetic linkage between alleles becomes more difficult as the diver-72

sity of a viral population increases. In modelling the action of selection on a diverse73

population, the large number of potential genome sequences can make calculations74

infeasible. Considering cases in which selection among transmitted variants is not the75

dominant effect at transmission (3) we here set out an alternative approach for the76

inference of population bottlenecks, incorporating the true genetic structure of viruses.77

Our approach has two components. Firstly, given sequence data collected before78

and after a transmission bottleneck, we apply a method of haplotype reconstruction,79

using a maximum likelihood framework to calculate a parsimonious reconstruction80

of the viral population, as observed before and after transmission. A broad variety81

of computational tools have previously been described for the purpose of haplotype82

reconstruction in various contexts (18, 19, 20, 21, 22, 23); ours fits naturally into the83

bioinformatic framework we have outlined in previous publications (24, 25). Secondly,84

we use the haplotype reconstruction to infer a bottleneck size at transmission; our85

framework contains two alternative approaches optimised for smaller and larger bot-86

tleneck sizes respectively. We test our method against simulated data describing87

viral transmission events with a broad range of population bottlenecks. Finally, we88

re-evaluate data from a previous study of influenza transmission between human89
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hosts (3). Our study supports the hypothesis of a generally small transmission bottle-90

neck for influenza viral populations (3, 26) albeit with fractionally higher bottleneck91

sizes inferred from the same data.92

93

RESULTS94

As a first step, we considered the relative performance of allele- and haplotype-based95

approaches to the inference of transmission bottlenecks, using grossly simplified,96

though hopefully illustrative, examples of viral transmission.97

98

Allele-based versus haplotype-based inference A first example highlighted the99

potential for allele-based statistics to misrepresent the nature of a viral population100

(Figure 1). In this simulated system data were collected from before and after a101

transmission bottleneck. While during transmission the viral population changed sub-102

stantially at the genotype level, these changes were not fully reflected in the allele103

frequency data from each population. As a consequence, inferences of the bottleneck104

at transmission, calculated using haplotype- and allele-frequency methods, differed105

by close to two orders of magnitude. While an extreme example, this result highlights106

a fundamental point of biology. Rather than independent alleles, viral transmission107

involves the transmission of complete viral genomes. Approaches which neglect this108

may as a consequence be flawed in the results they produce.109

110

A second example, describing outcomes across a representative range of transmis-111

sion events, is shown in Figure 2. We here consider the transmission of a hypothetical112

influenza viral population. For each segment of the virus, the viral population is divided113

perfectly into two haplotypes, each with a frequency before transmission of exactly114

50%. For seven of the eight viral segments, precisely one SNP differentiates the two115

haplotypes, while in the final segment ten SNPs differentiate the haplotypes. In this116

case, we note that the post-transmission frequency of any given haplotype can be117

represented as a simple binomial sample from the original population, the chance of118

any transmitted virus having a certain haplotype being equal to one half. We further119

note that the same is true for each variant allele; each allele frequency is equal to the120

frequency of the haplotype which carries it, so that the frequency of the allele is given121

by a binomial sample. Critically, however, the transmitted haplotype frequencies are122

independent of one another, while the transmitted allele frequencies are not indepen-123

dent.124

125

The lack of independence has a consequence for the inferred transmission bot-126

tlenecks. In the (harmonic) mean, both the haplotype and allele frequency statistics127

produce a correct inference. However, the allele-based estimate is statistically less pre-128

cise (Figure 2B). While in the haplotype inference each segment is weighted the same,129

the allele-based estimate is weighted heavily towards the outcome of transmission of130

the final segment. The variance in the outcome of this one segment is greater than131

the mean variance across segments, leading the allele-based method to, on average,132

a worse result. Secondly, the false assumption in the allele-based method that allele133

frequencies are independent leads to a false confidence in the outcome of this method134

(Figure 2C). The apparently greater amount of data provided by a greater number of135

polymorphic loci leads to a falsely reduced confidence interval in the bottleneck size at136

transmission. Where more than one locus is present on a haplotype, and all else being137

equal, allele frequency methods give less accurate inferences than haplotype-based138
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FIG 1 A. Simulated system of viral transmission. A population comprising seven viral genotypes transmits to a new host, leading
to a population in the recipient which includes six of the seven genotypes. A plot shows the sampled frequencies of the distinct
genotypes, or haplotypes, before and after transmission, reported to four significant figures. Our explicit model of viral transmis-
sion based on haplotype frequencies (described in the text) infers a population bottleneck of 17 viruses from these data. B. An
alternative analysis of the same population measures allele frequencies from the population before and after the transmission
event; these are shown in an equivalent plot. A calculation of the population bottleneck from these data infers a value nearly
two orders of magnitude larger than that of our previous calculation.

methods, and provide a falsely high level of confidence in their results. We are there-139

fore motivated to consider the transmission of viruses on the genotype level.140

141

To evaluate our genotype-based approach to bottleneck inference, we first consid-142

ered data describing simulated transmission events, before considering data from a143

study of human infection.144

145

Haplotype reconstruction Applied to simulated data our method made a correct146

inference of haplotypes (all existing haplotypes identified, with no false identification147

of haplotypes) in more than half of the cases tested (Figure 3). Our approach uses148

a maximum likelihood method to infer the most parsimonious reconstruction of a149

viral population, given sequence data. To test our approach we simulated data de-150
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FIG 2 A. Simulated system of viral transmission. A population consists of eight viral segments. For each segment, two haplotypes
exist in the pre-transmission population at a frequency of exactly 50%. In seven segments, these haplotypes differ by a single
genetic variant while in the eighth the haplotypes differ by ten genetic variants. Post-transmission, the haplotype frequencies
in each of the eight segments are described by eight independent random binomial samples. The seventeen allele frequencies
are similarly described by seventeen random binomial samples, albeit that these statistics are not independent of each other.
B. Inferred population bottlenecks from 5,000 simulations of this transmission process, calculated with haplotype-based and
allele frequency-based methods. A method based upon independent transmission of alleles has an increased variance relative to
the haplotype-based method. C. Likelihood function for each model in the case in which transmission results in a 45/55 split in
haplotype frequencies in each segment. The black circle and line indicate the correct transmission bottleneck and an analytical
confidence interval, based upon a window of two likelihood units. The inference in each case is correct, but the allele-frequency
method, which treats the allele frequencies as being statistically independent, has a false level of confidence in the inferred
value.

scribing the transmission of an influenza viral population, from a host to a recipient151

individual. Each segment in the population was modelled as containing six distinct152

haplotypes, applying a method for generating data described in a previous study (17).153

Simulated sequence data from the viral populations in each host were used to infer154

which haplotypes were present in the transmission event and their frequencies. The155

most common outcome was a correct reconstruction of all of the haplotypes in the156
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FIG 3 Numbers of inferred and correctly inferred haplotypes given simulated sequence data. A total of 6 haplotypes were in-
cluded in each of 800 simulations tested.

population. We note that our results are particular to the simulation setup; given157

data from longer genomes, with sparser sequence data, or in a population where158

haplotypes were present at very low frequency, our method would likely not perform159

so well by our chosen metric.160

161

Haplotype-based inference of population bottlenecks Our two methods for162

bottleneck inference produced good results when applied to simulated viral transmis-163

sion data (Figure 4). As described in the Methods section, our two methods generalise164

the approaches of two previously-described single-locus methods for bottleneck infer-165

ence (11, 14). Our "compound method" uses a model of genetic drift in a continuous166

space of genotype frequencies, in which smaller changes in frequencies correspond167

to a lesser amount of stochasticity in transmission, and hence a larger population168

bottleneck (14). Our "explicit method" explicitly evaluates all of the possible outcomes169

of a transmission event across a discrete space: the fact that an integer number of170

viruses of each genotype are transmitted is used to weigh up the likelihood of different171

potential bottlenecks (11).172

173

Applying these methods to simulated data, the compound method generally did174

well, inferring transmission bottlenecks that were close to the simulated values. One175

advantage of this method is that its running time does not increase with the bottleneck176

size, enabling the analysis of very high potential bottleneck sizes. A disadvantage of177

the method is that, despite improvements made with respect to its predecessor (17),178

the mathematical approximations made in its construction mean that it does not179

always perform so well at low bottleneck sizes, producing a visible underestimate of180

bottlenecks of size 10.181

182
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FIG 4 Transmission bottleneck sizes inferred from simulated data using different input data and methodologies. Inferences
are shown in colour according to the data and method used. Calculations with inferred haplotypes took as input data generated
from a haplotype reconstructionmethod applied to simulated sequence data, in which both the haplotypes and their frequencies
before and after transmission were inferred. Calculations with the correct haplotypes took as input data from a haplotype
reconstruction in which the identities of the correct haplotypes were given, with only their frequencies being inferred. Inferences
from the explicit method were only calculated for smaller population bottleneck sizes as the method does not scale well to
evaluating larger bottlenecks. Results from the explicit method were so accurate as to not have a meaningful interquartile
range: numbers displayed in these cases indicate the number of inferences giving a precisely-correct inference of the population
bottleneck. Horizontal dashed lines indicate the simulated bottleneck sizes.

Further inferences of bottleneck size were made using reconstructions of haplo-183

types in which the correct simulated haplotypes were pre-specified, learning only their184

frequencies. Using these improved data did not produce a noticeable improvement in185

the inference of the bottleneck size, suggesting that our inference of bottleneck size186

is robust to errors that arise from our haplotype reconstruction method. Bottleneck187

sizes in each case were calculated across eight independent viral segments.188

189

Given our simulated data, the explicit method outperformed the compound190

method at low bottleneck sizes, inferring exactly correct values in the majority of191

cases with very little error. A disadvantage of the explicit method is that in requiring192

the evaluation of all possible outcomes of a transmission event, the computational193

time it requires grows very rapidly as the bottleneck size increases. For this reason,194

we did not apply it to data from higher simulated population bottlenecks. As with the195

compound method performance did not greatly improve given frequencies inferred196
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using the correct viral haplotypes; errors in haplotype reconstruction did not have a197

strong effect on the inferred bottleneck sizes.198

199

The variances in the inferred bottleneck sizes are dependent upon the amount of200

data available to our code for inference. In the case of a less diverse viral population,201

less genetic information would be available, leading to a greater variance in the inferred202

bottlenecks. By contrast, more diversity would lead to a more constrained inference.203

Data shown here are intended to illustrate the mean performance of our methods.204

205

Inference of bottleneck size for a segment was not possible in two cases. Firstly, if206

our haplotype reconstruction found evidence for only a single viral haplotype, no infer-207

ence was possible, insufficient information about the event being available. Secondly,208

if the viral population in the recipient was inferred to have arisen purely from a de novo209

haplotype, which had swept to fixation in the population between the establishment210

of the infection and the collection of the sequence data, this result was uninformative211

in identifying a bottleneck. In either of these circumstances, data from a viral segment212

were ignored, inferences conducted for the remaining segments being combined to213

infer the final bottleneck size.214

215

In considering the differences in inferences achieved by the two methods at low216

bottleneck sizes, it is perhaps helpful to consider the simple case where a single allele217

frequency is observed to change from 50% frequency in the donor to 5% in the recipi-218

ent. Within the compound method this represents a large change in allele frequency,219

corresponding to a large amount of genetic drift, and will be interpreted as resulting220

from a low bottleneck size. By contrast under the explicit method variation at a fre-221

quency of 5% is unlikely to be observed if the bottleneck is low; at least one particle222

with the variant must have been transmitted implying a minimum variant frequency223

of at least 1/NT . Transmission with a bottleneck closer to 20, with sampling noise224

leading to the underestimation of the variant frequency, would give a more coherent225

explanation.226

227

Application to data from a household study Our transmission model was ap-228

plied to data collected from a previously published household study (3). This study229

used a single-locus inference model to identify narrow bottlenecks in human-to-human230

transmission, with all but a single event being inferred to involve the transmission of231

between one and four viral particles. Short-read data from this study were filtered232

and processed into variant data before being fed into our method. Having identified233

polymorphic loci in pairs of transmission data using an allele frequency cutoff of 2%234

we generated multi-locus reads from the data using the SAMFIRE sofware package (25),235

using these to generate an inference of haplotype frequencies before and after trans-236

mission. These frequencies were used to infer population bottleneck sizes for each237

transmission event.238

239

We confirm the previous inference of tight population bottlenecks in all cases240

(Figure 5). In the majority of transmission events (29 out of 38 events for which we ob-241

tained an inference), bottlenecks of size NT = 1 were inferred by both of our methods,242

consistent with all of the diversity of the viral population in the original host being lost243

at transmission. While not necessarily implying that these infections were started by a244

single viral particle, these results are consistent with the hypothesis of a generally tight245

bottleneck at transmission. In eight out of the remaining nine transmission events,246
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intermediate bottleneck sizes were inferred, with a range from 2 to 7 in the compound247

method and from 2 to 13 in the explicit method. Evidence from simulated data suggests248

that the explicit method is probably more accurate in this range. Finally, there was a249

single case in which a bottleneck size of 200 or more was inferred; this was set as the250

upper limit considered by our study. Our inference in this case matched the original251

analysis of the data. A further statistical analysis of the samples collected before and252

after transmission indicated a greater degree of similarity between allele frequencies253

than was previously found in a case where replicate clinical samples were processed254

and sequenced in parallel (27). Whereas in the previous study, measurements of allele255

frequencies from samples split from the cDNA synthesis step onwards were consistent256

with an effective read depth (that is equivalent to an error-free sample depth) of one257

thousand or more, here an effective depth in excess of 20,000 was inferred, demon-258

strating that the before- and after-transmission samples were extremely similar. This259

case could represent either a very unusual transmission event, in which an extreme260

number of viruses were transmitted, or potentially an isolated error in the processing261

of a large number of sequence samples.262

263

Cases in which the explicit method inferred larger bottleneck sizes than the com-264

pound method could be explained in terms of the preservation of allele frequencies at265

relatively low frequencies; as explained above the explicit method can favour a higher266

bottleneck in such cases.267

268

Our approach was not able to infer a population bottleneck in five of the transmis-269

sion cases analysed by the original study. In these cases a low level of polymorphism270

observed before transmission was no longer present after transmission. Application of271

our haplotype reconstruction method in these cases did not find statistical evidence for272

more than one haplotype (plus noise) in these systems, at least two specific haplotypes273

being required for an inference of bottleneck size. We understand this in terms of our274

haplotype reconstruction method being less sensitive to detecting variation than is the275

2% allele frequency cutoff used in the original study; the presence of a variant allele at276

2% frequency was not always sufficient evidence for our code to infer the existence of277

two specific genetic variants in the population. In these cases, the loss of host genetic278

variance at transmission would lead our methods to the conclusion that a bottleneck279

of NT = 1 best explained the observed data, strengthening our main result of a tight280

bottleneck size. The sensitivity of our method in calling additional haplotypes can be281

somewhat arbitrarily tuned.282

283

Differences in the bioinformatic processing of data could underlie some of the284

differences in bottleneck we identified. While we replicated the 2% allele frequency285

cutoff of the original paper (3), we called variants in 18 of the 38 transmission events286

analysed here that were not originally found. Such variants were primarily only found287

in one of the two samples, and existed at frequencies very marginally above the 2%288

threshold; minor allele frequencies very close to the threshold were observed both in289

our processing of the data and in the original study (Supporting Table S1). Applying the290

exact single-locus method for bottleneck inference of a previous study (for convenience291

we term this the exact SL method) (11) found cases of higher bottlenecks than were292

found in the original paper (Figure 5). In common with the original study, we remove293

variants in non-coding regions of the genome from our calculation.//294

Bioinformatic variations in the calling of alleles can have three distinct effects.295

Where an additional variant is called in the recipient population but not in the donor,296
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FIG 5 Bottleneck sizes inferred from the data presented by (3). Dots indicate the maximum likelihood bottleneck size inferred
for each of the 38 systems in this work for which we were able to infer a bottleneck. Vertical bars represent confidence intervals
equivalent to a cut-off of 2 log likelihood units.

no change in the inferred bottleneck occurs; the variant is assumed to have arisen297

de novo in the recipient, having nothing to do with the transmission event. Where298

an additional variant is called in the donor population but not in the recipient, this299

shifts the inference towards a smaller bottleneck. The dying out of a low-frequency300

variant is the most likely outcome given a small bottleneck, so this usually makes little301

difference to the inference. However, in transmission event 21, we observe that a302

bottleneck inferred to involve at least 200 particles by both of our haplotype-based303

methods (and the original study) was inferred to involve only 29 particles by the exact304

SL method. In this case our bioinformatic approach called two variant alleles, NA305

G1351A and PB1 A2280G, at 2.3% and 3.2% in the donor population, which died out306
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Haplotype-based estimation of transmision bottlenecks

upon transmission. Our haplotype inference method did not find sufficient evidence to307

identify two haplotypes for these segments, and ignored these variants as a result, but308

the exact SL method accounted for them, leading to a reduced bottleneck inference.309

Especially at high bottlenecks, small bioinformatic changes can have an important310

effect.311

312

Finally, where an additional variant is called in both the donor and the recipient313

populations, it can influence the inferred bottleneck in either direction. Four such cases314

were found in our analysis, in transmissions 2, 3, 5, and 6. Removing these variants315

from the populations led to a reduction in the bottleneck inferred under the explicit316

method to a single particle for transmissions 2, 3, and 6. The inferred bottleneck for317

transmission 5 was slightly reduced from NT = 6 to NT = 5. Not all of the cases in318

which bottlenecks of greater than 1 were inferred could be explained by bioinformatic319

variation. The inference of NT = 13 in transmission 34 had a single additional variant in320

our processing that was not found in the original analysis, consisting of a low-frequency321

variant that was not transmitted to the recipient host. As noted above, such a variant322

could not increase the size of the inferred bottleneck.323

324

DISCUSSION325

We have here set out a haplotype-based approach for the inference of transmission326

bottlenecks, and demonstrated its application using data from a study of transmission327

of influenza A infection.328

329

Haplotype-based methods have the advantage of faithfully representing the bio-330

logical event of viral transmission. While the use of allele frequency statistics does not331

necessarily lead to incorrect results, such use introduces a level of abstraction from332

reality. In some cases this can lead to grossly misleading results; in general it will give a333

less precise inference of bottleneck size, and a falsely high level of confidence in the334

results obtained. The shortfall in performance of an allele-based method will depend335

upon the system in question. In a hypothetical influenza virus with only a single variant336

per segment, allele- and haplotype-based approaches will likely give identical results.337

In a non-segmented virus, with high viral diversity, the assumption of independent338

alleles will lead to a substantial over-estimation of the statistical confidence with which339

a bottleneck can be quantified.340

341

We used a haplotype reconstruction method to infer the composition of the viral342

population before and after transmission; by requiring substantial evidence to add an343

additional haplotype to the model, this approach limits the complexity of the inferred344

viral population, improving the feasibility of haplotype-based bottleneck inference345

relative to a previous approach (17). While our haplotype reconstruction method was346

not perfect in reproducing the details of a viral population, errors resulting from this347

method did not greatly harm our inference of population bottleneck sizes.348

349

Our approach for bottleneck inference comprises two distinct methods, optimal350

for distinct transmission bottleneck sizes. The first of these generalises the approach351

of Poon et al. (14), who used a formula based on genetic drift to evaluate changes in352

allele frequencies. Our compound method generalises this to changes in haplotype353

frequencies, which occur in higher-dimensional sequence space; it further incorporates354

uncertainty in the inferred haplotype frequencies and genetic drift arising from within-355
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host population growth. This method has the advantage of being rapid to calculate356

at high bottleneck sizes, but potentially underestimates bottleneck sizes at low values357

of NT . Our second method, the explicit method, generalises the approach of Sobel358

Leonard et al. (11), who apply a beta-binomal formula to evaluate possible discrete359

outcomes of a transmission process. In spirit we repeat this approach, summing a like-360

lihood function over the set of possible outcomes of a transmission of viral haplotypes.361

This approach is limited in its application to systems of higher complexity, becoming362

slow where there are many haplotypes or where NT is large, but is likely more accurate363

at lower bottleneck sizes. The size of a bottleneck affects the two methods in different364

ways. For the compound method, increased bottleneck size leads to greater accuracy,365

in that the mathematical approximations underlying the method become increasingly366

correct as the product between the bottleneck size and a typical haplotype frequency367

increases. For the explicit method, increased size adversely affects the time required368

for calculation, in that as the number of haplotypes in the system and the bottleneck369

size become large, the evaluation over all possible outcomes o transmission becomes370

increasingly difficult to calculate.371

372

While our haplotype reconstruction and bottleneck inference methods are con-373

structed upon a common likelihood framework, our inference methods could be374

applied to haplotype data from other sources. Other reconstruction methods could375

provide appropriate data for analysis, while barcoding technologies or long-read se-376

quencing could each obviate the need for a reconstruction step. We note that, where377

ethically feasible, the use of neutral markers provides a more direct approach for378

evaluating transmission events (12).379

380

Our framework makes the assumption of selective neutrality during the transmis-381

sion event. Selection during transmission, whether positive or negative, changes the382

genetic composition of the viral population in the recipient relative to that of the donor.383

On average, this makes the population in the recipient less similar to that in the donor,384

leading to an underestimate of the population bottleneck. A variant of our compound385

method incorporating selection has been set out in a previous publication (17). Evalu-386

ating selection requires a comprehensive reconstruction of the extant viral haplotypes;387

this may be difficult to obtain given short-read data describing a diverse population.388

Identifying variants that enhance viral transmissibility is impossible where very few389

viruses are transmitted; at higher population bottlenecks or where multiple transmis-390

sions are observed it becomes an achievable task. Under selection, haplotype-based391

approaches have further advantages over allele-frequency statistics (16).392

393

As we have shown, apparently small differences in the calling of variants can394

have significant consequences for the inference of bottleneck sizes. Regardless of395

the method used for inference, if a variant was falsely called to exist at low frequency396

in both the pre- and post-transmission populations, this could dramatically skew an397

inference towards a higher bottleneck size. Our re-analysis of data preserved the398

frequency cutoff for alleles used by the original authors, but nevertheless found ad-399

ditional variants in excess of this cutoff, likely the result of fractional changes in the400

bioinformatic processing. Marginal frequencies close to the frequency cutoff were401

identified both in our processing of the data and in the output of the original study.402

Where a hard cutoff is used for variant identification, and specific variants are close to403

this cutoff, uncertainty in the identification or non-identification of variants should be404

considered as part of the uncertainty in bottleneck inference; statistical approaches for405
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Haplotype-based estimation of transmision bottlenecks

this could provide an area for future development.406

407

Progress in understanding the biology of infection could be a further aid in the408

development of methods for bottleneck inference. In particular, the dynamics of the409

very early stages of population growth, from the initial founder viruses to the large410

population typical of influenza infection, are not necessarily well understood. Knowl-411

edge of the extent to which this affects the genetic composition of the viral population412

would improve the potential for accurate inference.413

414

We have here used a haplotype-based approach to study transmission bottlenecks415

using data from a household study of influenza A infection. While we replicate the416

finding that transmission involves a small number of viral particles, our results have417

a longer tail of bottleneck sizes, with estimates of up to 13 viruses were transmitted.418

While transmission may strongly limit the inheritance of influenza virus diversity, its419

effect in doing so is not absolute; the transmission of viral diversity may occur and420

have some influence on broader viral evolutionary dynamics.421

422

METHODS423

Notation A guide to the notation used in our methods is shown in Figure 6. Briefly,424

we represent the populations before and after transmission by vectors of unknown425

haplotype frequencies, referred to as qB and qA respectively. These are separated426

by transmission with a bottleneck NT , forming the founder viral population qF in the427

recipient, then within-host growth, represented in our model by a single generation428

of genetic drift with effective size NG . The unknown vectors qB and qA are indirectly429

observed via the datasets xB and xA, which are used to generate the estimated haplo-430

type frequencies q ∗B and q ∗A.431

432

In generating the variance of our estimates, we use q ∗B and q ∗A to generate simu-433

lated observations, which we term x ∗B and x ∗A. These in turn are used to generate a434

new round of estimates q ∗∗B and q ∗∗A. In so far as q ∗∗B , q ∗∗A, q ∗B , and q ∗A are all known,435

they may be used to estimate the variances of q ∗B and q ∗A.436

437

Haplotype reconstruction We developed a maximum likelihood approach for438

haplotype reconstruction based upon existing technologies for processing short read439

data (24, 25, 27). We here assume that we have short-read data describing a viral440

population both before and after a transmission event. Before commencing haplotype441

reconstruction we performed three steps to pre-process the data using our software442

package SAMFIRE (25). Firstly, after alignment to the viral genome using BWA (28), the443

short read data were filtered, trimming reads to achieve a median PHRED score of at444

least 30, combining data from paired-end reads, and removing individual base calls445

with a PHRED score less than 30. Secondly, the filtered data were used to identify loci at446

which a polymorphism existed at significant frequency, this being defined using a cutoff447

of 2% to match the study of McCrone et al (3), from which we obtained the data we448

analysed. Thirdly, reads were processed to generate partial haplotypes, which describe449

the nucleotides present at each of the polymorphic loci in each read. Partial haplotype450

data were divided into distinct sets of reads, each describing alleles at a distinct set451

of loci in the viral genome. As an optional step, an estimate may be produced of the452

extent of noise present in sequence data, inferring a parameter, C , which describes453

the precision with which measurements of allele frequencies may be calculated via454
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FIG 6 Notation in the transmission model. Transmission of the population qB with bottleneck NT results in the founder popu-
lation qF . The founder population grows under the influence of genetic drift, the effects of which are described by the effective
population size NG . Growth results in the population qA. The populations qB and qA are observed, producing datasets represented
by xB and xA, which are used to reconstruct the original populations in terms of haplotypes. In order to calculate the variance of
the reconstructed populations q ∗B and q ∗A, datasets equivalent to xB and xA, denoted x ∗B and x ∗A are generated and used to infer
sets q ∗∗B and q ∗∗A.

sequencing (25). A value of C = 1 here corresponds to a case in which reads are455

uninformative, while large values of C tend towards the binomial case in which each456

read accurately describes the allele present in a distinct viral genome, sampled in an457

unbiased manner from the population. A default value of C = 200 was used for our458

simulations.459

460

We denote the sets of partial haplotype data collected before and after trans-461

mission as xB ,P
l
and xA,P

l
respectively, where l denotes the partial haplotype set. We462

now suppose that the viral population is comprised of a set of distinct haplotypes,463

denoted H , which comprises k haplotypes, having the frequencies qB = {qBi } before464

transmission and qA = {qAi } after transmission. These frequencies can be converted465

into partial haplotype frequencies by projection of the full haplotype space onto each466

lower-dimensional partial haplotype space by means of matricesTl . For example, given467

the full haplotypes before transmission {GA, TA,GC, TC} and a set of partial haplotypes468

{G-, T-}, we may write469

qB ,P
l

= Tl q
B , (1)470
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Haplotype-based estimation of transmision bottlenecks

or more explicitly,471

*
,

qB ,P
l ,1

qB ,P
l ,2

+
-
= *

,

1 0 1 0

0 1 0 1
+
-

*......
,

qB1
qB2
qB3
qB4

+//////
-

. (2)472

In the above instance we note that each partial haplotype can potentially be emit-473

ted from at least one of the haplotypes in H . In order to generalise our model, we474

included in each set H a further haplotype ’X’, describing the cloud of all potential viral475

haplotypes of the same length as those in H , yet not already defined as being in H .476

With this inclusion, we may say that any potential partial haplotype may be emitted477

from at least one of the haplotypes in H , being emitted either from one of the defined478

haplotypes or from ’X’.479

480

In this way, we can construct a likelihood for any given set of haplotypes and481

frequencies, given the partial haplotype data. We write:482

logL(H ) =
∑

t ∈{B ,A}

∑
l

logLD (x
t ,P
l
`Tl q

t ,C ), (3)483

where LD denotes the Dirichlet multinomial likelihood484

LD (x `q ,C ) =
Γ(N + 1)∏
i Γ(xi + 1)

Γ (
∑
i Cqi )

Γ (N +
∑
i Cqi )

∏
i

Γ(xi + Cqi )

Γ(Cqi )
, (4)485

in which N =
∑
i xi .486

487

A two-step optimisation was used to infer the optimal set of haplotypes and fre-488

quencies. To construct an initial set H , a set of k ≥ 1 unique haplotypes were created489

in turn, to which was added the additional X haplotype. The frequencies of these490

haplotypes before and after transmission were then optimised under the constraint491

that the frequency of the X haplotype could not be greater than 0.01; this prevents492

the inference of trivial solutions to the model. We denote the inferred haplotype493

frequencies as q ∗B and q ∗A. We note that the frequency of the X haplotype may be494

effectively zero; for the purposes of calculation a minimum frequency of ε = 10−20 was495

imposed.496

497

Given our likelihood function, a series of changes were made to the set H , optimis-498

ing the frequencies each time to find the optimal haplotype reconstruction. Repeating499

this for increasing values of k gives a series of fits to the data; we used the Bayesian500

Information Criterion (BIC) to distinguish the most parsimonious explanation for the501

data:502

BICk = −2L
∗
(H ∗

k
) + k logN , (5)503

where L∗(H ∗
k
) is the optimum likelihood value for the optimal set H ∗

k
of k haplo-504

types, and N is the total number of observations in the dataset. Optimisation of the505

haplotype set was conducted for increasing values of k until a model with an additional506

haplotype produced an improvement of less than 10 units of BIC, representing a con-507

servative cutoff point; a smaller required improvement would lead to the inference of508

a greater number of haplotypes. In our model the same k haplotypes had to be used509

for the reconstructions of both the pre- and post-transmission samples. Our model510

retained the possibility of haplotypes having zero frequency after transmission, for511
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example in the case of a tight bottleneck, or before transmission, in the case of the512

emergence of a de novomutation following a transmission event.513

514

Estimated error in reconstructed haplotype frequencies For our compound515

method for bottleneck inference, we require an estimate of the variance in the inferred516

haplotype frequencies q ∗B and q ∗A, so as to account for noise in these parameters when517

evaluating changes in the population. Variances were calculated by means of simulated518

data. Considering data collected before transmission, we used the frequencies q ∗B519

to generate sets of partial haplotype data x ∗B ,P
l ,j
, where j is used to index different520

sets. Each set provided an independent statistical replicate of the original data; having521

an identical number of sets of partial haplotypes, each spanning the same loci and522

containing the total number of samples. Each set was generated using a random523

Dirichlet multinomial sampling process with value C identical to the original. For524

each set of data, the haplotype reconstruction process was repeated, but with the525

haplotypes H constrained to those inferred for the original data. This process was526

repeated for 100 sets of data, generating the inferred haplotype frequencies {q ∗∗Bj }.527

These values were used to calculate the diagonal elements of a covariance matrix528

var[q ∗B ] for q ∗B , given by:529

var[q ∗B ]i ,i =
1

100

100∑
j=1

(
q∗Bi − {q

∗∗B
i j }

)2
. (6)530

For simplicity, off-diagonal elements of this matrix were set to zero. An identical pro-531

cess was used to generate the matrix var[q ∗A].532

533

Allele-frequency models of bottleneck inference In generating Figures 1 and 2534

we used a simple single-locus model of bottleneck inference. Given a set of indepen-535

dent allele frequencies qBi at locus i in the pre-transmission viral population, and their536

equivalent values qAi in the post-transmission population, we note that in the absence537

of selection, the mean value of qAi is given by q
B
i , while the variance of q

A
i , arising from538

genetic drift in a haploid system is given by539

V =
qBi

�
1 − qBi

�

N
, (7)540

where N is the effective population size of the system (29).541

542

To estimate the bottleneck size at transmission, we made the approximation that543

qAi is normally distributed, then maximised the sum of the log likelihood values across544

allele frequencies545

L(NT ) =
∑
i

logN *
,
qBi ,

qBi (1 − q
B
i )

NT
+
-
, (8)546

where NT is the transmission bottleneck and the sum is calculated over loci i with547

polymorphic alleles. In the case where only two haplotypes are observed in a segment,548

this approach can be applied to haplotype, rather than allele frequencies. This was549

done for the haplotype-based calculations in Figure 2.550

551

In the analysis of influenza sequence data we applied the exact version of the552

beta-binomial sampling method described by Sobel Leonard et al (11). This method553

identifies the value of NT that maximises the likelihood554

L(NT ) =
∑
i

NT∑
k=0

(
xAi

nA
i

)
B (nAi + k , x

A
i − n

A
i + N

T − k )

B (k ,NT − k )

(
NT

k

) (
qBi

)k (
1 − qBi

)NT −k
(9)555
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Haplotype-based estimation of transmision bottlenecks

where xAi is the total number of reads at locus i , n
A
i is the number of reads at i which556

describe the variant allele, B (α , β ) is the beta function, and the outer sum is conducted557

over polymorphic loci.558

559

Haplotype-based methods of bottleneck inference Frequencies inferred from560

the haplotype reconstruction were used for the explicit and compound methods for561

calculating bottleneck size. As a first step in each method we removed haplotypes562

that were inferred to have been created de novo in the recipient following the trans-563

mission by removing haplotypes for which the pre-transmission frequency fell below a564

threshold frequency δ , set by default to 0.5%. Elements of the vectors q ∗B and q ∗A and565

the respective rows and columns of their covariance matrices were removed in this566

preliminary step.567

568

In so far as we consider influenza transmission, we consider data from each viral569

segment independently, calculating first a likelihood of the bottleneck size given data570

from each segment, before combining the likelihoods across segments to estimate an571

overall maximum likelihood value for the transmission bottleneck.572

573

Compoundmethod for bottleneck estimation In the case of larger values of NT ,574

an approach building upon that described in a previous publication (17) was applied.575

Briefly, we note that in a neutral transmission bottleneck, the expected composition of576

the population in the recipient is identical to that in the original host. The variance in577

this population is then a function of the size of the bottleneck and the extent of genetic578

drift during within-host growth, while in the case of inference, variation arising from579

the measurement of each population must also be considered.580

581

Similarly to the approach outlined in an earlier work (17), we calculate a likelihood582

function with two components:583

L(NT `q ∗B , q ∗A,NG
) =

∫
P (q ∗B `qB )P (qB )dqB

×

∫
P (q ∗A `qA)

{ ∫
P (qA `NG , qF )

×

( ∫
P (qF `NT , qB )P (qB )dqB

)
dqF

}
dqA, (10)

where the first integral corresponds to the initial observation of the system and the584

second encompass transmission (with the bottleneck NT ), within-host growth (with585

drift described by the effective size NG ) and post-transmission sampling. Each com-586

ponent of the likelihood is relatively simple to consider, as either a multinomial or587

Dirichlet-multinomial process, but the compound is difficult to evaluate. We note that,588

in cases where the frequency of a haplotype remains far from 0 or 1, and in particular589

as NT , becomes large, the likelihood can be increasingly well approximated in terms of590

a Gaussian distribution, with mean and variance calculated below.591

592

Our solution makes use of the laws of total expectation and total variance. Given593

distributions U in x andV in y , the compound distributionW takes the form594

PW (x ) =

∫
PU (x `y )PV (y )dy . (11)595

The mean and variance ofW are then defined by596

EW [x ] = EV [EU [x `y ]], (12)597
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and598

varW [x ] = EV [varU [x `y ]] + varV [EU [x `y ]], (13)599

respectively.600

601

For the pre-transmission component, the calculation of mean and variance are602

simple; our haplotype reconstruction process gives the estimate603

E[qB ] ≈ q ∗B , (14)604

where the right-hand side is the output of the haplotype reconstruction, and605

var[qB ] ≈ var[q ∗B ], (15)606

where the right-hand side was calculated using the generation of the datasets x ∗B ,P
l ,j

607

and the inferences of the frequencies {q ∗∗B}j .608

609

Moving on to the post-transmission component of the compound distribution610

in Equation 10, we can carry out the relevant marginalisations using the law of total611

expectation and the law of total variance.612

613

Given that the dynamics governing transmission and within-host growth are as-614

sumed selectively neutral, the mean frequencies of the viral population are unchanged615

following transmission and growth. The mean term is therefore straightforward to616

calculate.617

E[q ∗A] = E[E[q ∗A `qA]] = E[qA]

E[qA] = E[E[qA `qF ]] = E[qF ]

E[qF ] = E[E[qF `qB ]] = E[qB ]

(16)618

Thus619

E[q ∗A] ≈ q ∗B (17)620

Calculation of the variance requires a little more effort. The transmission event621

can be modelled as a single multinomial draw with NT number of trials. As a result,622

the variance of the founder population is given by623

var[qF `qB ] =
1

NT
M (qB ), (18)

where M (q ) = Diag(q ) − qq †.624

625

We therefore obtain that626

var[qF ] = E[var[qF `qB ]] + var[E[qF `qB ]]

= E

[
1

NT
M (qB )

]
+ var[qB ]

=
1

NT

(
E

[
Diag

(
qB

)]
− E

[
qB

(
qB

)†])
+ var[qB ]

=
1

NT

(
Diag

(
E

[
qB

] )
− var

[
qB

]
− E

[
qB

]
E

[
qB

]†)
+ var[qB ]

=
1

NT
M (E[qB ]) +

(
1 −

1

NT

)
var[qB ]

≈
1

NT
M (q ∗B ) +

(
1 −

1

NT

)
var[q ∗B ]

(19)627
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where we used the result628

E

[
qq †

]
= var [q ] + E [q ]E [q ]† . (20)629

The within-host growth dynamics can be modelled as a multinomial draw of depth630

NG = gNT where g is the growth factor. From this we obtain the result that631

var[qA `qF ] =
1

NG
M (qF ). (21)632

Marginalising over qF we obtain the variance633

var[qA] = E[var[qA `qF ]] + var[E[qA `qF ]]

= E

[
1

NG
M

(
qF

)]
+ var[qF ]

=
1

NG

(
E

[
Diag

(
qF

)]
− E

[
qF

(
qF

)†])
+ var[qF ]

=
1

NG

(
Diag

(
E

[
qF

] )
− var

[
qF

]
− E

[
qF

]
E

[
qF

]†)
+ var[qF ]

=
1

NG
M (E[qF ]) +

(
1 −

1

NG

)
var[qF ]

≈
1

NG
M

(
q ∗B

)
+

(
1 −

1

NG

) (
1

NT
M (q ∗B ) +

(
1 −

1

NT

)
var[q ∗B ]

)
=
NT + NG − 1

NT NG
M

(
q ∗B

)
+
NT NG − NT − NT + 1

NT NG
var[q ∗B ]

≡ γM
(
q ∗B

)
+ δvar[q ∗B ],

(22)634

where we define γ =
(
NT +NG−1
NT NG

)
and δ = NT NG−NT −NG+1

NT NG
.635

636

Finally we have that

var[q ∗A] = E[var[q ∗A `qA]] + var[E[q ∗A `qA]] = E
[
var[qA]

]
+ var[qA]

= var[q ∗A] + γM
(
q ∗B

)
+ δvar[q ∗B ]. (23)

Together, Equations 16 and 23 define the mean and variance of a multivariate637

normal distribution representing the post-transmission component of the likelihood638

in Equation 10. Given our inferences for q ∗B and q ∗A, we optimised the likelihood639

with respect to NT , generating a maximum likelihood estimate for the bottleneck size.640

We note that our approximation of the likelihood in terms of a multivariate normal641

distribution, works best where individual haplotype frequencies are not too close to642

zero or one, and where NT is large. However, the approach allows for rapid calculation.643

In this sense we say that the compound method is optimised for large NT .644

Correction for the extinction of haplotypes in the compound method Where645

a haplotype goes extinct in the transmission process, the likelihood function of the646

compound method can provide a poor estimate to the correct value. In this special647

case, relevant in our simulated data, we used a conditional distribution approach to648

make a correction to the likelihood.649

650

In the above approximation we generated a multivariate normal distrbution for651

q ∗A:652

q ∗A ∼ N
(
q ∗B , var[q ∗A]

)
. (24)653

In this context, we split the vector q ∗A into q ∗A1 and q ∗A2 , the latter containing all654

haplotypes post-transmission with a frequency lower than the threshold frequency655

m
S
y
s
te
m
s
S
u
b
m
is
s
io
n
T
e
m
p
la
te

m
S
y
s
te
m
s
S
u
b
m
is
s
io
n
T
e
m
p
la
te

m
S
y
s
te
m
s
S
u
b
m
is
s
io
n
T
e
m
p
la
te

m
S
y
s
te
m
s
S
u
b
m
is
s
io
n
T
e
m
p
la
te

m
S
y
s
te
m
s
S
u
b
m
is
s
io
n
T
e
m
p
la
te

m
S
y
s
te
m
s
S
u
b
m
is
s
io
n
T
e
m
p
la
te

m
S
y
s
te
m
s
S
u
b
m
is
s
io
n
T
e
m
p
la
te

m
S
y
s
te
m
s
S
u
b
m
is
s
io
n
T
e
m
p
la
te

m
S
y
s
te
m
s
S
u
b
m
is
s
io
n
T
e
m
p
la
te

m
S
y
s
te
m
s
S
u
b
m
is
s
io
n
T
e
m
p
la
te

19



Ghafari et al.

η, which were considered to have died out during transmission, with the former656

containing the ’surviving’ haplotypes. Rows and columns of the vectors and matrices657

were rearranged to put equation 24 into the form658



q ∗A1
q ∗A2


∼ N *

,



q ∗B1
q ∗B2


,



var[q ∗A]11 var[q ∗A]12

var[q ∗A]21 var[q ∗A]22


+
-
. (25)659

The frequencies of the components of the vectors were renormalised, such that660

q ∗A2i = q ∗B2i = 0, while
∑
i q
∗A
1i =

∑
i q
∗B
1i = 1.661

662

We obtain the result that the conditional distribution of q ∗A1 has the mean663

µ = q ∗B1 + var[q ∗A]12(var[q
∗A]22)

−1
(−q ∗B2 ), (26)664

and covariance matrix665

Σ = var[q ∗A]11 − var[q
∗A]12(var[q

∗A]22)
−1
var[q ∗A]21. (27)666

Using these parameters to define a Gaussian distribution, we calculated the likeli-667

hood of a bottleneck NT given the data for the surviving haplotypes represented by q ∗A1 .668

669

To account for the haplotypes which became extinct during transmission, we670

made the assumption that these died out at the point of transmission to the founder671

population, the rapid growth of the founder population ensuring that no haplotypes672

went extinct through genetic drift, and viral sequencing of a large number of viral673

particles ensuring that no haplotypes were missed by the sequencing process. Under674

this assumption the likelihood of extinction is given by the simple binomial likelihood675

log


*
,
1 −

∑
i

q ∗B2i
+
-

NT 
. (28)676

Summing the log likelihoods calculated for the surviving and the extinct haplotypes677

gave the total likelihood of the bottleneck size NT ; the maximum likelihood value was678

identified via a simple optimisation process. To prevent nonsensical outcomes at very679

low bottleneck sizes, we further imposed the constraint that NT could not be less than680

the number of haplotypes which survived transmission.681

682

Explicit method for bottleneck estimation The explicit method uses the in-683

ferred haplotype frequencies for the population before transmission to reconstruct the684

space of possible outcomes in the recipient individual. Given our inferred haplotype685

frequencies qB∗i , we assume that N
T viruses are transmitted. The probability that the686

founding viral population includes n i copies of the haplotype i , where
∑
i n i = N

T , is687

given by688

P
(
n1, n2, . . . , nk `q

B∗
)
=

(
NT

n1n2 . . . nk

) ∏
i

(
qB∗i

)ni
, (29)689

where the first term in the right-hand side of the equation is themultinomial coefficient.690

691

For each possible outcome {n i } of this multinomial process, we obtained an in-692

ference of the haplotype composition {qAi } of the transmitted population given the693

relationship qAi = n i /N
T for each haplotype i . We then calculated the raw likelihood of694

observing the partial haplotype data collected post-transmission given this composition695
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using the Dirichlet multinomial formulation described above, summing likelihoods over696

the possible outcomes of the initial transmission.697

∑
n1, . . . , nk∑
ni = N

T

P
(
n1, n2, . . . , nk `q

B∗,NT
) 
exp *

,

∑
l

logLD

(
xA,P
l
`Tl q

A,C
)+

-


. (30)698

In this way we evaluate the likelihood of the bottleneck size NT given the inferred699

pre-transmission haplotypes qB and the observed sequence data xA; this is in contrast700

to the compound method, which is based on qB and qA. We note that this approach701

neglects an explicit accounting for within-host growth of the population. Different702

assumptions about the dynamics of early viral infection can lead to changes in in-703

ferred bottleneck sizes (17); we are not confident that the biological reality of this704

phenomenon is well understood. Modifications to the the Dirichlet multinomial distri-705

bution could potentially be used in this context; increasing the variance of the likelihood706

function would soften the effect of small changes in the underlying population.707

708

This approach has both the advantage and the disadvantage of explicitly repre-709

senting the full set of all possible multinomial outcomes of transmission. While in710

this sense it remains close to the biological reality, it rapidly becomes computationally711

expensive as the number of haplotypes k increases and as NT becomes large. For this712

reason we propose it as being optimal for small values of NT .713

714

We note that, in our application to data from a transmission study presented715

here, the case in which a high bottleneck was inferred involved very limited diversity716

within viral segments; this facilitated the application of this method to consider larger717

bottleneck sizes.718

719

Generation of simulated data Simulated data were generated using a simplified720

model of influenza transmission. Viruses were generated to have eight independent721

segments, of lengths equal to the segments of the A/H1N1 influenza virus. Each seg-722

ment had five uniformly distributed polymorphic loci, making a theoretical total of723

32 full haplotypes. Six haplotypes were chosen from this set under the constraint724

that each of the five loci had to remain polymorphic. The frequencies of these haplo-725

types were then randomly generated under the constraint of a minimum haplotype726

frequency of 5%, matching the parameters used in a previous study (17). We note that,727

in the reconstruction of haplotypes, our code is likely not to identify very low frequency728

haplotypes in the population due to the parsimony-driven approach.729

730

Each transmission event was modelled as a simple multinomial draw, selecting a731

number of viruses equal to the bottleneck size from the donor population. Within-host732

growth was then modelled as a second multinomial draw, conferring a 22-fold increase733

in the population size (30). Partial haplotype data were generated from simulated734

short reads of each viral segment. Short reads with lengths derived from the dataset735

of a recent influenza study (31) were generated (mean read length = 119.68, SD read736

length = 136.88, mean gap length = 61.96, SD gap length = 104.48, total read depth737

= 102825), these reads being used to calculate the number of reads spanning each738

set of consecutive polymorphisms in each segment. Given these numbers, partial739

haplotype observations were generated using a Dirichlet multinomial sampling process.740

741
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An inference of the transmission bottleneck was carried out independently us-742

ing simulated data from each viral segment. These inferences were then combined,743

summing the log likelihoods across different segments to obtain an overall maximum744

likelihood estimate. Within our simulated data a small number of cases were identified745

in which the entire post-transmission population in a segment was inferred to comprise746

a haplotype that was not present above the cutoff frequency in the pre-transmission747

population, equivalent to a case where a haplotype arose de novo in the population and748

swept to fixation before data could be collected. In such cases, data for the segment in749

question were ignored, calculating the transmission bottleneck across the remaining750

segments.751

752

Processing of sequence data Our method was applied to data from a recent753

study of influenza transmission among individuals in households (3). Data from trans-754

mission pairs identified in this study were aligned using the BWA software package (28)755

then filtered using SAMFIRE (25) to remove reads with a median PHRED score below 30,756

and to mask nucleotides with a PHRED score below this value. Following the original757

study, sites in coding regions of the virus were then called at an allele frequency cutoff758

of 2%, following which reads were divided into sets of partial haplotype data.759

760

Data describing the within-host evolution of influenza were used to evaluate the761

extent of noise in the dataset. Noise in data arises both from the non-representative762

sampling of viruses from the host and from the subsequent experimental steps used763

to generate sequence data (27); an over-estimate of the extent of noise in data can764

lead to substantial errors in the inference of a transmission bottleneck (17). We here765

took a heuristic approach applied in a previous study (17). In a first step, data from766

all within-host single-locus trajectories were used to generate a provisional estimate767

of the extent of the noise in the data. Next, trajectories which under this estimate768

evolved in a manner consistent with selective neutrality were identified. Models of769

selective neutrality (constant allele frequency), constant selection (dq/d t = sq (1 − q )),770

and time-dependent selection (exact match to observed frequencies) were fitted to the771

data using the Dirichlet multinomial model of Equation 4, requiring a difference of 10772

units of BIC to favour the more complex model. Trajectories identified as neutral under773

this method were used to produce a final estimate of noise in the data; we inferred the774

parameter C = 660. Data from 43 putative transmission events were evaluated.775

776

The estimate of an effective read depth for the case in which a very high bottleneck777

was inferred was conducted using SAMFIRE based upon allele frequency data, and778

using a cutoff frequency for minority alleles of 2%.779

780
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