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Investigation of mTOR-independent regulation of macroautophagy 

Richard Ian Odle 

Macroautophagy is a critical catabolic response to cellular stress, enabling lysosomal-

mediated breakdown of cytosolic cargo. The nutrient-responsive mTORC1 kinase complex 

has been described as a master regulator of cellular metabolism. Indeed, mTORC1 inhibits 

autophagy via repressive phosphorylation of the key autophagy regulators ATG13, ULK1, 

ATG14 and TFEB. Consequently, mTORC1 has become a candidate therapeutic target in 

neurodegeneration and cancer; however, its essential role in other cellular programs has 

prompted the investigation of mTORC1-independent regulation of autophagy. This thesis 

explores the role of CMGC kinase family members ERK1/2 and CCNB1-CDK1 in the 

regulation of autophagy. 

The ERK1/2 signalling cascade is activated in a high proportion of cancers. ERK2 has been 

proposed as a regulatory kinase of TFEB; however, we found little evidence to suggest that 

ERK1/2 was a direct kinase responsible for TFEB phosphorylation, including at the putative 

site S142. Furthermore, whilst we observed that hyperactivation of the ERK1/2 pathway did 

lead to increases in total TFEB protein levels in HEK293, this appeared to be a cell line 

specific finding. We therefore concluded ERK1/2 was not likely to be a critical regulator of 

TFEB. 

It has been proposed that autophagy must be repressed during mitosis, otherwise nuclear 

envelope breakdown will expose the genome to the cytosolic autophagy machinery. Here 

we show that autophagy initiation, as measured by markers of the omegasome, is indeed 

repressed throughout mitosis. Furthermore, autophagy regulators undergo mitotic 

hyperphosphorylation, including at known repressive sites, in a manner dependent on 

CDK1 but not mTORC1. Indeed, we find mTORC1 is likely inactive as a result of CDK1-

dependent hyperphosphorylation of RAPTOR. Thus, we conclude that mTORC1 is 

substituted by CDK1, as the master repressor of autophagy during mitosis. These results 

suggest that autophagy regulation is uncoupled from nutrient status during nuclear 

envelope breakdown as a mechanism to prevent genomic instability, a hallmark of cancer. 
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1 Introduction 
1.1 Overview of autophagy 

Autophagy, a word derived from the Greek for ‘self-eating’, is a cellular catabolic 

program involving the sequestration of cytoplasmic cargo into double membraned 

structures termed autophagosomes. These then fuse with lysosomes (autolysosomes) 

enabling subsequent lysosome-mediated degradation of the enclosed cargo. Several 

distinct types of macroautophagy exist, which can be categorised by the selectivity of 

sequestered substrates (Feng et al., 2013). This project will focus on starvation-induced 

non-selective (bulk) macroautophagy. Autophagy serves as a response to multiple 

stressors and has been linked with healthy ageing. For example, the promotion of 

autophagy in several cellular and animal models has been linked with beneficial outcomes 

such as improved proficiency of DNA damage repair (Liu et al., 2015) and increased 

longevity (reviewed: Nakamura and Yoshimori, 2018).  In addition, promotion of autophagy 

in several neurodegenerative disease models such as Huntington’s and Alzheimer’s 

disease has led to beneficial outcomes (reviewed: Menzies et al., 2017). However, 

autophagy has also been implicated as a survival mechanism in several cancers (reviewed: 

Levy, Towers and Thorburn, 2017), though this is somewhat countered by its tumour 

suppressive effects (reviewed: Yun and Lee, 2018). For example, forced expression of 

Beclin1, which stimulated autophagy, lead to decreased cell proliferation in MCF7 (Liang et 

al., 1999); whilst silencing Beclin1, which decreased autophagy, increased cell migration in 

glioblastoma models (Catalano et al., 2015). In addition, autophagy deficient mice (mosaic 

ATG5 -/- mice or hepatocyte specific ATG7 -/-) develop multiple liver tumours, albeit benign, 

likely as a result of p62 accumulation sequestering Keap1 leading to a failure in the 

oxidative stress response (Takamura et al., 2011). Due to the contribution autophagy has 

in many disease processes, much research has focused on the potential therapeutic 

modulation of autophagy. The majority of this work has focused on mTORC1 (mammalian/ 

mechanistic target of rapamycin complex 1), a critical signalling network hub that integrates 

a number of stress-induced signals and thus represses autophagy in basal conditions. 

However, mTORC1 is an essential gene and its inhibition results in high-levels of toxicity in 

animal models and establishing a therapeutic window is challenging (reviewed: Xie, Wang 

and Proud, 2016). There is therefore keen interest in the investigation of mTORC1-

independent regulation of autophagy, and specifically how autophagy can be initiated with 

minimal effects on other effector pathways. 
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1.2 Autophagy initiation 

The molecular basis for autophagosome formation is still not entirely understood, 

despite intensive research. The membrane origin for autophagosomes has been a subject 

of intense debate, with various organelles being proposed including: the late endosome, 

endoplasmic reticulum (ER), Golgi apparatus and plasma membrane. Evidence supporting 

the endoplasmic reticulum primarily revolves around the omegasome intermediate 

structure, which enables recruitment of various autophagy proteins required for the 

expansion of the isolation membrane (reviewed: Mari, Tooze and Reggiori, 2011; Lamb, 

Yoshimori and Tooze, 2013). Direct evidence was established through visualisation of the 

phagophore by 3-dimensional electron tomography, with several direct connections 

between rough ER membrane and phagophore/ autophagosome membrane (Ylä-Anttila et 

al., 2009). Since then it has been identified in both yeast (Kotani et al., 2018) and 

mammalian (Valverde et al., 2019) cells that ATG2 acts as a tether between the ER and 

Pre-autophagosomal structure/ omegasome. Indirect evidence comes from the localisation 

of relevant FYVE-containing proteins. VPS34 (Phosphatidylinositol 3-kinase catalytic 

subunit type 3) is the only known class III PI3 kinase in the mammalian cell, and promotes 

the synthesis of PI(3)P (reviewed: Vanhaesebroeck et al., 2010) at the omegasome 

intermediate structure.  FYVE domains act as phosphatidylinositol-3-phosphate (PI(3)P) 

sensors (Gaullier et al., 1998). Ridley and colleagues identified Double FYVE domain-

containing protein 1 (DFCP1) as being unique at the time among FYVE-containing proteins 

for its localisation to the ER and Golgi as opposed to endosomes (Ridley et al., 2001). 

During starvation, DFCP1 strongly co-localises with LC3, whereas much weaker co-

localisation is observed for other PI(3)P sensors such as an isolated FYVE domain from 

FENS-1 (an endosomal linked PI(3)P sensor (Ridley et al., 2001)) (Axe et al., 2008). WIPI2 

(WD repeat domain phosphoinositide-interacting protein 2), a mammalian orthologue for 

yeast Atg18 and another FYVE-containing protein, also recruits to the omegasome at the 

ER (Polson et al., 2010; Dooley et al., 2014). Whilst linked, It has been proposed that WIPI2 

acts downstream of DFCP1, due to WIPI2 depletion leading to accumulation of DFCP1 

positive puncta (Polson et al., 2010). WIPI2 has been shown to be critical for LC3 

(microtubule-associated proteins 1A/1B light chain 3B) lipidation at the site of the 

omegasome via recruitment of the ATG16L1 complex (Dooley et al., 2014). Finally, the ER 

protein VMP1 (vacuole membrane protein 1), is known to be required for autophagy in 

higher eukaryotes (Ropolo et al., 2007), and autophagy proteins are localised to pre-

existing VMP1 puncta during autophagosome synthesis (Koyama-Honda et al., 2013).  

Two complexes are involved in the initiation of the autophagosome: ULK1-ATG13-

FIP200 and VPS34-Beclin1-ATG14L. The ULK1 complex consists of: ULK1 (Unc-51 like 
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kinase 1) (Ganley et al., 2009), ATG13 (Autophagy related protein 13) (Ganley et al., 2009), 

FIP200 (Fak family kinase-interacting protein of 200kDa) (Hara et al., 2008), and Atg101 

(Autophagy related protein 101) (Hosokawa et al. 2009); all of which are required for 

autophagosome synthesis. ULK1 is the human homolog of the yeast Atg1 protein kinase 

(reviewed: Lin and Hurley, 2016). It is only in the last few years that the functions and 

substrates of ULK1 have begun to emerge. The ULK1 and VPS34 complexes appear to be 

responsible for the omegasome intermediate structure originating from the ER. ULK1 

complex members closely associate with the omegasome marker DFCP1 in starvation 

conditions and ULK1 puncta are dramatically reduced in response to wortmannin, which 

inhibits the formation of omegasomes (Karanasios et al., 2013). Since VPS34 is thought to 

act downstream of ULK1, it is proposed that the reduction in ULK1 puncta in response to 

wortmannin is due to the collapse of a positive feedback mechanism (Karanasios et al., 

2013). Supporting this, live-cell imaging experiments reveal that preformed ULK1 puncta 

are relatively stable compared to preformed ATG5 puncta upon treatment with wortmannin, 

which abolished the formation of new ULK1 puncta (Koyama-Honda et al., 2013). During 

autophagy, ULK1 autophosphorylates its kinase domain activation loop at T180, and 

mutation of this site prevents ULK1 activation and localisation to phagophores (Bach et al., 

2011). ULK1 is also suggested to autophosphorylate two sites at the c-terminus, 1042 and 

1046, which promotes KLHL20-association and ULK1 degradation (Liu et al., 2016).  ULK1 

phosphorylates Beclin1 at S14 which is required for autophagic VPS34 complex activity 

(Russell et al., 2013). ULK1 also phosphorylates ATG14 (Autophagy related protein 14)  at 

S29, which increases VPS34 activity (Park et al., 2016; Wold et al., 2016). Indeed, the 

formation of ATG14 puncta is dependent upon an intact ULK1 complex (Itakura and 

Mizushima, 2010; Park et al., 2016). In addition, ULK1 also phosphorylates VPS34 at S249, 

though the functional significance of this is unclear (Egan et al., 2015). The ULK1 complex 

is partially responsible for the recruitment of the ATG16L1 complex, with FIP200 directly 

binding to ATG16L1 between the coiled-coil and WD40 repeat domains (Gammoh et al., 

2013). Mutation of this FIP200 binding domain on ATG16L1 completely impairs amino 

starvation-induced autophagy (Gammoh et al., 2013; Fletcher et al., 2018). 

  DFCP1 accumulates near pre-existing VPS34-containing vesicles upon amino 

acid starvation (Axe et al., 2008). The ULK1 complex, as assessed by FIP200 puncta, forms 

a punctate distribution at ER sub-domains enriched for phosphatidylinositol synthase which 

catalyses the formation of phosphatidylinositol (PI), the precursor for PI(3)P (Nishimura et 

al., 2017). The importance of VPS34 in autophagosome formation is established through 

both genetic silencing (Jaber et al., 2012) and selective small-molecule inhibition (Dowdle 

et al., 2014; Ronan et al., 2014) of VPS34 preventing mature autophagosome formation. 
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VPS34 forms multiple complexes with two distinct complexes involved in the regulation of 

autophagy and endocytic pathways, both of which contain Beclin1 and Vps15 (reviewed: 

Ohashi, Tremel and Williams, 2019). Complex I also contains ATG14, whilst complex II 

contains UVRAG (UV radiation resistance-associated gene protein). Whilst complex II is 

primarily implicated in endocytic pathways, it is also proposed to have a role in 

autophagosome maturation/ fusion with lysosomes (Liang et al., 2008). UVRAG is 

suggested to be phosphorylated at S498 by mTORC1 which suppresses autophagosome 

maturation due to an enhanced interaction of UVRAG with the negative-regulator 

RUBICON (Kim et al., 2015), where RUBICON binds to VPS34 and inhibits its lipid-kinase 

activity (Sun et al., 2011). In contrast, mTORC1 has also been suggested to phosphorylate 

UVRAG at S550 and S571, enhancing VPS34 lipid kinase activity (Munson et al., 2015). 

Thus there is disagreement over whether complex II is important for autophagic flux and 

some groups have suggested it has no involvement in autophagosome maturation (Jiang 

et al., 2014; Munson et al., 2015). This may explain the findings that whilst PI(3)P generated 

from complex I catalysed reactions increases during nutrient starvation, total cellular PI(3)P 

actually decreases (Munson et al., 2015).  

It is widely believed that the majority of autophagy regulation is at the initial stages 

of autophagosome synthesis (Bento et al., 2016). The latter stages of autophagy include 

the ATG5-ATG12-ATG16L1 complex which mediates maturation and localisation of the 

developing autophagosome (Fujita et al., 2008); loss of this complex prevents autophagy 

(Kuma, 2002; Itakura and Mizushima, 2010), with ATG5 knockout a common tool used to 

inactivate autophagy both in cellular and animal models. ATG16L1 binds to FIP200 which 

recruits it to the developing autophagosome membrane (Nishimura et al., 2013). In addition, 

residues within the coiled coil domain of ATG16 enable direct lipid-binding to PI3P within 

the pre-autophagosomal structure (PAS) (Dudley et al., 2019). WIPI2 is a PI(3)P effector 

protein which is also required for the recruitment of the ATG16 complex to the omegasome, 

with subsequent autophagosome membrane formation and LC3 lipidation (Polson et al., 

2010; Dooley et al., 2014). ATG16L1 is directly phosphorylated by ULK1 at S278 in 

response to amino acid deprivation or Salmonella enterica infection, promoting ATG16L1 

caspase-dependent cleavage though the functional significance of this is unclear (Alsaadi 

et al., 2019). It has recently been shown that WIPI2 is a direct substrate for mTORC1, with 

phosphorylation at S395 promoting its interaction with the E3 ubiquitin ligase HUWE1, 

which targets WIPI2 for degradation (Wan et al., 2018). After ATG16L1 complex 

recruitment, ATG3 conjugated to LC3 (mammalian homologue of ATG8; Microtubule-

associated proteins 1A/1B light chain 3) can then bind to ATG12, which stimulates the E2-

like activity of ATG3, thus enabling lipidation of LC3 (Metlagel et al., 2013; Sakoh-
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Nakatogawa et al., 2013). The LC3 family in humans consists of three separate genes 

(LC3A, LC3B and LC3C) which have high levels of homology with rat Map1LC3 (He et al., 

2003). In addition, there are other Atg8 homologs in human cells such as the GABARAPs. 

These have functional differences. For example, whilst all of the Atg8 homologs interact 

with ULK1, GABARAPs positively regulate ULK1 activity whilst LC3 negatively regulate 

ULK1 activity  (Grunwald et al., 2019). Immediately after translation of LC3, ATG4 cleaves 

the c-terminus of LC3 to enable exposure of a glycine residue. This residue is then 

conjugated to phosphatidylethanolamine via a process catalysed by ATG3, and this 

lipidated form of LC3 is denoted as LC3-II (Maruyama and Noda, 2018). LC3 lipidation is 

inhibited by knockout of any of the preceding complexes (Itakura and Mizushima, 2010). It 

is worth noting the temporal dynamics of these events. Whilst ATG5 is viewed as a late-

event, its recruitment to and dispersal from the omegasome is synchronous with ULK1 

(Koyama-Honda et al., 2013). By contrast, LC3 and p62 are recruited synchronously, 

reaching a maximal intensity approximately 2 minutes after the DFCP1 peak, but plateauing 

due to their retention on the completed autophagosome (Koyama-Honda et al., 2013). 

These dynamics fit with a model whereby autophagosomes bud from an omegasome 

structure as proposed by Axe and colleagues (Axe et al., 2008) (diagrammatically 

represented in Figure 1.1). 

Upon completion and closure of the autophagosome, it then fuses with lysosomes 

to mediate degradation of the sequestered cargo. The SNARE protein Syntaxin 17 has 

been identified as critical to autophagosome-lysosome fusion, being recruited to completed 

autophagosomes and mediating its fusion with the endosome/ lysosome (Itakura, Kishi-

Itakura and Mizushima, 2012). Debate surrounds whether autophagosome degradation is 

mediated by direct fusion with lysosomes or indirect via the endocytic system (reviewed: 

Ganley, 2013). The processes of fusion and degradation of sequestered contents are 

frequently perturbed by various treatments and conditions, resulting in an accumulation of 

autophagosomes. This has experimental implications, discussed in Section 1.6. 

1.3 Signalling pathways relevant to autophagy 

1.3.1 mTOR signalling 
The serine/threonine kinase mechanistic target of rapamycin (mTOR) represents a 

major effector arm of the PI3 Kinase signalling axis. It is constitutively arranged in two 

protein complexes. mTORC1 is the best characterised complex, with important roles in 

translational control, autophagy and growth regulation (reviewed: Saxton and Sabatini, 

2017). The complex consists of mTOR, RAPTOR (Kim et al., 2002) and mLST8 (Kim et al., 

2003). PRAS40 is a direct inhibitor of the mTORC1 complex, disassociating in response to 
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Figure 1.1: Overview of autophagosome synthesis.
(A) The omegasome intermediate, which is an extension of the phagophore, is localised
to the ER by pre-existing VMP1 puncta. (B) Cross-sectional view rotated 90o on A. The
omegasome then acts as a platform upon which various autophagy regulators can be
recruited. The ULK1 complex is essential for autophagosome initiation and known
substrates include ATG14, Beclin1 and VPS34. VPS34 is responsible for the synthesis
of PI(3)P, which enables the recruitment of FYVE-containing proteins DFCP1 and
WIPI2. WIPI2, in conjunction with FIP200, then recruits the ATG16-ATG5-ATG12
complex. ATG12 binds to ATG3, which is conjugated to LC3-I. This interaction then
enables lipidation of LC3 on the developing autophagosome. (C) View is a cross-
sectional view in same orientation as B. LC3B and cargo receptors, such as p62, are
incorporated into the developing autophagosome; whilst autophagy regulators are
associated with the omegasome. As a result, when the autophagosome ‘buds-off’
omegasome-associated proteins disperse, whilst LC3 and p62 remain. This has
implications in puncta dynamics during imaging experiments, discussed in Chapter 4.
The graph is an over-simplification since there is slight variation in omegasome-
associated proteins, such as ATG14 and DFCP1 being recruited slightly after ATG5
and ULK1 (Koyama-Honda et al., 2013). Figure based on schematics and results from
Karanasios et al., 2013 and Koyama-Honda et al., 2013
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insulin (Wang et al., 2007). mTORC2 consists of mTOR, RICTOR, mSin1 and protor; it is 

mainly involved in regulation of the cytoskeleton and PI3K signalling to AKT (reviewed: 

Saxton and Sabatini, 2017). DEPTOR is a direct inhibitor of both complexes, though 

feedback activation of the PI3K/mTORC2/AKT signalling axis can result in mTORC2 

activation when DEPTOR is overexpressed (Peterson et al., 2009). mTORC1 forms a 

dimeric structure though there is disagreement whether this is a direct dimerization of 

mTOR (Aylett et al., 2016), or whether RAPTOR binds between the two mTOR subunits 

(Yip et al., 2010). 

1.3.1.1 Growth factors regulate mTORC1 activity via the PI3K signalling axis 

Growth factors mediate their effects on mTORC1 through signalling cascades, such 

as the well characterised PI3K pathway, to signal to the GTPase ‘Ras homolog enriched in 

brain’ (Rheb). A majority of growth factors signal via AKT (reviewed: Huang and Manning, 

2008). The archetypal growth factor, Insulin Growth Factor-1 (IGF), binds to IGFR which 

activates class I PI3Ks, catalysing the phosphorylation of PI(4,5)P2 to PI(3,4,5)P3 (reviewed: 

Jean and Kiger, 2014). 

hile 

with p101 or p84/p87 regulatory subunits (reviewed: Bilanges, Posor and Vanhaesebroeck, 

2019). The SH2 (Src homology 2) domain of p85 interacts with tyrosine-phosphorylated 

receptor tyrosine kinase, leading to the de-repression of the p110-p85 dimer (reviewed: 

Bilanges, Posor and Vanhaesebroeck, 2019).  AKT and PDK1 bind to PIP3 via their 

pleckstrin homology (PH) domains, and small-molecule inhibition of this interaction (such 

as PIT-1) inactivates the PI3K/PDK1/AKT signalling axis (Miao et al., 2010). Conversely, 

PTEN dephosphorylates PIP3 to PIP2 (Maehama and Dixon, 1998), inactivating AKT. 

Activating PIK3CA  and inactivating 

PTEN mutations are prevalent in cancer, resulting in PI3K signalling hyperactivation 

(reviewed: Chalhoub and Baker, 2009). PI3K signalling promotes phosphorylation of both 

T308 and S473 of AKT, resulting in its synergistic activation (Alessi et al., 1996). PIP3 

activates PDK1, and PDK1 phosphorylates AKT at T308 (Alessi et al., 1997). Curiously 

PDK1-/- embryonic stem cells have no alterations in 4E-BP1 phosphorylation yet striking 

reductions in P-S6K (T389) (Wang et al., 2001), despite both phosphorylation events being 

catalysed by mTORC1. Likewise, selective small-molecule inhibition of PDK1 

(GSK2334470) which caused robust dephosphorylation of S6K at T389 (Najafov et al., 

2011; Sathe et al., 2018) appeared to have no effect on 4E-BP1 phosphorylation (Castel et 

al., 2016; Sathe et al., 2018). This suggests that PDK1 inhibition affects different mTORC1 

substrates differentially, though how this occurs is unclear. In parallel to PDK1, PI3K 

signalling also activates mTORC2 (though the mechanism appears poorly understood) 
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which phosphorylates AKT at S473 (Sarbassov et al., 2005). mTORC2 is likely not the only 

enzyme that phosphorylates AKT at S473 since in certain tissues, such as skeletal muscle, 

P-AKT (S473) is maintained despite PP242 (An ATP-competitive mTOR inhibitor) treatment  

(Feldman et al., 2009). 

Rheb is a GTPase which is absolutely required for mTORC1 activity (Saucedo et 

al., 2003). Given Rheb’s intrinsically low activity, it is negatively regulated by the TSC1-

TSC2 complex, whereby TSC2 is a GTPase activating protein (GAP) for Rheb (Garami et 

al., 2003; Inoki et al., 2003; Tee et al., 2003; Zhang et al., 2003). The TSC complex, 

consisting of TSC1 and TSC2 interacting via coiled-coil domains (van Slegtenhorst et al., 

1998), acts to integrate signals from a wide range of inputs. PKB/AKT directly 

phosphorylates TSC2 (Inoki et al., 2002) to inhibit its ability to inactivate Rheb (Inoki et al., 

2003), by promoting its disassociation from the lysosome (Menon et al., 2014). In addition, 

other inputs filter into the TSC complex, such as IKK -catalysed phosphorylation of S487 

and S511 on TSC1 leading to suppression of TSC1 and activation of mTORC1 (Lee et al., 

2007). Inactivation of the TSC complex leads to hyperactivation of mTORC1 in a manner 

independent of amino acids (Gao et al., 2002). Rheb directly binds to mTORC1 via the 

catalytic domain of mTOR and LST8 (Long et al., 2005). Like inactivation of TSC1/2, 

overexpression of Rheb can also activate mTORC1 in the absence of amino acids (Long 

et al., 2005). The mechanism by which mTORC1 continues signalling, despite the absence 

of amino acids, when the Rheb pathway is hyperactivated is unclear. One notion that has 

been explored is that Rheb-mediated activation of mTORC1 leads to increased binding 

affinity to its substrates (4E-BP1 was investigated) whilst its catalytic activity, as assessed 

by mTOR autophosphorylation, remains at similar levels (Sato et al., 2009). In contrast, 

previous studies have established that interaction between RhebGTP and mTORC1 in cells, 

increases mTORC1’s in vitro kinase activity (Long et al., 2005). Indeed, it has recently been 

demonstrated that Rheb binding causes an allosteric conformational change in mTOR 

which promotes accelerated catalysis (Yang et al., 2017).  

Curiously, Rheb knockout murine models can develop an inner cell mass and 

persist to E11.5 (Goorden et al., 2011), unlike mTORC1 components which are essential, 

with no homozygous knockouts identified at E8.5 (Murakami et al., 2004). Rheb-/- lysates 

from E11.5 show drastically reduced, but not absent, phosphorylation of 4E-BP1 and S6 

(Goorden et al., 2011). Why mTORC1 signalling appears to persist in early development of 

Rheb -/- mouse models is unclear. Regardless, there is consensus that PI3K class I 

signalling mediates the growth factor-dependent activation of mTORC1 and this is 

diagrammatically represented in Figure 1.2. 
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1.3.1.2 Lysosomes co-ordinate mTORC1 activity in response to amino acid availability 

mTORC1 is responsive to a range of stimuli including growth factors and nutrients, 

which utilise different mechanisms of activation. In contrast to growth factors, sensing of 

amino acids appears to depend upon a separate class of GTPases to Rheb known as Rags 

(Kim et al., 2008), which are proposed to promote co-localisation of mTOR with Rheb at the 

lysosomal surface and thus act independently of TSC1/2 (Sancak et al., 2008, 2010). 

Notably, Rheb is still required for amino acid-induced activation of mTORC1 (Smith et al., 

2005), suggesting the two systems are co-operative and not redundant. This model is not 

without controversy, with suggestions that Rheb is actually localised at the Golgi apparatus, 

co-localising with Giantin (Manifava et al., 2016). Furthermore, overexpression of Rheb can 

promote mTORC1 activation, even in the absence of amino acids (Long et al., 2005). Rheb 

has been suggested to also contribute to the amino acid response, with amino acids 

promoting localisation of Rheb to lysosomes in response to amino acids in a manner 

dependent upon MCRS1 (Fawal, Brandt and Djouder, 2015). Another possibility is that 

Golgi-localised Rheb promotes activation of lysosome-associated mTORC1 at the Golgi-

lysosome contact site (Hao et al., 2017). Curiously, forced localisation of overexpressed 

Rheb to either lysosomes or Golgi, achieved by fusion with Rab7 or Rab9a (lysosome) and 

Rab1A or Rab33B (Golgi), promoted mTORC1 activation even during amino acid starvation 

(Hao et al., 2017). Regardless, it is generally agreed that mTORC1 recruitment to 

lysosomes is absolutely required for its activation and there is a range of evidence to 

support this. It has been suggested that forced localisation of mTORC1 to the lysosome 

promotes its activation regardless of amino acid status (Sancak et al., 2010). This 

mechanism of regulation appears to not be universal. For example, osteoclasts show 

lysosomal localisation of mTOR in both fed and starvation conditions, despite an 

inactivation of mTOR in the latter (Wang et al., 2017). Likewise, some groups observe 

minimal or no loss of co-localisation between mTOR and lysosomal markers upon amino 

acid starvation, even in cell lines used within the original studies (i.e. HeLa) (Korolchuk et 

al., 2011; Manifava et al., 2016). Overall, there is consensus that mTORC1 must localise 

to lysosomes to become active, but whether this is solely regulated by amino acid 

availability and how this promotes interaction with Rheb is controversial.  

It has been observed that mTORC1 immunoprecipitated from cells starved of amino 

acids has reduced kinase activity against S6K and 4E-BP1 (Kim et al., 2002). Whilst it was 

originally argued that mTORC1 kinase activity is not decreased during amino acid 

withdrawal, since S2481 autophosphorylation was not decreased in cells (Peterson et al., 

2000); immunoprecipitated mTORC1 from starved cells does show reduced S2481 

phosphorylation suggesting mTORC1 activity is specifically decreased (Soliman et al., 
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2010). It has been suggested that total phosphorylation of S2481 within the cell is 

predominantly associated with mTORC2 (Copp, Manning and Hunter, 2009), providing an 

explanation for the discrepancy in findings.  

1.3.1.3 Regulation of Rag-GTPases 

Whilst Rag-GTPases are required for mTORC1 localisation to lysosomes, they do 

not themselves directly interact with the lysosome surface. Instead they interact with the 

Ragulator complex, where the p18 domain of the Ragulator complex tethers Rag-GTPases 

to the lysosome surface (Sancak et al., 2010) (Figure 1.3). Depletion of Ragulator 

components (p18, C7orf59, HBXIP, p14) prevents Rag-GTPase localisation to lysosomes 

(Sancak et al., 2010; Bar-Peled et al., 2012).   

Whilst universally agreed to be critical, there is debate as to how Rag-GTPases 

communicate amino acid status to mTORC1 activation. The original hypothesis was that 

Rag-GTPase heterodimers exist in one of two states, either as an active complex 

(RagA/BGTP, RagC/DGDP) or an inactive complex (RagA/BGDP, RagC/DGTP). This hypothesis 

was stimulated by mutations in Rag-GTPases, such that they were constitutively GTP or 

GDP-loaded, resulting in the corresponding mTORC1 activity (Sancak et al., 2010). in vitro 

Rag heterodimer binding to mTORC1 is independent of whether RagA/B are bound to GDP 

or GTP, with Rag proteins displaying minimal GTPase activity such that RagA/B are 

constitutively in a GTP-bound state (Oshiro, Rapley and Avruch, 2014). However, a number 

of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) 

have now been proposed for the Rag-GTPases (reviewed: Powis and De Virgilio, 2016). 

The Ragulator complex acts as a GEF for RagA/B, with its interaction being strengthened 

upon amino acid deprivation and it is proposed this tight association prevents mTORC1 

binding to Rags (Bar-Peled et al., 2012).  

mTORC1 is not responsive to all amino acids but is instead regulated by availability 

of select amino acids. It has been known for several years that leucine is a critical amino 

acid in the activation of mTORC1. Several mechanisms have been proposed for how this 

occurs.  LRS (leucyl-tRNA synthetase) was found to interact with mTORC1 and RagD in a 

leucine-dependent manner, where it is a GAP for RagD thereby stimulating the formation 

of an active Rag heterodimer and mTORC1 activation (Han et al., 2012), though it has 

subsequently been challenged that FNIP1/2-Folliculin is more likely to function as the 

RagC/D GAP (Tsun et al., 2013) after its recruitment to the lysosomes by association with 

RagA/BGDP during starvation (Petit, Roczniak-Ferguson and Ferguson, 2013). Thus, it is 

proposed FLCN (Folliculin) recruits to RagA/B during starvation and is primed to convert 

Rag C/D-associated GTP to GDP upon reintroduction of amino acids, resulting in mTORC1 
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Figure 1.3: Schematic of GATOR1, GATOR2 and Ragulator.
(A) Schematic representation of how GEFs interact with Rag-GTPases dependent upon
nutrient status. FLCN binds to RagA/B during starvation, enabling it rapidly to act as a
GAP for RagC/D upon nutrient replenishment. (B) Note aliases for Ragulator components
frequently used in the literature are as follows: LAMTOR1 (p18), LAMTOR2 (p14),
LAMTOR3 (MP1), LAMTOR4 (C7orf59), LAMTOR5 (HBXIP). (C) Identified GEF
(Ragulator) and GAPs (LSR, FLCN, GATOR1) for Rag-GTPases. The active Rag
heteroduplex consists of RagA/BGTP,RagC/DGDP, whilst the inactive Rag heteroduplex
consists of RagA/BGDP,RagC/DGTP.
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activation (Figure 1.3). Curiously different substrates of mTORC1 appear to be differentially 

regulated by Folliculin, since 4E-BP1 is not dephosphorylated by FLCN siRNA, whilst S6K 

and TFEB are (Petit, Roczniak-Ferguson and Ferguson, 2013). 

There are two GATOR (GAP activity towards Rags) complexes. GATOR1 consists 

of: DEPDC5, NPRL2 and NPRL3. DEPDC5 directly interacts with RagA/B and is 

responsible for GAP activity of the GATOR1 complex towards RagA/B (Bar-Peled et al., 

2013). In cells expressing DEPDC5 shRNA, mTOR was localised to the lysosomes 

regardless of nutrient availability (Bar-Peled et al., 2013). GATOR2, which inhibits 

GATOR1, consists of: Seh1L, Sec13, Wdr24, Wdr59 and Mios. These interact with the 

sestrins, which inhibit mTORC1 in response to amino acid deprivation (Chantranupong et 

al., 2014). It has been proposed that sestrin2 acts as a direct leucine sensor, whereby the 

presence of leucine disrupts the sestrin2-GATOR2 interaction (Wolfson et al., 2016). This 

has been suggested to be a cell line-dependent mechanism, where in other cell lines, like 

HeLa, leucine deprivation is proposed to signal through the metabolite intermediate Acetyl-

CoA, whereby reduced Acetyl-CoA results in less acetylation of RAPTOR and lower 

mTORC1 activity (Son et al., 2019). Overall, GATOR complexes are responsible for 

signalling amino acid availability to mTORC1 activation. In addition, GATOR components 

have also been implicated in mTORC1-independent roles; for example, Wdr24-/- cells 

exhibit reduced lysosomal proteolytic activity (Cai et al., 2016). Curiously, as far as I am 

aware, no post-translational modifications of GATOR1 or GATOR2 components have been 

reported. Phosphorylation of DEPDC5 (and GATOR2 components) has been detected in 

multiple mass spectrometry screens (i.e S1530, source: phosphositeplus), suggesting this 

may be an interesting line of enquiry. Overall, GEFs and GAPs are critical to regulating the 

activity state of Rag-GTPases in response to amino acid availability (diagrammatically 

represented in Figure 1.3) 

In contrast to leucine sensing by Sestrins,  which likely occurs in the cytosol, arginine 

sensing is proposed to occur via the amino acid transporter SLC38A9 in the lysosomal 

lumen (Wang et al., 2015). This appears to be both via a direct mechanism, whereby 

SLC38A9 binds to Rag-GTPases, and an indirect mechanism, with arginine required for 

SLC38A9 mediated efflux of amino acids (including leucine) from the lysosome to the 

cytosol (Wyant et al., 2017). Furthermore, SLC38A9 interacts with the vacuolar H+ ATPase 

(Wang et al., 2015), and mTORC1 activity is promoted by the vacuolar H+ ATPase through 

its interaction with Ragulator in an amino acid-dependent manner (Zoncu et al., 2011). 

Furthermore, cytosolic sensing of arginine by the CASTOR1 protein, which interacts with 

GATOR2, also activates mTORC1 in a parallel pathway to SLC38A9  (Chantranupong et 

al., 2016).  Challenging the hypothesis that arginine regulates mTORC1 activity through 
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Rag-GTPases, Carroll and colleagues found that arginine deprivation had no effect on 

mTORC1 localisation (Carroll et al., 2016). Instead, they proposed that arginine prevented 

TSC2 localisation to the lysosomes thereby enabling maximal growth factor signalling to 

mTORC1 via Rheb (Carroll et al., 2016). Overall, it is likely that leucine and arginine sensing 

to mTORC1 occurs via multiple redundant mechanisms. The reason for this is unclear. It 

may be that these sensing pathways mediate distinct additional mTORC1-independent 

effector mechanisms, or it may be an intended redundancy to enable continued signalling 

in case of a pathway becoming disabled.  

1.3.1.4 mTORC1 activity is also modulated by RAPTOR post-translational modifications 

RAPTOR is a specific component of the mTORC1 complex, and as a result, offers 

a selective way of modulating mTORC1 activity. RAPTOR is regulated by a multitude of 

phosphorylation events in response to various stimuli such as amino acids and epidermal 

growth factor (EGF) (Foster et al., 2010). Several kinases have been implicated including 

AMPK (Gwinn et al., 2008), CDK1 (Gwinn, Asara and Shaw, 2010), PLK1 (Ruf et al., 2017), 

RSK1/2 (Carrière et al., 2008), ERK1/2 (Carriere et al., 2011), JNK1/2 (Kwak et al., 2012), 

(Wu et al., 2011), GSK3 (Stretton et al., 2015), ICK (Wu et al., 2012) and ULK1 

(Dunlop et al., 2011). In addition to the text below, a table with all known RAPTOR 

phosphorylation sites is outlined (Table 1.1) and diagrammatically represented in Figure 

1.4. AMPK phosphorylates RAPTOR at S722 and S792 to inactivate mTORC1 by 

promoting the RAPTOR:14-3-3 interaction. The phosphorylation of RAPTOR by CDK1 is 

discussed extensively in Section 1.7.2. ULK1 phosphorylates RAPTOR at S792, S855, 

S859, S863 and S877 preventing substrate binding to mTORC1 and thereby inhibiting 

mTORC1 signalling, effectively acting as a positive feedback loop (Dunlop et al., 2011), 

though a separate group suggested that ULK1 inhibited mTORC1 kinase activity (Jung et 

al., 2011).  Intestinal Cell Kinase (ICK) phosphorylates Raptor at T906. Whilst mutation of 

T906 impaired mTORC1 activation in response to insulin, the phosphorylation itself was not 

modified by insulin, suggesting basal T906 phosphorylation was important for mTORC1 

activity though the mechanism is not understood (Wu et al., 2012). GSK3 phosphorylates 

RAPTOR at S859; unlike other kinases which regulate RAPTOR, this promotes RAPTOR 

binding to mTOR and thereby stimulates mTORC1 activity (Stretton et al., 2015). PLK1 

hyperphosphorylation of RAPTOR has been proposed to mediate mTORC1 dissociation 

from the lysosomes during interphase, resulting in its inactivation (Ruf et al., 2017); 

however, it has also been shown that overexpression of constitutively active PLK1 in 

HCT116 cells results in increased mTORC1 activity, though via an unknown mechanism 

(Renner et al., 2010). The PLK1-targeted sites on RAPTOR are currently unidentified. 
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Figure 1.4: Schematic representation of key domains and regulatory sites on RAPTOR.
RAPTOR (Uniprot identifier: Q8N122-1) consists of three core domains: RNC (Raptor N-
terminal conserved), HEAT repeats (also referred to as the armadillo domain) and WD40
repeats (which forms a -propeller structure). Between the HEAT repeats and WD40 repeats
lies a region where the vast majority of regulatory phosphorylation events occur.
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It has been argued that S863 functions as a master site of mTORC1 activity, by 

enabling subsequent hierarchical phosphorylation (i.e. S855 and S859). For example, 

GSK3-catalysed phosphorylation of S859 is dependent upon S863 phosphorylation 

(Stretton et al., 2015). However, it is notable that both phosphorylation of 4E-BP1 and S6 

are robust, albeit slightly reduced, after a mutation to alanine of this site (Foster et al., 2010). 

Furthermore, upstream regulators of RAPTOR that inactivate mTORC1 activity, such as 

ULK1, also phosphorylate RAPTOR at S863 (Dunlop et al., 2011), suggesting it is not a 

clear predictive marker of mTORC1 activity.   

The MAPK kinase pathways are also heavily implicated in the phosphorylation of 

RAPTOR. Curiously, these do not impact mTORC1 activity in response to amino acids or 

insulin, but rather are induced by select stimuli, such as phorbol 13-myristate 12-acetate 

(PMA). ERK1/2 phosphorylates RAPTOR at S8, S696 and S863 to stimulate mTORC1 

activity in response to PMA (Carriere et al., 2011), whilst the ERK1/2 substrate RSK1/2 

phosphorylates RAPTOR at S719, S721 and S722, also stimulating mTORC1 activity in 

cells. JNK, like ERK1/2, also phosphorylates RAPTOR at S696 and S863, in addition to 

T706, to stimulate mTORC1 activity in cells in response to osmotic stress (sorbitol 

treatment) (Kwak et al., 2012). , phosphorylates 

RAPTOR at S771 and S863, which in common with the other MAPK pathways stimulates 

mTORC1 activity (Wu et al., 2011).  Overall, some phosphorylation sites, such as S722 and 

S863 are implicated in both mTORC1 activation and inhibition, suggesting that their effect 

is mediated in combination with other sites (Table 1.1). Thus, multisite phosphorylation of 

RAPTOR acts as a critical point, integrating a plethora of upstream signals to mTORC1. 

This complexity in multi-site phosphorylation must be considered when evaluating the 

effects of site-directed mutants. 

All of the currently identified RAPTOR phosphorylation sites, with the exception of 

S8, occur in the linker region between the armadillo domain (HEAT repeats) and WD 

repeats (Aylett et al., 2016) (Figure 1.4). The formation of the mTORC1 complex requires 

the interaction between the armadillo domains of both RAPTOR and mTOR (Aylett et al., 

2016). Apart from GSK3, no regulatory phosphorylation has been directly implicated in 

altering the RAPTOR:mTOR interaction. It is unclear how a majority of phosphorylation 

events regulate mTORC1 activity; though, it is clear that the region between the armadillo 

domain and WD repeats plays a critical role.   
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Phosphosite Kinase Effect 
S8 ERK1/2 Activating 

S696 CDK1 Activating (proposed) 

ERK1/2 Activating 

JNK1/2 Activating 

T706 CDK1 Activating (proposed) 

JNK1/2 Activating 

S719 RSK1/2 Activating 

S721 RSK1/2 Activating

S722 AMPK Inactivation 

RSK1/2  Activating 

Mitotic (not proline directed) Activating (proposed) 

S771 Activating

S792 AMPK Inactivation 

ULK1 Inactivation 

S855 Mitotic (not proline directed) Activating (proposed) 

ULK1 Inactivation 

S859 Mitotic (not proline directed) Activating (proposed) 

ULK1 Inactivation 

GSK3 Activating 

S863 Mitotic (proline directed) Activating (proposed) 

ERK1/2 Activating 

JNK Activating 

 Activating 

ULK1 Inactivation 

S877 Mitotic (proline directed) Activating (proposed) 

ULK1 Inactivation 

GSK3 Activating 

T908 ICK Activating

Table 1.1: RAPTOR is phosphorylated at multiple sites. 
Known RAPTOR phosphorylation sites are listed with the respective kinase known to 

catalyse it. Where the direct kinase is not known for mitotic phosphorylation events, this 

is annotated with mitotic and whether the site is proline-directed or not. 
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1.3.1.5 mTOR phosphorylation 

mTOR is known to be phosphorylated at multiple sites, but this depends upon which 

complex mTOR is in. mTOR autophosphorylation at S2481 is mainly attributed to mTORC2 

but is also present in mTORC1 (Copp, Manning and Hunter, 2009). S6K phosphorylates 

mTOR at S2448 (Chiang and Abraham, 2005; Holz and Blenis, 2005), and this appears to 

be specific to mTORC1 (Copp, Manning and Hunter, 2009). The functional effect of S2448 

phosphorylation on mTORC1 is unclear and site-directed mutagenesis has no effect on 

mTORC1 activity (as assessed by p70 S6K phosphorylation) et al., 2000). 

Phosphorylation of mTOR at S1261 has been shown to increase mTORC1 activity, though 

the kinase responsible remains unidentified (Acosta-Jaquez et al., 2009). It has been 

suggested that DYRK2 phosphorylates mTOR at T631 to promote its degradation via the 

proteasome (Mimoto et al., 2017) , 

increasing mTORC1 kinase activity yet promoting the dissociation of RAPTOR (Dan et al., 

2014). Overall, whilst it is known that mTOR is phosphorylated, and some mechanisms 

have been elucidated, it is poorly understood relative to RAPTOR. 

1.3.1.6 mTORC2 regulation 

Both the regulation and function of mTORC2 is poorly understood relative to 

mTORC1. mTORC2 is independently regulated to mTORC1, for example, Ragulator is not 

required for mTORC2 activity but is required for mTORC1 (Sancak et al., 2010). mTORC2 

is activated in a PI3K class I-dependent manner but the mechanism is not understood. 

Whilst the mTORC2 specific component mSin1 contains a PH domain, this appears not to 

be required for mTORC2 activity and mediates recruitment to the plasma membrane in a 

PIP3-independent manner (Ebner et al., 2017). mTORC2 is regulated by negative-feedback 

with AKT-dependent phosphorylation of the mTOR kinase domain at T2173 impairing 

mTORC2 kinase activity (Hálová et al., 2013). Likewise, S6K phosphorylates RICTOR at 

T1135, which impairs mTORC2 phosphorylation of AKT at S473 (Dibble, Asara and 

Manning, 2009). 

A few substrates have been identified for mTORC2. The most well characterised is 

that mTORC2 phosphorylates AKT at S473 increasing its activity (Sarbassov et al., 2005). 

Another example of an mTORC2 substrate is SGK1, where mTORC2 catalyses 

phosphorylation at S422 (García-Martínez and Alessi, 2008). Importantly, Garcia-Martinez 

and Alessi’s study verified that mTORC1 did not phosphorylate SGK1 as had been 

originally proposed (Hong et al., 2008).  

18



 

1.3.1.7 mTORC1 regulates translation through phosphorylation of S6K and 4E-BP1 

mTORC1 regulation of translation is primarily regulated through its phosphorylation 

of S6K and 4E-BP1. Both of these substrates have a Tor signalling motif (TOS) which 

consists of 5 amino acids absolutely required for their mTORC1-dependent phosphorylation 

(Schalm and Blenis, 2002). Curiously, neither ATG13 or ULK1 appear to have conserved 

TOS motifs (Hosokawa, Hara, et al., 2009) and there is no identified TOS motif for TFEB 

either. TOS motifs are loosely conserved throughout evolution, though some variability is 

observed. For example, the human S6K TOS motif is FDIDL whilst in Drosophila S6K it is 

FDLEL (Schalm and Blenis, 2002). It appears that TOS motifs may be required for RAPTOR 

binding, since mutation of TOS motifs impairs the mTORC1:4E-BP1 and mTORC1:S6K 

interactions (Nojima et al., 2003), though curiously this does not prevent phosphorylation 

of 4E-BP1 at T37/46 (Beugnet, Wang and Proud, 2003). PRAS40 also contains a TOS 

motif, and it is argued that it directly inhibits mTORC1 phosphorylation of S6K and 4E-BP1 

by competing with these substrates for RAPTOR binding via the TOS motif (Wang et al., 

2007). Phosphorylation of PRAS40 at S183 by mTORC1 promotes the dissociation of 

PRAS40 from RAPTOR, enabling mTORC1 to then interact with and phosphorylate S6K 

and 4E-BP1 (Oshiro et al., 2007). Curiously, the structural assessment of Raptor’s RNC 

(RAPTOR N-terminal conserved) domain found marked similarities with Caspases, and it 

is speculated this may enable recognition of TOS domains since caspases recognise four-

residue sequences with an aspartic acid at position four (Aylett et al., 2016). As far as I am 

aware, how mTORC1 interacts with other substrates which do not have a TOS motif is not 

understood, and it has not been evaluated if PRAS40 inhibits phosphorylation of ATG13, 

ULK1 and TFEB. Wang and Proud speculated in a review that since T37/46 

phosphorylation was dependent upon an N-terminal RAIP motif in 4E-BP1, but was not 

dependent on the C-terminal TOS motif (Beugnet, Wang and Proud, 2003), that the TOS 

motif was only important in rapamycin-sensitive phosphorylation events (Wang and Proud, 

2011). Indeed, the phosphorylation of ULK1 and TFEB are both insensitive to rapamycin, 

supporting this hypothesis.  

 4E-BP1 binds to and inhibits the action of eIF4E, thereby preventing its involvement 

in cap-dependent translation (Gingras et al., 1996). eIF4E, in complex with eIF4G, eIF4A 

and eIF4F, binds to the 5’-caps of mRNAs, which enables the 40S subunit of the ribosome 

to correctly identify the AUG start codon (reviewed: Sonenberg and Hinnebusch, 2009). 

Therefore, eIF4E regulates a number of cap-dependent genes required for cell proliferation 

such as cyclin D1 (Rosenwald et al., 1993). mTORC1 phosphorylation of 4E-BP1 occurs at 

T37, T46, S65 and T70 (Brunn et al., 1997; Mothe-Satney et al., 2000). The current model 
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suggests that S65 and T70 are primed by T37 and T46 phosphorylation (Gingras et al., 

1999). These phosphorylation events cause dissociation of 4E-BP1 from eIF4E, enabling 

cap-dependent translation to proceed.  4E-BP1 is also phosphorylated at S101 by an 

unknown kinase which does not respond to insulin stimulation or mTOR inhibition, and this 

acts as a priming site for S65 phosphorylation (Wang et al., 2003).  

S6K phosphorylation impacts translation through several pathways. Like 4E-BP1, it 

too is implicated in cap-dependent translation and the overexpression of S6K stimulates 

cap-dependent translation, whilst a T389A mutant impairs it (Holz et al., 2005). S6K 

phosphorylates eIF4B at S422, enabling its recruitment into the 7-methylguanosine cap 

complex (Holz et al., 2005). In addition, S6K is implicated in ribosomal biogenesis. S6K 

catalyses phosphorylation of the 40S ribosomal protein S6 at several residues (S235, S236, 

S240, S244 and S247) (Krieg, Hofsteenge and Thomas, 1988). Furthermore, S6K 

phosphorylates eukaryotic elongation factor 2 kinase (eEF2k), resulting in eEF2k 

inactivation and eEF2 dephosphorylation (Wang et al., 2001), where eEF2 phosphorylation 

usually represses general translation (Redpath et al., 1993). 

1.3.2 The PI3K/AKT/mTORC1 signalling axis is the master regulator of 

autophagy initiation 

mTORC1 is widely viewed as the master repressor of autophagy, with only its 

phosphorylation of DAP1 shown to upregulate autophagy as part of a negative feedback 

loop (Koren, Reem and Kimchi, 2010). mTOR has been shown to phosphorylate and 

repress ULK1 (Kim et al., 2011), ATG13 (Jung et al., 2009; Puente, Hendrickson and Jiang, 

2016), ATG14 (Yuan, Russell and Guan, 2013), AMBRA1 (Nazio et al., 2013) and TFEB 

(Martina et al., 2012; Settembre et al., 2012) in nutrient-rich conditions. mTOR 

phosphorylates ULK1 on S758 (S757 in the mouse) (Kim et al., 2011), preventing ULK1’s 

association with AMPK, and delaying the autophagic response to nutrient starvation (Shang 

et al., 2011). Loss of this phosphorylation promotes a rapid rise in ULK1 activity upon 

starvation due to AMPK phosphorylation (Kim et al., 2011). Furthermore, it has been 

suggested that mTOR phosphorylation of ULK prevents its targeting to membrane 

organelles, with sequestration in the cytosol (Jung et al., 2009). The extent to which ULK1 

and ULK2 individually contributes to starvation-induced autophagy is debated, though it is 

generally accepted there is redundancy between them in activating starvation-induced 

autophagy (Alers et al., 2011; McAlpine et al., 2013). Combined loss of ULK1/2 completely 

impairs starvation-induced autophagy (McAlpine et al., 2013). Upstream of mTORC1, AKT 

also phosphorylates ULK1 at S774 (Bach et al., 2011), though any direct functional 

consequence of this phosphorylation is unclear. Finally, AMBRA1 interacts with the 
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ubiquitin ligase TRAF6, where the AMBRA1-TRAF6 interaction promotes ULK1 

ubiquitylation, leading to ULK1 self-association and increased kinase activity (Nazio et al., 

2013). mTORC1 phosphorylation of AMBRA1 at S52 prevents AMBRA1’s ability to promote 

ULK1 Lys-63-linked ubiquitylation (Nazio et al., 2013).    

The effect of ATG13 phosphorylation by mTOR is suggested to be species 

dependent. In Saccharomyces cerevisiae, it was observed that Tor-mediated 

hyperphosphorylation of ATG13 prevented its association with ATG1 (Kamada et al., 2000); 

however, more recent evidence suggests that the ATG1-ATG13 complex is constitutively 

formed regardless of Tor activity (Kraft et al., 2012). In mammals, a stable ULK1-ATG13 

complex is present even in nutrient sufficient and mTOR active conditions (Hosokawa et al. 

2009). There is only a 16% sequence homology between mammalian and yeast ATG13 

(Hosokawa et al. 2009). ATG13 is critical for starvation-induced autophagy (Alers et al., 

2011; McAlpine et al., 2013). The presence of ATG13 stabilises ULK1, and knockdown of 

ATG13 leads to a significant decrease in ULK1 protein levels in HeLa cells (Jung et al., 

2009). mTOR phosphorylation of ATG13 at S258, in combination with an AMPK-mediated 

phosphorylation at S224, leads to a decrease in ULK1 activity (Puente, Hendrickson and 

Jiang, 2016). It has been shown that inhibition of mTOR leads to an increase in ATG13 

puncta and this correlates with other members of the ULK1 complex (Karanasios et al., 

2013).  

mTORC1’s direct phosphorylation of ATG14 is poorly characterised relative to other 

substrates. Five sites were identified that mTORC1 could phosphorylate in vitro: S3, S223, 

T233, S383 and S440. Whether all these sites were phosphorylated in cells was not 

established (Yuan, Russell and Guan, 2013). Regardless, mutation of these sites led to an 

increase in VPS34 activity in cells, suggesting that mTORC1 directly represses VPS34 

complex I (Yuan, Russell and Guan, 2013). mTORC1 has also been implicated in the 

repression of the VPS34 complex II via direct phosphorylation of UVRAG at S498, 

promoting VPS34 complex II interaction with the negative interactor RUBICON (Kim et al., 

2015).  

Lysosomal biogenesis is stimulated through TFEB nuclear localisation upon loss of 

mTOR signalling (Martina et al., 2012; Settembre et al., 2012; Zhou et al., 2013) (Section 

1.4.2.1). mTOR inactivation appears necessary but not sufficient for lysosomal biogenesis, 

as ATG5-/- MEFs display no cathepsin B or L activation upon treatment with mTOR inhibitors 

(Zhou et al., 2013). Whilst TFEB nuclear localisation is required for cathepsin B and L 

activation, TFEB activity is not affected in ATG5-/- MEFs suggesting these are two separate 

phenomena and that autophagic machinery is required for lysosomal activation (Zhou et 
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al., 2013). A summary of how mTORC1 mediates an overarching control of all stages of the 

autophagy process is provided in Figure 1.2. An overview of known phosphorylation events 

regulating ATG13, ULK1 and TFEB is provided in Figure 1.5. 

mTORC1 primarily stimulates anabolic processes, but when amino acids are 

depleted and mTORC1 inactivated, it mediates the initiation of catabolic processes to 

achieve a homeostatic replenishment of amino acids. This replenishment of amino acids 

via macroautophagy after prolonged starvation appears to be sufficient to reactivate 

mTORC1, though this process is dependent upon provision of glutamine (Tan, Sim and 

Long, 2017). 

Despite mTORC1 phosphorylating all of its known substrates in an amino acid-

dependent manner, there is evidence of differential regulation between substrates. The 

clearest example of this is the sensitivity of mTORC1 substrate phosphorylation to 

rapamycin (Kang et al., 2013). There may also be differences in where mTORC1 

phosphorylates its substrates. Phosphorylated 4E-BP1 does not reside at the lysosomes in 

vivo, suggesting it is phosphorylated after mTORC1 activation at the lysosome (Manifava 

et al., 2016). By contrast, TFEB must localise to the lysosome to be phosphorylated by 

mTORC1 (Roczniak-Ferguson et al., 2012). Clearer evidence is required to definitively 

come to any conclusion. 

1.3.3 AMPK signalling  
AMPK (5' adenosine monophosphate-activated protein kinase) is a heterotrimer 

consisting of two regulatory subunits  and one catalytic subunit . LKB1 activates 

(Hawley et al., 2003; Hong et al., 2003). 

ory subunit which stimulates the T172 phosphorylation, whilst 

ADP inhibits the T172 phosphatase PP2c (Oakhill et al., 2010, 2011). As such, AMPK is a 

nutrient-dependent kinase, being activated directly by alterations in cellular AMP/ATP and 

ADP/ATP ratios. 

AMPK also has considerable crosstalk with mTORC1. AKT directly phosphorylates 

(Horman et al., 2006). AMPK 

phosphorylates TSC2, stimulating its activity and repressing mTORC1 activity (Inoki, Zhu 

and Guan, 2003). AMPK also directly represses mTORC1 via its multisite phosphorylation 

of RAPTOR (Gwinn et al., 2008). An overview of how mTOR and AMPK crosstalk regulates 

autophagy is provided in Figure 1.2.  

AMPK both directly and indirectly interacts with autophagic machinery. AMPK 

upregulates ULK1 activity via multisite phosphorylation (Bach et al., 2011; Kim et al., 2011); 
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Figure 1.5: Schematic representation of key domains and regulatory sites on
ATG13, ULK1 and TFEB.
Schematics for TFEB (Uniprot identifier: P19484), ATG13 (Uniprot identifier: O75143-1)
and ULK1 (Uniprot identifier: O75385-1) are provided. For TFEB, NLS = Nuclear
localisation signal. NES = Nuclear export signal and is between amino acids 140-149.
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with S555 mediating its interaction with 14-3-3 chaperone protein (Bach et al., 2011). AMPK 

also directly phosphorylates Beclin1 at S91/94 to mediate activation of the ATG14-

containing VPS34 complex. It also catalyses phosphorylation of T163/165 on VPS34 to 

mediate the inhibition of non-autophagic VPS34 complexes (Kim et al., 2013). AMPK has 

been shown to be important for autophagy signalling in select circumstances, such as 

bacterial invasion by Salmonella enterica (Losier et al., 2019). Curiously, AMPK-mediated 

signalling has been suggested to promote repressive phosphorylation of ATG13 at S224 

(Puente, Hendrickson and Jiang, 2016). The authors speculate that whilst AMPK has 

generally been shown to stimulate autophagy, repressive phosphorylation of ATG13 may 

enable ‘fine-tuning’ of this response (Puente, Hendrickson and Jiang, 2016). 

1.3.4 GSK3 signalling 
GSK3  (reviewed: 

Cormier and Woodgett, 2017). The most well characterised pathway involving GSK3 is the 

Wnt signalling pathway. Wnt ligand binding to its receptor leads to inactivation of GSK3, 

-catenin (Aberle et al., 1997). This 

phosphorylation event also demonstrates another property of GSK3, its need for a priming 

phosphorylation at the +4 position, since CK1 phosphorylation of -catenin at S45 is 

required of GSK3 phosphorylation at S41,37,33 (Amit et al., 2002; Liu et al., 2002). 

1.3.4.1 Links between GSK3 and mTORC1 

GSK3 phosphorylates RICTOR at two sites. S1235 phosphorylation during ER-

stress impairs mTORC2 kinase activity (Chen et al., 2011); whilst T1695 phosphorylation, 

located within a CDC4 Phospho-degron, enables FBXW7-mediated ubiquitination and 

subsequent RICTOR degradation (Koo et al., 2015). GSK3 phosphorylates TSC2 at 

multiple sites, promoting its activation and subsequent inhibition of mTORC1 signalling 

(Inoki et al., 2006). Conversely, GSK3 is phosphorylated by AKT 

to mediate its inactivation (Cross et al., 1995), and GSK3 is inactive in 

response to insulin (Ding, Chen and McCormick, 2000). GSK3 has also been suggested to 

enhance mTORC1 activity via RAPTOR phosphorylation (Stretton et al., 2015) and GSK3 

overexpression has been shown to stimulate mTORC1 (Azoulay-Alfaguter et al., 2015). 

leading to GSK3 nuclear localisation (Bautista et al., 2018).  

1.3.5 MAPK signalling 
The MAPK (Mitogen-activated protein kinase) family is a highly conserved group of 

proline-directed serine/ threonine kinases. MAPK signalling cascades classically consist of 

three tiers: MAPK, MAPKK and MAPKKK. Three main groupings of MAPK exist (reviewed: 
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Johnson and Lapadat, 2002): ERK (Extracellular Signal-Regulated Kinase), which consists 

of ERK1/2 and ERK5, and is primarily involved in cell responses to growth factor 

stimulation; JNK (Mitogen-activated protein kinase 8) and p38 (p38 MAPK). JNK and p38 

are involved in stress responses (reviewed: Roskoski, 2012), and they also regulate a 

plethora of other responses such as integrin signalling and interleukin response (reviewed: 

Johnson and Lapadat, 2002). ERK1/2 represents the best characterised of the ERK group 

and are activated downstream of the RAS-RAF-MEK pathway. This pathway has a 

prominent role in cell proliferative signalling, and components are frequently mutated in 

cancer (Dhillon et al., 2007). Classically depicted as a linear pathway it also consists of a 

number of negative feedback mechanisms, such as the family of DUSPs (Dual-specificity 

phosphatases), that enable intrinsic re-activation of the pathway upon loss of ERK1/2 

signalling (reviewed: Caunt et al., 2015). These mechanisms are diagrammatically 

summarised in Figure 1.6. 

The RAS GTPase family, of which there are four proteins (HRAS, NRAS, KRAS4A 

and KRAS4B), are well characterised activators of the ERK1/2 signalling cascade 

(reviewed: Pylayeva-Gupta, Grabocka and Bar-Sagi, 2011). Receptor tyrosine kinase 

(RTK) activation, as a result of ligand binding, promotes dimerization and trans-

autophosphorylation. SH2 containing-proteins, of which GRB2 is a classic example, 

recognise phosphorylated tyrosine. GRB2 is in a preformed complex with the GEF SOS, 

mediating its recruitment to the membrane, which in turn activates RAS by maintaining it in 

a GTP bound state (reviewed: Kolch, 2000). Constitutive activation of RAS is frequently a 

result of mutation at Gly12, which impairs binding of GAPs and prevents GTP hydrolysis 

(Scheffzek et al., 1997). The RAF family (ARAF, BRAF, CRAF) of protein are activated by 

RASGTP binding to the inhibitory N-terminus of RAF, enabling recruitment of RAF to the 

plasma membrane. This stimulates multisite phosphorylation (reviewed: Wellbrock, 

Karasarides and Marais, 2004) and hetero/homodimerization (Weber et al., 2001; 

Rushworth et al., 2006). BRAF V600E is a highly prevalent mutation in cancer and enables 

RAS-independent activation of the ERK1/2 signalling cascade (H. Davies et al., 2002). 

Activated RAF proteins then phosphorylate MEK1/2 at S218 and S222 (S222/S226 for 

MEK2), thereby activating them (Alessi et al., 1994). MEK1/2 in turn phosphorylates and 

activates ERK1/2 at T202/Y204 (T185/Y187 for ERK2) in a hierarchical manner, whereby 

the tyrosine then threonine is phosphorylated (Haystead et al., 1992). ERK1/2 can then 

phosphorylate a plethora of substrates, almost exclusively at serine/threonine proline-

directed sites, a well-established example being RSK at T359 and T363 which mediates its 

activation (Dalby et al., 1998). In addition, activated ERK1/2 translocates from the cytosol 

to the nucleus (Chen, Sarnecki and Blenis, 1992).  Overall, ligand binding to growth factor 
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receptors mediates receptor tyrosine kinase activation which triggers the activation of the 

ERK1/2 signalling cascade. 

The role of the ERK1/2 kinases in autophagy is relatively ambiguous. There is 

limited evidence to suggest that the ERK1/2 pathway promotes autophagy. ERK1/2 

pathway activation in HR1 cells (HEK293 with an inducible CRAF:ER) significantly 

increased LC3B and SQSTM1/p62 levels at the mRNA and protein levels over 48 hours of 

4-HT treatment (Kim et al., 2014). The transcription factor cAMP response element-binding

protein (CREB), which can be activated by ERK1/2 signalling (Impey et al., 1998),

upregulates a number of autophagic genes, including TFEB, in ChIP-seq (Chromatin

Immunoprecipitation-sequencing) experiments (Seok et al., 2014). Ultimately, dissecting

the involvement of ERK1/2 regulation of autophagy from other pathways is complicated, as

evidenced by BRAF inhibition in BRAF V600E colorectal cancer lines promoting autophagy

through an AMPK dependent mechanism as a result of p90RSK phosphorylation of LKB1

(Sueda et al., 2016).

The p38 and JNK pathways, classically seen as stress responders, have also been 

implicated in autophagy regulation in a context-dependent manner. p38 inhibition or 

knockdown in gastrointestinal cell lines promotes vacuolisation, with electron microscopy 

showing evidence of autophagosome formation which is inhibited by 3-methyladenine 

(3MA; pan-PI3K and autophagy inhibitor) co-treatment (Comes et al., 2007). Curiously, in 

Comes’ study, prevention of autophagy lead to an apoptotic response. The interplay 

between autophagy and apoptosis was further investigated in 5-Flurouracil (5-FU) 

treatment where p38 activity determines whether cells enter an apoptotic (p38 activation) 

or autophagic response (p38 inhibition) (de la Cruz-Morcillo et al., 2012). Z-VAD-FMK, a 

broad-spectrum inhibitor of caspase activity and apoptosis, promoted an autophagic 

response to 5-FU in HCT-116 cells (de la Cruz-Morcillo et al., 2012). ZKSCAN3 (Zinc finger 

protein with KRAB and SCAN domains 3) is a transcriptional repressor of autophagy and 

lysosomal biogenesis, opposing the action of TFEB (Chauhan et al., 2013). JNK and p38 

phosphorylate ZKSCAN3 promoting its cytoplasmic localisation, relieving its repression of 

autophagic genes (Li et al. 2016). Finally, JNK has been shown to phosphorylate the 

apoptosis regulator BCL2 preventing its association with Beclin1, enabling Beclin1 to carry 

out its autophagic role as part of the VPS34 complex (Wei et al., 2008).   

There are multiple mechanisms by which the ERK1/2 and mTORC1 signalling 

pathways interact. RAS activation is known to stimulate both the RAF/MEK/ERK and 

PI3K/AKT/mTOR signalling pathways. RAS co-immunoprecipitates with PI3K, and RAS 

overexpression in cells results in an increase in PIP3 levels (Rodriguez-Viciana et al., 1994). 
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Whilst PI3K is activated directly in response to RTK activation, which is mediated by p85 

interaction with phosphotyrosine, RAS activates PI3K through interaction with the p110 

catalytic domain (Pacold et al., 2000). PIK3CA mutations represent an intrinsic resistance 

mechanism to MEK1/2 pathway inhibition in KRAS tumours, likely due to sustained cyclin 

D1 (Halilovic et al., 2010). Our research group has found that SW620 cells which have 

acquired resistance to the mTOR inhibitor AZD8055 by upregulating eIF4E and maintaining 

cap-dependent translation (SW620:8055R), are cross-resistant to MEK1/2 pathway 

inhibition, where cyclin D1 levels were now more stable upon MEK1/2 inhibition (Cope et 

al., 2014). Thus, PI3K and RAF, both effectors of RAS, can converge on the same 

downstream targets. In addition to RAS-mediated activation of PI3K, ERK1/2 and RSK1/2 

directly phosphorylate RAPTOR to increase mTORC1 signalling, as discussed previously 

(Section 1.3.1.4). ERK1/2 phosphorylation of TSC2 at S664 promotes dissociation of 

TSC1/2 complex and activation of mTORC1 signalling (Ma et al., 2005). In addition, RSK1/2 

phosphorylates TSC2 at S1798 to inhibit its activity and promote mTORC1 signalling (Roux 

et al., 2004). Furthermore, both the ERK1/2 and mTORC1 pathways feed into shared 

effector functions. RSK directly phosphorylates 40S ribosomal protein S6 (Roux et al., 

2007), and mice deficient in S6K1 and S6K2 still undergo phosphorylation of S235 and 

S236 which was abolished with the MEK inhibitor PD184352, showing that both the RSK 

and S6K pathways independently feed into translational control (Pende et al., 2004). 

ERK1/2 phosphorylates and activates MNK1/2, which in turn phosphorylates eIF4E (the 

translation factor that 4E-BP1 interacts with) at S209 (Waskiewicz et al., 1997). It has been 

shown that phosphorylation at S209 promotes dissociation of eIF4E from the RNA cap and 

it is speculated that this enables ribosome migration and translation initiation after it has 

completed its role in the eIF4F initiation complex (Scheper et al., 2002). 

1.3.6 Oncogene induced senescence and autophagy 

Cells have an intrinsic tumour suppressor mechanism against oncogenic mutations 

within the MAPK cascade, in that they undergo senescence in response to chronic 

stimulation. This has been extensively studied using overexpression systems of the RAS 

oncoprotein in fibroblasts (Serrano et al., 1997), but can also be observed in other settings 

such as drug-withdrawal from COLO205 cells which have been made resistant to AZD6244, 

such that they have amplification of the BRAF V600E oncoprotein (Sale et al., 2019). Young 

and colleagues described how retroviral transduction of HRASV12 into IMR90 fibroblasts led 

to oncogene induced senescence (OIS), via an ATG5/ATG7-dependent mechanism 

(Young et al., 2009). Supporting this data, Nam and colleagues demonstrated that chronic 

mTOR inhibition, stimulating autophagy, alongside radiation treatment was sufficient to 

induce increased levels of senescence (Nam et al., 2013). Furthermore, knockdown of 
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ATG5 impaired oncogene induced senescence in melanocytes, induced by overexpression 

of BRAFV600E or HRASG12V (Liu et al., 2013). Explaining the paradoxical findings that 

autophagy is induced yet protein synthesis is maintained in senescent cells, mTOR was 

found to be localised to distinct compartments termed TOR-autophagy spatial coupling 

compartment (TASCC) separating active mTOR from the autophagy machinery (Narita et 

al., 2011).  

Curiously it has been shown that the E3 ubiquitin ligase STUB1 impairs the 

.  is an isoform of p53 that lacks the N-

terminus preventing its interaction with MDM2 and causing it to inhibit full-length p53. Loss 

of STUB1 is observed in senescent cells, leading to a loss of  by autophagy 

(Horikawa et al., 2014). Since the overexpression of  is sufficient to prevent 

senescence induced by STUB1 knockdown, this study provides a possible mechanism by 

which autophagy promotes senescence (Horikawa et al., 2014). Surprisingly, STUB1 is 

found to preferentially target TFEB for degradation, such that loss of STUB1 promotes 

accumulation of inactive TFEB and a reduction in overall TFEB activity (Sha et al., 2017). 

Furthermore, this study showed that macroautophagy was attenuated in STUB1 -/- MEFs 

(Sha et al., 2017). In contrast, elevated nuclear TFEB levels have been observed in 

response to RAS transfection (Urbanelli et al., 2014). One potential possibility for 

reconciling Horikawa, Urbanelli and Sha’s findings is that  is regulated by 

selective autophagy. Indeed, it has been shown that oncogene induced senescence drives 

a selective form of nucleophagy, whereby Lamin B is exported from the nucleus to the 

cytoplasm before undergoing autophagic degradation (Dou et al., 2015). 

Conversely, autophagy has also been shown to be repressed during senescence. 

For example, depletion of ATG7, ATG12 or Lamp2 in fibroblasts promotes premature 

senescence (Kang et al., 2011). Likewise, shATG5 has been shown to promote 

senescence both in basal conditions and in response to oxidative stress (H2O2) (Tai et al., 

2017). These results are in direct contrast to that by the Narita group (Young et al., 2009). 

A potential reason for this discrepancy is the underlying type of autophagy being explored, 

where generally OIS is observed with elevated autophagy, whilst other forms of senescence 

are observed with decreased autophagy. This was recently suggested in a review article by 

Kwon and colleagues (Kwon et al., 2017), and requires further experimentation. 

1.4 TFEB  
Transcription Factor EB is a member of the MITF (Microphthalmia-Associated 

Transcription Factor) family of transcription factors, and has critical roles in lysosomal 

biogenesis (Sardiello et al., 2009; Zhou et al., 2013) and autophagy (Settembre et al., 
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2011). TFEB’s structure consists of highly conserved basic Helix-loop-helix (bHLH) and 

leucine zipper domains (Steingrímsson, Copeland and Jenkins, 2004). All the MITF family, 

like other bHLH transcription factors, recognise the E-box sequence CACGTG (Hemesath 

et al., 1994), and this has subsequently been extended to comprise an eight base sequence 

comprising the ‘coordinated lysosomal expression and regulation’ (CLEAR) element 

(TCACGTGA) (M. Palmieri et al., 2011). Developing animal models to study TFEB functions 

was initially impaired, since it is required for VEGF (Vascular Endothelial Growth Factor) 

secretion by placental labyrinthine cells meaning that TFEB null mice were not viable past 

9.5 days (Steingrímsson et al., 1998). Therefore, TFEB studies to date mainly involve 

overexpression and genetic silencing in cell lines. Tissue-specific and conditional knockout 

models do exist; for example, knockout of TFEB in the intestinal epithelium increased the 

severity (reduced body weight) of dextran sodium sulfate (DSS)-induced colitis, potentially 

due to reduced transcription of apolipoprotein A1 (Murano et al., 2017).  

1.4.1 Clinical implications of TFEB 
MITF family translocations are present in a small subset of Renal Cell Carcinoma 

(RCC) patients (Argani, 2015). MALAT1-TFEB (Metastasis Associated Lung 

Adenocarcinoma Transcript 1-TFEB) translocations result in an overexpression of wild-type 

TFEB due to enhanced activity of the MALAT1 promoter relative to the TFEB promoter 

(Argani et al., 2016). Due to TFEB’s role in RCC and MITF’s essential role in melanomas, 

there is interest in identifying any potential oncogenic role of TFEB in other malignancies. 

Investigations of patient derived samples showed TFEB expression levels had no 

correlation with grade or stage of lung carcinomas, and whilst univariate analysis suggested 

high TFEB expression levels correlated with a poor prognosis, this did not hold up in 

multivariate analysis (Giatromanolaki et al., 2015). The authors did find that TFEB siRNA 

significantly impaired a migratory phenotype in a scratch assay. Conversely, data exists 

that suggests TFEB may be a favourable prognostic marker, with high TFEB mRNA levels 

associated with favourable prognosis in both renal and pancreatic cancers (Human protein 

atlas using data derived from TCGA).  

1.4.2 Regulation of TFEB 
TFEB localisation is responsive to a range of physiological stimuli including: 

starvation (Settembre et al., 2011), endoplasmic reticulum stress (Martina et al., 2016) and 

lysosomal dysfunction (Settembre et al., 2012).  Furthermore, mass spectrometry indicates 

that TFEB could have as many as 20 phosphorylation sites (Dephoure et al., 2008; Olsen 

et al., 2010). There is therefore interest in identifying the signalling pathways that regulate 

TFEB localisation. A summary of kinases found to phosphorylate TFEB, as well as ULK1 

and ATG13, is provided in Figure 1.5. 
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1.4.2.1 Regulation of TFEB by mTOR signalling 

Under normal growth conditions with sufficient nutrients, TFEB has a predominantly 

cytosolic localisation; conversely, nutrient starvation results in rapid nuclear localisation and 

upregulation of CLEAR genes (Settembre et al., 2011). Whilst mTOR is a starvation-

responsive kinase, initial evidence suggested that mTOR had either a negligible (Settembre 

et al., 2011) or a promoting (Peña-Llopis et al., 2011) role in TFEB dynamics. This early 

work was carried out using rapamycin, an mTOR inhibitor that does not target the catalytic 

domain but instead complexes with FKBP12 and causes only a partial inhibition of mTOR 

signalling. The use of Torin1, a catalytic inhibitor of mTOR, has revealed rapamycin 

resistant functions of mTOR (Thoreen and Sabatini, 2009; Thoreen et al., 2009). In the case 

of TFEB, Torin1 causes rapid nuclear accumulation and upregulation of autophagic and 

lysosomal genes regulated by CLEAR elements (Martina et al., 2012; Roczniak-Ferguson 

et al., 2012; Settembre et al., 2012). Rag-GTPases target TFEB to lysosomes, via the N-

terminal first 30 residues, where it undergoes phosphorylation on S211 by mTOR (Martina 

and Puertollano, 2013). Interestingly, MITF-M which is a melanocyte specific isoform of 

MITF has a truncated N terminus (Levy, Khaled and Fisher, 2006), such that it is 

predominantly nuclear in basal conditions (Roczniak-Ferguson et al., 2012). 

Phosphorylation of S211 mediates TFEB’s sequestration by 14-3-3 proteins as evidenced 

by immunoprecipitation and mass spectrometry (Roczniak-Ferguson et al., 2012). In this 

study, S142 mutation had no effect on 14-3-3 binding (Roczniak-Ferguson et al., 2012). 

Therefore whilst follow up work by the Ballabio group showed S142 phosphorylation by 

mTOR, which was essential for cytoplasmic retention of TFEB (Settembre et al., 2012), the 

mechanism was unclear. It has recently been demonstrated that mTORC1 mediated 

phosphorylation of both S138 and S142, but not S211, is required for CRM1-dependent 

nuclear export of TFEB (Napolitano et al., 2018). Curiously, it was observed that the Nuclear 

Export Signal (NES) mutant M144A was phosphorylated at S138 and S142 more rapidly 

upon re-feeding than wild-type, leading the authors to conclude that these sites are 

phosphorylated in the nucleus (Napolitano et al., 2018). One model that therefore 

incorporates these findings together is that S211 dephosphorylation in the cytoplasm 

promotes TFEB nuclear localisation, whereas S138 and S142 phosphorylation in the 

nucleus promotes its export. The localisation of mTORC1 to the nucleus is a matter of 

debate and is discussed further in Section 3.3.1. The nutrient responsive regulation of TFEB 

is summarised in Figure 1.7.   

Recent evidence has also suggested a multistep mechanism for mTOR dependent 

regulation of TFEB. TFEBS211A-GFP was observed to have a dispersed cytosolic and 

nuclear signal, in comparison to TFEB-GFP which was excluded from the nucleus (Vega-
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Figure 1.7: Lysosome transcriptional programs are upregulated during
starvation.
In nutrient sufficient conditions TFEB is sequestered in the cytosol by binding 14-3-
3 chaperone proteins. In starvation or lysosomal stress (i.e Salicylihalamide A
treatment), loss of S211 phosphorylation due to mTORC1 inactivation releases
TFEB from sequestration, enabling its nuclear localisation and upregulation of
CLEAR genes. Conversely, ZKSCAN3 is present in the nucleus during nutrient
sufficient conditions, acting as a repressor of CLEAR gene transcription. However,
starvation stimulates JNK and p38 activity which phosphorylates ZKSCAN3,
promoting its expulsion from the nucleus. = amino acids.
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Rubin-de-Celis et al., 2017). Furthermore, the authors found that TFEBS211A continued to 

exhibit regulation by mTOR, and that S122 dephosphorylation was an essential step in 

TFEB nuclear localization (Vega-Rubin-de-Celis et al., 2017). Rapid dephosphorylation of 

TFEB is presently thought to occur via Calcineurin, with inhibition of calcineurin catalytic 

isoform beta (PPP3CB) preventing starvation-induced nuclear translocation of TFEB 

(Medina et al., 2015).   

Scant evidence exists for mTOR-mediated influences on TFEB protein expression 

level. Semi-quantitative western blotting of HeLa cells suggested prolonged exposure to 

Torin1 caused a transient increase in TFEB protein levels at a 3 hour time point, returning 

to basal levels at 5 hours (Marin Zapata et al., 2016). Conversely, in the same study, fresh 

media resulted in an initial dip in TFEB protein levels at the 1, 1.5 and 3 hour time point, 

before returning to basal levels (Marin Zapata et al., 2016).  Whilst the study examined 

mTOR activity via phospho-4E-BP1 immunoblotting, no other signalling pathways were 

investigated. TFEB is already suggested to transcribe its own promoter forming an auto-

regulatory feed-forward mechanism (Settembre et al., 2013), Marin and colleagues found 

that the increase in TFEB concentration was not perturbed by either Actinomycin D (an 

inhibitor of transcription) or epoxomicin (a proteasome inhibitor). Regardless, mTORC1 

may have a transient and minor role in the regulation of TFEB protein levels. 

1.4.2.2 Regulation of TFEB by the ERK1/2 pathway 

ERK2 signalling was one of the first pathways implicated in TFEB regulation. Initial 

data from the Ballabio group suggested that ERK2 was responsible for phosphorylating 

S142, which maintained cytosolic localisation of TFEB, with MEK inhibition resulting in 

nuclear accumulation of TFEB (Settembre et al., 2011). S142 corresponds to a PNSP motif, 

which is a conserved ERK1/2 target in MITF (Hemesath et al., 1998; Wu et al., 2000; 

Weilbaecher et al., 2001) and is conserved throughout evolution (Consurf evaluation; 

Ashkenazy et al. 2016). Subsequent studies have shown variable results concerning the 

role of ERK1/2 in TFEB localisation. RIP1-mediated suppression of autophagy was 

suggested to be via ERK1/2-mediated phosphorylation of TFEB (Yonekawa et al., 2015). 

Furthermore, ERK1/2-mediated S142 phosphorylation, alongside GSK3 mediated 

phosphorylation of S138, was suggested to be responsible for the nuclear export of TFEB 

(L. Li et al., 2018). A number of studies have shown that ERK1/2 pathway inhibition has 

little or no effect on TFEB localisation (Martina et al., 2012; Settembre et al., 2012), whilst 

others have suggested that decreased ERK1/2 activity results in decreased TFEB nuclear 

localisation (or increased ERK1/2 activity leads to increased nuclear TFEB) (Martinez-

Lopez et al., 2013; Urbanelli et al., 2014). In one of these studies, the decreased ERK1/2 
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activity was a consequence of ATG5 knockout and therefore allows for other effects of 

ATG5 knockout (Martinez-Lopez et al., 2013).  

It has been suggested that a minimum threshold of ERK1/2 signalling is required for 

it to exhibit an effect on TFEB localisation, since melanoma cells exhibiting the BRAF 

V600E mutation, such that the ERK1/2 signalling pathway is constitutively active, display 

ERK1/2-regulated localisation of TFEB (S. Li et al., 2019). Specifically, Li and colleagues 

proposed that ERK1/2, via S142 phosphorylation, mediated lysosomal localisation of TFEB 

enabling it to be phosphorylated by mTOR (S. Li et al., 2019). The mechanism by which 

this occurs was not elucidated. 

Whilst TFEB expression is ubiquitous, RNA datasets show variable mRNA 

expression, with enrichment of TFEB mRNA in lymphoid tissues and especially EBV-

transformed lymphocytes (GTEX dataset evaluation; Lonsdale et al. 2013). cAMP response 

element binding protein (CREB) is a transcription factor which has been shown to 

upregulate TFEB mRNA (Seok et al., 2014). Conversely, a weak inverse correlation 

between KRAS mRNA and TFEB mRNA levels has been observed and KRAS silencing 

lead to increased TFEB protein levels (Klein et al., 2016). Therefore, ERK1/2 signalling may 

play a role in TFEB regulation at the mRNA level. 

1.4.2.3 Regulation of TFEB by the GSK3 pathway 

mTOR- and ERK1/2-independent mechanisms of TFEB nuclear localisation are 

beginning to emerge. Both selective GSK3 inhibitors (Parr et al., 2012; Marchand et al., 

2015) and the natural compound HEP14, which was found to inhibit GSK3  via PKC3 (Li 

et al. 2016), have been shown to induce TFEB nuclear localisation without impairing mTOR 

activity. GSK3 phosphorylates TFEB at S134 and S138 in vitro (Li et al. 2016). Curiously, 

inhibition of GSK3 by CHIR99021 resulted in TFEB hypophosphorylation relative to mTOR 

inhibition (Marchand et al., 2015). It has been proposed that GSK3 enables targeting of 

TFEB to lysosomes for phosphorylation by mTORC1 with TFEB (S134A/S138A) failing to 

localise to lysosomes during Torin1 treatment (Y. Li et al., 2016), and treatment with 

CHIR99021 impairing TFEB’s interaction with the mTOR-associated proteins LTOR1 and 

RRagC (Marchand et al., 2015). Regardless, there is clear evidence that GSK3 plays a role 

in TFEB cytosolic localisation. 

It has been proposed that GSK3 and ERK2 co-operate to enable TFEB nuclear 

export, with ERK2-mediated S142 phosphorylation enabling GSK3-catalysed S138 

phosphorylation (L. Li et al., 2018). Similarly, ERK and GSK3 co-operate to mediate MITF 

nuclear export by phosphorylation of the equivalent sites (Ngeow et al., 2018). However, 

this has been disputed by other findings that show that mTORC1 and not ERK2 or GSK3 
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is primarily responsible for TFEB phosphorylation (Napolitano et al., 2018). Napolitano did 

not find that S138 was phosphorylated by GSK3 in cells. It is also important to note that the 

mTORC1 and GSK3 pathways can exhibit several mechanisms of negative crosstalk (see 

section 1.3.4.1), a complication that at present is not currently reconciled in models of TFEB 

regulation by these two protein kinases. 

1.4.2.4 Regulation of TFEB by Protein Kinase C 

TFEB is required for osteoclast development secondary to RANKL signalling 

(Ferron et al., 2013) -dependent multisite 

phosphorylation at S462, S463, S466 and S467 (Ferron et al., 2013). Curiously, RANKL 

favoured only accumulation of TFEB and not MITF, despite both containing the PKC motif 

(Ferron et al., 2013). Furthermore, PKC has been shown to inactivate GSK3, thus 

promoting TFEB nuclear localisation (Y. Li et al., 2016). 

1.4.2.5 Regulation of TFEB by MAP4K3 

The N-terminus of TFEB is required for its cytosolic localisation and either truncation 

of the first 30 amino acids, or mutation of either S3 or R4 results in constitutive nuclear 

localisation of TFEB (Roczniak-Ferguson et al., 2012).  MAP4K3 has been shown to be 

critical for mTORC1 activation in response to nutrient availability, but not growth factor 

signalling (Findlay et al., 2007). Subsequently, it was shown that MAP4K3 phosphorylation 

of TFEB at S3 was required for TFEB’s interaction with and phosphorylation by mTORC1 

(Hsu et al., 2018).   

1.4.2.6 Regulation of TFEB by Endoplasmic Reticulum (ER) stress 

In addition to starvation, TFEB and TFE3 are implicated in the ER stress response. 

Martina and colleagues demonstrated that 16 hours of tunicamycin treatment, an inducer 

of ER stress due to activation of the Unfolded protein response, promoted nuclear 

localisation of TFEB (Martina et al., 2016). This was demonstrated to be via PERK 

activation of calcineurin promoting dephosphorylation of TFEB. Curiously, this paper also 

identified a potential role for TFEB in driving apoptosis, with TFEBS211A upregulating PUMA 

mRNA levels 11-fold.  

1.4.2.7 Other post-translational modifications of TFEB 

Whilst the primary regulation of TFEB appears to be a result of mTORC1-mediated 

phosphorylation, other post-translational modifications have been implicated in TFEB’s 

regulation. Four lysines have been shown to be acetylated (K91, K103, K116, K430), and 

mutation of these sites reduces TFEB transcriptional activity (Zhang et al., 2018). In contrast 

with these results, deacetylation of K116R was found to stimulate TFEB activity and 

lysosomal biogenesis (Bao et al., 2016). Therefore, there may be variability as to how 
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acetylation at different sites affects TFEB transcriptional activity. Little is known about the 

protein turnover of TFEB; however, the ubiquitin ligase STUB1 preferentially ubiquitinates 

phosphorylated TFEB leading to its turnover and this paper suggested that TFEB is 

primarily regulated via the proteasome (Sha et al., 2017).  

1.5 MIT/TFE family of transcription factors 

1.5.1 MITF 
MITF whilst ubiquitously expressed is critical to differentiation programs in 

melanogenesis and osteoclastogenesis. This appears to be mediated by different splice 

variants, with MITF-E linked with osteoclastogenesis (Lu, Li and Lin, 2010) and MITF-M 

with melanogenesis. MITF has been linked to the lineage-specific regulation of pro-survival 

factors in melanocytes with both BCL2 (McGill et al., 2002) and BCL2A1 (Haq et al., 2013) 

under direct transcriptional regulation, with inhibition of the latter being sufficient to increase 

apoptosis in combination with BRAF inhibitors (Haq et al., 2013). MITF has also been 

shown to directly regulate p21, controlling melanocyte entry into cell cycle (Carreira et al., 

2005) and regulating the DNA damage response to UV radiation (Liu et al., 2010). 

Furthermore, knockdown of MITF has been shown to cause a number of mitotic defects 

such as development of multinucleated cells and prolonged mitosis (Strub et al., 2011). 

Overall, MITF plays a critical role in a number of processes in melanocytes. 

1.5.2 TFE3 
TFE3 has been implicated in many functions regulated by TFEB and MITF, such as 

autophagy and lysosomal biogenesis (Martina et al., 2014), demonstrating redundancy 

amongst the MITF family of proteins. Like TFEB and MITF, TFE3 is ubiquitously expressed 

throughout all tissues (Kauffman et al., 2014), with differential expression between lineages. 

It has been suggested that the MITF family only heterodimerise with each other; however, 

TFE3 has been shown to interact with E2F3, promoting transcription of p68 (Giangrande et 

al., 2003) suggesting this model may be overly simplistic. TFE3 shares many of the 

regulatory mechanisms observed for TFEB. AKT phosphorylation of  TFEB at S467 

promotes TFEB cytosolic localisation (Palmieri et al., 2017); likewise, AKT catalyses 

phosphorylation of TFE3 at S565 (the homolog to TFEB S467) and this also mediates 

cytosolic localisation (Pi et al., 2019). Furthermore, mTORC1 phosphorylates  TFE3 at 

S321 (with the caveat it was not formally validated in vitro), corresponding to TFEB S211, 

mediating 14-3-3 binding (Martina et al., 2014). 
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1.5.3 Importin 8 

It has been widely reported that certain pancreatic adenocarcinoma cell lines have 

nuclear localisation of TFEB and other MITF family members, even under normal growth 

conditions (Marchand et al., 2015; Perera et al., 2015; Klein et al., 2016). This was shown 

not to be due to either the mTOR or MAPK pathways, but TFE3 localisation was abolished 

by knockdown of Importin 8 (IPO8) (Perera et al., 2015). Whether regulation of IPO8 has 

any role to play in normal physiological control of TFEB has not been investigated. 

1.6 Interpreting autophagy assays  
‘Autophagic flux’ describes the flow of autophagic processing from the synthesis of 

autophagosomes to fusion with lysosomes resulting in substrate degradation. Interpreting 

‘autophagic flux’ can be challenging as it involves observation of numerous stages along 

the autophagic pathway. Electron microscopy allows confident detection of 

autophagosomes as well as the sequestered contents (reviewed: Klionsky et al., 2016); 

however, it is expensive, dependent upon sufficient expertise and not readily available to 

many researchers. Therefore, detection of lipidated LC3B (LC3B-II), either via 

immunoblotting or immunofluorescence, is readily used for estimation of autophagosome 

number (Mizushima, Yoshimori and Levine, 2010). An alteration in the number of 

autophagosomes can result from a change in the rate of their synthesis or degradation. 

Furthermore, interpretation of LC3 assays can be misleading with non-canonical autophagy 

(Jacquin et al., 2017), transient GFP-LC3 (Green fluorescent protein-LC3) expression 

(Kuma et al. 2007), and protein aggregates (Kuma et al. 2007) all leading to autophagy-

independent LC3 lipidation/ puncta. 

To investigate whether an increase in LC3B lipidation is due to an increase in 

autophagosome synthesis, pan-PI3K inhibitors such as 3-Methyladenine or wortmannin, 

can be utilised which inhibit the VPS34 complex thereby preventing autophagosome 

assembly and LC3B lipidation. By comparison, investigation of autophagosome 

degradation can be achieved by use of lysosomal inhibitors and p62 (SQSTM1) 

immunoblotting (reviewed: Mizushima, Yoshimori and Levine, 2010; Klionsky et al., 2016). 

Lysosomal inhibition should result in an increase in markers of LC3B lipidation if lysosome 

function is intact. Complicating interpretation of these experiments, many lysosomal 

inhibitors used to study canonical autophagy can lead to LC3 lipidation via non-canonical 

autophagy, with the exception of bafilomycin A which appears to inhibit non-canonical 

autophagy (Jacquin et al., 2017). A decrease in p62 protein levels is indicative of an 

increase in autophagic flux (Mizushima, Yoshimori and Levine, 2010). However, p62 protein 

levels can vary during the induction of autophagy; for example, it’s transcription is 
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upregulated by TFEB (Settembre et al., 2011). A further system which can be utilised is 

RFP-GFP-LC3 (Red fluorescent protein-GFP-LC3), whereby acidic compartments will lose 

GFP but not RFP signal, enabling relative evaluation of autophagosome-lysosome fusion 

(Kimura et al. 2007). RFP puncta can be highly stable, with accumulation in lysosomes 

occurring over time such that there are numerous RFP puncta in conditions without 

substantial autophagy (Nicholas Ktistakis and Oliver Florey, personal communication). It 

has been suggested that the turnover of RFP-LC3 is governed by proteolytic activity within 

the lysosomes since it is able to withstand the acidity of both autophagolysosmes and 

lysosomes (reviewed: Yoshii and Mizushima, 2017). Overall, there is no single assay which 

is caveat-free and it is advised that multiple assays are employed when interpreting 

changes in autophagic flux (reviewed Klionsky et al., 2016). 

1.6.1 Experimental manipulations of mTORC1 signalling 

It is well established that inhibition of mTORC1 promotes autophagy. Rapamycin 

(sirolimus) is a macrocyclic antibiotic produced by Streptomyces hygroscopicus and is a 

selective mTORC1 inhibitor due to its interaction with FKBP12 (reviewed: Ballou and Lin, 

2008). Due to not being ATP-competitive, it has the significant advantage of being highly 

selective. Several mTORC1 substrates have been identified which are insensitive to 

rapamycin, i.e., 4E-BP1 (T37) and ULK1 (S758) (Kang et al., 2013). Curiously, this has 

been proposed to be a result of the properties of the phosphorylation sites themselves. 

Sites which exhibit a relatively high phosphorylation by mTORC1 in vitro, such as 4E-BP1 

(T37) and ULK1 (S758) are rapamycin insensitive, whilst sites with low in vitro 

phosphorylation such as S6K1 (T389) are rapamycin sensitive (Kang et al., 2013). The 

exact mechanism by which rapamycin mediates these differential effects is unclear. 

Structural analyses of mTORC1 has suggested that prolonged exposure to rapamycin in 

vitro promotes mTORC1 disassembly, including of the mTOR-RAPTOR interaction (Yip et 

al., 2010) and this has also been observed in cells (Kim et al., 2002). Indeed, prolonged 

exposure to rapamycin both in cells and in vitro did eventually block 4E-BP1 

phosphorylation, in contrast to S6K phosphorylation which is blocked rapidly. Surprisingly, 

S6K can be phosphorylated by free mTOR dissociated from RAPTOR  suggesting this is 

not the mechanism by which Rapamycin blocks S6K phosphorylation (Yip et al., 2010). 

Instead, Yip and colleagues propose the FKBP12-Rapamycin prevents binding to a 

comparatively large substrate during the initial phase (S6K compared to 4E-BP1) (Yip et 

al., 2010), though this seems unlikely given that ULK1 (150 kDa) is also a rapamycin-

insensitive substrate of mTORC1.  
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By contrast, catalytic inhibitors of mTOR such as Torin1 abolish phosphorylation of 

all mTORC1 sites rapidly and with similar dynamics (within 30 minutes) (Kang et al., 2013). 

Due to being an ATP-competitive inhibitor targeting the catalytic domain of mTOR, Torin1 

(Thoreen et al., 2009), PP242 (Feldman et al., 2009) and AZD8055 (Chresta et al., 2010) 

inhibit both mTORC1 and mTORC2 with similar IC50 profiles, providing no means to 

distinguish between these two different complexes. Therefore, more recent studies have 

utilised these catalytic inhibitors, combined with different genetic approaches to distinguish 

between the two complexes. For example, TFEB underwent nuclear localisation in 

response to Torin1 and siRNA against RAPTOR, Rag-GTPases and components of 

regulator (p18) (Martina and Puertollano, 2013). As such, a combination of small molecule 

and genetic approaches is usually required when identifying novel substrates of either 

mTOR complex.      

1.7 The mammalian cell cycle  
The cell cycle encompasses the entire process of a diploid interphase cell 

replicating its genomic contents and critical organelles, right through to its bisection and 

production of two equal daughter cells. As such, this is a tightly regulated process and 

fluctuations in activity in different cyclin-CDK complexes determine the chronological order 

of events. Cyclin-dependent kinases (CDKs) belong to the CMGC kinase family and are all 

proline-directed serine/threonine kinases. Cyclins act as regulatory subunits mediating 

substrate specificity. Inhibition of CDK1 whether by expression of a dominant-negative 

kinase (van den Heuvel and Harlow, 1993) or small molecule inhibition (Vassilev et al., 

2006) promotes a G2 arrest. Only CDK1 is believed to be critical for the cell cycle, with mice 

mutant in CDK2 (Berthet et al., 2003), CDK4 (Rane et al., 1999) or CDK6 (Malumbres et 

al., 2004) being viable. Whilst CDK4 -/-; CDK6 -/- mice are not viable due to late stage 

anaemia, they do undergo organogenesis and fibroblasts can be acquired from these mice 

with replicative capability (Malumbres et al., 2004). By contrast, CDK1 -/- mice cannot 

establish mitotic cell division and thus are lethal from onset such that no homozygous 

knockout embryos are detected (Diril et al., 2012). CDK1 is the only CDK absolutely 

required for the mammalian cell cycle, with CDK2 -/-; CDK4 -/-; CDK6 -/- mice undergoing 

organogenesis and developing till midgestation (Santamaría et al., 2007). Tissue specific 

functions of CDKs have been suggested, for example CDK4 -/- mice develop diabetes as 

a result of decreased pancreatic beta cells (Rane et al., 1999). These findings of tissue-

specific functions for CDK4/6 has stimulated the notion of CDK4/6 inhibitors being selective 

to certain cancers. Whilst many cyclins have been identified and various functions attributed 

to them, only cyclin A2 (Murphy et al., 1997) and CCNB1 (cyclin B1) knockouts are 

embryonically lethal (Brandeis et al., 1998). Overall, whilst there is several cyclin-CDK 
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complexes that are co-ordinately regulated during the cell cycle, there appears to be 

significant redundancy to ensure the cell cycle is completed. 

All of the cell cycle CDKs (1,2,4,6) require activation by CDK-activating kinase 

(CAK), which consists of CDK7, cyclin H and MAT1. CDK7 has two known functions: CDK 

activation and transcriptional regulation, via its recruitment into the general transcription 

factor TFIIH and phosphorylation of RNA polymerase II. Concerning the cell cycle, Inhibition 

of CDK7 in mammalian cells in either G1 or G2 results in cell cycle arrest at this point 

(Larochelle et al., 2007). Importantly, this study inhibited CDK7 by genetic manipulation 

altering the kinase domain, such that it could be selectively inhibited with introduction of a 

non-hydrolysable analog which did not affect its roles in global transcription, likely as a 

result of compensatory phosphorylation of S5 on Pol II (Larochelle et al., 2007). Thus, CDK7 

inhibition, leads to the respective CDK inhibition at any given point in the cell cycle. 

1.7.1 Mitosis 

1.7.1.1 Timing of mitotic events is controlled by CCNB1-CDK1 

Mitosis is a highly evolutionary conserved process involving the duplication and 

subsequent bifurcation of a cell’s genomic content. In addition, many of the cells organelles 

will also divide between the two daughter cells, with lysosomes splitting in an apparently 

ordered process despite their mostly stochastic distribution (Bergeland et al., 2001). The 

process of mitosis can be subdivided into distinct stages: prophase, prometaphase, 

metaphase, anaphase, telophase, and cytokinesis. During prophase, nuclear envelope 

breakdown and chromosome condensation occur as a result of increasing CCNB1-CDK1 

activity. Cells then proceed through prometaphase where chromosomes progress to line 

on the metaphase plate. During metaphase, chromatid pairs must be securely connected 

to microtubules originating from both spindles, termed the spindle assembly checkpoint 

(reviewed: Lara-Gonzalez, Westhorpe and Taylor, 2012). Satisfaction of the spindle 

assembly checkpoint, enables CDC20-mediated activation of the ubiquitin ligase APC/C, 

which in turn leads to degradation of Cyclin B1 which triggers anaphase onset (Chang, Xu 

and Luo, 2003). It should be noted that there is some residual APC/C activity even when 

the SAC has not been satisfied. This residual activity can degrade CCNB1 levels below the 

threshold required for mitotic exit, leading to a failure of cell division prior to cytokinesis 

termed ‘mitotic slippage’ (Brito and Rieder, 2006). Thus, cells post-slippage are tetraploid 

and can subsequently go on to a number of cell fates including further cell division, cell 

cycle arrest or apoptosis (Balachandran and Kipreos, 2017)  
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A rapid alteration in the post-translational modifications of CDK1 enables entry into 

mitosis. Prior to the initiation of mitosis, CCNB1 levels steadily increase during the G2 

phase of the cell cycle (Pines and Hunter, 1989). The CCNB1-CDK1 complex is held in an 

inactive state by phosphorylation of Tyrosine 15 by WEE1 (Gould and Nurse, 1989; 

Lundgren et al., 1991). The switch to mitotic progression is achieved by the phosphatase 

CDC25 causing dephosphorylation of CDK1 T15, thereby activating CDK1 (Gautier et al., 

1991). CDK1 can then phosphorylate WEE1 at S123, which enables PLK1 to phosphorylate 

Wee1 at S53 promoting Wee1’s -TrCP dependent mechanism 

(Watanabe et al., 2005), and promoting a feed-forward activation loop; though it has been 

demonstrated that WEE1 can still be phosphorylated and inactivated in vitro by mitotic 

lysates depleted of cdc2 (Tang, Coleman and Dunphy, 1993).  

CCNB1-CDK1 activity is observed to increase approximately 27 minutes prior to 

nuclear envelope breakdown in HeLa cells (Gavet and Pines, 2010b). This is 

complemented by a decrease in activity of key phosphatases, such as the PP2A-B55 family, 

that usually acts to oppose phosphorylation of CDK1 substrates (reviewed: Nasa and 

Kettenbach, 2018). PP2A-B55 activity increases in response to PP1 activity in a 

phosphatase signalling cascade (Grallert et al., 2015). CCNB1-CDK1 phosphorylates PP1 

to repress its phosphatase activity (Dohadwala et al., 1994), thus PP2A-B55 is inactivated 

in response to increased CCNB1-CDK1 activity. Curiously, B55-dependent phosphatase 

activity is found to occur at a minimum S/T-P CDK1 consensus motif flanked by basic 

residues, whereby the composition of flanking basic residues determines 

dephosphorylation dynamics, thereby enabling differential temporal regulation of CDK1 

phosphosites where the most basic are dephosphorylated more rapidly (Cundell et al., 

2016).  Overall, CCNB1-CDK1 activity, counterbalanced by PP1 and PP2A-B55 activity is 

critical in determining the timing of mitotic onset and exit (Figure 1.8). 

Metazoan cells undergo an ‘open mitosis’ whereby nuclear envelope breakdown 

occurs during the separation of chromosomes (Güttinger, Laurell and Kutay, 2009). Nuclear 

envelope status is dynamically regulated by CDK1 activity, with nuclear envelope 

breakdown occurring during prometaphase in conjunction with high CDK1 activity (Heald 

and McKeon, 1990) and re-envelopment occurring during anaphase when cyclin B is 

degraded inactivating CDK1 (Chang, Xu and Luo, 2003). In addition, the phosphatase 

PP2A-B55 works to promote nuclear envelope reformation by dephosphorylating envelope 

components such as BAF, Lamin and Nup107 in Drosophilia (Mehsen et al., 2018), whilst 

PP1 has been found to dephosphorylate AKAP149 in vitro, resulting in nuclear reassembly 

(Steen et al., 2000). Thus, nuclear envelope dynamics are modulated by Cyclin B1-CDK1 
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through either its direct phosphorylation of nuclear envelope proteins or modulating relevant 

phosphatases. 

1.7.2 mTORC1 signalling during mitosis 

Curiously, CDK1 is observed to substitute for mTOR during mitosis for certain 

substrates. It has been suggested that mTOR is hyperactivated during mitosis due to 

RAPTOR hyperphosphorylation, with in vitro kinase assays showing that phosphomimetic 

mutations of the RAPTOR sites promoted mTOR activity (Ramírez-Valle et al., 2010). 

Furthermore, immunoprecipitated mitotic mTORC1 possessed enhanced activity in an in 

vitro kinase assay with S6K as a substrate (Ramírez-Valle et al., 2010). CDK1 has been 

shown to phosphorylate TSC1, though TSC2 binding to TSC1 appeared to prevent its 

phosphorylation by CDK1 (Astrinidis et al., 2003). A phospho-null mutant of the CDK1 

putative sites on TSC1 had an increased inhibitory effect on P-S6K (T389) phosphorylation 

relative to wild-type, but this was performed in interphase cells (Astrinidis et al., 2003). 

Therefore, the Astrinidis and Ramirez-Valle studies suggest that mTORC1 is activated 

during mitosis. However, the mitotic hyperphosphorylation of mTOR substrates in cells was 

resistant to mTOR inhibitors and RAPTOR shRNA (Ramírez-Valle et al., 2010). Consistent 

with this, paclitaxel induced hyperphosphorylation of 4E-BP1 was attenuated by rosocvitine 

and purvalanol A, two CDK1 inhibitors, but not rapamycin or wortmannin (Greenberg and 

Zimmer, 2005). In vitro kinase assays have suggested that 4E-BP1 can act as a direct 

substrate of CDK1, and that CDK1 phosphorylation of 4E-BP1 promotes its dissociation 

from eIF-4E (Heesom et al., 2001) and enables cap-dependent translation during mitosis 

(Shuda et al., 2015). Furthermore, CDK1 additionally phosphorylates 4E-BP1 at serine 83, 

which is not phosphorylated by mTORC1, leading to translation-independent functions 

(Velásquez et al., 2016). CDK1 mediated signalling appears to upregulate p70 S6 Kinase 

Threonine 389 phosphorylation (Greenberg and Zimmer, 2005; Ramírez-Valle et al., 2010) 

These findings are not supported in other studies where P-S6K (T389) is shown to be 

reduced in mitotic cells (Shah, Ghosh and Hunter, 2003; Ruf et al., 2017). Instead 

microtubule inhibitors promoted phosphorylation at Threonine 421 and Serine 424 by JNK 

(Le et al., 2003) and CDK1 (Shah, Ghosh and Hunter, 2003). CDK1 has also been shown 

to directly phosphorylate S6K at Serine 411 (Papst et al., 1998; Shah, Ghosh and Hunter, 

2003). It is important to note that P-S6K (T389) is not a proline-directed site and would not 

be expected to be phosphorylated by CDK1. 

Several phosphorylation events within the PI3K/PDK1/AKT signalling cascade are 

absent during mitosis, including P-AKT (T308), P-AKT (S473), P-PRAS (T246) (Ramírez-

Valle et al., 2010). Cells expressing constitutively active PI3K class I (p110CAAX) have, via 
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AKT signalling, inactivated forkhead transcription factors, preventing the transcription of 

cyclin B and PLK1, resulting in failure of cytokinesis (Alvarez et al., 2001). Thus, it appears 

PI3K signalling is disabled during mitosis to enable forkhead transcription of mitotic 

regulators.  

Whilst the majority of research has focused on mTORC1’s inhibition leading to a G1 

arrest some G2/M-specific functions of mTOR signalling components have also emerged. 

Inhibition of mTOR promotes an accelerated mitotic entry in both fission yeast (Petersen 

and Nurse, 2007) and mammalian cells (via a decrease in WEE1) (Atkin et al., 2014). A 

number of publications have suggested that mTORC1 is active during mitosis due to 

immunofluorescence of the autophosphorylation site S2481 being increased during mitosis 

(Vazquez-Martin et al., 2009, 2011; Lopez-Bonet et al., 2010). It has also been suggested 

that mTORC1 signalling regulates both Aurora A and PLK, with Mio (GATOR2 component) 

siRNA causing loss of P-mTOR (2481) at mitotic centrosomes (immunofluorescence), 

delayed bipolar spindle formation and loss of P-Aurora A (T288) (western blot)  (Platani et 

al., 2015). S2481 phosphorylation is usually attributed with mTORC2 (Copp, Manning and 

Hunter, 2009). These results are discussed further in Section 4.3.2 but should be treated 

with caution given the phospho-antibody is not approved for immunofluorescence use.  

1.8 Autophagy and the cell cycle 

1.8.1 G1/S phase 
For a cell to be able to progress through the G1 restriction point, it must have 

sufficient nutrients to proceed. mTOR functions as a central control, coupling nutrient 

signalling to cell cycle progression (Fingar and Blenis, 2004). Inhibition of mTOR can 

promote a G1 phase arrest (Gao et al., 2003), which is partially ameliorated by 

overexpression of its substrates 4E-BP1 and S6K (Fingar et al., 2004). In addition, 

components of the PI3K/AKT/mTOR signalling axis also interact with cell cycle 

components. For example, AKT phosphorylates the CDK inhibitor p21 at T145/S146, 

mediating its increased stability though in the cell lines tested this had little effect on the cell 

cycle (Li, Dowbenko and Lasky, 2002). Other nutrient-sensitive pathways also interact with 

cell cycle progression. For example, the CDK inhibitor p27KIP1 is phosphorylated by AMPK 

on Threonine 198, increasing its stability and promoting autophagy (Liang et al., 2007).  

Evidence also exists of autophagy being regulated by cell cycle components. 

Agents which induced G1 cell cycle arrest such as mimosine, hydroxyurea and aphidicolin 

increased LC3B lipidation (Liang et al., 2007). Overexpression of CDK inhibitors p16, p19, 

p21 also promoted autophagy and senescence in fibroblasts (Capparelli et al., 2012). Cyclin 

A-CDK2 phosphorylates AKT at 477/479, which enables AKT phosphorylation at T308 and 
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S473 thus promoting AKT activation, although the functional consequences on autophagy 

were not assessed (Liu et al., 2014). It was previously shown that CDK2 knockdown 

resulted in modest upregulation of autophagy (Liang et al., 2007).  

There are currently no known links between the cell cycle and TFEB. CDK4/6 

inhibition has been associated with enrichment of lysosomal and fatty acid metabolism gene 

sets, with a concurrent increase in lysosome number over 24 hours (Franco et al., 2016). 

Furthermore, the CDK4/6 inhibitor PD0332991 promoted LC3B protein expression in a 

dose-dependent manner (Capparelli et al., 2012). The Narita group has previously shown 

that autophagy induction is associated with senescence, an irreversible cell cycle arrest, 

but is not a general consequence of cell cycle arrest. For example, quiescent cells 

generated by total confluence possess no increase in total LC3B or LC3B lipidation (Young 

et al., 2009). Cyclin D1-CDK4/6 phosphorylates LKB1 at S325, leading to its inactivation, 

impairment of AMPK signalling and thus reduced autophagy (Casimiro et al., 2017). 

Overall, there is little consensus on a direct link between cell cycle regulators and 

autophagy. 

1.8.1.1 CDK4/6 inhibitors 

Aberrant regulation of cyclin D-CDK4/6 is a key feature of many cancers (Musgrove 

et al., 2011) and, as a result, CDK4/6 inhibitors have been developed such as PD0332991 

(Palbociclib) and LY2835219 (abemaciclib). Gelbert and colleagues’ pre-clinical 

characterisation of LY2835219 showed that it produced marked G1 arrest at doses above 

320 nM in COLO205 (Gelbert et al., 2014).   Supplemental data within this study suggested 

that at these doses PIM1 kinase was also inhibited as indicated by the dephosphorylation 

of the substrates BAD (S112) and 4E-BP1 (T37/46). PIM1 was also identified in the study’s 

in vitro kinase screen with a Ki less than 100nM, alongside HIPK2 and DYRK2. However, 

the panel of kinases did not include mTOR and 4E-BP1 is a well-established mTOR 

substrate. Recently, LY2835219 was found to synergise with  mTOR inhibitors in head and 

neck squamous cell carcinoma (Ku et al., 2016). Whilst this study showed that 

phosphorylation of mTOR was not impaired by LY2835219, it did not evaluate mTOR 

substrate phosphorylation. 

1.8.2 Mitosis 
It has been postulated that autophagy should be repressed during mitosis in 

mammalian cells, since the nuclear envelope is disintegrated exposing vulnerable nuclear 

contents to the autophagic machinery (Eskelinen et al., 2002). Eskelinen and colleagues 

first observed that there was reduced autophagy during mitosis by observing, via electron 

microscopy, few autophagosomes being present in either nocodazole-arrested 
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prometaphase-like cells, or metaphase and anaphase cells released from nocodazole block 

relative to interphase cells (Eskelinen et al., 2002). Furthermore, they observed that 

autophagosomes only began to form upon nuclear envelope closure during telophase 

(Eskelinen et al., 2002). Subsequent studies have generally supported the observed 

reduction in autophagosomes by observation of reduced lipidated LC3B in mitotic cells (Liu 

et al., 2009; Furuya et al., 2010; Veldhoen et al., 2013; Z. Li et al., 2016; Lu et al., 2019). 

Debate has arisen as to whether the reduction in autophagosome number is a result of 

reduced autophagosome synthesis or increased autophagosome degradation. Treating 

cells with lysosomal inhibitors causes an accumulation of autophagosomes in mitotic cells 

(Liu et al., 2009; Z. Li et al., 2016); however, since lysosomal inhibitors are added for 

prolonged time periods (between 1 and 16 hours), these autophagosomes may be 

accumulated from interphase. Liu and colleagues tried to address this issue by treating 

mitotic cells, harvested by shake off, with ammonia and showing that LC3B could still be 

lipidated Ammonia is known to cause non-canonical L3B lipidation (Jacquin et al., 2017) 

and this is independent of the ULK1/2 complex (Cheong et al., 2011). It is also worth noting 

that it has previously been observed that LC3 puncta can remain for approximately 30 

minutes (Axe et al., 2008); therefore, even in the absence of lysosomal inhibitors, it is 

entirely possible that LC3 puncta observed during early mitosis are inherited mature 

autophagosomes from interphase. A recent paper further tried to address this issue by 

treating cells with nocodazole, prior to the treatment with lysosomal inhibitors and showed 

that both chloroquine and bafilomycin A1 failed to cause an increase in lipidated LC3, 

supporting a suppression of autophagy (Lu et al., 2019). Furthermore, the widespread use 

of microtubule inhibitors in many of these studies could easily provide misleading results 

given the implication of microtubules in autophagosome transport (Mackeh et al., 2013). It 

is therefore currently still unknown whether the reduction in autophagosome number is as 

a result of repression of macroautophagy.  

Independent studies have also established roles for autophagy in outcomes post-

mitotic slippage (Sorokina et al., 2017; Jakhar et al., 2018). Curiously, in the Jakhar study 

they concluded that mTOR signalling was increased in mitosis due to increases in P-ULK 

757 relative to total ULK levels. Specifically, they observed that total ULK levels had 

decreased (to the point of not being detectable) with stable phospho-757 signal. 

Furthermore, the phospho-757 signal was band-shifted suggesting that other post-

translational modifications of ULK1 maybe occurring during nocodazole-induced mitotic 

arrest of U20S cells (Jakhar et al., 2018).  

On the basis that macroautophagy is repressed during mitosis, mechanistic detail 

is limited, though beginning to emerge. VPS34 is phosphorylated at T159 by CDK1, 
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promoting dissociation from Beclin-1 and reduction in autophagosome number (Furuya et 

al., 2010). Supporting these findings, cells treated with paclitaxel, known to increase CDK1 

activity due to holding cells in a prometaphase-like state (Chadebech et al., 2000), exhibit 

loss of LC3B puncta, as well as phosphorylation of VPS34 at T159 (Veldhoen et al., 2013).  

Whilst evidence exists that CDK1 also phosphorylates p62 (Linares et al., 2011), no role in 

autophagy has been identified or investigated. 

It has also been suggested that autophagy plays critical roles in cytokinesis (Pohl 

and Jentsch, 2009; Belaid et al., 2013; Matsui et al., 2013) and midbody degradation (Kuo 

et al., 2011). Whilst LC3-dependent, the machinery involved in autophagosome synthesis, 

UNC-51 and EPG-8 (homologs of ULK1 and ATG14 respectively), are not required for 

Caenorhabditis elegans midbody degradation, again demonstrating the difficulty in 

dissecting macroautophagy with non-canonical causes of LC3B puncta formation (Fazeli et 

al., 2016). Instead, the midbody appears to be directly recruited to LC3 structures by 

FYCO1 (Dionne et al., 2017) and selective autophagy receptor NBR1 binding to midbody 

protein CEP55 (Kuo et al., 2011). Furthermore, CDK1 activity does not persist into 

cytokinesis, with cyclin B degradation being essential for progression through anaphase 

(Chang, Xu and Luo, 2003). Indeed, no VPS34 T159 phosphorylation is seen in cells 

undergoing telophase or cytokinesis (Furuya et al., 2010). Thus, it is possible that CDK1-

mediated repression of autophagy terminates by cytokinesis.  

Other forms of selective autophagy have also been implicated during mitosis. Cyclin 

A2 has been proposed to be degraded during metaphase by selective autophagy, whereby 

cyclin A2 directly interacts with p62 and LC3B (Loukil et al., 2014). Whether other 

components of the autophagy machinery are required is not known. 

It has been shown that autophagy is required for the progression through mitosis in 

nitrogen-starved conditions in budding yeast (Matsui et al., 2013). It has been postulated 

that this is to return cells to a G1 arrest in starvation conditions  (Mathiassen, De Zio and 

Cecconi, 2017). Crucially, these studies have been conducted in yeast which do not 

undergo open mitosis (reviewed: Güttinger, Laurell and Kutay, 2009). mTOR appears to 

maintain regulation of autophagy during mitosis in yeast since rapamycin induces 

autophagy in nocodazole arrested mitotic yeast cells (Noda and Ohsumi, 1998), in contrast 

to the findings of Eskelinen in mammalian cells (Eskelinen et al., 2002). 

1.8.3 Miscellaneous CDK interactions with autophagy 
Whilst CDK5 is not part of the cell cycle, it has been demonstrated to interact with 

autophagy initiation via its repressive phosphorylation of VPS34 (Furuya et al., 2010). 

Conversely CDK5 has been suggested to promote basal autophagy by phosphorylating 
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acinus at S437, which has been shown to induce basal starvation-independent autophagy 

in drosophila (Nandi et al., 2017). The relevance in mammalian systems has not been 

explored. Supporting a stimulatory role in autophagy, CDK5 has been shown to 

phosphorylate endophilin B1 (also referred to as Bif-1)  (Wong et al., 2011). Endophilin B1 

binds to UVRAG and enhances VPS34 activity; however, it is implicated in stimulating 

autophagosome formation as opposed to maturation (Takahashi et al., 2007). CDK5-

mediated phosphorylation of endophilin B1 at T145 increased lipidated LC3 in response to 

starvation (Wong et al., 2011). The reasons behind the discrepancy in Furuya and Wong’s 

findings are unclear. 

Knockdown of CDK11 in mammalian cells promotes increased autophagic flux; 

however, after prolonged periods of knockdown there appears to be an impairment in 

lipidated LC3 turnover (Wilkinson et al., 2011). Very little is known about the function of 

CDK11. Homozygous null mice are embryonically lethal, with blastocysts arresting in 

mitosis as measured by P-H3 (S10) (Li et al., 2004). Both the p110 and the p58 isoforms 

have a conserved kinase domain at their C-terminus. Whilst CDK11p110 is expressed 

uniformly across the cell cycle, CDK11p58 is expressed via an IRES site which is solely 

translated during mitosis (Cornelis et al., 2000). Despite this, Wilkinson and colleagues 

concluded that the autophagy inhibition mediated by CDK11 was not linked to its role in 

mitosis, since the proportion of cells displaying elevated autophagosomes was far higher 

than the numbers in mitosis. Overall, the mechanism by which CDK11 regulates autophagy 

has not been elucidated. 

1.9 Selective autophagy 
Selective autophagy for several cargoes has been identified but the signalling 

required to direct them is poorly understood. Cargo is generally agreed to be sequestered 

by cargo receptors which, via LC3-interaction region (LIR) motifs, are recruited to the 

developing phagophore (reviewed: Johansen and Lamark, 2019). But how then is the 

phagophore initiated? Direct recruitment of ULK1 by cargo receptors to enable phagophore 

initiation has been proposed, for example NDP52 via its SKICH domain, can directly interact 

with the ULK1 complex via FIP200 during mitophagy (Vargas et al., 2019) and xenophagy 

(Ravenhill et al., 2019). In both cases this appears to be mediated by TBK, and 

overexpression of mTOR leading to enhanced P-ULK1 (S757) failed to prevent mitophagy 

(Vargas et al., 2019). Likewise, p62 directly interacts with the c-terminus of FIP200, though 

curiously ULK1 can still be recruited to p62-ubiquitin condensates when FIP200 is knocked 

down, though ATG16L1 fails to be recruited (Turco et al., 2019). Overall, it would appear 

that selective cargo receptors are responsible for recruiting both the ULK1 complex and the 

targeted cargo; therefore, it is perhaps unsurprising that phagophore extension is in close 
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proximity to the cargo, excluding other contents (reviewed: Johansen and Lamark, 2019). 

What is less clear is whether mTORC1-catalysed repressive phosphorylation events on the 

ULK1 complex have to be removed to enable selective autophagy. Whilst data from the 

Randow group would suggest not (Vargas et al., 2019), it does not rule out potential 

possibilities such as localised phosphatase activity mediating localised de-repression of the 

ULK1 complex. Another potential possibility is that high concentrations of localised ULK1 

complex, mediated by the recruitment by selective cargo receptors, effectively promote 

trans-autophosphorylation and shield the ULK1 complex from mTORC1 activity (reviewed: 

Turco, Fracchiolla and Martens, 2019), a theory derived from observations of yeast Atg1 

during selective autophagy of damaged peroxisomes and cvt (Kamber, Shoemaker and 

Denic, 2015; Torggler et al., 2016).  It is worth noting that it has been proposed that 

mTORC1 does play a role in xenophagy. Salmonella enterica infection does lead to 

activation of AMPK, and subsequent inhibition of mTORC1, and AMPK knockout MEFs 

showed significantly decreased lipidation of bacteria (Losier et al., 2019).  Overall, how 

mTORC1-mediated repression is overcome during selective autophagy requires further 

investigation. 

The selectivity of starvation-induced autophagy is also a matter of debate. Originally 

thought of as a non-selective bulk degradative process, more recent studies have 

suggested a degree of selectivity. Proteomic analysis from cells suggested that cytosolic 

proteins were preferentially lost earlier than those proteins associated with organelles 

during prolonged starvation (Kristensen et al., 2008). Separately to the well characterised 

mTORC1-regulated bulk autophagy, amino acid starvation also promotes microautophagy 

of well characterised selective autophagy receptors such as p62, NBR1, NDP52 (Mejlvang 

et al., 2018). This requires further investigation. 
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1.10 Aims 

Whilst mTORC1 is widely viewed as the master regulator of autophagy, there is 

keen interest in the identification of novel regulatory mechanisms which may open 

therapeutic avenues from which to modulate autophagy with less toxic effects. Since the 

seminal work of Settembre and colleagues identifying TFEB as a transcriptional regulator 

of autophagy and lysosomal biogenesis, there has been increasing efforts to identify novel 

regulatory mechanisms. Whilst S142 was identified as an ERK2 phosphorylation site which 

mediated cytosolic retention, this site has also been identified as an mTORC1 site. Since 

ERK1/2 often phosphorylates multiple proline directed sites in close proximity to each other 

and that 15 serine or threonine proline-directed sites exist in the TFEB amino acid 

sequence, we set out to investigate if TFEB was regulated by ERK1/2 and to identify if there 

were other ERK1/2 target sites on TFEB. 

The question of autophagy during mitosis has been a source of ongoing debate over 

the last two decades. Much of this debate appears to be due to the methodologies used not 

being appropriate for the study of autophagy during mitosis, such as LC3 lipidation. Work 

by a collaborating lab (Ktistakis) has detailed the recruitment of the ULK1 complex to the 

omegasome intermediate structure, enabling a more transient and direct readout of 

autophagy initiation. Therefore, a second objective was to re-evaluate the status of 

autophagy during mitosis. Given we hypothesised that autophagy is repressed during 

mitosis, clarifying the status of the canonical regulatory mechanism, mTORC1, during 

mitosis would be critical. Indeed, the status of mTORC1 activity during mitosis is as 

controversial as the status of autophagy. Given that mTORC1 signalling has been shown 

to be subverted by CDK1 in the case of S6K and 4E-BP1 during mitosis, we wanted to 

investigate the phosphorylation status of ULK1, ATG13, ATG14 and TFEB in mitotic cells. 

It is curious that the key regulatory sites of mTOR-mediated phosphorylation on these 

proteins (TFEB:S142 (Settembre et al., 2012), ULK1: S758 (Kim et al., 2011), and ATG13: 

S258 (Puente, Hendrickson and Jiang, 2016)) are all proline-directed serine sites. 

Therefore, there is a possibility that proline-directed serine/threonine kinases, such as 

CDK1, phosphorylate these proteins during mitosis. Since these phosphorylation events 

are well known to repress autophagy regulators, it might provide a mechanism by which the 

reported reduction in autophagosome number during mitosis occurs.  
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2 Materials and methods  
2.1 General reagents 

Supplier Reagents  
BioRad 20% Sodium dodecyl sulphate (SDS) 

30% v/v acrylamide/bis solution 
Bradford reagent (Protein assay reagent) 
Precision Plus protein markers 

Hoefer Gel casting apparatus 
Marvel Milk powder 
Melford Tris 
New England Biolabs BL21(DE3) competent cells 

 
Lambda Phosphatase 

Life technologies/ Gibco Dulbecco’s Modified Eagles Medium 
L-15 media (Leibovitz) 
Geneticin (G418) 
IMDM 
L-glutamine 
OptiMEM 
Penicillin/Streptomycin 
RPMI 
SYBR green PCR master mix 
TrypLE 
Trypsin-EDTA 

Perkin-Elmer Cell-Carrier 96 well imaging plates 
Qiagen Miniprep and Midiprep kits 
Roche Epidermal Growth Factor (EGF) 
Sigma 4-hydroxytamoxifen (4HT) 

Aprotinin 
Bovine serum albumin (BSA) 
Coomassie brilliant blue 
Dimethyl sulphoxide (DMSO) 
Ethylene glycol bis(2-aminoethyl ether)- N,N,N’N’-tetraacetic 
acid (EGTA) 
Ethylenediaminetetraacetic acid (EDTA) 
Leupeptin 
Magnesium chloride 

-Mercaptoethanol 
Phenylmethylsulfonyl fluoride (PMSF) 
Propidium iodide 
Ribonuclease A 
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Sodium fluoride 
Sodium orthovanadate 
Triton X-100 
Tween-20 

Thermo Nunc Tissue culture plasticware 
Thistle Scientific μ-Dish 35 mm, high Glass Bottom 

Vectorlabs Vectashield hardset with DAPI 
VWR Acetic acid 

Calcium chloride 
Ethanol 
Glycerol 
Haemocytometer 
Magnesium chloride 
Methanol 
Propan-2-ol 
Potassium chloride 
Potassium dihydrogen phosphate 
Sodium azide 
Sodium bicarbonate 
Sodium chloride 
Sodium hydroxide 
Trichloroacetic acid 

Table 2.1: List of general reagents used within this thesis, with the respective 
manufacturer. 

2.2 Cell culture 

Cell line Media  
A549, CO115, HCT116, 
HEK293, HeLa (ATCC 
CCL-2), HeLa 
Dox:KRASG12D, PANC-1, 
HeLa Tet-CDC2, HEK293 
mRFP-EGFP-LC3 

DMEM 

10% FBS (v/v) 

Penicillin 100 μgml-1 Streptomycin 100 μgml-1 

L-glutamine 2 mM 

HM3 (HEK293 
, HeLa HA-

RAPTOR (WT, A7, D7) 

DMEM 

10% FBS (v/v) 

Penicillin 100 μgml-1 Streptomycin 100 μgml-1 

L-glutamine 2 mM 

Puromycin 4 μgml-1 

-1:ER), 
-GFP, 

DMEM 

10% FBS (v/v) 
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HEK293 GFP-ATG13, 
HEK293 GFP-ATG13 H2B-
mCherry, HeLa TFEB-GFP, 
HeLa TFEB-GFP H2B-
mCherry, A549 TFEB-GFP 

Penicillin 100 μgml-1 Streptomycin 100 μgml-1 

L-Glutamine 2 mM  

G418 400 μgml-1 

COLO205 RPMI 

10% FBS (v/v) 

Penicillin 100 μgml-1 Streptomycin 100 μgml-1 

L-Glutamine 2 mM  

HT-29 McCoys 

10% FBS (v/v) 

Penicillin 100 μgml-1 Streptomycin 100 μgml-1 

L-glutamine 2 mM 

 

SW620 
(SW620:8055R have media 
supplemented with 2 μM 
AZD8055)  

Leibovitz's L-15 

10% FBS (v/v) 

Penicillin 100 μgml-1 Streptomycin 100 μgml-1 

L-Glutamine 2 mM  

7.5% sodium bicarbonate 

 

HAP1 parental, HAP1 
RAPTOR-GFP 
(endogenous CRISPR) 

IMDM 

10% FBS  

Penicillin 100 μgml-1 Streptomycin 100 μgml-1 

Table 2.2: Cell line culture media. 

2.3 Small interfering RNA 

Target Sequence/ Category number 
TFEB M-009798-02 (Dharmacon) pooled siRNA: 

D-009798-02       

Target sequence: CUACAUCAAUCCUGAAAUG 

Antisense: CAUUUCAGGAUUGAUGUAG 

 D-009798-03       

Target sequence:  AGACGAAGGUUCAACAUCA 

Antisense: UGAUGUUGAACCUUCGUCU 

 D-009798-04       

Target sequence:  CAAGUUUGCUGCCCACAUC 

Antisense:  GAUGUGGGCAGCAAACUUG 
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D-009798-18       

Target sequence:   CGGGAGUACCUGUCCGAGA 

Antisense: UCUCGGACAGGUACUCCCG 
 

Table 2.3: siRNA used within this study. 

2.4 Drugs 

Drug  Mechanism of action Target used to validate  
4-
Hydroxytamoxifen 

Activation of ER constructs Relevant downstream substrate of 

induced kinase 

AZD8055  ATP competitive mTOR 

inhibitor 

P-S6K (T389); P-ULK1 (S758); 4E-BP1 

or TFEB dephosphorylation 

Bafilomycin A1 Vacuolar-type H+ ATPase 

inhibitor (lysosomal 

acidification inhibitor) 

LC3B-II accumulation 

BI 6727 PI3K inhibitor  Mitotic arrest with distinct chromosome 

morphology 

BIRB-796 p38 inhibitor P-MAPKAPK2 (T222) 

Camptothecin Topoisomerase I inhibitor P-Chk1 (S317) 

CHIR99021 GSK3 inhibitor P- -Catenin (Ser33/37/Thr41) 

Dimethylenastron Eg5 inhibitor P-Histone H3 (S10) 

4E-  

Doxycycline  Induction of relevant signalling pathway 

Etoposide Topoisomerase II inhibitor P-Chk1 (S317) 

GSK1120212 
(Trametinib) 

Allosteric MEK1/2 inhibitor P-ERK1/2 (T202/Y204) 

JNK-IN-8 JNK inhibitor P-c-JUN (S63) 

LY2835219 
(abemaciclib) 

CDK4/6 inhibitor P-Rb (S795) 

Nocodazole Microtubule destabilising. 

Arrests cells in 

prometaphase-like state with 

upregulation of Cyclin 

B/CDK1 activity 

P-Histone H3 (S10), 4E-  

NU6102 Pan-CDK inhibitor (1 and 2) P-Histone H3 (S10), 4E-  

Paclitaxel Taxol compound. Microtubule 

stabilising. Similar to 

Nocodazole. 

P-Histone H3 (S10), 4E-  
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PD0332991 CDK4/6 inhibitor P-Rb (S795) 

PP242 mTOR inhibitor P-S6K (T389) 

RO-3306 Reversible CDK1 inhibitor FACS PI stain, 4E-  

Roscovitine Pan-CDK inhibitor (1,2 and 5) P-Histone H3 (S10), 4E-  

SCH772984 ERK1/2 inhibitor P-RSK (T359, T380) 

Torin1 mTOR inhibitor P-S6K T389 

Wortmannin Pan-PI3K inhibitor Absence of ATG13 puncta 

ZSTK474 Class I PI3K inhibitor P-AKT (S473) 

Table 2.4: Compounds used within this thesis, along with the read-out used to 
validate target engagement. 

2.5 Solutions 

Solution Components 
TG lysis buffer 20 mM Tris-HCl pH 7.6; 137 mM NaCl; 1% v/v Triton X-100; 

10% glycerol; 1 mM EGTA; 1.5 mM MgCl2; 50 mM NaF; 1 mM 

Na3VO4; 
-1 -1 aprotinin   

RIPA buffer 50 mM Tris-HCl pH 8.0; 150 mM NaCl; 1% v/v Triton X-100; 1% 

Sodium deoxycholate (w/v); 0.1% SDS; 50 mM NaF; 1 mM 

Na3VO4; 1 mM PMSF; 10 gml-1 -1 aprotinin   

IP extraction buffer 50 mM Tris pH 7.5; 150 mM NaCl; 0.1% NP-40; 20 mM EGTA; 

50 mM NaF; 1 mM Na3VO4
-1 leupeptin; 5 

-1 aprotinin   

CDK1 IP wash 
buffer 

50 mM Tris pH 7.5; 500 mM NaCl; 0.1% NP-40; 20 mM EGTA; 

50 mM NaF; 1 mM Na3VO4; 1 mM PMSF; 10 -1 leupeptin; 5 

ml-1 aprotinin   

0.3% CHAPS buffer 40 mM HEPES pH 7.4; 120 mM NaCl; 0.3% CHAPS, 1mM 

EDTA, 50mM NaF; 1 mM Na3VO4
-1 

-1 aprotinin     

4 x Laemmli buffer 
(sample buffer) 

200 mM Tris-HCl pH 6.8; 8% w/v SDS; 40% v/v glycerol; 4% v/v 

-mercaptoethanol; 0.04% w/v bromophenol blue 

Phosphatase 
buffer 

50 mM HEPES pH 7.4; 100 mM NaCl; 2 mM DTT; 0.1% NP-40; 
-1 leu -1aprotinin; 1mM MnCl2 

REAP (cytosolic) 
buffer 

PBS; 0.1% NP-40; 50mM NaF; 1 mM Na3VO4; 1 mM PMSF; 10 
-1 -1aprotinin   
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Isotonic buffer  20 mM HEPES pH 7.4, 250 mM sucrose, 0.5 mM EDTA, 50 mM 

NaF; 1 mM Na3VO4; 1 mM -1 leupeptin; 5 -1 

aprotinin 

Dialysis buffer 50 mM Tris pH 7.6, 150 mM NaCl, 2 mM DTT 

Kinase assay 
buffer 

50 mM Tris pH 7.6, 100 μM EGTA, 10 mM MgCl2, 100 μM ATP 

Where applicable: 2 -32P] ATP 

Running buffer 192 mM glycine; 25 mM Tris base; 0.1% v/v SDS 

Transfer buffer 192 mM glycine; 25 mM Tris base; 20% v/v methanol 

Tris-buffered 
saline with Tween 
(TBST) 

50 mM Tris-HCl pH 7.6; 150 mM NaCl; 0.1% Tween 20 

5% Milk/TBST 5% Milk (Marvel; w/v); TBST 

5% BSA/TBST 5% Bovine Serum Albumin (w/v); TBST 

Luria Broth (LB) 10 gL-1 Tryptone 
10 gL-1 NaCl 
5 gL-1 Yeast extract 

Phosphate-
buffered saline 
(PBS) 

137 mM NaCl 
2.7 mM KCl 
1.47 mM KH2PO4 
8.1 mM Na2HPO4 

Table 2.5: Composition of solutions. 

2.6 Antibodies 
Antibody Company Catalogue 

number 
Species Solution 

(For 
Western 
blot) 

Dilution 

4E-BP1 Cell 

Signalling 

Technologies 

(CST)  

#9452 /RRID: 

AB_331692 

Rabbit 5% 

BSA/TBST 

1:1000 

ATG13 CST #13468 /RRID: 

AB_2797419 

Rabbit 5% 

BSA/TBST 

WB: 

1:1000 

IP: 1:250 

IF: 1:100 

ATG14 CST #96752 /RRID: 

AB_2737056 

Rabbit 5% 

BSA/TBST 

1:1000 
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CDK1 Santa Cruz #SC747 /RRID: 

AB_631206 

Rabbit 5% 

Milk/TBST 

1:1000 

Cyclin B1 Thermo #MS-868-P1ABX/ 

#SC747 /RRID: 

AB_145331 

Mouse IP: 1:100 

Cyclin B1 Santa Cruz #sc-245 /RRID: 

AB_627338 

Mouse  IP: 1:20 

Cyclin B1 CST #12231 /RRID: 

AB_2783553 

Rabbit 5% 

Milk/TBST 

1:1000 

ERK1/2  CST #9102 /RRID: 

AB_330744 

Rabbit 5% 

Milk/TBST 

1:2000 

GFP Roche #11814460001 

/RRID: 

AB_390913 

Mouse 5% 

Milk/TBST 

1:1000 

IP: 1:100 

GST Santa Cruz #SC138 /RRID: 

AB_627677 

Mouse 5% 

Milk/TBST 

1:10000 

HA Roche #11867423001/ 

RRID: 

AB_390918 

Rat IF: 1:200 

HA Santa Cruz #SC805 /RRID: 

AB_631618 

Rabbit 5% 

Milk/TBST 

1:1000 

HA Santa Cruz #SC7392 /RRID: 

AB_627809 

Mouse IP: 1:200 

Lamin A/C Santa Cruz #sc-7292 /RRID: 

AB_627875 

Mouse 5% 

Milk/TBST 

1:100 

Lamp2  Abcam #25631 /RRID: 

AB_470709 

Mouse 5% 

Milk/TBST 

WB: 

1:1000 

IF: 1:200 

LC3B CST #2775 /RRID: 

AB_915950 

Rabbit 5% 

Milk/TBST 

WB: 

1:1000 

MEK1/2 CST #9122 /RRID: 

AB_823567 

Rabbit 5% 

Milk/TBST 

1:1000 

mTOR CST #2983 / RRID: 

AB_2105622 

Rabbit 5% 

BSA/TBST 

WB: 

1:1000 

IF: 1:200 
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P-4E-BP1 
(S65) 

CST #9451 /RRID: 

AB_330947 

Rabbit 5% 

BSA/TBST 

1:1000 

p70 S6 
Kinase 

CST #9202 /RRID: 

AB_331676 

Rabbit 5% 

BSA/TBST 

1:1000 

P-AKT (473) CST #4060 /RRID: 

AB_2315049 

Rabbit 5% 

BSA/TBST 

1:1000 

P-AKT (473) CST #4060 /RRID: 

AB_2315049 

Rabbit 5% 

BSA/TBST 

WB: 

1:1000 

P-ATG14 
(S29) 

CST #13155 /RRID: 

AB_2798133 

Rabbit 5% 

BSA/TBST 

1:1000 

P-cJUN 
(S63) 

CST #9261/ RRID: 

AB_2130162 

Rabbit 5% 

Milk/TBST 

1:1000 

P-ERK1/2 
(T202/Y204) 

CST #9101 /RRID: 

AB_331646 

Rabbit 5% 

Milk/TBST 

1:2000 

P-ERK1/2 
(T202/Y204) 

CST #4370 /RRID: 

AB_2315112 

  IF: 1:500 

P-Histone 
H3 (S10) 

Santa Cruz #sc-8656 /RRID: 

AB_2233067 

 

Rabbit 5% 

Milk/TBST 

1:1000 

IF: 1:200 

P-Histone 
H3 (S10) 

CST #9706 /RRID: 

AB_331748 

Mouse  IF: 1:200  

HCM: 

1:1000 

FC: 

1:200 

  

P-JNK1/2 
(T183/Y185) 

CST #4668 /RRID: 

AB_823588 

Mouse 5% 

Milk/TBST 

1:1000 

P-
MAPKAPK2 
(T222) 

CST #3044 /RRID: 

AB_330728 

Rabbit 5% 

Milk/TBST 

1:1000 

P-p38 MAPK 
(T180/Y182) 

CST #9211S /RRID: 

AB_331641 

Rabbit 5% 

BSA/TBST 

1:1000 

P-p70 S6  
Kinase 
(T389) 

CST #9205 /RRID: 

AB_330944 

Rabbit 5% 

BSA/TBST 

1:1000 
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P-Rb (S795) CST #9301 /RRID: 

AB_330013 

Rabbit 5% 

BSA/TBST 

1:1000 

P-TFEB 
(S122) 

Bethyl #A300-BL13169 

/RRID:  

AB_2797420 

Rabbit 5% 

Milk/TBST 

1:1000 

P-TFEB 
(S142) 
Note: 
marketed as 
P-MITF 
(S73) 

Sigma #SAB4503940 

/RRID:  

AB_2797421 

Rabbit 5% 

Milk/TBST 

1:1000 

P-ULK1 
(S758) 

CST #6888 /RRID: 

AB_10829226 

Rabbit 5% 

BSA/TBST 

1:1000 

P-ULK1 
(S758) 

CST #14202 /RRID: 

AB_2665508 

Rabbit  FC: 

1:200 

HCM: 

1:1000 

RagA CST #4357 /RRID: 

AB_10545136 

Rabbit 5% 

BSA/TBST 

1:1000 

RagC CST #3360 /RRID: 

AB_2180068 

Rabbit 5% 

BSA/TBST 

1:1000 

IF: 1:200 

RAPTOR CST #2280 /RRID: 

AB_561245 

Rabbit 5% 

BSA/TBST 

1:1000 

TFE3 CST #14779 /RRID: 

AB_2687582 

Rabbit 5% 

BSA/TBST 

1:500 

TFEB CST #4240 /RRID: 

AB_11220225 

Rabbit 5% 

BSA/TBST 

1:500 

IP: 1:200 

ULK1 Santa Cruz #33182 /RRID: 

AB_2214706 

Rabbit 5% 

BSA/TBST 

1:1000 

WIPI2 Bio-rad #MCA5780GA 

/RRID: 

AB_10845951 

Mouse  IF: 1:200 

-actin Sigma #A5441 /RRID: 

AB_476744 

Mouse 5% 

Milk/TBST 

1:10000 

Secondary Antibodies 
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anti-mouse 
(secondary) 

BioRad #170-6516/ RRID: 

AB_11125547 

Goat 5% 

Milk/TBST 

1:3000 

anti-rabbit 
(secondary) 

BioRad #170-6515 / 

RRID: 

AB_11125142 

Goat 5% 

Milk/TBST 

1:3000 

anti-rabbit 
488 

Invitrogen #A11034/ RRID: 

AB_2576217 

Goat  IF: 1:500 

anti-mouse 
488 

Invitrogen #A11029/ RRID: 

AB_2534088 

Goat  IF: 1:500 

anti-rabbit 
568 

Invitrogen #A11011/ RRID: 

AB_143157 

Goat  IF: 1:500 

anti-mouse 
568 

Invitrogen #A11004/ RRID: 

AB_2534072 

Goat  IF: 1:500 

anti-mouse 
647 

Invitrogen #A21235/ RRID: 

AB_2535804 

Goat  IF: 1:500 

Highly 
cross-
absorbed 
anti-mouse 
647 

Invitrogen #A21236/ RRID: 

AB_2535805 

Goat  IF: 1:500 

anti-rat 488  Invitrogen #A11006/ RRID: 

AB_2534074 

Goat  IF: 1:500 

Anti-mouse 
(Dylight 800)  

CST #5257/ RRID: 

AB_10693543 

Goat 5% 

Milk/TBST 

1: 30000 

Anti-Rabbit 
(Dylight 800) 

CST #5151/ RRID: 

AB_10697505 

Goat 5% 

Milk/TBST 

1: 30000 

Table 2.6: Antibodies used throughout thesis. 

2.7 qRT-PCR 
Primer Target Oligo sequences 
TFEB 
(validated by siRNA) 

Fwd: 5’-CAGATGCCCAACACGCTAC-3’ 

Rev: 5’-TTGTCTTTCTTCTGCCGCTC-3’ 

YWHAZ Fwd: 5’-ACTTTTGGTACATTGTGGC-3’ 

Rev: 5’- CCGCCAGGACAAACCAGTAT-3’ 

B2M Fwd: 5’-TGCTGTCTCCATGTTTGATG-3’ 

Rev: 5’-TCTCTGCTCCCCACCTCTAA-3’ 

Table 2.7: Primers used in qRT-PCR. 
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2.8 DNA Oligos used in PCR subcloning 
Oligo Sequence (note all have a 4 nucleotide TAAC which is cleaved off) 
ATG13 
194-282

Fwd (BamHI): TAACGGATCCGCATTCATGTCTACCAGG 

Rev (EcoRI, stop codon): TAACGAATTCTCAGTCAGCTGATCCAACGCC 

ATG14 
348-470

Fwd (EcoRI): TAACGAATTCGTGAAGAAACTGAATGC 

Rev (XHOI, stop codon): TAACCTCGAGTCATGCACTGCTGCTCGCGATG 

TFEB 
76-160

Fwd (BamHI): TAACGGATCCCTGGAGAATCCCACATCC 

Rev (EcoRI, stop codon): 

TAACGAATTCTCAGACATCATCCAACTCCCTCT  

ULK1 
706-827

Fwd (BamHI): TAACGGATCCGCGTTTGGGACACAAGCC 

Rev (EcoRI, stop codon): TAACGAATTCTCAGGCCTCGAAGGTCACAGC 

Table 2.8: Oligos used for PCR subcloning.  

2.9 DNA Oligos used in Sanger sequencing reactions 
Oligo 
GEX-4T1 vectors (TFEB, 
ATG13, ULK1, ATG14) 

Fwd: 5’- GGGCTGGCAAGCCACGTTTGGTG -3’ 

Rev: 5’- CCGGGAGCTGCATGTGTCAGAGG -3’ 

pBabe-RAPTOR (WT, A7, D7) Fwd primers: 

5’- CTTTATCCAGCCCTCAC -3’ 

5’- ACCTCCTGCCTCACCACC -3’ 

5’- ACATGCCAGCTGAACACC -3’ 

5’- AGCATATCCTGTCCTTCG -3’ 

5’- CGAGGGTCACTGCCATGG -3’ 

Rev primers: 

5’- ACCCTAACTGACACACATTCC -3’ 

5’- CAGTGACCCTCGTGTACC -3’ 

5’- TGTTGAGTACTTTCATGG -3’ 

5’- TCTCATGAGCGCTGTCCC -3’ 

5’- CTAGCCACCAGCAAGTCC -3’ 

Table 2.9: Primers used for sanger sequencing of indicated constructs. 

2.10 Plasmids 
Plasmid Reference Source  
FH-pBabe-
Raptor(A7) 

(Ramírez-Valle et al., 2010) Gift from Robert Schneider 

FH-pBabe-
Raptor(D7) 

(Ramírez-Valle et al., 2010) Gift from Robert Schneider 
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FH-pBabe-
Raptor(WT) 

(Ramírez-Valle et al., 2010) Gift from Robert Schneider 

pCDNA3 H2B-
mCherry 

(Nam and Benezra, 2009) Addgene #20972 

pEGFP-C1-hAtg14 (Itakura et al., 2008) Addgene #24295 

pEGFP-N1-
delta30-TFEB  

(Roczniak-Ferguson et al., 

2012) 

Addgene #44445 

pEGFP-N1-TFEB (Roczniak-Ferguson et al., 

2012) 

Addgene #38119 

pGEX-4T1-ATG13 
(194-282) 

This study 

pGEX-4T1-ATG14 
(348-470) 

This study 

pGEX-4T1-TFEB 
(76-160) 

This study 

pGEX-4T1-ULK1 
(706-827) 

This study 

pmRFP-EGFP-
rLC3 

Gift from Tamotsu Yoshimori 

pOPH10-ATG13 (Karanasios et al., 2013) 

pPOM121-
mCherry 

(Dultz et al., 2008) EUROSCARF #P30554 

pRK5-HA GST 
RagB Q99L (GTP)  

(Sancak et al., 2008) Addgene #19303 

pRK5-HA GST 
RagB WT  

(Sancak et al., 2008) Addgene #19301 

pRK5-HA GST 
RagD S77L (GDP) 

(Sancak et al., 2008) Addgene #19308 

pRK5-HA GST 
RagD WT  

(Sancak et al., 2008) Addgene #19307 

pRK5-HA-hULK1 (Jung et al., 2009) Addgene #31963 

Table 2.10: Plasmids used within this thesis. 

2.11 Tissue culture 
All cells were raised in an atmosphere of 37oC, 5% CO2, 95% humidity. Cells were 

split at approximately 80% confluency, every 3-4 days. Cell media was aspirated and then 

cells were washed in Trypsin-EDTA or TrypLE. Cells were then incubated at 37oC in fresh 

Trypsin-EDTA or TrypLE until detached. Displaced cells were then diluted with appropriate 
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amounts of fresh media, from which 1 ml was transferred to a new culture flask. For storage 

of cells, cells were suspended in freezing medium (90% FBS, 10% DMSO) prior to transfer 

to a -80oC freezer. Frozen vials were then transferred and stored in vapor phase liquid 

nitrogen for long-term storage.  

2.12 Transfection 
Cells were cultured to approximately 60% confluency. Constructs were then 

transfected using JetPrime polyplus transfection reagent (HeLa; A549) or lipofectamine 

2000 (HEK293) as per manufacturer’s instructions. The Rag WT duplex consisted of 

RagBWT and RagDWT, whilst the active Rag heteroduplex consisted of RagBGTP; Q99L and 

RagDGDP; S77L.   

2.13 Generation of stable cell lines 
For the generation of HeLa cells stably expressing TFEB-GFP and -TFEB-GFP, 

HeLa cells were transfected with constructs using JetPrime as per manufacturer’s 

instructions. After 48 hours, cell media was then supplemented with G418 (400 μgml-1). 

Cells were then cultured for one week, before undergoing limiting dilution to generate 

single-cell derived clones. Clonal populations were then screened for GFP expression by 

western blot and confocal imaging.  

For generation of HEK293 GFP-ATG13 or HeLa TFEB-GFP cells stably expressing 

H2B-mCherry. Cells were transfected as per manufacturer’s instructions (HEK293, 

Lipofectamine 2000; HeLa, JetPrime). After 24 hours, cells were incubated in fresh media 

and cultured for two weeks.  Cells were then single-cell sorted by flow cytometry for positive 

mCherry expression, using the TFEB-GFP or GFP-ATG13 parental cells as a negative 

control. After two weeks, 96 well plates were screened for mCherry expression using an 

InCell 6000, with parental TFEB-GFP or GFP-ATG13 parental cells as a negative control. 

Clones deemed to have both GFP and mCherry expression were taken forward.  

For generation of A549 TFEB-GFP, A549 cells were transfected with constructs 

using JetPrime as per manufacturer’s instructions. After 48 hours, cell media was then 

supplemented with G418 (400 μgml-1). Cells were then cultured for a further two weeks 

prior to single-cell sorting by flow cytometry. Clonal populations were then screened for 

GFP expression by high-content microscopy. 

Generation of HeLa cells stably expressing HA-RAPTOR constructs was performed 

by Rebecca Gilley. pBabe-Raptor (WT, A7, D7) vectors were kind gifts from Robert 

Schneider (Ramírez-Valle et al., 2010). Briefly, these were transfected into Phoenix ampho 

cell lines (a kind gift from Garry Nolan) according to protocols outlined on the Nolan website 
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https://web.stanford.edu/group/nolan/_OldWebsite/protocols/pro_helper_dep.html. 48 

hours after transfection the retroviral supernatant was used to infect Hela cells. The 

following day the cells were passaged and 24 hours later selected with puromycin (2 μgml-

1) for 2 weeks. Cells were maintained as a polyclonal population. Expression of constructs 

was checked by immunofluorescence and western blot. 

2.14 Treatments 
Cells were treated with indicated compounds as outlined. For RO-3306 release 

experiments, cells were treated with RO-3306 (9 μM) for 20 hours prior to being washed 

with PBS and released into fresh pre-warmed media. For starvation media treatment, cells 

were washed with pre-warmed starvation media (Hanks Balanced Salt Solution (Sigma 

#H8264) supplemented with 1% BSA w/v) and then incubated in starvation media which, 

where indicated, was supplemented with indicated compounds.   

2.15 Cell lysis for western blots 
Adherent cells were washed with ice-cold PBS. For experiments with high numbers 

of floating cells (i.e. mitotic cells), suspension cells were also collected. After aspiration of 

PBS, cells were lysed in an appropriate volume of RIPA or TG lysis buffer and left on ice 

for 5 minutes. At this stage, lysates could be snap-frozen and stored at -80oC. Lysates were 

then transferred to eppendorf tubes and underwent centrifugation at 13,000g for 10 minutes 

at 4oC. The supernatant was collected and 20 μl added to 180 μl of BCA working reagent 

(ThermoScientific), as per manufacturer’s instructions, for protein quantification. The 

remaining sample was added to 4x Laemmli sample buffer and boiled at 95oC for 10 

minutes. Samples were then diluted such that they had equal protein concentration with 1x 

sample buffer.  

For mitotic shake off experiments, culture flasks were vigorously tapped to dislodge 

mitotic cells. The media and subsequent PBS wash were then collected, and the pelleted 

cells lysed; this lysate represented the mitotic fraction. Adherent cells were directly lysed 

and this represented the interphase-enriched fraction. Subsequent stages were performed 

as above. 

2.16 Western blot 
Samples were loaded on to 10 or 15-well acrylamide gel (Separating acrylamide 

percentage was either 8%, 10% or 14% depending upon the protein being detected) and 

ran at 100 volts until the dye front reached the bottom. For optimal resolution of band-shifts 

some gels were ran for longer periods of time, until maximal separation was achieved. Gels 

then underwent wet transfer onto methanol-activated PVDF membranes at 300 mA for 100 
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minutes. Membranes were then blocked in 5% milk/TBST for 1 hour at room temperature. 

Membranes were then incubated in primary antibodies, diluted in 5% milk or BSA as per 

antibody guidelines, overnight at 4oC. Primary antibody was washed off with TBST three 

times for five minutes each. Secondary antibodies were then added for 1 hour at room 

temperature. Membranes were then washed twice for 5 minutes in TBST, with a final 15-

minute wash in TBST (ECL detection) or distilled water (LiCOR and Immobilon detection). 

ECL (GE healthcare) or Immobilon HRP Western HRP chemiluminescent substrate 

(Millipore) was then added for 1 minute prior to detection, as per manufacturer’s guidelines.  

Figure preparation of western blots was performed in Adobe Illustrator. Figures 

contain blots from a single experiment representative of the indicated number of 

independent biological experiments. Weight markers to the right of blots are in kDa. 

Separation lines, where included, are to help with visualisation of the experiment, and do 

not represent splicing. 

2.17 Immunoprecipitation 
Cells were either lysed in IP extraction buffer or TG lysis buffer as described 

previously. Lysates then underwent centrifugation at 13,000g for 10 minutes at 4oC. Protein 

quantification of clarified lysates was performed by Bradford assay as per manufacturer’s 

instructions. After equilibrating protein concentrations between samples, approximately 

90% of the lysate was pre-cleared by incubation with protein A sepharose for 30 minutes 

4oC. The lysate was then transferred to fresh protein A sepharose and incubated with 

indicated antibodies for 2 hours at 4oC in the presence of washed protein A/G sepharose 

beads. The remaining 10% of lysate was reserved for input blots.  

For immunoprecipitation of RAPTOR-GFP, cells were lysed in 0.3% CHAPS buffer. 

Lysates were passed through a 25G needle five times prior to clarification (13,000g for 10 

minutes at 4oC). Protein quantification was performed by Bradford Assay. Lysate was then 

incubated with GFP-Trap agarose (Chromotek) for 1 hour at 4oC. Beads were then washed 

three times and resuspended in Laemmli sample buffer.  

2.18 Phosphatase treatment 
For phosphatase treatment of immunoprecipitated proteins, immunoprecipitation of 

lysates was performed as previously described. Beads were then washed twice with IP 

extraction buffer and then twice with PBS to remove any residual phosphatase inhibitors. 

Beads were then resuspended in 150 μl phosphatase buffer and split into two 75 μl aliquots. 

One aliquot had 1.5 μl (600 units) of lambda phosphatase added to it, the other was left as 

a negative control. Reactions were subsequently performed for 30 minutes at 30oC, after 
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which beads were collected and boiled with 4x sample buffer for 10 minutes before being 

ran on SDS-PAGE gels as outlined previously.    

For phosphatase treatment of whole cell lysates, cells were directly lysed in 

phosphatase buffer. Lysates were clarified by centrifugation and protein quantification 

performed by Bradford assay (as per manufacturer’s instructions). 2000 U of lambda 

phosphatase were then added to 70 lysate and incubated for 1 hour at 30oC. The 

phosphatase reaction was then terminated by the addition of hot 4x sample buffer, and then 

boiled for 10 minutes at 95oC.  

2.19 Membrane-cytosol crude fractionation 
Cells were collected and resuspended in isotonic buffer and subsequently lysed by 

passing through a 25G needle 10 times. Lysates then underwent centrifugation at 900g for 

1 minute at 4oC, to clear unlysed cells and interphase nuclei. Supernatant was then 

transferred to fresh tubes and underwent centrifugation at 21,000g for 15 minutes at 4oC. 

The supernatant was then transferred to fresh tubes and kept as the cytosolic fraction. For 

the membranous fraction, the pellet was resuspended in isotonic buffer supplemented with 

1% Triton X-100 (v/v) and 0.1% SDS (w/v). Whole cell lysates were acquired by direct lysis 

of cells in TG lysis buffer. All lysates were then equilibrated for protein concentration within 

their respective fraction after BCA assay, and boiled in sample buffer, prior to SDS-PAGE 

as described previously.   

2.20 RNA extraction 
Cell media was aspirated, and cells subsequently washed with 2 ml of ice-cold PBS. 

After aspiration of PBS, cells were lysed in an appropriate volume of Trizol, and left on ice 

for 5 minutes before transfer to a pre-chilled eppendorf. 200 μl of chloroform for every ml of 

Trizol originally used was then added. Samples were then vigorously shaken for 15 seconds 

and incubated at room temperature for 5 minutes. They then underwent centrifugation at 

13,000g for 15 minutes at 4oC. The resulting clear supernatant, representing the RNA 

fraction, was then transferred to a clean Eppendorf. 500 μl of isopropanol per a ml of Trizol 

originally used was then added to samples, with vortexing to mix. Samples were then left 

at room temperature for 5 minutes, before undergoing centrifugation at 13,000g for 10 

minutes at 4oC. The resulting supernatant was aspirated and discarded, leaving the RNA 

pellet. This was then washed in 75% ethanol, vortexed and centrifuged at 7500g for 5 

minutes at 4oC. Ethanol was then aspirated, and the pellet air-dried. The pellet was then 

resuspended in an appropriate volume of nuclease-free water and heated for 10 minutes 

at 65oC to solubilise the RNA. RNA concentration was then evaluated on a Nanodrop 2000, 
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and only samples with a 260/280 value greater than 1.8 used for further experiments. 1 μg 

of RNA was then diluted in 12 ul of nuclease-free water. 

2.21 qRT-PCR 
cDNA synthesis was achieved by using Qiagen reverse transcriptase kit as per 

manufacturer’s instructions. Briefly, 2 μl of gDNA wipeout was added to the 1 μg of RNA 

diluted in 12 μl of water previously recovered. This solution was incubated for 3 minutes at 

42oC, and then returned to ice. 6 μl of reverse transcriptase admixture (4 μl 5xRT buffer; 1 

μl RT mastermix; 1 μl RT primer mix) was then added, and the mixture incubated for 15 

minutes at 42oC. The reverse transcriptase was then denatured by incubation of the 

Eppendorf for 3 minutes at 92oC. Samples were then either stored at -20oC or used 

immediately. Wells were loaded with 12.5 μl SYBR green reagent, 2.5 μl 3μM forward 

primer, 2.5 μl 3 μM reverse primer and 7.5μl generated cDNA. Samples were performed in 

technical triplicate. PCR were performed on a Bio-Rad FX96 using the following protocol: 

95oC for 10 minutes; 95oC for 15 seconds; 60oC for 10 seconds; repeat steps two and three 

for 40 cycles; 70oC for 5 seconds, with incremental increases of 1oC every cycle till 90oC. 

Only those primers with efficiency greater than 80% and a single identifiable melting curve 

were taken forward. B2M and YWHAZ were used as loading controls.   

2.22 Double thymidine block 
Twenty-four hours after seeding, culture medium was supplemented with thymidine 

at a final concentration of 2 mM and cells incubated for 16 hours. Cells were released from 

G1/S block by washing in PBS and incubation in pre-warmed media for 8 hours. The second 

block was then initiated for 16 hours. Cells were then released as before for 10 hours. Two 

hours prior to lysis/ fixation treatments were added to culture medium as indicated.  

2.23 Flow Cytometry- Propidium iodide and antibody stain 
Propidium Iodide staining was performed as previously described (Garner et al., 

2002). Briefly, adherent and suspension cells were collected and fixed in 70% ethanol/PBS. 

Cells were then incubated in PI stain (50 μg ml-1 PI, 0.1 mg ml-1 RNAse, PBS) for 30 min at 

37oC. 

For immunostaining, cells were collected and fixed in 70% ethanol/PBS. 

Permeabilization was performed by resuspension of cells in 0.2% Triton X-100/PBS for 10 

minutes at room temperature. P-ULK (758) and P-H3 (S10) were diluted 1:200 in 1% 

BSA/PBS and cells incubated for 1 hour at room temperature. Cells were subsequently 

incubated in secondary antibodies (1:500) for 30 minutes. Cells were resuspended in 1% 

BSA/PBS prior to analysis. All flow cytometry was performed on a LSRII (BD Biosciences). 
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Analysis was performed using FlowJo version 10. To calculate P-ULK1 (S758) 

intensity, mean intensity of the relevant subpopulation from the P-H3 (S10) antibody-only 

control was subtracted from the mean intensity of the same subpopulation within the 

sample.  

2.24 Plasmid DNA purification 
 (New England Biolabs) were transformed with relevant constructs, 

as per manufacturer’s instructions. Single bacterial colonies were picked from streaked 

agar plates, incubated at 37oC overnight and used to inoculate an appropriate amount of 

LB media as outlined in the relevant Qiagen plasmid DNA purification protocol (either 

miniprep or midiprep). Bacterial cultures were then processed as outlined in the 

manufacturer’s protocol, and the subsequent purified DNA stored at -20oC. 

2.25 Polymerase Chain Reaction 
PCR reactions were carried out using Pfu Turbo DNA polymerase as per 

manufacturer’s (Agilent) instructions. Briefly, the reaction mixture (10 ng DNA template, 5% 

DMSO, 10% 10x pfu turbo buffer, 235 nM forward and reverse primers, 200  

was then incubated in the a BioRad thermocycler at 94oC for 3 minutes, at which point 1 

of DNA Turbo polymerase was added. Reaction conditions consisted of 30 cycles (94oC for 

30 seconds, 60oC for 1 minute and 72oC for 2 minutes). DNA products were verified by 

agarose gel electrophoresis.    

2.26 Restriction Digest and ligation 
DNA products were incubated with restriction enzymes for 2 hours at 37oC. Products 

were either then ran on agarose gels, where they were extracted with Qiagen DNA gel 

extraction kit as per manufacturer’s instructions or purified with Qiagen PCR purification or 

miniprep kits. For sub-cloning, ligation was performed using a Rapid DNA ligation kit (Roche 

#11635379001) with a molar ratio of vector DNA to insert DNA of 1:3. 

2.27 Bacterial protein expression 
Fragments were PCR amplified from pEGFP-N1-TFEB, pOPH10-ATG13, pEGFP-

C1-hAtg14 and pRK5-HA-hULK1, and sub-cloned into GEX-4T1 vector using the previously 

outlined protocols. Primers used for PCR amplification are outlined in Table 2.8. Constructs 

were verified by Sanger sequencing (Genewiz).  

GEX constructs were then used to transform BL21 (DE3) cells as per 

manufacturer’s instruction (New England Biolabs). At OD600 = 0.6, cells were induced with 

0.3 mM IPTG and maintained for 16 hours at 21oC. Cells were lysed in bacteria lysis buffer 

(1% Triton, 2 mM EDTA, 2 mM DTT, 200 μ -1 aprotinin, PBS). Recombinant 
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proteins were then purified from bacterial lysates with glutathione-sepharose beads (GE 

healthcare). Elution was performed by glutathione competition (10 mM reduced glutathione, 

50 mM Tris-HCl pH 8), and eluates were dialysed using a 20kDa cut-off Slide-A-lyzer 

cassette (Thermo). Protein concentration was performed by Bradford assay against a BSA 

standard curve. 

2.28 Kinase assay  
HAP-1 cells were treated with paclitaxel (50 nM) for 16 hours prior to lysis in IP 

extraction buffer. Lysates were then clarified by centrifugation at 13,000g for 10 minutes at 

4oC. Lysates were then pre-cleared with protein A sepharose for 30 minutes at 4oC, with 

subsequent immunoprecipitation of CCNB1 (using clone GNS1 antibody). 

Immunoprecipitates were washed twice with high-salt wash buffer and once with 50 mM 

Tris-HCl pH 7.6. Immunoprecipitated CDK1 was then incubated in kinase buffer (50 mM 

Tris-HCl pH 7.6, 100 μM EGTA) in the presence or absence of RO-3306 (300 nM) for 15 

minutes on ice. 300 ng of substrate, MgCl2 (10 mM) and ATP (100 μM) were then added, 

and the reaction mixture incubated in a shaking incubator for 15 minutes at 30oC. Where 

indicated, -32P] ATP was also added at this stage. The reaction was terminated by 

the addition of 4X sample buffer, with subsequent steps performed as above (western blot). 

2.29 Fixed cell imaging 
Cells were cultured in CellCarrier-96 plates (PerkinElmer) or on 22 mm glass 

coverslips. Two hours prior to fixation, cells were treated with indicated compounds or 

starvation media. Cells were then fixed in 4% Paraformaldehyde for 15 minutes at room 

temperature. Permeabilization was performed with ice-cold methanol for 10 minutes at -

20oC (ATG13, WIPI2, P-H3 (S10)), or 0.2% TritonX-100/PBS for 5 minutes at room 

temperature (mTOR, Lamp2, HA, P-ULK1 (S758), P-H3 (S10)). After two washes in PBS 

for 5 minutes, cells were then incubated in blocking buffer (1% BSA, 0.02% Triton X-100, 

5% goat serum, PBS) for one hour at room temperature. Incubation with ATG13 (1:100), 

WIPI2 (1:200), P-H3 (S10) (1:200; HCM:1:1000), P-ULK1 (S758) (1:1000), mTOR (1:200) 

or Lamp2 (1:200) primary antibodies were added overnight at 4oC, with subsequent 

incubation with Alexa Fluor secondary antibodies (1:500) for one hour at room temperature. 

Finally, DAPI was added at a concentration of 1 ugml-1 or coverslips were mounted in 

VectaShield Hardset onto glass slides. Cells were then imaged using a 40x or 60x oil 

immersion objective on a Nikon A1R confocal microscope. Z-stacks were acquired covering 

the entire cell volume at a spacing of 1 μM. Quantification of ATG13 and WIPI2 puncta was 

performed using Imaris spot counting function. Figures were prepared using ImageJ, with 

the same brightness/contrast across all conditions within an experiment. 
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High content microscopy (HCM) images were acquired using an InCell 6000 system 

with a 20x air objective (open aperture). Analysis of images was performed using InCell 

1000 analyser software (GE). A dedicated algorithm was developed whereby cells 

(determined by a multiscale top-hat) were divided into P-H3 (S10) positive and negative 

populations based on cell intensity. P-ULK1 (S758) intensity from the P-H3 (S10) only 

control was then subtracted from average P-ULK1 (S758) within a condition to calculate the 

total value for that condition.  

For analysis of TFEB nuclear/cytoplasmic localisation, acquired images were 

analysed by Cell analyser 1000 software. TFEB-GFP was used to generate a cytoplasmic 

mask, and DAPI stain was used to generate a nuclear mask.  

2.30 Live cell imaging 
HEK293 GFP-ATG13 H2B-mCherry or HEK293 mRFP-EGFP-LC3 cells were 

cultured in Ibidi 35mm high glass bottomed dishes (Thistle) for 24 hours. Four hours prior 

to imaging, cell media was replaced with fresh media. Cells were then treated as indicated 

prior to cells being transferred to a live-cell imaging stage where they were maintained in 

an atmosphere of 37oC, 5% CO2. Images were acquired using a spinning disk confocal 

microscope, comprising Nikon Ti-E stand, Nikon 60x 1.45 NA oil immersion lens, Yokogawa 

CSU-X scanhead, Andor iXon 897 EM-CCD camera, Andor laser combiner and OKO lab 

incubation.  GFP and mCherry images were acquired with an exposure time of 100 ms 

(GFP-ATG13) or 150 ms (mRFP-EGFP-LC3), with z-stacks comprising 45 and 50 images 

with 0.5 μm spacing (GFP-ATG13) or 30 images with 1 μm spacing (mRFP-EGFP-LC3). 

New image stacks were acquired every 3 minutes (GFP-ATG13) or 10 minutes (mRFP-

EGFP-LC3). For GFP-ATG13, raw confocal images were deconvolved with Huygens 

Professional software (Scientific Volume Imaging), using the Classic Maximum Likelihood 

Estimation algorithm and a calculated point spread function (Performed by Simon Walker).   

HeLa TFEB-GFP H2B-mCherry cells were cultured in CellCarrier-96 plates 

(PerkinElmer) and treated with AZD8055 (1 μM) 1 hour prior to imaging. Images were 

acquired using a Nikon Ti-E based wide-field imaging system equipped with a 20x 0.75 NA 

air lens, Hamamatsu Flash 4.0 camera, Lumencor Spectra-X LED illuminator and OKO lab 

incubator. Images were acquired every minute. All images were processed in ImageJ. 

2.31 Mass spectrometry (performed by David Oxley) 
GFP-ATG13 was immunoprecipitated from HEK293 GFP-ATG13 lysates as above. 

Coomassie-stained GFP-ATG13 or GST-tagged protein fragment gel bands were excised, 

destained, reduced, carbamidomethylated, and proteolytically digested (with trypsin or 

AspN) essentially as previously described (Webster and Oxley, 2009). 

70



Digests were either analysed directly or were first enriched for phosphopeptides 

using titanium dioxide beads (Titansphere, GL Sciences). Peptides were separated on a 

reversed-phase column (0.075 x 150mm, Reprosil-Pur C18AQ, 2.1um particles) with a 

30min linear gradient from 2 to 40% acetonitrile (containing 0.1% formic acid) at a flow rate 

of 300nl/min, using an UltiMate 3000 nanoHPLC (Thermo Scientific). The column was 

interfaced to a Q-Exactive mass spectrometer (Thermo Scientific) operating in either data-

dependent MS2 mode (for peptide identification), or parallel reaction monitoring mode (for 

targeted peptide quantitation). 

Mass spectral data were processed using Proteome Discoverer 1.4 (Thermo 

Scientific) and submitted to Mascot (Matrix Science) for database searching. All identified 

phosphopeptides were manually validated. Quantitative information from targeted runs was 

extracted from the MS1 and MS2 data using Skyline software (MacCoss Lab, University of 

Washington). 

2.32 Statistical analysis 
One-way and Two-way Anova (Tukey) were performed on paired raw-values as 

indicated using Graphpad Prism 8. For the purposes of figures P<0.05 (*), P<0.01 (**), 

P<0.001 (***), P<0.0001 (****). For the purposes of graphical representation, raw values 

were made relative to the untreated control sample.   
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3 ERK1/2 and TFEB: a complicated relationship 
3.1 Introduction 

TFEB is the master transcriptional regulator of lysosomal biogenesis via its 

upregulation of CLEAR genes (Sardiello et al., 2009). In addition, it has been suggested to 

promote some autophagy initiation genes and LC3 lipidation (Settembre et al., 2011), 

though its key role is in underpinning the degradative part of autophagic flux. Consistent 

with this, mTORC1 has been found to directly regulate TFEB via multisite phosphorylation 

at S122, S142 and S211 (Martina et al., 2012; Roczniak-Ferguson et al., 2012; Settembre 

et al., 2012; Vega-Rubin-de-Celis et al., 2017). mTORC1 was not the only kinase suspected 

of regulating TFEB in a nutrient-dependent manner and inhibition of ERK2 was found to 

cause TFEB nuclear localisation in response to amino acid deprivation (Settembre et al., 

2011). Evidence indicating that ERK2 phosphorylated TFEB at S142 mediating its 

cytoplasmic localisation came from a peptide in vitro kinase assay (Settembre et al., 2011; 

L. Li et al., 2018; S. Li et al., 2019), ERK2 siRNA (Settembre et al., 2011), co-

immunoprecipitation of overexpressed ERK2 and TFEB (Settembre et al., 2011), and 

inhibition of MEK with U0126 (Settembre et al., 2011, 2012; L. Li et al., 2018). However, it 

was observed that TFEB nuclear localisation only occurred at high doses of U0126, with an 

EC50 of 80  (Settembre et al., 2012). Indeed, ERK2 regulation of TFEB nuclear/ 

cytoplasmic localisation has proved controversial. Martina and colleagues failed to observe 

any differences in TFEB localisation or phosphorylation upon treatment with U0126 in HeLa 

cells (Martina et al., 2012). By contrast, the Goding group found that U0126 did promote 

TFEB nuclear localisation, and concluded that ERK1/2 phosphorylated TFEB at S142 to 

promote its nuclear export (L. Li et al., 2018). The reason for this discrepancy in findings is 

unclear. One possibility is the cell lines used. HeLa cells have no constitutive activation of 

the ERK1/2 pathway (20% P-ERK1/2 relative to HCT116; Kidger, personal 

communications). However, HT29 (BRAF V600E; 50% P-ERK1/2 relative to HCT116; 

Kidger, personal communications) used in Li and colleagues’ study do, although they also 

observed their findings in MCF7 (WT; 15% P-ERK1/2 relative to HCT116; Kidger, personal 

communications). A recent study found that BRAFV600E mutant melanoma exhibited 

ERK1/2-dependent regulation of TFEB localisation, whilst BRAFWT melanoma did not (S. Li 

et al., 2019). Regardless, the further understanding of ERK1/2 regulation of TFEB could 

lead to potential therapeutic modulation of autophagy in cancers with ERK1/2 pathway 

mutations. 

In addition, whilst there has been significant investigation of TFEB’s regulation in 

response to acute administration of ERK1/2 pathway modulators and their effects on TFEB 
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phosphorylation, less is known about potential alterations in TFEB in response to prolonged 

stimulation of ERK1/2 signalling. Urbanelli and colleagues showed that TFEB levels in the 

nucleus appeared to increase in response to KRAS induction (Urbanelli et al., 2014). 

Reagents previously developed by the Cook group, including HR1 cells (HEK293 

CRAF:ER) cells and HM3 cells (HEK293 MEKK3:ER), meant we were well positioned 

to investigate this further. This could be of potential significance given that autophagy has 

been implicated in oncogene-induced senescence (Young et al., 2009), a process mediated 

by the hyperactivation of the ERK1/2 pathway. 

3.2 Results 

3.2.1 ERK1/2 has minimal effect on TFEB’s nuclear/ cytoplasmic localisation in 

unstimulated conditions  

Since U0126 is known to have a plethora of off-target effects (Dokladda et al., 2005; 

Freeman et al., 2011; Evans et al., 2013; Ripple, Kim and Springett, 2013; Wauson et al., 

2013; Ong et al., 2015), we first wanted to assess if selective inhibition of ERK1/2 signalling 

did cause TFEB nuclear localisation. In order to directly compare our results to Settembre’s 

work we elected to use HeLa cells, which were used in the original studies implicating 

ERK1/2 regulation of TFEB. Cells were treated with either the highly-selective MEK1/2 

inhibitor Trametinib or the selective ERK1/2 inhibitor SCH772984. In addition, we used the 

ATP-competitive mTOR inhibitor AZD8055 as a positive control. For these experiments, we 

performed sub-cellular fractionation isolating nuclear and cytoplasmic fractions. As 

expected, AZD8055 promoted an increase in nuclear TFEB, as well as its 

dephosphorylation (Figure 3.1.A). Both Trametinib and SCH772984 failed to induce robust 

nuclear localisation of TFEB or cause any apparent dephosphorylation.  

Since ERK1/2 signalling is relatively weak in HeLa cells, due to their lack of a 

mutation in the pathway causing its constitutive activation (i.e. KRASG12D or BRAFV600E), we 

postulated that mTOR would play a dominant role. Therefore, to further evaluate the 

contribution of the ERK1/2 pathway we repeated the experiment in A549 cells which 

harbour a KRASG12S mutation, thereby activating both the ERK1/2 and PI3K signalling 

pathways. Like HeLa cells, AZD8055 resulted in robust TFEB nuclear localisation and 

dephosphorylation (Figure 3.1.B). Furthermore, MEK1/2 pathway inhibitors failed to induce 

robust nuclear localisation of TFEB. Thus, mTOR, not ERK1/2, appears to be the dominant 

regulator of TFEB nuclear/cytoplasmic localisation in both HeLa and A549 cells.  

To further interrogate these findings, we established a clonal HeLa TFEB-GFP cell 

line, since in our hands we failed to achieve specific detection of endogenous TFEB via 
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Figure 3.1: Loss of ERK1/2 activity is not sufficient to drive TFEB nuclear localisation.
(A) HeLa cells were treated with indicated compounds for two hours prior to lysis. Compounds:
DMSO (0.1%; C), AZD8055 (1 M; mTOR inhibitor; 8055), Trametinib (1 M; MEK inhibtor; Tra),
SCH772984 (1 M; ERK inhibitor; SCH). Nuclear and cytoplasmic fractions are indicated. (B)
Experiment performed as in (A) with A549 cells. Western blots are from a single experiment
representative of results from three independent experiments. Molecular weight markers (kDa) are
indicated to the right of each blot.
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immunofluorescence. Use of TFEB-GFP enabled high-content microscopy to evaluate 

TFEB nuclear/cytoplasmic localisation in response to inhibitor treatment and was the same 

methodology employed in Settembre and colleague’s work (Settembre et al., 2012). 

Replicating Settembre’s findings, TFEB was localised to the nucleus in response to 

AZD8055 or high-dose U0126 (80  (Figure 3.2.A/B). In addition, TFEB was localised to 

the nucleus in response to nutrient deprivation (HBSS + 1% BSA). Treatment with low dose 

U0126 (10 Trametinib or SCH772984 failed to induce robust nuclear localisation of 

TFEB in the HeLa TFEB-GFP cell line. These results correlated with the phosphorylation 

status of endogenous TFEB in the parental HeLa line (Figure 3.2.C), whereby 

hypophosphorylated TFEB was nuclear localised. Curiously, high dose U0126 appeared to 

inhibit mTORC1 signalling, with dephosphorylation of both 4E-BP1 and S6K. It is therefore 

most likely that U0126 was acting off-target on mTORC1 to induce TFEB nuclear 

localisation in both our results and Settembre’s study.  

We performed further imaging analysis of a clonal A549 cell line stably expressing 

TFEB-GFP. Unlike HeLa cells, only relatively low expressing clones were able to be 

generated, though this still represented a substantial fold increase over endogenous levels 

(Figure 3.3.C). Of note, TFEB localisation in basal conditions was much more heterogenous 

in A549 TFEB-GFP cells than in HeLa TFEB-GFP, such that neighbouring cells could have 

cytoplasmic or nuclear localisation. The mTOR inhibitor AZD8055 promoted consistent 

nuclear localisation of the TFEB-GFP protein (Figure 3.3.A/B). Like the endogenous protein 

(Figure 3.1.B), Trametinib and SCH772984 failed to induce robust nuclear localisation of 

TFEB-GFP (Figure 3.3.B); any changes were relatively minor compared to AZD8055 

treatment. Furthermore, it was clear that TFEB localisation remained heterogenous 

throughout the population upon treatment with ERK pathway inhibitors, such that 

neighbouring cells showed distinct localisation patterns (Figure 3.3.A). Curiously, nutrient 

deprivation promoted a consistent and homogeneous cytoplasmic, not nuclear, localisation 

of TFEB. This was also observed in a second clone (Figure 3.3.B).  Since it has been 

established that a number of cancer lines can maintain mTORC1 signalling during nutrient 

starvation, for example as a result of mutations in GATOR1 (Bar-Peled et al., 2013), it was 

important to clarify whether starvation of A549 cells lead to mTORC1 inhibition. HBSS 

starvation of both parental A549 cells and A549 TFEB-GFP (Clone 2H1) lead to the 

complete absence of P-S6K (T389), confirming mTORC1 was inhibited (Figure 3.3.C). 

Unexpectedly, yet in concordance with the microscopy findings, neither endogenous TFEB 

or TFEB-GFP was hypophosphorylated in response to HBSS starvation. This is despite 

AZD8055 causing hypophosphorylation. Therefore, two potential lines of investigation arise 

from the results so far. The first, is whether a minimum threshold of ERK1/2 signalling is 
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required for it to have an appreciable effect on TFEB localisation, thus explaining the slight 

discrepancies between HeLa and A549 cells in terms of their response to inhibition of 

ERK1/2 signalling. The second, which is not further explored here but is discussed as a 

potential future direction is why does amino acid deprivation in A549 cells promote 

cytoplasmic, not nuclear, localisation of TFEB?  

3.2.2 EGF stimulation promotes TFEB’s localisation to the cytoplasm 

To test whether high levels of ERK1/2 signalling were required to modulate TFEB 

nuclear/ cytoplasmic localisation, we utilised epidermal growth factor (EGF), which 

promotes a strong activation of the ERK1/2 signalling cascade. We performed a time-

course of stimulation with EGF in the stable HeLa TFEB-GFP cell line, both in the presence 

and absence of amino acids. Furthermore, cells were pre-treated with either DMSO or 

Trametinib so that phenotypic effects could be attributed to ERK1/2 stimulation or other 

effects of EGF. Stimulation with EGF promoted a rapid (5-15 minutes) increase in P-ERK1/2 

(T202/Y204) which then gradually reduced over the course of the 2-hour stimulation (Figure 

3.4.A). This occurred in the presence or absence of amino acids and was blocked in the 

cells pre-treated with Trametinib. TFEB underwent a nuclear to cytoplasmic localisation that 

closely correlated with P-ERK1/2 dynamics, with low TFEB nuclear/ cytoplasmic 

localisation being observed with the highest P-ERK1/2 levels (Figure 3.4.B). Likewise, 

Trametinib completely blocked the EGF-induced TFEB cytoplasmic localisation. This 

therefore supports the hypothesis that acute stimulation of ERK1/2 can promote TFEB 

nuclear to cytoplasmic translocation. The fact that the magnitude of change in TFEB 

localisation upon EGF stimulation was similar between the nutrient-rich and -depleted 

conditions, suggests that this mechanism is independent to the nutrient-regulated 

mechanism of TFEB localisation. This experiment will require repeating before any firm 

conclusions can be made.  

3.2.3 EGF-stimulation does not promote phosphorylation of TFEB at S142 

ERK2 is suggested to phosphorylate TFEB at S142, promoting its cytoplasmic 

localisation (Settembre et al., 2011). This phosphorylation was subsequently suggested in 

a recent report to regulate its nuclear export (L. Li et al., 2018). We therefore set out to 

establish whether modulating ERK2 activity altered phosphorylation at S142. TFEB 

phosphorylation was assessed by multiplex quantitative fluorescent western blotting in 

HeLa TFEB-GFP cells. As expected, and in concordance with our immunofluorescence 

data, S142 phosphorylation was decreased in HeLa TFEB-GFP cells starved of amino 

acids or treated with AZD8055 (Figure 3.5). Trametinib did not decrease S142 

phosphorylation in unstimulated conditions. Furthermore, EGF did not alter S142 
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Figure 3.4: EGF promotes cytoplasmic localisation of TFEB in an ERK1/2 dependent 
manner.
HeLa TFEB-GFP cells were treated as indicated (DMSO; Trametinib (1 μM); HBSS + 1% BSA 
+ DMSO (SM); HBSS + 1% BSA + Trametinib (1 μM) (SM Tra)) for 3 hours. Within this 3 hours,
EGF (10 ngml-1) was added for indicated times prior to fixation. Cells were stained for
P-ERK1/2 (T202/Y204). Quantification from high content microscopy for a single experiment
are shown for: (A) P-ERK (T202/Y204) intensity (B) TFEB-GFP nuclear/ cytoplasmic ratio. (C)
Example images from indicated treatments
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phosphorylation, despite causing substantial increases in P-ERK1/2 (T202/Y204) 

(Approximately 30-fold at 15 minutes), and the ERK1/2 substrate P-RSK (T359) 

(Approximately 70-fold at 15 minutes). Therefore, despite S142 being a conserved site, 

analogous to S73 in MITF which is known to be phosphorylated by ERK1/2 (Hemesath et 

al., 1998),  this does not support the hypothesis that TFEB is phosphorylated by ERK1/2 in 

cells, despite several groups showing that ERK1/2 can phosphorylate this site in vitro. 

Interestingly, EGF also promoted small increases in P-S6K (T389) which were also not 

reflected in P-TFEB (S142). This suggests that increases in mTORC1 activity in response 

to EGF stimulation, do not result in increases of P-TFEB (S142). Overall, we found no 

evidence that EGF-stimulation was mediating changes in TFEB nuclear/ cytoplasmic 

localisation via S142 phosphorylation.  

3.2.4 Dephosphorylation of TFEB in A375 cells correlates to cell cycle arrest and 

not ERK1/2 pathway inhibition 

It has recently been proposed that ERK1/2 regulates TFEB localisation and 

phosphorylation in melanoma lines with mutations in ERK1/2 pathway proteins, but not in 

wild-type lines (S. Li et al., 2019). These findings fit with our data presented thus far that 

high levels of ERK1/2 signalling are required to mediate TFEB localisation changes. 

Curiously, they suggested the ERK1/2 promoted the lysosomal localisation of TFEB and its 

phosphorylation by mTORC1. Thus, ERK1/2 pathway inhibition lead to complete collapse 

of the phosphorylation of TFEB, observed as a hypophosphorylated band similar to 

treatment with mTORC1 inhibitors or nutrient starvation. Such observations were only made 

at 12 hours after treatment with a BRAF inhibitor and these correlated with inhibition of 

mTORC1 itself at this time point. Whilst the authors demonstrated that mTORC1 activation 

could not rescue this hypophosphorylation, the prolonged periods of time required for the 

effect caused us to question if this was a direct effect of ERK1/2 inhibition. To investigate 

this further we performed a time course with the highly selective inhibitors Trametinib 

(MEK1/2) and Vemurafenib (BRAFV600E inhibitor), both clinically approved for melanoma 

treatment. We selected A375 cells as this was BRAFV600E mutant and the same cell line 

used in Li and colleagues study (S. Li et al., 2019). Both P-ERK1/2 (T202/Y204) and P-

RSK (T359) signals were lost within an hour of treatment (Figure 3.6). TFEB remained in a 

hyperphosphorylated state until 16-hours and 24-hours, when a greater proportion of TFEB 

was observed in a hypophosphorylated state; however, a complete collapse of TFEB 

phosphorylation was never observed, contrasting with Li’s study. The delayed 

dephosphorylation of TFEB correlated with loss of P-Rb (S795), suggesting the cells had 

undergone cell cycle arrest. Overall, it would appear that dephosphorylation of TFEB was 
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(A) A375 cells were treated with either trametinib (100 nM) or vemurafenib (2 μM) for
indicated times prior to lysis. As a positive control, AZD8055 (1 μM; t=1 hr) was added.
Western blots are from a single experiment, representative of two independent
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not a direct result of ERK1/2 inactivation in A375 cells, and it is more likely that differences 

in TFEB phosphorylation observed were a consequence of the G1 cell cycle arrest elicited 

by these drugs (Sale et al., in press), but this requires further investigation. 

3.2.5 Sustained ERK1/2 activation increases TFEB abundance in HEK293 cells. 

Since transient alterations in ERK1/2 signalling failed to consistently regulate TFEB 

nuclear/cytoplasmic regulation and phosphorylation, we did not pursue this further. We next 

wanted to investigate whether prolonged ERK1/2 hyperactivation led to alterations in TFEB 

abundance, since Urbanelli and colleagues (Urbanelli et al., 2014) had reported increases 

in nuclear TFEB in response to transfection of oncogenic KRAS. HR1 cells possess a 

CRAF:ER construct, whereby the isolated kinase domain is fused to ER; this represses 

the kinase domain but addition of 4-hydroxytamoxifen (4-HT) promotes de-repression and 

activation of the CRAF kinase (Boughan et al., 2006). This leads to rapid and selective 

activation of the ERK1/2 signalling cascade upon 4-HT treatment (Figure 3.7.A/B). 

Curiously, we found that TFEB protein levels were markedly raised from 8 hours after 

ERK1/2 signalling activation, and this was sustained for at least 48 hours (Figure 3.7.B). 

This increase in protein level was not reflected in TFE3, suggesting the regulation 

mechanism was selective for TFEB and not conserved across TFEB family members, 

though we did not assess MITF. To evaluate whether this increase in TFEB protein levels 

was specific to the activation of the ERK1/2 signalling cascade or due to other effects of 4-

HT, we pre-treated HR1 cells with DMSO or the MEK1/2 inhibitor Trametinib, prior to 

stimulation with 4-HT.  The addition of Trametinib completely abolished 4-HT induced 

increases in TFEB protein levels (Figure 3.7.C), thus suggesting this was a result of 

ERK1/2-dependent signalling.    

Protein kinase C has previously been shown to increase TFEB protein levels by 

phosphorylating the C-terminus resulting in TFEB’s stabilisation (Ferron et al., 2013). 

Curiously, the C-terminal site S467 is conserved in MITF (S409). MITF S409 is known to 

be phosphorylated by RSK-1, which in combination with S73 phosphorylation by ERK1/2 

promotes its degradation via the proteasome (Wu et al., 2000). Since RSK is a well 

validated substrate of ERK1/2, we hypothesised that RSK phosphorylation at S467 could 

be altering the rate of degradation of TFEB (though this would be the opposite of MITF). To 

test this, we treated HR1 cells with 4-HT, activating the ERK1/2 signalling pathway and 

activating RSK, as measured by P-YB1 (S102) (Stratford et al., 2008). Treatment with the 

RSK inhibitor LJH685 failed to reverse 4-HT-induced increases in TFEB protein levels 

(Figure 3.7.D). Curiously, LJH685 appeared to promote feedback activation of the ERK1/2 

signalling pathway, as measured by increases in P-ERK (T202/Y204) in the absence of 4-
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Figure 3.7: Prolonged 4-HT treatment in HR1 cells leads to increased TFEB protein 
levels in an ERK1/2 dependent manner.
(A) Schematic of CRAF signalling pathway (B) HR1 cells were treated with 4-HT (100 nM)
for indicated time. (C) HR1 cells were pre-treated with either DMSO or Trametinib (1 μM)
for 1 hour, and subsequently treated with EtOH or 4-HT for 8 hours. (D) HR-1 cells were
treated with 4-HT (100 nM) or LJH685 (3 μM; RSK inhibitor) for 8 hours. All western blots
are from a single experiment representative of three experiments showing similar results.
Molecular weight markers (kDa) are indicated to the right of each blot.
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HT. Like 4-HT treatment, LJH685 promoted increases in TFEB protein level, supporting the 

hypothesis that prolonged ERK1/2 signalling was driving increases in TFEB protein level.  

It was noticeable that TFEB was hyperphosphorylated to a greater extent within 2 

hours of 4-HT treatment in HR1 cells. Based on our previous data which found no clear 

links between ERK1/2 activity and TFEB phosphorylation status, we queried whether this 

was more likely a result of downstream mTORC1 activation, since it is known that ERK1/2 

stimulates mTORC1 activity (Introduction; Figure 3.8.A). Indeed,  activation 

increased S6K phosphorylation, and this was reversed by the MEK1/2 inhibitor Trametinib 

(Figure 3.8.B). As previously observed, 4-HT treatment led to TFEB hyperphosphorylation; 

however, combining 4-HT treatment with either the mTOR inhibitor AZD8055 or nutrient 

depletion completely prevented the hyperphosphorylation of TFEB, despite active ERK1/2 

signalling. Therefore, the hyperphosphorylation of TFEB in HR1 cells upon 4-HT treatment 

is likely a result of mTORC1 activation downstream of ERK1/2. 

 In order to evaluate the contribution of other MAP kinases, we utilised HM3 cells 

which stably ex MEKK3:ER construct, such that treatment with 4-HT promotes 

activation of the JNK, p38 and ERK1/2 pathways (Todd et al., 2004) (Figure 3.9.A). Like 

HR1 cells, treatment of HM3 cells with 4-HT promoted increases in TFEB protein levels at 

8-hours of treatment (Figure 3.9.B). Curiously, the increase in TFEB protein level was not 

reversed by any single agent inhibitor, suggesting there may be redundancy in MAPK 

signalling and increases in TFEB protein levels (Figure 3.9.C). To test this, combinations of 

inhibitors should be tested.  

We next wanted to evaluate whether TFEB protein levels correlated with mRNA 

levels. As observed previously, 4-HT treatment stimulated increases in TFEB protein levels 

(Figure 3.10.A). In parallel, we performed qRT-PCR on mRNA extracts. qRT-PCR showed 

high variability between independent biological samples (Figure 3.10.B), despite small 

technical replicate variability, and we speculate this is likely a result of TFEB’s low 

expression. Regardless, there was no obvious increase in TFEB mRNA levels upon 4-HT 

treatment.  Treatment with the translation inhibitor emetine (40S ribosomal subunit inhibitor) 

did prevent 4-HT-induced increases in TFEB protein level (Figure 3.10.C). This suggests 

that whilst increases in TFEB protein levels are not a result of increased transcription, it 

does depend upon de-novo translation. These results must be treated with caution. TFEB 

responds to numerous and varied stress inducers, and it is apparent that emetine has 

promoted TFEB dephosphorylation. Therefore, alterations in TFEB’s response to 4-HT may 

be affected by a global stress response to emetine treatment. In addition, it may be that 

increases in TFEB protein level are a downstream effect, with ERK signalling promoting the 
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Figure 3.8: Hyperphosphorylation of TFEB observed upon 4-HT treatment in HR1 
cells is responsive to mTORC1 inhibition.
(A) Schematic representation of interactions between the ERK1/2 and mTORC1 
signalling pathways. (B) HR1 cells were treated with 4-HT (100 nM), Trametinib (1 μM; 
MEK inhibitor), AZD8055 (1 μM; mTOR inhibitor) or HBSS + 1% BSA for two hours. All 
western blots are from a single experiment. Molecular weight markers (kDa) are indicated 
to the right of each blot.
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Figure 3.9: Prolonged treatment of HM3 cells with 4-HT leads to increased 
TFEB protein levels, but this is not solely dependent on ERK1/2.
(A) Schematic of MEKK3 signalling pathway (B) HM3 cells were treated with 4-HT (100 
nM) for indicated time. (C) HM3 cells were pre-treated for 1 hour with either DMSO, 
Trametinib (1 μM; MEK inhibitor), BIRB796 (1 μM; p38 inhibitor) or JNK VIII (10μM; JNK 
inhibitor). Cells were subsequently treated with either EtOH or 4-HT (100 nM) for 8 hours. 
All western blots are from a single experiment representative of three experiments 
showing similar results. Molecular weight markers (kDa) are indicated to the right of each 
blot.
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Figure 3.10: TFEB mRNA levels are stable upon prolonged 4-HT 
treatment; however, increases in TFEB protein level do depend upon de 
novo translation.
HR1 cells were treated with either EtOH (C) or 4-HT (H; 100 nM) for 8 hours. (A) 
Western blots were performed to validate ERK1/2 pathway activation. Western blots 
are from a single experiment repre-sentative of three experiments showing similar 
results. (B) qRT-PCR of TFEB mRNA was used to quantify transcript levels. qRT-
PCR data is mean +/- SD from three independent experiments. (C) 

 from a single experiment. Molecular weight markers (kDa) are 
indicated to the right of each blot.  
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transcription and translation of another protein which then has an effect on TFEB at the 

protein level. The fact that alterations in TFEB protein level took 8 hours to occur points 

towards this. Therefore, we cannot conclude from this dataset that alterations in the 

translation of TFEB transcript are responsible for alterations in TFEB protein level.  

3.2.6 Inhibition of ERK1/2 in cancer cell lines with ERK1/2 pathway mutations, 

does not consistently lead to TFEB protein level reductions. 

We next wanted to establish whether alterations in TFEB protein level occurred 

upon inhibition of endogenous ERK1/2 signalling. To test this, we treated four cancer cell 

lines harbouring mutations of either KRAS (A549 and HCT116) or BRAF (COLO205 and 

HT29) with Trametinib over 48 hours. Whilst there was variability between experiments, 

there was a relatively consistent decrease in TFEB protein levels in HCT116, whilst TFEB 

protein levels were relatively stable in the other cell lines tested (Figure 3.11 and 3.12). We 

also observed dephosphorylation of TFEB in HCT116, COLO205 and HT29 cells. In the 

case of COLO205 and HT29, this clearly correlated with a reduction in mTORC1 activity 

(Figure 3.12). In HCT116 cells no such correlation was apparent.  

Based on the temporal dynamics of the dephosphorylation in HCT116 cells, we 

hypothesised that it might be a result of cell cycle arrest. To test this hypothesis, we 

incubated HCT116 cells for 24 hours with various doses of either the mTOR inhibitor 

AZD8055, or the CDK4/6 inhibitors LY2835219 or PD0332991. As expected, AZD8055 

promoted dephosphorylation of TFEB correlating with reductions in P-S6K (T389) (Figure 

3.13.A). In addition, there was loss of p62 and the unlipidated form of LC3B (LC3B-I), 

indicative of an increase in autophagic flux. The reason that AZD8055 promoted loss of 

LC3B-I, as opposed to increases in LC3B-II, is likely because of the long treatment time (24 

hours) relative to a majority of studies which add mTOR inhibitors for a short time (1-4 

hours). This prolonged treatment time was used due to the inclusion of CDK4/6 inhibitors, 

which would be expected to affect the G1 phase of the cell cycle, meaning that sufficient 

time is required to enable all cells to pass through to G1. As expected, PD0332991 

promoted dephosphorylation of Rb (S795) from 200 nM but did not promote changes in 

autophagy proteins except at 5 , at which it was most likely exerting off-target effects 

(Figure 3.13.B). By comparison, LY2835219 promoted a dose dependent reduction in P-

Rb (S795) and P-S6K (T389), suggesting inhibition of both CDK4/6 and mTORC1 (Figure 

3.13.C). Comparisons of the cell cycle arrest caused by PD0332991 and LY2835219, as 

assessed by EdU staining (Figure 3.14) and P-Rb (S795) (Figure 3.13) demonstrated that 

TFEB dephosphorylation was not a result of cell-cycle arrest. This is because a dose of 1 

 PD0332991 and 500 nM LY2835219 both caused approximately similar decreases in 
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Figure 3.11: Inhibition of ERK1/2 signalling does not directly regulate TFEB protein 
levels in KRAS mutant cell lines. 
HCT116 (A) and A549 (B) cells were treated with either 10 or 100 nM Trametinib for up 
to 48 hours. All western blots are from a single experiment representative of three inde-
pendent experiments. Molecular weight markers (kDa) are indicated to the right of each 
blot. 
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Figure 3.12: Inhibition of ERK1/2 signalling does not directly regulate TFEB 
protein levels in BRAF mutant cell lines. 
HT-29 (A) and COLO205 (B) cells were treated with either 10 or 100 nM Trametin-
ib for up to 48 hours. All western blots are from a single experiment representative 
of three independent  experiments (though it is noted one replicate of HT29 did 
show reduced TFEB levels upon trametinib treatment). Molecular weight markers 
(kDa) are indicated to the right of each blot.      
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Figure 3.13: TFEB protein levels do not vary with cell cycle arrest.
(A-C) HCT116 cells were treated with compounds at indicated doses for 
24 hours. (A) AZD8055 (mTOR inhibitor), (B) PD0332991 (CDK4/6 inhibi-
tor), (C) LY2835219 (CDK4/6 inhibitor). Western blots are from a single 
experiment representative of three independent experiments. Molecular 
weight markers (kDa) are indicated to the right of each blot. 
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A

Figure 3.14: CDK4/6 inhibitors prevent EdU incorporation, indicating cell 
cycle arrest, in a dose dependent manner.
(A) HCT116 cells were treated with either PD0332991 or LY2835219 for 24 
hours. One hour prior to fixation they were pulsed with EdU (10 . Data repre-
sents mean +/- SEM from three independent experiments. Experiments 
performed and data provided by Andrew Kidger.  
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EdU incorporation, but whilst LY2835219 caused pronounced TFEB dephosphorylation, 

PD0332991 did not. Treatment with LY2835219, in comparison to AZD8055, caused no 

change in p62. Furthermore, LY283219 treatment was associated with an accumulation of 

the lipidated form of LC3B (LC3B-II), with no concurrent loss of unlipidated LC3 (LC3B-I). 

These alterations in LC3 are in stark contrast to the findings for AZD8055, where loss of 

unlipidated LC3 (LC3B-I) was the predominant feature. Furthermore, TFEB 

dephosphorylation appeared to occur to a greater extent than AZD8055. Therefore, TFEB 

dephosphorylation was likely mediated by factors in addition of mTORC1 inhibition. It was 

therefore important to assess the temporal dynamics of TFEB and S6K dephosphorylation 

upon LY2835219 treatment. Whilst we observed that P-S6K (T389) reduced slowly over 

time, suggesting that LY2835219 was not directly inhibiting mTORC1 (Figure 3.15.A), TFEB 

dephosphorylation occurred within the first hour of LY2835219 treatment. This suggests 

that the dephosphorylation of TFEB was occurring through another mechanism. 

It is known that mTORC1 activity and TFEB phosphorylation status is dependent 

upon lysosomal integrity (Settembre et al., 2012). Therefore, defects in the lysosome could 

result in mTORC1 inactivity, dephosphorylation of TFEB and inhibition of autophagic flux. 

To test whether autophagic flux was impaired, we treated cells with each of the indicated 

compounds for 24 hours, and then in the last hour treated them with the vacuolar H+-

ATPase inhibitor bafilomycin A1, which impairs lysosomal acidification and 

autophagosome-lysosomal fusion (reviewed: Klionsky et al., 2008). As expected, 

bafilomycin A1 promoted the accumulation of LC3-II in cells treated with either AZD8055, 

PD0332991, or DMSO control; showing that autophagic flux was still active in these cells 

(Figure 3.15.B). Bafilomycin had no effect on cells pre-treated with LY2835219, suggesting 

that this compound had already impaired lysosome function, thereby preventing the 

degradation of autophagosomes.  

Further supporting the hypothesis that lysosomes were defective, cells treated with 

LY2835219 exhibited vacuoles observable by light microscopy, whilst cells treated with 

AZD8055 and PD0332991 exhibited no alterations in morphology (Figure 3.16.A). 

Immunofluorescence of LY2835219-treated cells revealed that these vacuoles stained 

positive for Lamp2 but not LC3 (Figure 3.16.B). This suggested a failure in fusion of the 

autophagosome with the lysosome as the principle mechanism behind the blockade of 

autophagic flux.  After we collected these results, it was demonstrated by another group 

that LY2835219 promoted lysosomal membrane permeabilization (Knudsen et al., 2017), 

and our findings are consistent with this hypothesis. It has also been demonstrated that 

both PD0332991 and LY2835219 undergo ‘lysosomal trapping’ whereby the drugs, with a 

relatively basic pKa (above 8), are protonated within the acidic lysosome; however, this 
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Figure 3.15: LY2835219 inhibits autophagic flux.
(A) HCT116 cells were treated with compounds for indicated times. (B) HCT116 
cells were treated with compounds for 24 hours. One hour prior to lysis, cells were 
treated with Bafilomycin A1 (100 nM). Concentrations of compounds in both 
experiments were as follows: LY2835219 (500 nM), PD0332991 (1 M) or 
AZD8055 (200 nM). Western blots are from a single experiment representative of 
three independent experiments. Molecular weight markers (kDa) are indicated to 
the right of each blot.   
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Figure 3.16: LY2835219 induces vacuolation which is Lamp2 positive.
(A) HCT116 cells were treated with LY2835219 (500 nM), PD0332991 (1 M) or AZD8055 (200 nM)
for 24 hours prior to image acquisition. (B) HCT116 cells were treated with LY2835219 (500 nM),
PD0332991 (1 M) or AZD8055 (200 nM) for 24 hours prior to fixation. Primary antibodies: Lamp2
(green), LC3B (red) Images are from a single experiment. Scale bar: 20 .
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study found no effect on lysosomal pH or p62 levels upon treatment with PD0332991 for 

24 hours (Llanos et al., 2019). Whilst PD0332991 did impair autophagic flux after seven 

days of treatment, this was in common with other methods of inducing senescence. It is 

important to note that we decided the doses of LY2835219 and PD0332991 based on 

readouts of CDK4/6 activity (P-Rb (795)) and cell cycle activity (EdU activity) at 24 hours. 

It may be the case that if doses were selected based on the degree of lysosomal 

entrapment, then similar effects may have been observed. Whether this would be 

achievable given that LY2835219 did not have the same fluorescent properties as 

PD0332991 is another matter. Regardless, these studies would have to be conducted 

before concluding whether lysosomal entrapment was the main mechanism responsible for 

the inhibition of autophagic flux we observed. 

We had previously found that emetine halted TFEB protein level increases but could 

not readily interpret this result as emetine also caused prominent dephosphorylation of 

TFEB (Figure 3.10.C). Since we had found that LY2835219 promoted dephosphorylation 

of TFEB to a greater extent than AZD8055, we utilised this compound in combination with 

4-HT to observe if increases in protein levels observed in HR1 cells could be reversed. As

previously observed, 4-HT treatment of HR1 cells caused increases in TFEB protein level,

whilst LY2835219 caused TFEB dephosphorylation (Figure 3.17). LY2835219 treatment

failed to prevent 4-HT induced increases in TFEB protein level. We observed no decreases

in P-Rb (S795) upon LY2835219 treatment in HR1 cells, suggesting that HEK293 cells are

not dependent upon CDK4/6 for cell cycle progression. Overall, it is most likely that

emetine’s ability to prevent 4-HT induced increases in TFEB protein level is a result of

translation blockade and not TFEB dephosphorylation.

3.2.7 TFEB protein expression is highly variable across cell lines 

Given that inhibition of ERK1/2 signalling did not reliably decrease TFEB protein 

levels, we next wanted to compare TFEB protein levels across a number of tissue types 

with either WT or mutated BRAF and KRAS proteins. Eight cell lines were selected for this 

preliminary experiment: two harbouring no ERK pathway mutations (HEK293 and HeLa); 

two harbouring BRAFV600E mutations (HT29 and COLO205); four harbouring constitutively 

active KRAS mutations (A549, HCT116, Panc-1, SW620). Strikingly, HT29 and COLO205 

had elevated TFEB protein levels relative to the other cell lines tested (Figure 3.18.A). Since 

Trametinib had not affected TFEB protein levels in these cells, and the KRAS mutant lines 

also had low levels of TFEB protein, we found it unlikely that BRAF was driving these 

changes. Furthermore, both of these cell lines also possessed high TFEB mRNA levels 

(Figure 3.18.B; Source: CCLE), with COLO205 exhibiting amplification of the TFEB gene 
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Figure 3.18: Cell lines which are observed to have more epithelial-like properties 
also have raised TFEB levels.
(A) Comparison of TFEB protein levels across cell lines. Cells were lysed at 
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(12 copies) (Source: CANSAR4.0). Thus, the mechanism linking these cells to high TFEB 

protein was unlikely to be the same as in HR1 cells. HT29 and COLO205 cells also possess 

epithelial-like properties, as compared to more mesenchymal-like cells such as HCT116 

and SW620 as defined by Schliker and colleagues characterisation of colorectal cancer cell 

lines (Schlicker et al., 2012). Indeed, when comparing TFEB mRNA levels from the CCLE 

database based on Schliker’s criteria, it is apparent that epithelial-like cells possess higher 

TFEB mRNA than mesenchymal like cells (Figure 3.18.B).  

It is therefore apparent that the only evidence thus far strongly linking the ERK1/2 

pathway to TFEB protein levels was acquired upon hyperactivation of the pathway in 

HEK293 cells. Our lab possessed other model systems for investigating ERK1/2 

hyperactivation. The first were HeLa cells stably transfected with a doxycycline-inducible 

KRASG12D construct, such that adding doxycycline promoted activation of the ERK1/2 

pathway, as evidenced by increases in P-ERK1/2 (T202/Y204) over time (Figure 3.19.A). 

No robust increases in TFEB could be observed in this system. Another system we utilised 

was COLO205 cells which had been made resistant to prolonged exposure of the MEK1/2 

inhibitor AZD6244 (Selumetinib), such that they maintain P-ERK1/2 (T202/Y204) levels by 

amplification of BRAFV600E (Little et al., 2011). As a result of the BRAF amplification, 

washing off inhibitor results in rapid hyperactivation of the pathway (Sale et al., 2019). 

Whilst there was variability in TFEB protein levels, this appeared to correlate with time of 

lysis as opposed to the presence or absence of AZD6244. For example, day 2 TFEB protein 

levels appeared slightly raised in the representative experiment shown regardless of the 

presence or absence of AZD6244 (Figure 3.19.B). As a side note, it was curious that ULK 

protein levels appeared to increase with ERK1/2 hyperactivation. This may be of interest to 

the mechanism of senescence seen in these cells, since autophagy has been implicated in 

the development of oncogene-induced senescence (Young et al., 2009). We also attempted 

to investigate TFEB protein levels in response to  activation in hTERT MRC5 

immortalized fibroblasts, which undergo OIS. Whilst we observed cell morphologies 

consistent with OIS after 6 days of 4-HT treatment, TFEB’s phosphorylation status was 

highly variable, though protein levels consistently did not increase (data not shown). 

Overall, none of these systems replicated the findings we observed in HEK293 cells that 

ERK1/2 hyperactivation lead to increases in TFEB protein levels. It is therefore very unlikely 

to be a conserved or important mode of regulation and likely represents a cell-type specific 

downstream consequence of prolonged ERK1/2 signalling. 
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Figure 3.19: Model systems independent of HEK293 cells show no increase in 
TFEB protein levels with enhanced ERK1/2 activity.
(A) HeLa cells stably expressing a doxycycline-inducible KRAS G12D were treated 
with doxycy-cline (100 ngml-1) for the indicated time prior to lysis (B) C6244R cells were 
cultured in drug-supple-mented media and then swapped to media with or without 
AZD6244 (MEK inhibitor) for the indicat-ed time. Western blots are from a single 
experiment representative of three independent experi-ments.  Molecular weight 
markers (kDa) are indicated to the right of each blot.
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3.3 Discussion 

3.3.1 ERK1/2 is unlikely to regulate nuclear export of TFEB via direct S142 

phosphorylation 

Whilst TFEB is known to be regulated by availability of amino acids, the kinases 

responsible for this have been revised based on methodologies used. Originally, mTORC1 

was dismissed as the candidate kinase, since rapamycin failed to cause TFEB 

hypophosphorylation or nuclear localisation (Settembre et al., 2011). Furthermore, 

mTORC1 failed to phosphorylate S142 in the peptide-based in vitro kinase assay 

(Settembre et al., 2011), though it was subsequently shown that mTORC1 could 

phosphorylate full-length TFEB immunoprecipitated from cells at S142  (Settembre et al., 

2012). The use of ATP-competitive inhibitors of mTOR, in combination with genetic 

approaches, then demonstrated that mTORC1 was beyond reasonable doubt the main 

nutrient-dependent regulator of TFEB (Martina et al., 2012; Roczniak-Ferguson et al., 2012; 

Settembre et al., 2012).  

Given that mTORC1 appears to be the key nutrient-dependent regulator of TFEB, 

the role that ERK2 plays has been widely debated. More recently, it has been suggested 

that ERK2 regulates TFEB’s nuclear export by S142 phosphorylation (L. Li et al., 2018), 

though this has been suggested to be mainly regulated by mTORC1 instead (Napolitano et 

al., 2018). Some groups fail to see any convincing evidence for TFEB’s regulation by ERK2 

(Martina et al., 2012). Other groups suggest that ERK2 regulation of TFEB is context-

dependent, such as a requirement for constitutive pathway activation as is found in 

melanoma (S. Li et al., 2019). Overall, it is clear no consensus has been reached and further 

evidence was therefore required to substantiate links between ERK2 and TFEB. My 

findings exemplify the variability and differing conclusions in the field. Whilst there was little 

evidence to suggest that TFEB was regulated by ERK2 in basal conditions (Figures 3.1-

3.3), EGF promoted TFEB cytosolic localisation in an ERK1/2-dependent manner (Figure 

3.4). It is unclear what biological impact such transient modulations in TFEB localisation 

would have and whether TFEB is important for biological responses to growth factor 

stimulation should be investigated further. Furthermore, TFE3 and MITF localisation should 

be observed in response to EGF, given they both have conservation of the PNSP motif. We 

did not observe ERK-dependent phosphorylation of TFEB S142 (Figure 3.5) and the reason 

for this is unclear. One possibility is that ERK2 cannot bind to TFEB in cells. ERK-catalysed 

phosphorylation of MITF requires binding to a 100 amino acid region to the C-terminal side 

of S73, since it does not possess either a classical FXF or D-site docking domain which 

ERK usually requires to phosphorylate its substrates (Molina, Grewal and Bardwell, 2005). 
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There is a poor homology between TFEB and MITF in this region, with the little homology 

that does exist featuring the transactivation domain (Figure 3.20).  

From a conceptual perspective, it easier to reconcile ERK1/2 as a direct regulatory 

kinase of TFEB in the nucleus than mTORC1. mTORC1 is a 1 MDa complex, yet the 

maximum size that can appear to passively diffuse into the nucleus is approximately 110 

kDa (Wang and Brattain, 2007). Even if mTORC1 was disassembled into its constituent 

components, diffused into the nucleus, and reassembled, mTOR (250 kDa) and RAPTOR 

(150 kDa) are both greater than this limit. Thus a nuclear localisation signal and import 

mechanism would be required and mTOR’s primary sequence possesses no such NLS 

(Bachmann et al., 2006). Despite this, many studies have observed that mTOR can function 

in the nuclear compartment as assessed by fractionation or immunofluorescence (Zhang 

et al., 2002; Bachmann et al., 2006; Kazyken et al., 2014; Audet-Walsh et al., 2017). One 

possibility is that mTORC1 is not localised to the nucleus in basal conditions but can be 

stimulated in certain conditions. For example, nuclear mTOR has been identified in 

response to hypoxic conditions (Bernardi et al., 2006) and androgens (Audet-Walsh et al., 

2017). Findings in our subsequent studies (Figure 4.10) using both HAP1 RAPTOR-GFP 

cells and the mTOR antibody both showed exclusive cytosolic localisation regardless of 

nutrient status.  Altogether, our and others results suggest that mTORC1 is not nuclear 

localised under basal or nutrient-depleted conditions. Since nuclear export of TFEB is rapid, 

it is unclear how mTORC1 could mediate the nuclear export of TFEB given the differences 

in localisation. Clearly, the level of confidence surrounding nuclear mTOR needs to be 

strengthened, and, if verified, mechanisms by which a 1 MDa complex is imported into the 

nucleus investigated. By contrast, ERK1/2 is well established to shuttle into the nucleus 

upon its activation (Chen, Sarnecki and Blenis, 1992) thereby acting as an ideal candidate 

for mediating TFEB nuclear export, by promoting its CRM1-dependent export (L. Li et al., 

2018). Indeed, ERK1/2 has been demonstrated to phosphorylate other proteins in the 

nucleus to alter their CRM1-dependent export, such as class II transactivator (CIITA; 

ERK1/2 phosphorylation promotes export) (Voong et al., 2008) or HIF-  (ERK1/2 

phosphorylation impairs export)  (Gkotinakou et al., 2019).  

Recently, it has been suggested that TFEB undergoes ERK1/2 dependent 

hyperphosphorylation in melanoma with constitutively active mutations of the ERK1/2 

signalling cascade but not in wild-type lines (S. Li et al., 2019). Furthermore, TFEB failed 

to undergo mTORC1-dependent phosphorylation when BRAF was inhibited, leading the 

authors to conclude that ERK1/2 phosphorylation of S142 promoted TFEB localisation to 

the lysosome. The data we present here suggests that TFEB hypophosphorylation 

temporally correlates with cell cycle arrest not ERK1/2 pathway inhibition in A375 cells (the 
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TFEB_HUMAN   1 MASRIGLRMQLMREQAQQEEQRERMQQQAVMHYMQQQQQQQQQQLGGPPT   50 

MITF_HUMAN   1 --------------------------------------------------    0 

TFEB_HUMAN    51 PAINTPVHFQSPPPVPGEVL-----KVQSYLENPTSYHLQQSQHQKVREY   95 
   ..|:|     :||::|||||.||:||:|.|:|::| 

MITF_HUMAN     1 ---------------MLEMLEYNHYQVQTHLENPTKYHIQQAQRQQVKQY   35 

  S142 (TFEB)/ S73 (MITF) - *  
TFEB_HUMAN    96 LSETYGNKFAAHISPAQGSPKPPPAASPGVRAGHVLSSSAGNSAPNSPMA    145 

  ||.|..||   |.:.....|.|   ..||   .||:....|:|||||||| 
MITF_HUMAN    36 LSTTLANK---HANQVLSLPCP---NQPG---DHVMPPVPGSSAPNSPMA   76 

TFEB_HUMAN   146 MLHIGSNPERE----------------------------LDDVIDNIMRL    167 
   ||.:.||.|:|                            :|||||:|:.| 

MITF_HUMAN    77 MLTLNSNCEKEGFYKFEEQNRAESECPGMNTHSRASCMQMDDVIDDIISL    126 

TFEB_HUMAN   168 -----DDVLGYINPEMQMPNTLPLSSSHLNVYSSD----PQVTASLVGVT    208 
  :::||.::|.:||.||||:|.:.:::|.:.    |.:|      . 

MITF_HUMAN   127 ESSYNEEILGLMDPALQMANTLPVSGNLIDLYGNQGLPPPGLT------I    170 

  S211 (TFEB) - * 
TFEB_HUMAN   209 SSSCPADLTQ-KREL------TDAESRALAKERQKKDNHNLIERRRRFNI    251 

  |:||||:|.. ||||      |::|:|||||||||||||||||||||||| 
MITF_HUMAN   171 SNSCPANLPNIKRELTACIFPTESEARALAKERQKKDNHNLIERRRRFNI    220 

TFEB_HUMAN   252 NDRIKELGMLIPKANDLDVRWNKGTILKASVDYIRRMQKDLQKSRELENH    301 
  ||||||||.||||:||.|:||||||||||||||||::|::.|:::||||. 

MITF_HUMAN   221 NDRIKELGTLIPKSNDPDMRWNKGTILKASVDYIRKLQREQQRAKELENR    270 

TFEB_HUMAN   302 SRRLEMTNKQLWLRIQELEMQARVHGLPTTSPSGMNMAELAQQVVKQELP    351 
   .::||..|:.|.|||||||||||.|||.....:|:...:|..:::||| | 

MITF_HUMAN   271 QKKLEHANRHLLLRIQELEMQARAHGLSLIPSTGLCSPDLVNRIIKQE-P    319 

TFEB_HUMAN   352 SEEGPGEALMLGAEVPDPEPLPALPPQAPLPLPTQPPSPFHHLD------    395 
   ..|...:.|:.                             ||.|  

MITF_HUMAN   320 VLENCSQDLLQ-----------------------------HHADLTCTTT    340 

TFEB_HUMAN   396 ---------FSHSLSFGGREDEGPPGYPEPLAPGHGSPFPSLSKKDLDLM    436 
  |:::|..|   .|....|..|...|        ||  |:.: 

MITF_HUMAN   341 LDLTDGTITFNNNLGTG---TEANQAYSVPTKMG--------SK--LEDI    377 

TFEB_HUMAN   437 LLDDSLLPL-ASDPLLSTMSPEASKASSRRSSFSMEEGDVL-    476 
  |:||:|.|: .:|||||::||.|||.||||||.||||.:..  

MITF_HUMAN   378 LMDDTLSPVGVTDPLLSSVSPGASKTSSRRSSMSMEETEHTC    419 

Figure 3.20: Clustal analysis of TFEB and MITF-M. 

TFEB (Uniprot identifier: P19484-1) and MITF-M (Uniprot identifier: O75030-9) were 
analysed by Clustal Pairwise analysis for homologous regions. Key regulatory sites are 
indicated. The purple highlighted region indicates the ERK2 binding region identified 
on MITF-M (Molina, Grewal and Bardwell, 2005). Within this, bold letters indicate the 
conserved activation domain. 
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same line used in Li’s study (S. Li et al., 2019)). Furthermore, it is difficult to reconcile that 

if ERK1/2 phosphorylation was a critical event in TFEB’s localisation to the lysosome, it 

would only be applicable in cell lines with mutations of the ERK1/2 pathway and not in wild-

type lines, since this would imply that another kinase must be responsible for mediating 

TFEB’s localisation in these lines. Finally, the S142 phosphorylation site in TFEB is highly 

conserved in TFE3 (S246), and yet this showed no nuclear localisation upon treatment with 

the BRAF-inhibitor PLX4720 (S. Li et al., 2019). Whilst, the authors introduced a number of 

mutants to constitutively activate mTORC1 signalling, they did not verify that mTORC1 

signalling remained active in the presence of ERK1/2 pathway inhibitors and this would be 

an important verification.  Regardless, we find it hard to reconcile a model whereby ERK1/2 

specifically promotes lysosomal localisation of TFEB in select circumstances.   

Overall, the only evidence we observed that ERK1/2 activity had a role on TFEB 

localisation was its partial cytosolic localisation upon EGF treatment. This should be 

repeated with addition of the CRM1 inhibitor leptomycin B, since it has been demonstrated 

that TFEB requires CRM1 for nuclear export and that leptomycin B prevents TFEB’s export 

(L. Li et al., 2018). Given Li’s findings, it is most likely that EGF does promote TFEB nuclear 

export. Contrary to Li’s hypothesis, we observed no phosphorylation of S142 in cells upon 

EGF stimulation. This would suggest that S142 phosphorylation is not the main mechanism 

mediating EGF-induced TFEB export. Whilst we attempted to generate HM3 cells stably 

expressing TFEB-GFP, thus enabling us to investigate S142 phosphorylation in response 

to rapid MEKK3 activation, positive clones exhibited high levels of death under normal 

growing conditions. Therefore, these were not taken further due to the potential impact this 

would have on results. Similar attempts in HR1 cells or C6244R cells, both of which enable 

selective activation of the ERK1/2 pathway, could be attempted. Indeed, the higher levels 

of TFEB in COLO205 cells, may mean they will tolerate overexpression better. 

3.3.2 ERK1/2 pathway stimulation can promote increases in TFEB protein 

abundance 

In this work, we consistently found that prolonged hyperactivation of the ERK1/2 

signalling cascade in HEK293 cells resulted in elevated TFEB proteins levels. Since this 

was almost certainly a cell line-specific observation, much of the follow-up and validation 

work regarding this remains incomplete. It would be important to observe if there was any 

functional consequence to the observed increases in TFEB protein level. Settembre and 

colleagues found that overexpression of TFEB resulted in an approximate doubling of LC3B 

lipidation (Settembre et al., 2011). It is likely that transient overexpression of TFEB was at 

far higher levels than that observed for 4-HT induced increases. Therefore, more sensitive 
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approaches for evaluating functional output of TFEB should be considered such as qRT-

PCR of known TFEB target genes (i.e. BCL2, LAMP1, p62) (Settembre et al., 2011) or 

transcriptional reporter assays such as 4X CLEARiLuc (4x TFEB consensus site) (Cortes 

et al., 2014).  

Overall, we could find no consistent evidence that ERK1/2 signalling led to changes 

in TFEB protein level across cell types. Our rationale for pursuing 4-HT induced increases 

in TFEB protein level is that it represents a relatively unique form of regulation, with the 

majority of reports to date focused on alterations in TFEB localisation. Thus, identifying the 

mechanism of TFEB protein level increases would likely represent a unique finding. 

However, there was not enough data to warrant further investigation once it was established 

this was apparently unique to HEK293s. Further work could be to establish how ERK1/2 

signalling promotes these increases in HEK293 cells, and then investigate whether this, 

likely downstream, event is observed in other cell lines as a conserved mechanism.  

3.3.3  Nutrient depletion promotes unexpected cytosolic localisation of TFEB in 

A549 cells 

One curious result was the ability of HBSS starvation to promote TFEB cytosolic 

localisation and hyperphosphorylation in A549 cells (Figure 3.3). This was despite clear 

mTORC1 inactivation, as assessed by P-S6K (T389). Furthermore, the mTOR inhibitor 

AZD8055 promoted TFEB nuclear localisation as in other cells. It is not quite apparent how 

these paradoxical findings can be reconciled; however, it clearly merits further investigation. 

Initial efforts could be directed towards further characterising the mTORC1 response to 

HBSS, by evaluating the phosphorylation of other substrates (4E-BP1 and ATG13) and 

mTORC1 localisation (mTOR immunofluorescence). Identifying other cell lines that show 

similar findings would also aid further development of model systems in which to study 

these findings. Since the endogenous TFEB remained hyperphosphorylated, there would 

be no requirement for overexpression of TFEB and phosphorylation status of TFEB in 

response to HBSS and AZD8055 could be assessed by SDS-PAGE. Once several cell lines 

have been identified, then similar characteristics can be identified (i.e tissue type) which 

may elucidate reasons for this discrepancy in regulation. These findings could provide 

important insights into how amino acids differentially regulate mTORC1 regulation of 

different substrates. Further experimentation should interrogate whether TFEB localisation 

is altered in A549 cells in response to knockdown of various components of nutrient-

dependent mTORC1 signalling i.e. RAPTOR, Rag-GTPases, components of Ragulator, 

etc. What is also unclear is why it would be beneficial for a cell to inactivate TFEB, arguably 
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a master regulator of catabolic metabolism (Michela Palmieri et al., 2011), during nutrient 

starvation.  

3.3.4 LY2835219 impairs lysosomal function resulting in impaired autophagic flux 

During the course of our studies investigating whether cell cycle arrest played a role 

in either TFEB phosphorylation status or loss of TFEB protein level, we observed that 

LY2835219 treatment caused pronounced Lamp2 positive vacuolisation (Figure 3.16), 

suggesting a lysosomal defect. Consistent with this, autophagic flux was impaired as 

assessed by LC3B-II levels upon bafilomycin A1 treatment. Curiously, TFEB 

dephosphorylation, known to occur in response to lysosomal defects (Settembre et al., 

2012), occurred to a greater extent than with mTOR inhibition alone (Figure 3.15.B). This 

suggests that LY2835219 treatment is likely inhibiting another kinase. GSK3 inhibition has 

previously been shown to promote TFEB dephosphorylation beyond that of mTOR inhibition 

(Marchand et al., 2015); however, we observed that lysosomal localisation was not required 

-TFEB (generation of stable line described in chapter 

5), a mutant which fails to localise to the lysosome, still underwent dephosphorylation upon 

treatment with the GSK3 inhibitor CHIR99021 (Figure 3.21). Therefore, whilst it should be 

confirmed that LY2835219 does not inhibit GSK3, it is likely that another kinase is 

responsible for the further dephosphorylation of TFEB. A candidate kinase could be 

MAP4K3, which is known to phosphorylate TFEB at S3 and is localised to the lysosome 

(Hsu et al., 2018). Regardless, whilst we were conducting this work another group 

demonstrated lysosomal membrane permeabilization upon LY2835219 treatment leading 

to vacuolisation (Knudsen et al., 2017). This did not appear to alter the in vivo properties of 

the drug compared to PD0332991 as assessed by transcriptomics of tissue samples.  
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Figure 3.21: GSK3-mediated phosphorylation of TFEB does not require its 
lysosomal localisation.
(A) HeLa cells stably expressing either WT-TFEB-GFP or 
treated with either DMSO or CHIR99021 (5 M) for 2 hours prior to lysis. Western
blots are from a single experiment.  Molecular weight markers (kDa) are indicated
to the right of each blot.
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4 Macroautophagy and mTORC1 are paradoxically both repressed 

during mitosis  

4.1 Introduction 

Macroautophagy is widely appreciated to be a crucial catabolic mechanism cells 

utilise in times of metabolic stress, especially nutrient starvation. In doing so, the cell 

maintains an adequate nutrient supply by recycling various macromolecules and 

organelles. This process is beneficial for longevity, with chronic rapamycin treatment, or 

genetic stimulation of autophagy extending lifespan in a variety of models (discussed in 

detail within the introduction). There are times when it would be theoretically damaging for 

autophagy to occur, such as mitosis. This is due to nuclear envelope breakdown exposing 

the genome to the cytosolic autophagic machinery. Indeed, autophagosomal engulfment of 

mitotic chromosomes has previously been observed (Sit et al., 1996), though only under 

conditions of severe cellular stress.   

Since mTORC1 regulates cap-dependent translation, including cell cycle proteins 

such as cyclin D1 and D3, the cell can arrest prior to the cell cycle’s G0/G1 restriction point 

when mTORC1 is inhibited. Thus, in times of nutrient starvation, the cell switches to a 

catabolic state, where internal supply of amino acids is increased and demands for protein 

synthesis are reduced. However, if cells have already passed the G1 restriction point, they 

are committed to cell cycle progression and completion of mitosis. The time taken for cells 

to complete the cell cycle from S-phase is several hours, and mitosis itself is approximately 

90 minutes (variable between cell lines). By contrast autophagy initiation occurs within 

minutes of nutrient starvation and mTORC1 inactivation (Axe et al., 2008). Therefore, there 

is a window of several hours whereby starvation-induced autophagy and mitosis could be 

occurring simultaneously. It has therefore been hypothesised previously that autophagy 

should be repressed during times of nuclear envelope breakdown to ensure protection of 

the genome (Eskelinen et al., 2002).  

To investigate the status of autophagy during mitosis, seminal work by Eskelinen 

and colleagues demonstrated that the number of autophagosomes was strikingly reduced 

during early mitosis. There has been conflicting evidence as to whether this is due to a 

decrease in autophagy initiation or an increase in autophagosome degradation.  This is 

likely due to differences in experimental protocol. A conventional approach for assessing 

autophagic flux is to assess LC3B puncta combined with the use of lysosomal inhibitors to 

block lysosome-mediated degradation. This enables differences in LC3 lipidation to be 

attributed to alterations in initiation or degradation, and such approaches have been 

employed by independent research groups to argue that autophagic flux and initiation is 
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active during mitosis, despite the reduced autophagosome number (Liu et al., 2009; Z. Li 

et al., 2016).  These studies are complicated due to the duration of lysosomal inhibition 

likely exceeding the time a cell has spent in mitosis, meaning that an apparent accumulation 

of autophagosomes during mitosis could simply reflect their ‘carry over’ from interphase. 

This is especially true of the study by Liu and colleagues that utilised lysosomal inhibitors 

for 16 hours (Liu et al., 2009). Even without the use of lysosomal inhibitors, the lifespan of 

LC3 puncta is approximately 30 minutes (this study; Axe et al., 2008); therefore, observed 

LC3 puncta could be inherited from interphase cells even in untreated conditions. To try 

and address this possibility Liu and colleagues treated mitotically-arrested cells with 

ammonium chloride to demonstrate that autophagic flux was highly active in early mitosis 

with increases in lipidated LC3B (Liu et al., 2009). It has been demonstrated that ammonia 

is capable of causing non-canonical LC3B lipidation (Jacquin et al., 2017). Therefore, these 

results, where autophagosomes could be accumulated from interphase or be a result of 

non-canonical autophagy, must be treated with caution. 

4.2 Results 

4.2.1 Autophagy initiation is inhibited during mitosis, in a manner independent of 

mTOR 

To exemplify the complication with using LC3 as a readout of autophagy during 

mitosis, we utilised a clonal HEK293 line stably expressing the tandem mRFP-EGFP-LC3 
reporter (Puncta dynamic shown in Figure 4.1.A). As explained in detail within the thesis 

introduction, GFP-LC3 is acid-sensitive, whilst RFP-LC3 is acid stable. This construct 

therefore usually allows the evaluation of autophagic flux by comparing the RFP to GFP 

ratio (Figure 4.1.B). Due to the concerns with regard to GFP-LC3 carry over into mitosis, 

we first assessed the stability of LC3 puncta upon entry into mitosis. We performed live-cell 

imaging of cells, with addition of the mTOR inhibitor AZD8055 and paclitaxel 30 minutes 

prior to imaging (Figure 4.2). As expected, cells in interphase had abundant GFP-LC3 and 

RFP-LC3 puncta, consistent with the high autophagic flux induced by mTORC1 inhibition. 

Consistent with previous publications, cells showed a pronounced decrease in GFP-LC3 

upon nuclear envelope breakdown and entry into mitotic arrest. This led to the near absence 

of GFP-LC3 puncta approximately 30-40 minutes after nuclear envelope breakdown. Since 

mitosis lasts approximately one hour, it is clear that monitoring GFP-LC3 puncta is not 

feasible during a normal mitosis, since we cannot establish whether puncta originated from 

interphase. In addition, RFP-LC3 puncta were highly stable and did not appear to noticeably 

reduce in number across the three hours of imaging. Upon entry into mitosis, RFP-LC3 

accumulated into large and highly stable puncta, which based on later imaging have many 

110



A

B

Figure 4.1 Schematic representation of immunofluorescence findings upon variations in 
auto-phagic flux.
(A) Schematic illustrating how autophagic structures relate to puncta detected by
immunofluores-cence. Adapted from Yoshii and Mizushima, 2007. (B) How autophagy structures
and, by association, puncta counts alter with variations in autophagic flux. Proposed models of
alterations to autophagic flux during mitosis  are included (Eskelinen et al., 2002; Liu et al.,
2009; Li et al., 2016).
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Figure 4.2: mRFP-EGFP-LC3 puncta stability affects its interpretation as a readout 
of autophagy during mitosis.
(A) HEK293 cells stably expressing mRFP-EGFP-LC3 were treated with AZD8055 (1 μM) 
and paclitaxel (50 nM) 30 minutes prior to transfer to a live-cell imaging stage. Image 
acquisition by spinning disc confocal microscopy. Representative images from different 
time points relative to nuclear envelope breakdown (NEB) are shown. Images from a 
single experiment.  Scale bar: 20 μm. Arrows indicate a mitotic cell.
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similarities to the lysosomal stain Lamp2 (i.e. Figure 4.10). As discussed previously, it has 

been suggested that RFP-LC3 can be resistant to lysosomal acidity and its turnover is 

governed by proteolytic activity within the lysosome (Yoshii and Mizushima, 2017).  

Fixed-cell imaging further supported these findings (Figure 4.3). Interphase cells 

treated with the mTOR inhibitor AZD8055 consistently showed a higher number of both 

GFP and RFP puncta, consistent with an increase in autophagy initiation. In contrast, cells 

arrested in mitosis consistently had fewer GFP and RFP LC3 puncta compared to 

neighbouring interphase cells consistent with a decrease in autophagy initiation. Some 

mitotic cells showed a much higher number of RFP-LC3 puncta. Whilst this was almost 

certainly an accumulation from interphase cells, it was not possible to conclude this from 

fixed-cell imaging. Based on these findings, we therefore felt the only way to accurately 

assess autophagic flux utilising this system was to induce autophagy in a cell already shown 

to be in mitosis and then observe puncta number. To do this, we treated cells with paclitaxel 

for 3.5 hours prior to transfer to a live-cell imaging spinning disc confocal microscope. Then 

after 30 minutes of imaging, we added the mTOR inhibitor AZD8055. Unfortunately, 

AZD8055 appeared to generate an artefact in the blue channel, preventing the use of a 

DNA marker such as Hoescht; however, condensed chromosome outlines, indicating cells 

in mitotic arrest, could be visualised in the GFP channel. Consistently, we observed an 

increase in both GFP and RFP puncta in interphase cells upon addition of the mTOR 

inhibitor AZD8055; however, no such increase was observed in cells already arrested in 

mitosis (Figure 4.4). This supports the idea that autophagy induction in response to mTOR 

inhibition is repressed during mitosis.   

4.2.2 Markers of the omegasome reveal that autophagy initiation is inhibited 

during mitosis 

Whilst the preceding results suggested that autophagy initiation was repressed 

during mitosis, they also highlighted the need for more dynamic and unambiguous readouts 

of autophagy initiation. ATG13, as part of the ULK1 complex, is recruited to the omegasome 

intermediate upon mTOR inhibition and appears as distinct puncta upon 

immunofluorescence (Karanasios et al., 2013). Furthermore, ATG13 puncta disperse prior 

to autophagosome budding and completion, thereby representing a transient marker of 

autophagy initiation which is not affected by the rate of degradation (Karanasios et al., 2013; 

Maday and Holzbaur, 2014). Indeed, the omegasome appears to have a lifespan of 

approximately 3 minutes and therefore represents a more dynamic and responsive readout 

of autophagy initiation than LC3 (Axe et al., 2008) (Figure 4.1). Furthermore, imaging of 

LC3 puncta cannot differentiate between macroautophagy, non-canonical autophagy and 

113



A

Control

AZD8055

GFP (LC3) RFP (LC3) DAPI

Figure 4.3: Both GFP-LC3 and RFP-LC3 are reduced in mitotically-arrested cells.
(A) Asynchronous HEK293 cells expressing the tandem LC3 reporter mRFP-EGFP-LC3 
were treated with AZD8055 (1 μM) for 2 hours prior to fixation and imaging by confocal 
microscopy. Images from a single experiment representative of two independent experi-
ments. Scale bar: 20 μm. Arrows indicate mitotic cells.
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Figure 4.4: Autophagy induction is repressed during mitotic arrest.
(A) HEK293 mRFP-EGFP-LC3 were treated with paclitaxel for 3.5 hours prior to transfer to 
live-cell imaging stage. Representative images from before and one hour after addition of 
AZD8055 are shown (1 μM). Images from two fields of view (FOV) are shown, with 
mitotically arrested cell indicated by arrow. Scale bars: 20 μm. Images from a single 
experiment representative of three biological replicates.
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selective autophagy, though the extent to which components of the omegasome are 

required for selective autophagy is recently beginning to be elucidated (see introduction). 

By contrast, since the ULK1 complex is not required for non-canonical autophagy it will not 

form punctate structures in this setting.  Thus, imaging omegasomes have several critical 

advantages when addressing the question of macroautophagy initiation during mitosis. To 

investigate whether autophagy initiation was repressed during mitosis, we arrested HeLa 

cells at the G1/S border with a double thymidine block. The basis of a double thymidine 

block is by providing the cell with a vast surplus of thymidine, it appears to deplete pools of 

deoxycytidine triphosphate (dCTP), which in turn inhibits DNA synthesis (Bjursell and 

Reichard, 1973).  As such a single thymidine block will arrest cells either on entry to S 

phase or cells already in S phase. Since S phase can encompass a several hour window, 

this would not provide an accurate synchronisation. Cells are therefore released from the 

first block for 8 hours, such that all cells have exited S phase and made it into G2 or G1 

phases of the cell cycle. Since, theoretically, no cells are then left in S phase, a second 

thymidine block is added, which will synchronously arrest cells at the start of S phase. From 

this, cells can then be released in a relatively synchronised fashion. We then released cells 

for 10 hours, such that there was an enrichment in a mitotic population. Two hours prior to 

fixation we either left cells untreated, treated them with the ATP-competitive mTOR inhibitor 

AZD8055, or incubated cells in starvation media. As expected, in P-H3 (S10) negative 

interphase cells the number of ATG13 puncta significantly increased with either AZD8055 

treatment or incubation in starvation media (HBSS supplemented with 1% BSA) (Figure 

4.5). ATG13 puncta were largely absent in P-H3 (S10) positive cells regardless of 

treatment. This suggests there was a repression of autophagy initiation during mitosis, and 

that this was independent of mTORC1 activity. 

To further assess the status of the omegasome, we performed immunofluorescence 

of WIPI2, an autophagy-specific PI(3)P sensor (Dooley et al., 2014). WIPI2 and other 

PI(3)P-sensing proteins contain FYVE domains, which bind specifically to PI(3)P (Gaullier 

et al., 1998). Whilst Furuya and colleagues had previously shown that the number of 

punctate structures of an isolated FYVE domain were reduced during mitosis (Furuya et 

al., 2010), from approximately 50 to 35 FYVE spots/cell, this experiment could be 

interpreted as a likely underestimate of autophagy repression. Firstly, no autophagy 

stimulus was provided, and therefore would have been evaluating low levels of basal 

autophagy. Secondly, as previously discussed, many FYVE domain containing proteins are 

localised to the endosomes, not ER, and therefore FYVE structures will act as a readout of 

all PI(3)P synthesis. Whilst VPS34 is the sole class III PI3K kinase in mammalian cells, 

VPS34 is found in many complexes involved in a diverse set of functions, with the ATG14-
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Figure 4.5: ATG13 puncta are significantly 
reduced in P-H3 (S10) positive mitotic cells 
compared to interphase cells.
(A) HeLa cells were released from double
thymidine block for 10 hours. Two hours prior
to fixation, cells were treated with AZD8055 (1
μM) or were incubated in HBSS + 1% BSA for
2 hours. Primary antibodies used: ATG13
(green), P-H3 (S10) (magenta). (B) Quantifi-
cation of (A) showing the average number of
ATG13 puncta per a cell in different conditions.
Mean +/- SD across three biological repli-
cates. P-values calculated from Two-way
Anova (Tukey). * p<0.05; ** p<0.01; ***
p<0.001. Scale bars: 20 μm.
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containing complex being specific to macroautophagy and in some cell-lines, such as 

MEFs, only making a small contribution to the total pool of VPS34 complexes (Kim et al., 

2013). By contrast WIPI2, which also associates with the omegasome intermediate 

structure (Polson et al., 2010), is critical for LC3B conjugation in response to PI(3)P, via its 

recruitment of the ATG16 complex (Dooley et al., 2014). It is therefore a specific marker of 

autophagy. Reflecting our findings with ATG13, WIPI2 puncta increased in interphase cells 

upon mTOR inhibition or nutrient starvation, and no such increase occurred in mitotic cells 

(Figure 4.6). Indeed, WIPI2 puncta were largely absent in mitotic cells regardless of 

treatment. Overall, markers of the omegasome, which are relatively transient and serve as 

a direct readout of autophagy initiation (Figure 4.1), were largely absent from mitotic cells 

regardless of nutrient status.   

Since HeLa cells are a cancer line with an abnormal karyotype, we wanted to 

observe whether mitotic repression of autophagy occurred in diploid fibroblasts. We 

therefore utilised hTERT-MRC5, a diploid cell line derived from foetal lung fibroblasts 

(Jacobs, Jones and Baille, 1970) and subsequently immortalised by expression of 

exogenous hTERT (Lee, Choi and Ouellette, 2004). As expected, treatment of hTERT-

MRC5 cells with AZD8055 or starvation of amino acids resulted in pronounced autophagy 

induction, as judged by ATG13 puncta, in interphase cells but not mitotic cells (Figure 4.7). 

Therefore, repression of autophagy during mitosis occurs in immortalised diploid 

fibroblasts, as well as in HeLa cells.   

Curiously, throughout these experiments examining omegasome markers there 

were a few cells which were P-H3 (S10) positive that exhibited robust numbers of ATG13 

puncta. These all appeared to have intact nuclear morphology. Consistent with this, P-H3 

(S10) phosphorylation occurs during late G2 and prior to nuclear envelope breakdown 

(Hendzel et al., 1997). We therefore hypothesised that the loss of ATG13 puncta should 

temporally correlate with the onset of nuclear envelope breakdown and reappear upon the 

conclusion of mitosis. To address this, we elected to use a clonal population of HEK293 

cells stably expressing GFP-ATG13 (previously generated (Karanasios et al., 2013)), 

enabling live-cell imaging of ATG13 puncta. Fixed-cell imaging confirmed that, like 

endogenous ATG13, GFP-ATG13 puncta formed in response to treatment with the mTOR 

inhibitor AZD8055 and starvation media in interphase cells, but no puncta were present in 

mitotic cells (Figure 4.8.A). We therefore wanted to stably express H2B-mCherry (a histone 

protein) into these HEK293 GFP-ATG13 cells to enable live-cell imaging throughout 

mitosis. Whilst DNA stains such as Hoescht can be utilised for live-cell imaging, there were 

several advantages to utilising H2B-mCherry. As stated earlier, we found that AZD8055 led 

to an artefact, resulting in a cytoplasmic stain, in the blue (405) channel. Furthermore, DNA 

118



WIPI2 P-H3 (S10) DAPI

AZD8055

Control

HBSS

- + - + - +pH3
Untreated AZD8055 HBSS

B

W
IP

I2
 p

un
ct

a/
 c

el
l

**
**

ns

ns
**

**
ns

**
**

ns

**

5

10

15

0

A

Figure 4.6: WIPI2 puncta, an alternative 
marker of the omegasome, are significant-
ly reduced in P-H3 (S10) positive mitotic 
cells compared to interphase cells.
(A) Asynchronous HeLa cells were either left 
untreated, treated with AZD8055 (1 μM), or 
incubated in HBSS + 1% BSA for 2 hours. 
Primary antibodies used: WIPI2 (green), P-H3 
(S10) (magenta). (B) Quantification of (A) 
showing the average number of WIPI2 puncta 
per a cell in different conditions. Mean +/- SD 
across three biological replicates. P-values 
calculated from Two-way Anova (Tukey). * 
p<0.05; ** p<0.01; *** p<0.001. Scale bars: 20 
μm. 

119



Control

AZD8055

HBSS

A
ATG13 P-H3 (S10) DAPI

Figure 4.7: Autophagy is repressed in the diploid fibroblast line MRC5.
(A) Asynchronous MRC5 cells were treated with AZD8055 (1 μM) or were incubated in HBSS + 1% 
BSA for 2 hours. Primary antibodies used: ATG13 (green), P-H3 (S10) (magenta). Images from a 
single experiment representative of three biological replicates. 
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Figure 4.8: Loss of ATG13 puncta temporally correlates with chromosome condensation.
(A) Asynchronous HEK293 GFP-ATG13 cells were either left untreated, treated with AZD8055 (1 
μM), or incubated in HBSS + 1% BSA for 2 hours. (B) Asynchronous HEK293 GFP-ATG13 (green) 
H2B-mCherry (magenta) were treated with AZD8055 (1 μM) for one hour prior to transfer to a live-cell 
imaging incubator. Mitotic cell indicated by arrow. Scale bars: 20 μm. All images are from a single 
experiment representative of three independent experiments. 
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dyes lead to toxicity over time. Given, we were already stressing cells with the addition of 

an mTOR inhibitor and taking z- , 

reducing additional stressors was critical. Importantly, we wanted to perform live-cell 

imaging on asynchronous samples. Since we could not predict when within an experiment 

cells would enter mitosis, it was required to image several fields of view for 5 hours to 

ensure we captured a number of cells which completed mitosis. These factors together 

made the use of a stably expressed H2B-mCherry superior to Hoescht.  Due to the rounded 

cell morphology of mitotic cells, wide-field imaging, whilst more sensitive, did not provide 

adequate spatial resolution to ensure puncta detection in interphase and mitotic cells at the 

same time. Both GFP-ATG13 and H2B-mCherry were detectable on a spinning disk 

confocal live-cell imaging system, enabling z-stacks to be acquired to ensure full coverage 

of the mitotic cell. Cells were treated with an mTOR inhibitor AZD8055 to induce autophagy 

prior to being mounted inside the imaging chamber, where images were captured at 3-

minute intervals. Initially, all cells in the field of view were in interphase and had abundant 

puncta, consistent with induced autophagy initiation (Figure 4.8.B). In cells that underwent 

mitosis, ATG13 puncta immediately dispersed upon chromosome condensation and onset 

of prophase. ATG13 puncta were absent throughout mitosis, right through to cytokinesis. 

The two daughter cells, with reformed nuclear morphology and entry into interphase, then 

exhibited abundant ATG13 puncta again, similar to neighbouring interphase cells.  Thus, 

autophagy initiation underwent a temporally coordinated repression at the start of and 

throughout mitosis, where exposed chromatin is contiguous with the cytosol, before 

returning to apparently normal levels once mitosis was complete.  

We further generated a clone from the HEK293 GFP-ATG13 cells stably expressing 

mCherry-Pom121. Pom121 is a nuclear pore protein, thereby enabling direct monitoring of 

nuclear envelope breakdown (NEB) and reformation (NER) (Dultz et al., 2008). It forms a 

punctate structure exclusively localised to the nuclear envelope, except during nuclear 

envelope breakdown where it disperses into the ER (Daigle et al., 2001). As published, in 

our experiments POM121 formed a localised pool during anaphase which then dispersed 

across the reforming nuclear envelope (Daigle et al., 2001). Therefore, it is clear to see that 

imaging POM121 provides another temporal reference point from which to consider the 

repression of autophagy during mitosis. Unfortunately, there appeared to be a selection 

pressure against this construct as few cells expressed the fluorescent protein, even after 

single cell cloning. Furthermore, many cells which did express this construct appeared to 

have disrupted nuclear morphology. From the few cells observed with a normal nuclear 

morphology, it was clear that ATG13 puncta were lost prior to nuclear envelope breakdown 

and started to reappear upon nuclear envelope reformation, though did not robustly come 
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back until after cytokinesis (Figure 4.9). Crucially, all of these live-cell experiments were 

conducted in the absence of mitotic poisons; this was only made possible by the use of 

omegasome markers rather than LC3. Overall, these results strongly suggest that 

autophagy initiation is impaired during mitosis.  

4.2.3 mTORC1 fails to localise to lysosomes during mitosis, a critical step in its 

activation during interphase 

All of the data generated so far suggested that autophagy was repressed during 

mitosis. This curiously also appeared to be the case in the presence of the catalytic mTOR-

inhibitor AZD8055 or in the absence of amino acids, which would also inhibit mTORC1 

signalling. Since mTORC1 is widely considered the master repressor of starvation-induced 

macroautophagy, its activity during mitosis warranted further investigation. Thus far, 

research into the status of mTORC1 during mitosis has been controversial. It has been 

shown by independent research groups that raptor is hyperphosphorylated in a CDK1-

dependent manner (Gwinn, Asara and Shaw, 2010; Ramírez-Valle et al., 2010). This has 

been suggested to promote its activity, and overexpressed RAPTOR immunoprecipitated 

with overexpressed 4E-BP1 in mitotic lysates, suggesting mTORC1 could continue to 

associate with its substrates (Gwinn, Asara and Shaw, 2010). However, during mitosis, 4E-

BP1 is hyperphosphorylated such that it runs as a mitosis-specific  on SDS-PAGE, 

due to CDK1’s specific phosphorylation of S83 (Velásquez et al., 2016). Yet in Gwinn’s 

study, the overexpressed 4E-BP1 did not exhibit the mitotic  in mitotic lysates on 

SDS-PAGE (Gwinn, Asara and Shaw, 2010), suggesting it was not acting like the 

endogenous protein. In contrast, another research group suggested that mTORC1 was 

inactive during mitosis, as the previously reported S6K T389 phosphorylation during 

mitosis, could not be reversed by shRAPTOR (Ruf et al., 2017). Likewise, Shah and 

colleagues found that whilst S6K was phosphorylated on other sites by CDK1, T389 was 

dephosphorylated during mitosis (Shah, Ghosh and Hunter, 2003). Multiple groups have 

-BP1 is resistant to ATP-competitive mTOR inhibitors 

(Ramírez-Valle et al., 2010; Shuda et al., 2015; Velásquez et al., 2016).  

mTORC1 is usually activated in response to nutrients. This occurs by Rag GTPase 

sensing of amino acid status and recruitment of mTORC1 to lysosomes through RAPTOR 

binding to Rag GTPases (Sancak et al., 2008, 2010; Manifava et al., 2016). We therefore 

wanted to investigate whether mTORC1 continued to be recruited to lysosomes during 

mitosis. Fixed-cell confocal immunofluorescence showed co-localisation of mTOR with 

Lamp2 in interphase cells (Figure 4.10.A), in concordance with previous reports (Sancak et 

al., 2010). However, cells undergoing mitosis showed minimal co-localisation Lamp2 and 
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Figure 4.9: Loss of ATG13 puncta temporally correlates with nuclear envelope breakdown.
(A) Asynchronous HEK293 GFP-ATG13 (green) Pom121-mCherry (magenta) were treated with 
AZD8055 (1 μM) for one hour prior to transfer to a live-cell imaging incubator. NEB: Nuclear envelope 
breakdown. NER: Nuclear envelope reformation. Scale bars: 20 μm. Images representative from two 
independent biological experiments.
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Figure 4.10: mTORC1 fails to localise to lysosomes during mitosis.
(A)
for 2 hours. For refeed, cells were starved for 2 hours, and their media then switched to complete
growth media for 5 minutes. Primary antibodies: Lamp2 (magenta) and mTOR (green). (B) HAP1
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mTOR, suggesting that mTORC1 was not recruited to lysosomes during mitosis. AZD8055, 

in common with another ATP-competitive mTOR inhibitor Torin1 (Ohsaki et al., 2010), 

drives mTOR to lysosomes via an unknown mechanism. AZD8055 had minimal effect in 

mitotic cells where the mTOR signal was still mostly diffuse with minimal foci, supporting 

our findings in untreated cells (Figure 4.10.A). Whilst it has been shown that mTOR 

dissociates from lysosomes in response to the absence of amino acids in HeLa cells 

(Sancak et al., 2010), this has subsequently been shown to be controversial, with several 

groups showing at least a degree of colocalization persists during amino acid starvation 

(Korolchuk et al., 2011; Manifava et al., 2016). In concordance with these later findings, we 

found minimal difference in the colocalization patterns of mTOR and Lamp2 during amino 

acid starvation or refeeding in HeLa cells. In all treatment conditions, mitotic cells showed 

minimal co-localisation between mTOR and Lamp2.  

We next wanted to validate these findings through complementary approaches. 

Overexpressed RAPTOR has been shown to have aberrant localisation and confers 

phenotypes not consistent with those observed for the endogenous protein (Manifava et 

al., 2016). Furthermore, no RAPTOR antibodies currently available are suitable for 

immunofluorescence (Ktistakis, personal communication). To circumvent these problems, 

our colleagues in the Ktistakis group have previously performed CRISPR-Cas9 gene editing 

to tag the endogenous RAPTOR protein with GFP. To do this, they utilised the near haploid 

cell line HAP-1. This means that all of the RAPTOR protein within the cells is GFP-tagged, 

as evidenced by the complete shift on SDS-PAGE of the total protein by approximately 

25kDa (Figure 4.12; Manifava et al., 2016). Supporting our findings with the mTOR antibody 

in HeLa cells, RAPTOR-GFP showed colocalization with Lamp2 in untreated interphase 

cells but not in mitotic cells (Figure 4.10.B). Likewise, AZD8055 intensified RAPTOR-GFP 

localisation to Lamp2 in interphase cells but not in mitotic cells. In the original publication 

describing these cells, RAPTOR-GFP exhibited a pronounced dissociation from lysosomes 

in the absence of amino acids (Manifava et al., 2016). In addition, reintroduction of amino 

acids promoted rapid recruitment of RAPTOR-GFP to lysosomes. Replicating these 

findings, in interphase cells, RAPTOR-GFP dissociated from lysosomes in starvation 

media, and this was reversed upon addition of complete media. In mitotic cells, there was 

no observable focal recruitment of RAPTOR-GFP to lysosomes when cells were re-

incubated in complete media. Thus, mTORC1 failed to be recruited to lysosomes in a 

nutrient-dependent manner during mitosis.  

To validate these immunofluorescence findings by an alternative methodology, we 

performed membrane-cytosolic fractionation (Figure 4.11). Whilst HeLa cells do not 

perfectly arrest in mitosis upon treatment with the microtubule inhibitor paclitaxel, mitotic 
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Figure 4.11: Mitotic-RAPTOR is localised to the cytosol not membranous fraction of cell 
lysates.
(A) HeLa cells were treated with paclitaxel (t=16 hrs; 50 nM) and/ AZD8055 (t=2 hrs; 1 μM).
Lysates were then fractionated into membrane and cytosol enriched fractions, with Lamp2 and
ERK1/2 serving as the respective loading controls. Western blots are from a single biological
replicate representative of three independent experiments. Molecular weight markers (kDa) are
indicated to the right of each blot.
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Figure 4.12: Mitotic-RAPTOR fails to interact with Rag-GTPases in a CDK1-depend-
ent manner.
(A) HAP1 RAPTOR-GFP cells were treated with paclitaxel (50 nM; t=16 hrs), AZD8055 (1
μM; t=2 hrs) or HBSS + 1% BSA (t=2 hrs) prior to immunoprecipitation with GFP-TRAP
(Chromotek). HAP1 parental cells were included as a negative control (P). (B)  HAP1 RAP-
TOR-GFP cells were treated with paclitaxel (50 nM; t=16 hrs), RO-3306 (2 μM; t=2 hrs) or
HBSS + 1% BSA (t=2 hrs) prior to immunoprecipitation with GFP-TRAP. Western blots are
from a single biological replicate representative of three independent experiments. Molecu-
lar weight markers (kDa) are indicated to the right of each blot.
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RAPTOR can be readily distinguished from interphase since it undergoes a considerable 

SDS-PAGE mobility shift due to CDK1-dependent phosphorylation (Ramírez-Valle et al., 

2010). Immunoblotting of Lamp2 and ERK1/2 confirmed that there was considerable 

enrichment for lysosomal and cytosolic proteins within the membranous and cytosolic 

fractions respectively.  4E-BP1 (cytosolic protein) further validated this fractionation, as well 

as the degree of mitotic arrest ( ). As expected, in asynchronous lysates, the mTOR 

inhibitor AZD8055 promoted an accumulation of non-phosphorylated RAPTOR in the 

membranous fraction (Figure 4.11). In contrast, paclitaxel treatment, which promotes 

mitotic arrest, increased the fraction of Raptor in the cytosol. Furthermore, very little 

hyperphosphorylated mitotic-RAPTOR was detected in the membranous fraction and this 

was the case even with AZD8055. The increase in membranous RAPTOR observed in 

paclitaxel-treated samples in response to AZD8055 was most likely from interphase 

contamination. Therefore, these results support the immunofluorescence findings that 

mTORC1 was not recruited to lysosomes during mitosis. It is worth noting that 

immunoblotting of RAPTOR was performed as it is a selective marker of mTORC1, whereas 

immunoblots of mTOR cannot distinguish between the complexes.  

Since mTORC1 did not localise to lysosomes during mitosis we wanted to examine 

the RAPTOR-Rag interaction in mitotic cells. To do this, we utilised GFP-TRAP 

immunoprecipitation from the HAP1 RAPTOR-GFP cells. GFP-TRAP involves the 

conjugation to agarose beads of a recombinant variable domain derived from alpaca 

antibodies against GFP. Alpacas produce a heavy chain antibody which is devoid of a light 

chain and can bind an antigen through a single variable domain. This single variable domain 

can then be recombinantly expressed such that GFP-TRAP does not contain either a heavy 

or light chain. This enables detection of endogenous RagC at 50 kDa, which would usually 

be obscured by the heavy chain. In both asynchronous and mitotically-arrested lysates, 

mTOR co-immunoprecipitated with RAPTOR-GFP, suggesting the mTORC1 complex was 

intact during mitosis. By contrast, whilst in asynchronous lysates RagA and RagC were 

successfully coimmunoprecipitated with RAPTOR-GFP (Figure 4.12.A), this interaction was 

lost in paclitaxel-treated samples. This occurred regardless of the presence or absence of 

AZD8055, correlating with our findings that hyperphosphorylated RAPTOR is not localised 

to the membranous fraction. The CDK1 inhibitor RO-3306 completely reversed the 

dissociation of RAPTOR-GFP from Rag-GTPases (Figure 4.12.B), demonstrating that this 

loss of interaction was dependent upon CDK1 activity in paclitaxel-treated samples. Overall, 

this data strongly suggests that mTORC1 cannot be recruited to lysosomes during mitosis 

and this correlated with CDK1-dependent RAPTOR phosphorylation. Since this is a critical 

step in its activation in interphase cells, it is likely that mTORC1 is inactive and would not 
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be capable of phosphorylating its canonical substrates. This supports our hypothesis that 

mTORC1 is not the master regulator of autophagy during mitosis.  

Since the RAPTOR-Rag interaction governs mTORC1’s localisation to lysosomes, 

we hypothesised that the alterations affecting mTORC1 localisation during mitosis must be 

directly impacting Rag-GTPases and/or RAPTOR. Since Rag-GTPases are tethered to the 

lysosome via the Ragulator complex, we first investigated the localisation of RagC by 

immunofluorescence.  This showed strong colocalization of RagC and Lamp2 in both 

interphase and mitotic cells, suggesting there was no alteration to Rag-GTPase localisation 

(Figure 4.13.A). It has previously been shown that overexpression of Rag GTPases in an 

active conformation (RagBGTP, RagDGDP) can promote mTORC1 localisation to lysosomes, 

regardless of nutrient status. Whilst we observed prominent mTOR localisation to 

lysosomes in interphase cells overexpressing the active heteroduplex, no such localisation 

was observed in mitotic cells (Figure 4.13.B). Therefore, whilst upstream activation 

pathways have effectively been bypassed by overexpressing this construct, mTORC1 still 

failed to be recruited to lysosomes. This suggested that alterations in the activity of Rag-

GTPases were not mediating the alterations in mTORC1 localisation during mitosis.  

It is an attractive hypothesis that CDK1-dependent phosphorylation of RAPTOR is 

what mediates its dissociation from Rag-GTPases. Indeed, treatment with the CDK1 

inhibitor RO-3306 completely reversed the dissociation of RAPTOR-Rag (Figure 4.12.B).  

The Schneider group previously identified seven sites by mass spectrometry that were 

phosphorylated in a CDK1-dependent manner (Ramírez-Valle et al., 2010), and it was 

subsequently demonstrated that at least some of these were directly phosphorylated by 

CDK1 (Gwinn, Asara and Shaw, 2010). Some of these sites are not proline directed (S722, 

S855, S859) and therefore do not fit a CDK1 consensus motif. Whilst it has been shown 

that RAPTOR is phosphorylated by PLK1 during interphase, no changes in S722 or S859 

phosphorylation was detected with PLK1 overexpression or PLK1 inhibition (Ruf et al., 

2017). However, it was observed that PLK1 overexpression promoted mTORC1 

dissociation from lysosomes in interphase (Ruf et al., 2017). Regardless, PLK1 inhibition 

did not promote mTORC1’s localisation to lysosomes during mitosis (Figure 4.14).  

To further explore whether these seven sites in RAPTOR were responsible for 

mTORC1’s failure to localise to the lysosome, we infected HeLa cells with retrovirus 

expressing constructs containing the seven mutated sites as either phospho-null (A7) or 

phospho-mimetic (D7). As observed in the original publication, whilst both the A7 and D7 

mutant strikingly dampens the electrophoretic-shift upon paclitaxel treatment, it still persists 

to a degree suggesting that other mitotic phosphorylation sites are present (Ramírez-Valle 
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mTORC1 dissociation from the lysosome during mitosis. 
(A) Asynchronous HeLa cells were immunostained for RagC (green) and Lamp2
(magenta). (B) Asynchronous HeLa cells were transfected with either WT RagB and RagD
(WT RAG complex) or RagBGTP RagDGDP (Active Rag Complex). Transfected cells are
indicated with an X in the Merge image (based on HA immunostain). Images are
representative of three independent biological experiments.  Scale bars: 20 μm.
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et al., 2010) (Figure 4.15). There is currently no feasible way to deduce what other sites are 

phosphorylated during mitosis, since RAPTOR is a large protein (150kDa, 1335 amino acid) 

with 113 serine and 73 threonine sites (based on FASTA sequence of isoform 1, UNIPROT 

identifier:Q8N122-1). As previously established (Manifava et al., 2016), 

immunofluorescence of overexpressed RAPTOR did not show any specific localisation 

pattern (data not shown). Immunoprecipitation of the HA-tag revealed intact mTORC1 

complexes which responded to paclitaxel-treatment like the endogenous protein, with 

dissociation of phosphorylated RAPTOR from RagA. The most striking difference was the 

reduction in binding of RAPTOR-D7 to RagA compared to either WT-RAPTOR or RAPTOR-

A7 in asynchronous samples. Overall, these results suggest that phosphorylation of these 

seven sites contribute towards the RAPTOR-Rag disassociation, but it is likely that other 

sites are also implicated. Therefore, CDK1-mediated phosphorylation of RAPTOR, and its 

separation from Rag-GTPases, contributes to the inactivation of mTORC1 during mitosis. 

4.3     Discussion 

4.3.1 Autophagy induction is repressed during mitosis 

The field has been debating the status of autophagy during mitosis for 17 years, 

with a plethora of evidence supporting both sides of the argument. This has likely come as 

a result of the use of assays which have become gold-standard, such as the use of 

lysosomal inhibitors with LC3 detection. Here, we demonstrate why the use of these 

techniques are likely to produce spurious results during mitosis. It is important to note for 

all of our findings presented in both this and the next chapter, that our results and 

conclusions are entirely compatible with the results found by other groups, even if their 

conclusions were different. In contrast to LC3, omegasome markers are a transient, 

dynamic and direct readout of autophagy initiation, and these are dramatically reduced 

throughout mitosis. This was the case even when autophagy stimuli such as starvation or 

mTORC1 inhibitors were introduced. Thus, autophagy initiation is repressed throughout 

mitosis until cytokinesis. Whilst, ATG13 puncta do not robustly reappear until approximately 

30 minutes after nuclear envelope reformation and after cytokinesis, they are visible as 

early as 12 minutes after nuclear envelope reformation. This gradual return of autophagy is 

likely to represent the time taken in the switching back of regulation from CDK1 (next 

chapter) to mTORC1. It is also worth noting that nuclear envelope breakdown and 

reformation is itself a dynamic process, and whilst the nuclear pore protein POM121 is 

recruited during anaphase, other components of the nuclear pore complex such as Nup62 

and Nup93 are recruited during telophase (Dultz et al., 2008). Likewise, Lamins do not 

recruit until late telophase/ early cytokinesis (Daigle et al., 2001).  Therefore, the delay could 
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simply reflect a requirement for complete nuclear envelope reformation. Regardless, there 

is a strong temporal correlation between loss of ATG13 puncta and nuclear envelope 

breakdown.  

4.3.2 mTORC1 fails to localise to lysosomes during mitosis 

Based on previous literature and our findings presented here, it seems most likely 

that mTORC1 is inactive during mitosis. This is based on several lines of evidence. There 

is a lack of upstream AKT signalling, meaning that canonical activation pathways are 

inactive during mitosis (Ramírez-Valle et al., 2010). Whilst studies had initially advocated 

that mTORC1 was hyperactive, thus enabling it to phosphorylate 4E-BP1 and S6K even in 

the presence of catalytic mTOR inhibitors (Ramírez-Valle et al., 2010), a more recent study 

has convincingly shown that 4E-BP1 undergoes a switch in regulation to CCNB1-CDK1 in 

mitosis (Shuda et al., 2015). We now show that mTORC1 also fails to recruit to lysosomes 

during mitosis, likely as a result of CDK1-dependent phosphorylation of RAPTOR. Thus, it 

is highly likely mTORC1 is inactive. By contrast, to present the argument that mTORC1’s 

activity is maintained during mitosis, there would have to be a completely alternative 

activation pathway to that described during interphase, not involving either AKT signalling 

or lysosomal localisation of mTORC1. Furthermore, there would have to be an alteration in 

mTORC1 that made it not susceptible to inhibition by a variety of catalytic inhibitors. No 

such mechanism has been described in the literature and seems unlikely. It is noteworthy, 

that whilst the Schneider group’s findings suggest mTORC1 kinase activity was increased 

during mitosis (Ramírez-Valle et al., 2010), this does not necessarily conflict with our 

findings here. This is because it has previously been shown that ULK1 phosphorylation 

promotes mTORC1 kinase activity but inhibits mTORC1 signalling in cells (Dunlop et al., 

2011). Thus, what we describe here are the paradoxical findings that whilst starvation-

induced autophagy is repressed during mitosis, the known master repressor of this process, 

mTORC1, is inactive. This suggests that a switch in regulation is occurring during mitosis 

to ensure repression of autophagy. Given the temporal correlation between loss of ATG13 

puncta and nuclear envelope breakdown, a process governed by CCNB1-CDK1, we 

postulated that CCNB1-CDK1 may be regulating autophagy and this is explored in the next 

chapter. 

It is worth noting further experiments that could be performed to further test these 

findings. Whilst the experiment demonstrating that hyperphosphoylated RAPTOR was 

localised to the cytosolic and not membranous fraction is clear, it could be argued that a 

better experiment to perform would be the recently established lysoIP, whereby HA-tagged 

TMEM192 is overexpressed in cells, enabling immunoprecipitation of intact lysosomes from 
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cells (Abu-Remaileh et al., 2017). Therefore, this enables a relatively pure 

immunoprecipitation of lysosomes without contamination from other membranous 

organelles. Since we observe the shift in localisation being towards the cytosol, this 

experimental protocol should provide the exact same result and we utilised AZD8055 as a 

positive control to verify that we could observe shifts in membrane/cytosolic localisations in 

our protocol. Therefore, whilst LysoIP would be a further way to validate this result, it was 

not deemed critical. 

Finally, it has been suggested that mTORC1 is active during mitosis due to mitotic 

cells staining positive for P-mTOR (S2481) during mitosis (Vazquez-Martin et al., 2009, 

2011; Lopez-Bonet et al., 2010; Platani et al., 2015). Whilst this antibody is not approved 

for use in immunofluorescence, Platani did show that the centrosomal distribution of this 

signal during metaphase was reduced with Mios depletion. However, whilst we also 

observed a centrosomal localisation with this antibody during metaphase, this signal was 

still present when HAP1 RAPTOR-GFP cells had been treated with the catalytic mTOR 

inhibitor AZD8055 (data not shown). It has previously been shown that P-mTOR (S2481) is 

abolished (western blot) by treatment with Torin-1 (Soliman et al., 2010). This suggests 

that, whilst we cannot rule out differences in protocols leading to altered results, findings 

from immunofluorescence using this antibody should be treated with caution. Furthermore, 

RAPTOR-GFP did not colocalise with the S2481 signal, though this alone does not discount 

the possibility of a subset of mTORC1 being phosphorylated, or mTORC2.   
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5 An mTORC1-to-CDK1 switch maintains suppression of autophagy 
during mitosis 

5.1 Introduction 

Macroautophagy is primarily regulated by mTORC1’s phosphorylation of autophagy 

regulators ATG13, ULK1, ATG14 and TFEB; hereafter these are referred to as ARs. This 

regulation enables the direct coupling of nutrient availability to macroautophagy, in which 

nutrient starvation inactivates mTORC1 to de-repress autophagy; this maintains 

homeostasis and survival during starvation. As discussed in the previous chapter, mitosis 

represents an example where such homeostatic control may be disadvantageous and 

temporarily switched off as a result. Given that we had observed the paradoxical findings 

that mTORC1 was inactive, yet autophagy was repressed during mitosis, an obvious 

question became whether the repression of autophagy was mediated via the same 

repressive pathway as in interphase cells or by alternative mechanisms. Much study has 

gone into identifying alternative mechanisms of mTORC1-mediated repression of 

autophagy during mitosis. Whilst convincing data exists that CDK1 phosphorylates VPS34 

to prevent its association with Beclin-1, the mutation of the putative CDK site did not reverse 

autophagy inhibition (Furuya et al., 2010), suggesting other mechanisms of autophagy 

repression during mitosis exist.  

Recently, it has been suggested that WIPI2 is degraded during mitosis and that by 

inhibiting the responsible ubiquitin ligase, autophagy could reinitiate during mitosis leading 

to senescence (Lu et al., 2019). Many questions arise from the interpretation of this dataset. 

Most pressing, is that inhibition of the ubiquitin ligases (CUL4) lead to a prominent G1 peak 

by Propidium iodide flow cytometry, thus it’s likely that autophagy regulation was no longer 

under mitotic control and it is therefore unsurprising that LC3B lipidation was restored. 

Indeed, on assessment of P-H3 (S10) in cells treated with both nocodazole and the NEDD8-

Activating Enzyme inhibitor MLN4924 (which in turn inhibits CUL4), they showed this 

combination lead to lower P-H3 (S10) than even untreated conditions. The authors 

attributed this to mitotic slippage caused by mitotic autophagy; however, given that mitotic 

slippage does not lead to cell division, and as such cells would have a tetradiploid G2 DNA 

content, it is more likely that these compounds mediated a G1 arrest. Whilst a single 

experiment did look at LC3 puncta in nocodazole treated cells, this suffered from all the 

previously listed caveats of LC3 and it was only shown that puncta intensity, not total 

number increased. Furthermore, they did not stratify cells into mitotic and interphase cells 

and given their subsequent findings that inhibiting CUL4 and treatment with nocodazole 

mediates either mitotic exit or G1 arrest, they may again have been observing 

predominantly interphase cells. Therefore, the authors are much more likely to have 
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observed autophagy in interphase cells rather than mitotic cells with this combination. This 

would explain their paradoxical findings that whilst wortmannin had previously been 

suggested to promote mitotic autophagy (Eskelinen et al., 2002), wortmannin strikingly 

blocked the senescence phenotype they observed upon combination treatment. The 

potential way to control for this possibility would have been the addition of a CDK1 inhibitor, 

such as RO-3306, into the combination since this would have prevented cells entering 

mitosis in the first place. Thus, RO-3306 should have blocked the senescence phenotype 

if it was a result of mitotic autophagy. However, without this control there is no way to 

interpret whether the effects they observe were due to a re-initiation of mitotic autophagy, 

and it seems highly doubtful given most cells are not in mitosis. Overall, whilst this dataset 

supports a role for WIPI2 degradation in mitotic regulation of autophagy repression, it does 

not exclude the possibility of other mechanisms of regulation. 

S6K and 4E-BP1 are directly phosphorylated by mTORC1 to mediate a direct 

control on ribosomal biogenesis and cap-dependent translation respectively. During mitosis 

both of these proteins have been suggested to be direct substrates of Cyclin B1-CDK1 

(Papst et al., 1998; Shah, Ghosh and Hunter, 2003; Shuda et al., 2015). In the case of S6K, 

this occurs at sites (S371, S411, T421, S424) (Shah, Ghosh and Hunter, 2003) other than 

the well characterised T389 site which mTORC1 phosphorylates. This is not surprising 

given that T389 is not proline-directed and therefore would not fit the common consensus 

motif for CDK1. That being said, S371 is also likely to be a direct mTORC1 target site during 

interphase (Saitoh et al., 2002). CCNB1-CDK1 also phosphorylates 4E-BP1 at known 

mTORC1 target sites T37,T46, S65, T70 (Shuda et al., 2015) and all of these are proline-

directed sites. Therefore, CDK1 appears to be able to phosphorylate substrates of 

mTORC1, including on known target sites when they are proline-directed. Curiously, many 

of the known mTORC1 target sites on ARs are proline-directed including P-ATG13 (S259), 

P-ULK1 (S758) and P-TFEB (S122, S142). Therefore, an interesting hypothesis to explore 

was whether an mTORC1-to-CDK1 switch was occurring not just for 4E-BP1 and S6K, but 

for ARs as well.  

It is important to note the differing upstream inputs into the mTORC1 and CCNB1-

CDK1 pathways. mTORC1 is nutrient-responsive and inhibition of its activity, whether by 

nutrient starvation or kinase inhibition, results in rapid autophagy activation. By contrast 

CCNB1-CDK1 is not nutrient-regulated and thus would remain active even during times of 

nutrient stress. Whilst it is inactivated in response to some stressors, such as DNA-damage, 

this occurs prior to the commencement of mitosis. Thus, a switch to CDK1 could sustain 

autophagy repression, even in the absence of amino acids, making CDK1 an ideal 

candidate kinase based on the data described in the previous chapter.  
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5.2 Results 

5.2.1 Mitotic arrest upon treatment with microtubule inhibitors promotes CDK1-

dependent hyperphosphorylation of TFEB, ULK1, ATG13 and ATG14  

Given the apparent inactivation of mTORC1 during mitosis, we would expect all of 

the known AR substrates to be in a hypophosphorylated state. To investigate the 

phosphorylation status of mTOR substrates during early mitosis, we utilised the microtubule 

inhibitor paclitaxel which arrests cells in prometaphase (Chadebech et al., 2000). Reduced 

protein mobility on SDS-PAGE gels (a ‘band shift’) can be used as a surrogate marker of 

phosphorylation. Band shift of ATG13, ATG14, TFEB and ULK1 was first observed within 

2 hours of paclitaxel treatment and steadily increased over 16 hours correlating with 

increases in the mitotic marker phospho-H3 (Ser10) (Figure 5.1.A). All ARs were 

hypophosphorylated again after 24 hours of paclitaxel treatment. This was likely to be a 

result of HCT116 cells undergoing mitotic slippage as evidenced by a decrease in P-H3 

(S10); this has been observed to occur in HCT116 cells by multiple independent research 

groups (Andonegui-Elguera et al., 2016; Sloss et al., 2016; Jakhar et al., 2018). Indeed, 

autophagy is activated during mitotic catastrophe (Sorokina et al., 2017)/slippage 

(Veldhoen et al., 2013; Jakhar et al., 2018). Since 16 hours of paclitaxel treatment resulted 

in the greatest mitotic-arrest and hyperphosphorylation of autophagy regulators, this time-

point was used for many of the subsequent experiments. Thus, despite the likely 

inactivation of mTORC1, ARs were hyperphosphorylated during mitotic arrest.  

Microtubule inhibitors, in addition to their ability to arrest cells in mitosis, elicit a 

plethora of pleiotropic effects, including activation of stress kinase signalling (i.e. JNK) 

(Amato et al., 1998; Wang et al., 1998). Since these kinases, also members of the CMGC 

family, phosphorylate proline-directed serine/threonine sites, we next evaluated whether 

CDK1 activity was specifically required for paclitaxel-mediated phosphorylation of these 

four substrates. We arrested HCT116 cells in prometaphase with paclitaxel treatment for 

16 hours and then two hours prior to lysis, we treated cells with increasing doses of RO-

3306 (Figure 5.1.B). As previously shown, autophagy regulators were phosphorylated in 

paclitaxel-treated cells. As expected, 4E-BP1 was also hyperphosphorylated in paclitaxel-

treated samples, observed as the mitosis-specific  isoform, in concordance with published 

results (Shuda et al., 2015).  These phosphorylation events were reversed by addition of 

RO-3306 in a dose-dependent manner. Dephosphorylation of ATG13, ATG14, TFEB and 

ULK1 closely correlated with doses required for dephosphorylation of 4E-BP1, and loss of 
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Figure 5.1: ARs band shift upon paclitaxel treatment in a CDK1-dependent 
manner.
(A) HCT116 cells were treated with paclitaxel (50 nM) for indicated time. (B) HCT116 
cells were treated with paclitaxel (50 nM) 16 hours. Two hours prior to lysis, cells were 
treated with indicated doses of RO-3306 (CDK1 inhibitor). Western blots are from a 
single experiment representative of three independent experiments. Molecular weight 
markers (kDa) are indicated to the right of each blot. 
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phospho-H3 (Ser10). It is curious that ULK1 levels appeared to be reduced in paclitaxel-

treated lysates compared to unsynchronised samples. This supports findings by Jakhar, 

which showed reduced ULK1 protein levels in nocodazole-arrested U20S cells, though the 

level of decrease was much more prominent in their study (Jakhar et al., 2018).  

To determine whether the observed band shift was due to phosphorylation or other 

post-translational modifications, we treated either whole cell lysates (ATG14 and ULK1) or 

immunoprecipitated proteins (TFEB and ATG13) with lambda phosphatase in vitro (Figure 

5.2). In the absence of lambda phosphatase, immunoprecipitated proteins from paclitaxel-

treated lysates still exhibited a band shift. However, the addition of phosphatase to 

immunoprecipitated proteins or whole-cell lysates abolished any band shift between 

untreated and paclitaxel-treated samples.  This strongly supported the hypothesis that the 

band shift of these four proteins reflected their hyperphosphorylation in paclitaxel-treated 

cells relative to untreated cells. Whilst all these experiments verify this band shift was a 

result of phosphorylation, it is important to address here the differences in experimental 

design between the substrates. Namely, that ATG13 and TFEB were immunoprecipitated 

whilst ATG14 and ULK1 were treated as part of whole cell lysates. Immunoprecipitation of 

a proposed substrate was beneficial compared to the treatment of whole-cell lysates. This 

is because it reduces the presence of endogenous enzymes within the lysate which could 

be active during the 30oC heating stages of the phosphatase protocol. Furthermore, by not 

purifying the substrate, all other proteins within the lysate will effectively act as a competitive 

inhibitor of the lambda phosphatase, requiring a greater amount of phosphatase to be 

added. Therefore, where possible (ATG13 and TFEB), these substrates were 

immunoprecipitated. Consistently we observed that transiently transfected proteins failed 

to undergo the same band shift that the endogenous proteins underwent. This is a widely 

reported complication within the autophagy field and also appears within the literature, i.e. 

drastically reduced band shifts of overexpressed RAPTOR and 4E-BP1 in mitotic lysates 

(Gwinn, Asara and Shaw, 2010). As such, transient transfection was utilised as little as 

possible throughout this study to prevent misinterpretation of overexpression artefacts. As 

a result, it was critical to observe band shifts in the endogenous protein. Taken together, 

this meant the experimental protocol required immunoprecipitation of the endogenous 

protein. As observed in Figure 3.18.A, TFEB protein levels varied drastically between cell 

lines and were considerably lower in HCT116 cells. To ensure an adequate amount of 

protein was immunoprecipitated before undergoing phosphatase treatment, we utilised the 

COLO205 cell line which expresses high levels of TFEB (Figure 5.2.A). Likewise, for ATG13 

we utilised HeLa cells (Figure 5.2.B). Unfortunately, whilst we could immunoprecipitate 

ATG14 and ULK1, the protein was degraded after treatment with lambda phosphatase. The 
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Figure 5.2: Paclitaxel-induced band shifts in ARs are a result of phosphorylation.
(A) COLO205 cells were treated for 16 hrs with paclitaxel (50 nM) or DMSO control. 
TFEB was then immunoprecipitated and subsequently treated with lambda phosphatase 

(B) Experiment was performed as in (A), except that ATG13 was immunoprecipi-
tated from HeLa cells. (C) HCT116 cells were treated with paclitaxel (50 nM) or DMSO 
control. Whole cell lysates were then incubated in the presence or absence of lambda 
phosphatase. Western blots are from a single experiment representative of three inde-
pendent experiments. Molecular weight markers (kDa) are indicated to the right of each 
blot.  
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reason for this was unclear, but likely represents the inherent instability these proteins 

exhibit out of complex in vitro due to their highly disordered regions. Therefore, we treated 

whole-cell lysates with lambda phosphatase (Figure 5.2.C). Regardless, this data strongly 

suggests that the band shift observed was a result of phosphorylation and later sections of 

this study further validate this (for ATG13, ULK1 and TFEB) with phospho-specific 

antibodies and mass spectrometry. 

We also wanted to determine if the hyperphosphorylation of autophagy regulators 

could be recapitulated with other agents that arrest cells in mitosis, and that this could be 

reversed by distinct CDK1 inhibitors at doses known to inhibit CDK1 (Gilley et al., 2012) 

(Figure 5.3). As predicted, the microtubule inhibitors nocodazole and paclitaxel both 

induced hyperphosphorylation of ATG13, ATG14, TFEB and ULK1 which correlated with 

the previously used mitotic markers (4E-BP1 and P-H3 (S10)) (Figure 5.3.A). This 

hyperphosphorylation was reversed upon treatment with the CDK1 inhibitors RO-3306 

(Vassilev et al., 2006), NU6102 (T. G. Davies et al., 2002) and roscovitine (Meijer et al., 

1997). In addition, the Eg5 inhibitor dimethylenastron, which arrests cells in prometaphase 

due to interference in spindle assembly and maintenance (Liu et al., 2006), also promoted 

hyperphosphorylation of autophagy regulators which was reversed by RO-3306 (Figure 

5.3.B). Altogether, this data strongly suggests that the observed hyperphosphorylation of 

ARs during mitotic arrest was CDK1-dependent. 

5.2.2 Mitotic phosphorylation of autophagy regulators occurs in a manner 

independent of mTORC1 but dependent on CDK1 activity 

It was previously shown that 4E-BP1 and S6K are phosphorylated by CDK1 during 

mitosis. In the case of 4E-BP1 this is well validated by several groups to occur at both 

mTORC1 canonical sites (Heesom et al., 2001; Greenberg and Zimmer, 2005; Shuda et 

al., 2015) and a CDK1 specific site S83 (Velásquez et al., 2016), resulting in the mitosis-

. Since the hyperphosphorylation of these proteins appeared to be 

independent of mTORC1 during mitosis, we hypothesised that the mitotic 

hyperphosphorylation of autophagy regulators might also to be independent of mTORC1. 

In addition, TFEB has been suggested to be an ERK1/2 substrate (Settembre et al., 2011). 

We therefore treated cells arrested in mitosis with either a CDK1 inhibitor RO-3306, a MEK 

inhibitor Trametinib or an mTOR inhibitor AZD8055. AZD8055 is an ATP-competitive 

inhibitor and was selected over rapamycin since it has been revealed that several 

substrates of mTORC1 are rapamycin insensitive (Thoreen et al., 2009; Kang et al., 2013). 

Unlike paclitaxel, which was applied for 16 hours, kinase inhibitors were only used for the 

final 2 hours. This was for two main reasons. Firstly, longer time points enable a larger 
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Figure 5.3: Nocodazole (microtubule inhibitor) and Dimethylenastron (Eg5 inhibi-
tor) both promote hyperphosphorylation of ARs in a CDK1-dependent manner. 
(A) HCT116 cells were treated with either paclitaxel (50 nM) or nocodazole (62.5 ngml-1) 
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perturbation in the cell’s overall signalling network in response to the kinase inhibition. 

Secondly, if a MEK or mTORC1 inhibitor was applied from the outset, it would likely result 

in a G0/1-phase arrest, thereby preventing the cells from accumulating in mitosis. This point 

demonstrates a fundamental advantage of utilising kinase inhibitors over genetic means 

when addressing the role mTORC1 has during mitosis, since rapid kinase inhibition can 

ensure that a similar proportion of cells are in mitosis when comparing the effect of different 

treatments. Cellular phosphatase activity on well validated substrates of mTORC1 is rapid, 

so that phospho-4E-BP1 (T37/46) and phospho-S6K (T389) were absent after two hours of 

treatment with AZD8055 in asynchronous lysates (Chresta et al., 2010). In concordance 

with previously published data, 4E-BP1 

of mTOR inhibitor AZD8055 (Figure 5.4.A). Strikingly, the mitotic hyperphosphorylation of 

ARs was also not reversed upon treatment with AZD8055. Furthermore, phosphorylation 

of ULK1 at S758 was still present in mitotic samples treated with AZD8055, suggesting a 

kinase other than mTORC1 was responsible for phosphorylating this site during mitosis. 

Likewise, Trametinib failed to reverse the miotic hyperphosphorylation of ARs including 

TFEB, suggesting MEK1/2 signalling was not responsible for mitotic phosphorylation of 

ARs. Finally, RO-3306 reversed the mitotic hyperphosphorylation of ARs, in line with our 

previous findings. Overall, this data suggested that the hyperphosphorylation of ARs was 

dependent on CDK1, not mTORC1.  

To further validate that the hyperphosphorylation of ARs was independent of mTOR, 

we performed the same experiment with three independent catalytic inhibitors of mTOR 

(AZD8055, Torin-1 and PP242) (Figure 5.4.B). As expected, neither 4E-BP1 

hyperphosphorylation or the hyperphosphorylation of autophagy regulators in mitotically-

arrested cells was reversed upon treatment with the mTOR inhibitors, further suggesting 

that the mitotic phosphorylation of autophagy regulators was independent of mTORC1. This 

included the known repressive site P-ULK1 (S758).    

Next, we wanted to validate our findings in cell lines from different tissue types and 

with different mutational statuses. mTOR-independent phosphorylation of ARs was 

replicated in: A549 (lung; KRASmut), COLO205 (colorectal; BRAFmut), HT29 (colorectal; 

BRAFmut), and HEK293 (embryonic kidney) cells (Figure 5.5). Furthermore, different cell 

lines exhibit different degrees of arrest in prometaphase upon paclitaxel treatment; for 

example, HEK293 undergo significant rates of mitotic slippage and a relatively small 

proportion of cells are arrested in mitosis (based on number of cells with rounded 

morphology). Indeed, HEK293 showed markedly lower levels of hyperphosphorylation of 

ATG13, ATG14, TFEB and ULK1; correlating with the reduced levels of 4E-BP1 

hyperphosphorylation compared to other cell lines (Figure 5.5.C). We found 4E-BP1 
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hyperphosphorylation to be a reliable internal read-out of mitotic arrest across all 

experiments. In contrast, cancer cells (i.e A549, COLO205, HT-29), many of which show a 

high-degree mitotic arrest upon paclitaxel treatment, exhibited much higher proportions of 

hyperphosphorylated ARs than HEK293. Combined, this evidence supports the hypothesis 

that the hyperphosphorylation of ATG13, ATG14, TFEB and ULK1 was dependent upon 

CDK1, and not mTOR, during paclitaxel-induced mitotic arrest. 

Mitotic shake-off enables the crude separation of mitotic and interphase cells based 

on their relative adherence to tissue culture plastic. Whilst there was a degree of cross-

contamination this enables comparisons of effects in interphase and mitotic cells whilst both 

are in the presence of paclitaxel. In order to demonstrate that mTORC1-independent 

phosphorylation of ARs induced by paclitaxel was limited to mitotic cells, HCT116 cells were 

treated for 6 hours such that approximately 50% of cells possessed a rounded morphology 

indicative of mitosis. Two hours prior to mitotic shake-off, cells were treated with either 

DMSO or AZD8055, enabling the comparison of mTOR inhibition in both interphase and 

mitotic populations. As expected, interphase-enriched cells still underwent 

hypophosphorylation of 4E-BP1 and ARs (ATG13, ULK1, TFEB), despite the presence of 

paclitaxel (Figure 5.6). In contrast, lysates from cells enriched for mitosis exhibited 

mTORC1-independent phosphorylation of both 4E-BP1 and ARs. This confirms that the 

band-shifts observed were not a generic effect of paclitaxel, but instead were a result of 

mitotic-arrest.  

5.2.3 Mitotic phosphorylation of ARs occurs in SW620:8055R cells 

Previous work in the lab has generated a cell line which is entirely resistant to 

mTORC1 inhibition. SW620:8055R were generated by prolonged culture in 2 

such that they are routinely cultured in the presence of drug and proliferate at a similar rate 

to parental cells (Cope et al., 2014). It was previously shown that SW620:8055R cells have 

amplification of eIF4E, such that translation was maintained even in the absence of 

mTORC1 signalling as measured by loss of P-S6K (T389) and hypophosphorylation of 4E-

BP1 (Cope et al., 2014). As such, they have chronic and sustained inhibition of mTORC1. 

To verify that SW620:8055R cells still exhibited active autophagic flux, we treated cells both 

in the presence and absence of AZD8055, with the lysosomal inhibitor Bafilomycin A1. In 

concordance with previous findings, SW620:8055R had elevated eIF4E protein levels 

(Figure 5.7). In addition, there was no detectable mTORC1 signalling in either SW620 or 

SW620:8055R cells treated with AZD8055, as assessed by hypophosphorylation of ATG13, 

ULK1, S6K and 4E-BP1. As expected, treatment of SW620 cells with AZD8055 promoted 

increases in lipidated LC3B (LC3B-II). This was further increased by the addition of 
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Bafilomycin A1, suggesting active autophagic flux with no impairment of lysosomal 

degradation. SW620:8055R cells showed similar results, though autophagic flux was high 

in both the presence and absence of AZD8055. Furthermore, there was a striking decrease 

in the protein level of both TFEB and ULK1, possibly representing negative feedback 

mechanisms to prolonged autophagy stimulation. We speculate this may be an adaptive 

mechanism by which cells cope with enhanced autophagy over a prolonged period. When 

SW620:8055R cells were placed in DMSO-containing media, like previously published 

findings we saw minimal P-S6K (T389) and no obvious changes in 4E-BP1 banding (Cope 

et al., 2014). However, phosphorylation of both ATG13 and ULK1 was apparent. We 

therefore wanted to validate whether mTORC1 signalling was active upon release from 

AZD8055. We observed that release of SW620:8055R cells into growth media in the 

absence of AZD8055 caused prominent reactivation of mTORC1 as assessed by 

phosphorylation of ATG13, S6K and 4E-BP1 (Figure 5.8). Unexpectedly, this occurred even 

in the absence of amino acids within the first hour, suggesting that the reactivation of 

mTORC1 upon AZD8055 withdrawal was nutrient-independent.  

Amino acids mediate mTORC1 activation through recruitment to the lysosomes, 

such that starvation inactivates Rag-GTPases resulting in failure of mTORC1 to recruit to 

the lysosome. Conversely, we and others have previously demonstrated that ATP-

competitive mTOR inhibitors, like AZD8055, promote mTORC1’s localisation to the 

lysosome. We therefore hypothesised that AZD8055 may effectively be priming mTORC1’s 

activity by its forced localisation to the lysosome in SW620:8055R cells. To test this, we 

monitored mTOR localisation by immunofluorescence. In SW620 cells, mTOR showed a 

weak localisation with lysosomes in basal conditions (Figure 5.9). This was impaired by 

nutrient depletion and strengthened by treatment with AZD8055. By contrast in 

SW620:8055R cells, mTOR showed strong co-localisation with the lysosomal marker 

Lamp2 in all treatment conditions. Thus, mTORC1 is likely primed at the lysosome by 

chronic AZD8055 treatment, resulting in rapid activation of mTORC1 upon withdrawal of 

AZD8055 even in the absence of nutrients. Of note, mTOR failed to localise to lysosomes 

during mitosis in either SW620 or SW620:8055R cells regardless of treatment conditions 

(example mitotic cells are demonstrated in the 8055 panels of Figure 5.9), supporting our 

previous findings in HeLa and HAP1 cells. Overall, our results suggested that whilst 

SW620:8055R cells were a suitable model for assessing the mitotic phosphorylation of 

autophagy regulators in a background of chronic mTORC1 inhibition, these cells are 

capable of reactivating the mTORC1 pathway upon drug withdrawal.   

Given our findings that 8055R cells do exhibit continued mTORC1 signalling upon 

drug withdrawal, we treated SW620:8055R cells with paclitaxel in the presence of 
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Figure 5.8: SW620:8055R cells have active mTORC1 signalling upon release from 
AZD8055, even in the absence of amino acids.
(A) SW620 cells and SW620:8055R cells were cultured in their normal growth medium 

media was exchanged for either normal growth media or HBSS + 1% BSA, supplemented 

weight markers (kDa) are indicated to the right of each blot. 
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AZD8055. Whilst this experiment still involves the use of a compound (AZD8055), it does 

enable verification that mTORC1-independent phosphorylation can be observed in this 

background and therefore rules out possibilities such as decreased phosphatase activity 

during mitosis leading to maintained phosphorylation of ARs even after 2 hours of AZD8055 

treatment. As expected, SW620:8055R cells showed no active mTORC1 signalling with 

hypophosphorylation of 4E-BP1 and S6K in asynchronous cells (Figure 5.10). During 

mitosis, 4E-BP1 was phosphorylated in both SW620 and SW620:8055R cells. Likewise, 

ARs were also hyperphosphorylated during mitotic arrest in both SW620 and 

SW620:8055R cells. This further supports the hypothesis that phosphorylation of ARs 

during mitosis was mTORC1-independent.   

5.2.4 A mutant of TFEB which cannot be p -

TFEB) still undergoes mitotic phosphorylation 

Thus far, all the experiments involving the inhibition of mTORC1 have utilised ATP-

competitive inhibitors. Genetic manipulation of mTORC1 possesses a number of caveats 

which made me conclude it was not a feasible approach. CRISPR of mTORC1-specific 

components has not yet been successful as cells enter a G0/1 arrest with toxicity upon 

prolonged mTORC1 inhibition (see discussion). Therefore, no-one has successfully grown 

single cell-clones from this approach. The preferred alternative is shRNA of RAPTOR, 

which enables a knockdown phenotype but often with residual mTORC1 signalling 

(Ramírez-Valle et al., 2010; Ruf et al., 2017). The obvious question becomes if there was 

sufficient mTORC1 signalling to enable continued cell cycling, then mTORC1 activity may 

not have been reduced enough to rule it out in any process, since translational capacity 

was clearly maintained. To this end, we decided to direct genetic validation to a specific 

mTORC1 substrate, TFEB. TFEB has to be recruited to lysosomes to be phosphorylated 

by mTOR and genetic deletion of the N-terminal 30 amino acids causes its nuclear 

localisation, non-responsiveness to amino acids and inability to be phosphorylated by 

mTORC1 (Roczniak-Ferguson et al., 2012; Martina and Puertollano, 2013). We therefore 

generated a stable cell line with a GFP-tagged N-terminal , to compare with WT-

TFEB-GFP. In agreement with previous work, this stable cell line showed nuclear 

localisation of the -TFEB protein in all treatment conditions (Figure 5.11.A). 

Furthermore, AZD8055 treatment -TFEB-GFP to lysosomes, unlike the 

wild-type protein, demonstrating that -TFEB failed to locate to lysosomes. On SDS-

PAGE, -TFEB-GFP exhibited no band shift in response to amino acid starvation, 

nutrient replenishment (refeed) or AZD8055, validating that it was not phosphorylated by 

mTORC1 (Figure 5.12.A). However, like the wild-type protein, -TFEB-GFP was 
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hyperphosphorylated in response to paclitaxel, and this was unaffected by AZD8055. Whilst 

this was to a lesser degree than the WT protein, this was almost certainly a result of reduced 

mitotic arrest, as observed by a lower proportion of 4E-BP1 in the hyperphosphorylated 

form (note the increased total amounts of 4E-BP1 in the  line) and a reduced mitotic 

phospho-S6K (T389) band. We have not verified that the mitotic phospho-S6K (T389) band 

was S6K specific, and this would be required given there is no corresponding total S6K 

band at this position. Regardless, it was consistently induced during mitosis across all 

experiments and therefore was another surrogate readout of mitotic arrest. It was not 

surprising that the  line had a slower proliferation rate, given this cell line was likely to 

have a much higher level of catabolic activity compared to either parental or WT-TFEB cell 

lines, due to the constitutive activation of CLEAR genes and lysosomal biogenesis (Michela 

Palmieri et al., 2011). Regardless, to confirm that hyperphosphorylation of both WT and 

-TFEB was to the same extent during mitosis, we performed a mitotic shake-off to 

enrich for the mitotic populations in both cell lines. This verified that the mitotic 

hyperphosphorylation of both TFEB constructs was to a similar extent in both cell lines 

(Figure 5.12.B).  These results provided genetic evidence that TFEB was phosphorylated 

in mitosis by a kinase other than mTORC1.  

It is important to note that AZD8055 treatment promoted lysosomal localisation of 

WT-TFEB in both interphase and mitotic cells (Figure 5.11.B). TFEB’s recruitment to 

lysosomes is mediated by its association with Rag-GTPases, as evidenced by expression 

of dominant-negative Rag heteroduplexes abolishing Torin-1 induced TFEB lysosomal 

localisation (Martina and Puertollano, 2013). Thus, the finding that TFEB continued to 

associate with the lysosome was further evidence that alterations in Rag-GTPase activity 

was not mediating the dissociation of mTORC1 from the lysosome during mitosis 

(discussed in Chapter 4). 

5.2.5 Mitotic phosphorylation of ARs is independent of nutrient availability or 

class I PI3K 

In Eskelinen’s original study of the inhibition of autophagy during mitosis, she 

observed that autophagosome number was paradoxically increased during mitosis in the 

presence of wortmannin (Eskelinen et al., 2002). Wortmannin is a pan-PI3K inhibitor and 

has been known to repress autophagy for a number of decades due to VPS34 inhibition. 

Neither neutralising VPS34 antibodies (PI3K class III inhibition), nor p85 -/- cells  (PI3K 

class I inhibition) could restore autophagy during mitosis (Eskelinen et al., 2002). Treatment 

of HEK293 GFP-ATG13 cells with wortmannin failed to induce ATG13 puncta in mitotic 

cells, even in starvation conditions (Figure 5.13). Given that it is was previously published 
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that the VPS34 complex is inactive during mitosis, we next used the PI3K class I-selective 

inhibitor ZSTK474 to see if it could reverse hyperphosphorylation of ARs. Neither ZSTK474 

nor nutrient starvation could reverse hyperphosphorylation of ARs (Figure 5.14). This 

further supports the suggestion that hyperphosphorylation of ARs was independent of 

mTORC1, since ZSTK474 inhibits the upstream activation of mTORC1. 

5.2.6 Mitotic phosphorylation of ARs occurs in the absence of microtubule 

inhibitors 

It was important to address whether hyperphosphorylation of ARs was also 

observed during normal mitosis, in the absence of microtubule inhibitors. For this, we 

utilised two cell synchronisation techniques: double thymidine block and RO-3306 release. 

Unfortunately, due to the lack of commercially available phospho-specific antibodies for 

ARs, we relied upon band shifts which required a significant proportion of cells to be in 

prometaphase arrest with high CCNB1-CDK1 activity. Such levels of synchronisation are 

difficult to achieve in cycling cells. Furthermore, double thymidine blocks have differing 

efficacy between cell lines. HeLa cells have previously been shown to synchronise well with 

double thymidine block, so were selected for use in this protocol. However, this was still not 

sufficient for the level of synchronisation required to observe band-shift in either autophagy 

regulators or positive control proteins such as 4E-BP1 (data not shown). 

 An alternative approach was to combine double thymidine block with mitotic shake-

off, whereby the loose adherence of mitotic cells enabled them to be isolated from the rest 

of the culture. This approach enabled the detection of hyperphosphorylated 4E-BP1 in 

lysates acquired from mitotically-enriched cells, suggesting a sufficient level of 

synchronisation had been achieved to observe mitotic band shifts (Figure 5.15.A). Indeed, 

hyperphosphorylation of ARs was observed in the mitotic lysates. This 

hyperphosphorylation was independent of mTORC1, as it could not be reversed by 

AZD8055 treatment. Since this experiment did not involve the use of microtubule inhibitors, 

yet achieved high levels of mitotic synchronisation, we also assessed LC3 lipidation. 

Strikingly, lipidated LC3 (LC3B-II) was reduced in mitotic lysates compared to interphase-

enriched lysates, further supporting our immunofluorescence findings in the previous 

chapter. Finally, TFE3 shares many phosphorylation sites with TFEB; for example, the 

region surrounding S246 is highly conserved with S142 in TFEB. Like TFEB, TFE3 was 

hypophosphorylated upon treatment with AZD8055 in lysates enriched for interphase cells 

but underwent mTORC1-independent phosphorylation during mitosis. Importantly, the key 

finding, that ARs were phosphorylated in an mTORC1-independent manner during mitosis 

(Figure 5.15.A), was replicated by paclitaxel treatment of HeLa cells (experiment performed 
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by Andrew Kidger; Figure 5.15.B) and the previous mitotic shake off experiment of HCT116 

cells (Figure 5.6). Overall, this experiment (Figure 5.15.A) demonstrated that mitotic 

hyperphosphorylation of ATG13, ATG14, TFEB and ULK1 took place in normal cycling cells 

and was not limited to chemically-induced mitotic arrest. 

It has been known for over 20 years that inactivation of CDK1 results in a G2 arrest 

at the G2/M border (van den Heuvel and Harlow, 1993). The development of a reversible 

catalytic CDK1 inhibitor (RO-3306) enabled cells to be arrested on the G2/M border with 

RO-3306 treatment and then released into a relatively synchronised mitosis by washing off 

the drug (Vassilev et al., 2006). Of several cell lines tested, we found HT-29 produced the 

highest proportion of cells in mitosis upon release from RO-3306 (based on cells with a 

rounded morphology). HT-29 cells treated with RO-3306 arrested on the G2/M border as 

assessed by propidium iodide flow cytometry (Figure 5.16.A; G1 – 7%, S – 23%, G2 – 

52%). Upon release from RO-3306, cells then underwent a relatively synchronised mitosis 

with hyperphosphorylation of 4E-BP1 and the ARs (Figure 5.16.B). These phosphorylation 

events were lost by 4 hours, where PI staining showed a proportion of cells had entered the 

next G1 (Figure 5.16.A; G1 - 35%, S - 13%, G2 – 41%). Whilst a G2 population did persist 

at 4 hours, the lack of hyperphosphorylated 4E-BP1, mitotic P-S6K (T389), and reduced P-

H3 (S10) means they were not likely to be in mitosis (Figure 5.16.B).    

To further assess the phosphorylation of ULK1 at S758 in asynchronous cultures 

we utilised a different phospho-antibody appropriate for immunofluorescence applications. 

High-content microscopy with staining for both P-H3 (S10) and P-ULK1 (S758) enables the 

automated and un-biased segregation of mitotic and interphase cells, and quantification of 

their respective P-ULK (S758) intensity. HAP1, HeLa, A549 and HT-29 cells were analysed 

by this methodology (Figure 5.17, 5.18) and have all been used at different points 

throughout this study. Treatment with AZD8055 or deprivation of nutrients both reduced P-

ULK (S758) in interphase cells. It was noticeable that the remaining signal in interphase 

cells when treated with AZD8055 or HBSS was punctate and likely represents staining of 

unphosphorylated ULK1. By contrast, mitotic cells showed no noticeable drop in P-ULK 

(S758) upon mTOR inhibition. Furthermore, paclitaxel addition in the high-content 

microscopy experiment did not drastically alter results (Figure 5.18), further supporting that 

its use in previous experiments was justified. Overall, high-content microscopy 

demonstrated that P-ULK (S758) was largely not responsive to mTOR inhibition during 

mitosis.  

Unfortunately, HCT116 cells could not be analysed by this process; this appeared 

to be due to a very low number of mitotic cells remaining adherent to the Cell-carrier plates 
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mitosis upon release from CDK1-inhbitor 
(RO-3306) blockade.
(A) Propidium iodide analysis of HT29 cells
run in parallel with (B). (B) HT29 cells were

prior to release into drug-free media for
indicated time. For samples treated with

prior to release, and cells were released into
media supplemented with AZD8055. As a
positive control, HT29 cells were treated with
paclitaxel (50 nM) for 16 hours (P). Western
blots are from a single experiment
representative of three independent
experiments. Molecular weight markers
(kDa) are indicated to the right of each blot.

164



HAP1 A549 HeLa HT29

Untreated

AZD8055

HBSS

Untreated

AZD8055

HBSS

Pa
cl

ita
xe

l

HAP1

Untreated

P-ULK (758) P-H3 (S10) DAPIA

Figure 5.17: High-content microscopy further demonstrates the 
mTOR-independent phosphorylation of ULK1 in mitotic cells. 

+ 1% BSA. Cells were then fixed and immunostained for P-ULK1 (S758) and P-H3 (S10). 
(A) Panel demonstrates an example (Untreated HAP1) of all the parameters utilised for 
subsequent analysis. (B) Representative P-ULK (S758) images from all cell lines and 
treatment conditions are shown. P-H3 (S10) positive cells are indicated by arrow for the 
representative images. Images are from a single experiment, representative of three 
independent experiments. Experiment performed with assistance of Andrew Kidger.
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Figure 5.18: Quantification of high-content microscopy. 
(A) Quantification of mean P-ULK1 (S758) intensity from (Fig 5.17) for different cell lines
is shown. Mean +/- SD from three independent experiments. P-values calculated using
Two-way Anova (Tukey). * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001.
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after fixation leading to highly variable data. We therefore also performed flow-cytometry 

on two cell lines, A549 and HCT116, as an alternative approach. Like high-content 

microscopy, the use of P-H3 (S10) enabled a gating strategy whereby cells were stratified 

into interphase (P-H3 (S10) negative) and mitotic (P-H3 (S10) positive) populations (Figure 

5.19.A). Plotting P-ULK (S758) intensity as histograms, and stratifying based on P-H3 (S10) 

staining, revealed that whilst AZD8055 resulted in a striking reduction of P-ULK (S758) in 

interphase cells, minimal reduction was observed in mitotic cells (Figure 5.19.B). Since P-

ULK (S758) intensity showed a normal distribution within any given population or treatment 

condition, it was appropriate to compare the mean intensity between treatment conditions. 

This quantitative analysis confirmed that whilst AZD8055 treatment caused significant 

reductions in P-ULK (S758) within interphase populations, minimal decreases were 

observed in mitotic cells (Figure 5.19.C). Furthermore, results obtained by both flow 

cytometry and high content microscopy for A549 cells showed almost identical values, 

cross validating the analysis methodologies used. HCT116 cells showed almost identical 

results to A549 cells (Figure 5.19.D). Overall, both techniques strongly supported our 

findings by western blot, showing that mitotic phosphorylation of P-ULK (S758) was largely 

independent of mTORC1 (AZD8055 and starvation media). We did observe small but 

consistent reductions upon inhibition of mTORC1 in most cell lines during mitosis. Indeed, 

western blot evidence of P-S6K p70 (T389) throughout this chapter showed that whilst 

phosphorylation was significantly reduced in mitotically-arrested cells (Figure 5.23), there 

was still residual activity which was responsive to AZD8055 treatment. Therefore, there was 

likely to be a small fraction of residual mTORC1 activity in mitotic cells.  Another possibility 

was that, as discussed in the previous chapter, not all P-H3 (S10) positive cells have yet 

entered mitosis and therefore will still be responsive to mTORC1 inhibition. Regardless, the 

data clearly suggests that P-ULK (S758) is not primarily regulated by mTORC1 in mitotic 

cells, and these results validate that this was not a result of any synchronisation protocol 

previously used. 

5.2.7 Mitotic phosphorylation of autophagy regulators occurs at known repressive 

sites which are usually phosphorylated by mTORC1 during interphase 

Since we demonstrated that ULK1 was phosphorylated at S758 during mitosis, even 

in the presence of the mTOR inhibitor AZD8055, we hypothesised that mitotic 

phosphorylation of autophagy regulators was likely occurring at known mTOR sites. That a 

majority of these sites are proline-directed made CCNB1-CDK1 a likely candidate and 

would be consistent with the findings for 4E-BP1. Given the shared similarity of the region 

surrounding the S142 of TFEB with other MITF family members (S73 for MITF), antibodies 
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Figure 5.19: Phosphorylation of ULK1 at S758 occurs in an mTOR-independent 
manner in asynchronous mitotic cells.

Cells were then stained for P-H3 (S10) or P-ULK1 (S758) prior to analysis by 
flow-cytometry. (A) Example contour plots with gating strategy is shown for A549 cells 
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p<0.01.  168



capable of detecting endogenous phosphorylation at this site are not currently feasible. This 

shared similarity also meant that phosphorylation of overexpressed TFEB at S142 could be 

detected with the P-MITF (S73) antibody (L. Li et al., 2018). Please note this experiment 

was performed prior to the development of a specific P-TFEB (S142) antibody, which was 

used for the experiment shown in Figure 3.5; however, both antibodies were trialled on 

lysates from the experiment shown in Figure 3.5 and showed similar results. In addition, a 

recent antibody for S122, an mTORC1 site known to promote TFEB cytosolic localisation 

(Vega-Rubin-de-Celis et al., 2017), has been developed but requires immunoprecipitation 

of the protein. In agreement with previous findings, treatment of asynchronous cells with 

AZD8055 promoted dephosphorylation at both sites (Figure 5.20). Pre-treatment with 

paclitaxel prevented dephosphorylation at both sites, again indicating that mitotic 

phosphorylation of known mTORC1 sites in TFEB was independent of mTORC1.  

Nutrient responsive phosphorylation of ATG13 also impairs ULK1 kinase activity 

(Puente, Hendrickson and Jiang, 2016). mTORC1 directly phosphorylates ATG13 at S259 

(mouse 258). In addition, there is AMPK-dependent phosphorylation at S224 and both of 

these phosphorylation events lead to repression of the ULK1 kinase complex. Commercially 

available antibodies for these sites do not currently exist. Therefore, we decided to 

interrogate phosphorylation of ATG13 by liquid chromatography tandem mass spectrometry 

(LC-MS/MS). Consistent with published findings, AZD8055 treatment of asynchronous cells 

promoted dephosphorylation of ATG13 at S259 but had no effect on S224 (Table 5.1). Pre-

treatment of cells with paclitaxel to arrest them in prometaphase promoted phosphorylation 

at both of these sites. Furthermore, it largely reversed dephosphorylation promoted by 

AZD8055. It is worth noting that HEK293 cells do not arrest well in mitosis (Figure 5.5.C) 

and this was likely responsible for the discrepancy between paclitaxel-treated lysates in the 

presence and absence of AZD8055.   

Table 5.1: ATG13 is phosphorylated at known repressive sites during mitosis 

Treatment (fold change to DMSO control) 
Paclitaxel AZD8055 Paclitaxel + 

AZD8055 
Phosphopeptide 
Phosphorylation site and relevant 
interphase kinase 

Rep1 Rep2 Rep1 Rep2 Rep1 Rep2 

TPPIMGIIIDHFVDRPYPSSSPMHPCNYR 
S224 (known AMPK site) 

3.55 2.07 0.94 0.96 3.86 3.00 

TAGEDTGVIYPSVEDSQEVCTTSFSTSP
PSQLSSSR 
S259 (known mTOR site) 

1.75 1.90 0.15 0.19 0.81 1.05 
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HEK293 GFP-ATG13 cells were treated with paclitaxel (50 nM, 16 hrs) and/or AZD8055 

(1 μM, 2 hrs). GFP-ATG13 was then immunoprecipitated, protease digested, and analysed 

by LC-MS/MS as outlined in the methods. Data for two phosphopeptides are shown: during 

interphase S224 is known to be phosphorylated in an AMPK-dependent manner and S259 

by mTOR directly. Fold-change compared to DMSO control is presented for two 

independent replicate experiments. 

 

The preceding results were consistent with mitotic phosphorylation of ARs being 

catalysed by CDK1 rather than mTORC1. To test if phosphorylation at all of these sites was 

a direct result of CDK1 was challenging, because adding a CDK1 inhibitor results in cells 

rapidly exiting mitosis (Vassilev et al., 2006). Whilst we attempted to identify time points 

when CDK1 inhibition resulted in substrate dephosphorylation during mitosis, we found that 

dephosphorylation of P-H3 (S10) closely correlated with dephosphorylation of the validated 

CDK1 substrate P-4E-BP1 (T37/46) and P-ULK (S758) (data not shown).  Therefore, whilst 

CDK1 inhibitor experiments are essential for determining whether paclitaxel-induced 

phosphorylation events are a result of mitotic arrest and CDK1 activity, they do not directly 

implicate CDK1. To further interrogate this, we assessed whether CCNB1-CDK1 

immunoprecipitated from mitotically-arrested cells could phosphorylate bacterially 

expressed recombinant GST-tagged peptides, containing regions of ARs usually 

phosphorylated by mTORC1. AR proteins are intrinsically highly disordered and as such 

make their purification from bacterial lysates challenging, especially when ATG13, ATG14 

and ULK1 are expressed alone rather than in their normal multi-protein complexes (Michael 

Wilson, personal communication). Hence, we decided to utilise fragments of ARs fused to 

GST protein to enable purification.  Immunoprecipitated CCNB1-CDK1 could phosphorylate 

all of these GST-tagged constructs in vitro, as assessed by 32P incorporation (Figure 

5.21.A). Importantly, this was strongly inhibited by the presence of independent CDK1 

inhibitors RO-3306 (300 nM) and NU6102 (500 nM). Previous in vitro profiling of these 

inhibitors had demonstrated that only CDK1 (and CDK2 for NU6102) exhibited an IC50 

below the dose used out of a panel of kinases tested (T. G. Davies et al., 2002; Vassilev et 

al., 2006). To verify that CDK1 was phosphorylating the mTORC1 target sites, we analysed 

the in vitro reactions of ATG13, ATG14 and ULK1 by LC-MS/MS mass spectrometry which 

confirmed CCNB1-CDK1-specific phosphorylation of ATG13 (S224, S259), ULK1 (S758) 

and ATG14 (S383, S440). In addition, CCNB1-CDK1 specific phosphorylation of ULK1 

T764 and S781, and ATG14 S392 and S462 was detected in the mass spectrometry 

analysis of in vitro reaction fragments (Table 5.2). For TFEB, immunoprecipitated Cyclin 

B1-CDK1 could phosphorylate both S122 and S142 as assessed by western blot with the 
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Figure 5.20: TFEB is phosphorylated at S122 and S142 in an 
mTORC1-independent manner during mitosis.
(A) HeLa cells stably expressing WT-TFEB-GFP were treated with either 

immunoprecipitated GFP are shown. Western blots are from a single 
experiment representative of three independent experiments. Molecular weight 
markers (kDa) are indicated to the right of each blot. 
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Figure 5.21: Immunoprecipitated CCNB1-CDK1 
can phosphorylate ARs in vitro at known 
repressive sites usually phosphorylated by 
mTORC1. 
(A) HAP1 cells were treated with paclitaxel (50 nM; 
t=16 hrs) prior to lysis and subsequent 
immunoprecipitation of cyclin B1 (or bead-only 
control – first lane). The immunoprecipitated CDK1 
was then incubated with RO-3306 (300 nM) or 
NU6102 (500 nM) where indicated. Indicated 
GST-tagged protein fragments were then added to 
reaction mixtures and incubated for 15 minutes at 
30oC. * indicates detection of heavy-chain antibody 
from immunoprecipitation. (B) Kinase assay 
performed as in (A) but without the addition of 
32P-ATP. Western blots and radiographs are from a 
single experiment representative of three 
independent experiments. Molecular weight 
markers (kDa) are indicated to the right of each 
blot. 
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relevant phospho-specific antibodies, and this phosphorylation was again inhibited by the 

CDK1 inhibitor RO-3306 (Figure 5.21.B). These results, combined with our data acquired 

from cells, strongly suggests that CDK1 directly phosphorylates ATG13, ULK1, ATG14 and 

TFEB at known repressive sites which are usually phosphorylated by mTORC1 during 

interphase.  

Phosphopeptide Site  
ATG13 (194-283)  
TPPIMGIIIDHFVDRPYPSSSPMHPCNYR S224 
TAGEDTGVIYPSVEDSQEVCTTSFSTSPPSQLSSSR S259 (known mTOR site) 
ULK1 (706-827)  
AGGTSSPSPVVFTVGSPPSGSTPPQGPR S758 (known mTOR site) 
AGGTSSPSPVVFTVGSPPSGSTPPQGPR T764 
MFSAGPTGSASSSAR S781 
ATG14 (348-470)  
NLMYLVSPSSEHLGR S383 (known mTOR site) 
SGPFEVR S392 
VSDEETDLGTDWENLPSPR S440 (known mTOR site) 
FCDIPSQSVEVSQSQSTQASPPIASSSA S462 

 

Table 5.2: Sites in ATG13, ULK1 and ATG14 phosphorylated by CCNB1-CDK1 in 
vitro 
HAP1 cells were treated with paclitaxel (50 nM; t=16 hrs) prior to lysis and subsequent 

immunoprecipitation of CCNB1 (or bead-only control). The immunoprecipitated CDK1 

was then incubated with indicated GST-tagged protein fragments for 15 minutes at 30oC. 

GST-tagged fragments were then trypsin digested and analysed by mass spectrometry 

as outlined in the methods. Sites phosphorylated by CCNB1-CDK1 in both of two 

independent experiments are identified in Red underline.  

 

5.2.8 Functional consequences of CDK1-dependent phosphorylation of ARs 

CCNB1-CDK1 activity starts to increase approximately 27 minutes prior to nuclear 

envelope breakdown in HeLa cells (Gavet and Pines, 2010b). Since S142 has been 

implicated in the nuclear export of TFEB (L. Li et al., 2018; Napolitano et al., 2018) and we 

had observed that CCNB1-CDK1 directly phosphorylated this site, we wanted to see 

whether TFEB was exported from the nucleus in the presence of an mTOR inhibitor just 

prior to nuclear envelope breakdown. To test this, we generated a stable cell line from the 

previously characterised HeLa WT-TFEB-GFP cell line expressing the H2B-mCherry 

protein. We then performed live-cell imaging in the presence of the mTOR inhibitor 
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AZD8055. As expected, all cells in interphase showed a strong nuclear localisation of TFEB 

(Figure 5.22). Approximately 10-20 minutes prior to nuclear envelope breakdown, a rapid 

and pronounced export of TFEB was observed consistent with CDK1 phosphorylation 

promoting TFEB’s nuclear export in an mTORC1-independent manner. 

ULK1-catalysed phosphorylation of different substrates has been reported to be 

important to the initiating events in autophagosome biogenesis. Phosphorylation of ATG14 

on S29 by ULK1 stimulates VPS34 activity, PI(3)P synthesis and autophagy initiation (Park 

et al., 2016). We therefore wanted to evaluate phosphorylation of this site during mitosis as 

a functional readout of ULK1 activity. We performed fluorescent western blotting with HAP1 

4E-BP1 to total; number 

rounded cells upon paclitaxel treatment) (Figure 5.23). As expected, P-S6K (T389) was 

drastically reduced upon treatment with paclitaxel (80%), though the residual 

phosphorylation was AZD8055 responsive suggesting a degree of mTORC1 activity 

persists in mitotic cells. Whilst AZD8055 reduced P-ULK1 (S758) phosphorylation by 

approximately 90% in asynchronous cells, the phosphorylation was only reduced by 

approximately 20% in cells pre-treated with paclitaxel to induce mitotic arrest, and this was 

not significant (One-way Anova (Tukey correction)). AZD8055 treatment of asynchronous 

cells promoted ATG14 phosphorylation at S29 approximately three-fold, indicating ULK1 

activation. This was completely blocked by pre-treatment with paclitaxel to arrest cell in 

mitosis. These results were also observed in HCT116 cells (Figure 5.24). Thus, a critical 

signalling pathway responsible for autophagy initiation (dephosphorylation of ULK1 leading 

to its phosphorylation of ATG14) was absent in early mitosis. This further supports the 

hypothesis that the ULK1 complex was inhibited and autophagy repressed.    

5.3 Discussion    

5.3.1 Phosphorylation of ARs during mitosis is independent of mTORC1 

Our observations during the work associated with Chapter 4 showed that whilst 

autophagy initiation was repressed during mitosis, this occurred in an mTORC1-

independent manner. Indeed, mTORC1 was likely to be repressed during mitosis, given it 

fails to localise to lysosomes. Supporting this hypothesis, P-S6K (T389) was found to be 

reduced during mitosis (Figure 5.23 and 5.24), supporting previous observations (Shah, 

Ghosh and Hunter, 2003; Ruf et al., 2017). mTORC1 is the master regulator of autophagy 

via its repressive phosphorylation of ATG13, ULK1, ATG14 and TFEB. We consistently 

found that treatment of asynchronous cells with the mTOR inhibitor AZD8055 resulted in 

appreciable hypophosphorylation of ATG13, ULK1 and TFEB. Despite our observations 

that mTORC1 was inactive during mitosis, ARs were consistently hyperphosphorylated 

174
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Figure 5.22: TFEB is localised to the cytosol just prior to NEB, even in the 
presence of AZD8055.
(A) Asynchronous HeLa TFEB-GFP H2B-mCherry were treated with AZD8055 
(1 μM) for one hour prior to transfer to a live-cell imaging incubator. Images are 
a montage from a single experiment representative of three independent 
experiments.
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during mitosis. This included at known repressive sites usually phosphorylated by 

mTORC1: ATG13 S259, ULK1 S758, and TFEB S122 and S142. Furthermore, inhibition of 

mTOR in cells that were arrested in mitosis failed to reverse the mitotic 

hyperphosphorylation of ARs. The methods to inhibit mTOR included treatment with three 

catalytic mTOR inhibitors (AZD8055, Torin1 and PP242), a PI3K class I inhibitor ZSTK474, 

and HBSS starvation. In addition, mitotic phosphorylation of ARs was observed in 

SW620:8055R cells. Furthermore, genetic mutation of TFEB such that it cannot be 

phosphorylated by mTORC1 failed to prevent its mitotic phosphorylation. We further 

validated that mTORC1-independent phosphorylation of autophagy regulators occurred 

during mitosis in the absence of microtubule inhibitors. This evidence together strongly 

suggests that the mitotic phosphorylation of these autophagy regulators occurs in a manner 

independent of mTOR. Therefore, another kinase must be responsible for the 

phosphorylation of ARs at known repressive sites during mitosis. 

5.3.2 CCNB1-CDK1 is the most likely candidate kinase to catalyse 

phosphorylation of ARs during mitosis. 

It has previously been suggested that 4E-BP1 is a direct substrate of CCNB1-CDK1, 

with phosphorylation at sites which are usually phosphorylated by mTORC1. Given that 

mitotic phosphorylation of ARs was occurring in an mTORC1-independent manner, we 

hypothesised that a global mTORC1-to-CDK1 switch may be occurring during mitosis. 

There are several lines of evidence which support CDK1 being the direct kinase responsible 

for phosphorylation of ARs during mitosis at phosphosites usually phosphorylated by 

mTORC1. The minimum consensus motif of CCNB1-CDK1 is a proline-directed 

threonine/serine (pS-P or pT-P), and all of these sites fit such a consensus motif. CDK1 

inhibitors reverse the mitotic phosphorylation of ARs in a dose-responsive manner, where 

dephosphorylation of ARs closely correlated with loss of hyperphosphorylated 4E-BP1, a 

well validated CDK1 substrate. Furthermore, three different CDK1 inhibitors resulted in 

dephosphorylation of ARs. Temporally, ARs were phosphorylated within 10 minutes of 

release from CDK1 inhibition, increasing to maximal phosphorylation at 30 minutes and 1 

hour which correlates with the hyperphosphorylated form of 4E-BP1. The temporal 

dynamics of TFEB cytosolic shuttling closely correlate with previous findings of CCNB1-

CDK1 activity in cells, that suggest CDK1 activity increases over the period of 20 minutes 

prior to NEB. With regards to localisation, CCNB1-CDK1 is established to be active in both 

the nucleus and cytosol (Gavet and Pines, 2010a), thus providing a mechanism for TFEB 

phosphorylation in the nucleus as well as ULK1 complex phosphorylation in the cytoplasm. 

Finally, CCNB1-CDK1 was capable of phosphorylating ARs in vitro at these proposed sites. 
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Thus, the hypothesis that CCNB1-CDK1 is responsible for the hyperphosphorylation of ARs 

during mitosis is entirely consistent with all of our findings. 

5.3.3 Known functional consequences of phosphorylation at repressive sites 

occurs during mitosis   

mTORC1 is known to repress autophagy through its phosphorylation of ARs. Whilst 

PI(3)P synthesis is known to be reduced during mitosis as a result of VPS34 inhibition 

(Furuya et al., 2010), no readouts of ULK1 activity during mitosis have been explored. ULK1 

is activated upon mTORC1 inhibition, and phosphorylates ATG14 at S29 to stimulate 

VPS34 activity and autophagy (Park et al., 2016; Wold et al., 2016). We therefore used P-

ATG14 (S29) as a readout of ULK1 activity. Whilst mTOR inhibition had the expected effect 

of activating ULK1 in asynchronous cells this was blocked in mitotic cells, suggesting the 

ULK1 complex was inactive during mitosis. Thus, we show that autophagy initiation is not 

just impaired at the level of VPS34 but also ULK1 during mitosis. That CCNB1-CDK1 

directly phosphorylates ULK1 S758 in vitro and this site persists in mitosis, strongly 

suggests that CDK1 imparts the same repressive control on ULK1 during mitosis as 

mTORC1 does in interphase.  

 TFEB is known to be localised to the cytosol in response to mTORC1 

phosphorylation of S122, S142 and S211. Mutation of S142 to alanine is alone sufficient to 

drive TFEB to the nucleus (Settembre et al., 2011). Since we had observed that CCNB1-

CDK1 phosphorylates TFEB on S122 and S142, we hypothesised that TFEB nuclear 

expulsion would be visible just prior to mitosis when CDK1 activity begins to increase, 

despite the presence of mTOR inhibitors. As predicted, TFEB was rapidly exported over a 

course of 20 minutes prior to nuclear envelope breakdown. It could be argued that the 

functional impact of such repression during a normal mitosis is minimal, since TFEB is only 

in the cytosol for approximately 10-15 minutes of interphase, before chromosome 

condensation and transcriptional inactivation occurs anyway. There are several reasons 

why CCNB1-CDK1 may phosphorylate TFEB causing its expulsion from the nucleus to the 

cytosol. The first is that it is simply a by-product of a global mTORC1-to-CDK1 switch with 

no functional relevance. However, P-S6K (T389), which is not proline-directed, does not 

undergo such a switch, therefore suggesting there is a biological separation of certain 

mTORC1 target sites that do or do not undergo a switch in regulation. The second, is the 

phosphorylation is in preparation for the next interphase, since transcription factors which 

are immediately required post-mitosis remain associated with chromatin during mitosis in a 

“book keeping” mechanism (Teves et al., 2016). A third possibility is that CCNB1-CDK1 

terminates any role TFEB plays in a DNA-damage response mediating a G2 arrest. 
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Topoisomerase inhibitors such as etoposide promote TFEB dephosphorylation and 

activation (Jeong et al., 2018), and our preliminary data agreed with this and also suggested 

this was by a mechanism independent of mTORC1 due to sustained P-S6K (T389) and P-

ULK (S758) (Figure 5.25). CCNB1-CDK1 is known to terminate components of the DDR 

(Zhang et al., 2011), thus TFEB could just be inactivated alongside other components of 

the DDR.  

5.3.4 Comparison of our study with other studies of mitotic regulation of 

autophagy 

The results described here suggest a complete switch in regulation of 

macroautophagy from mTORC1 to CDK1 during mitosis. This was most likely achieved by 

the direct phosphorylation of ARs by CDK1 on known mTORC1 target sites. These are 

known to be repressive in nature and the expected effects were observed in mitotic cells, 

such as the nuclear export of TFEB and absence of the ULK1 target P-ATG14 (S29). These 

events, in addition to the previous publications on VPS34 inactivity and WIPI2 degradation, 

mean that autophagy is globally repressed, even during times of stress during mitosis. The 

scale of the observed repression is likely to hamper efforts to re-initiate autophagy during 

mitosis. Such efforts are already complicated during interphase, and the original papers 

which identified mTORC1 phosphorylation of ATG13 (S259) (Puente, Hendrickson and 

Jiang, 2016) and ULK1 (S758) could only demonstrate their phenotypic effects during 

starvation, when autophagy was active. Since we have yet to demonstrate a way of initiating 

autophagy during mitosis, we believe attempting to rescue mitotic autophagy by site-

directed mutagenesis of single sites on autophagy regulators is likely futile and runs the risk 

of coming to a conclusion that sites are not important, when they are more likely merely 

redundant. Indeed, if the hypothesis is that autophagy is repressed in order to prevent 

catastrophic damage during mitosis, then such redundancy would be beneficial, enabling 

autophagy repression even with mutations at one or more sites. Finally, the site-directed 

mutagenesis of multiple sites could have unpredictable effects on overall protein function 

during interphase and so must be treated with caution and well-validated to ensure effects 

observed are a strictly mitotic phenomenon. Such concerns are obvious for a protein like 

RAPTOR, where multiple sites have been identified to be phosphorylated by more than one 

kinase, with differential outputs dependent upon the combination of phosphorylation events. 

Thus site-directed mutagenesis of putative CDK1-sites has not been a focus of this work.  

There has been the recent submission of a pre-print which also shows CCNB1-

CDK1 phosphorylates both ATG13 and ULK1 (Z. Li et al., 2019). It is important to note that 

whilst Li and colleagues’ pre-print data showing CDK1 interaction with the ULK1 complex 
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Figure 5.25: TFEB is hypophosphorylated upon treatment with 
DNA-damage inducing agents camptothecin and etoposide. 
(A) HEK293 cells were treated as indicated: DMSO (C); camptothecin (CPT; 

hrs). Western blots are from a single experiment. Molecular weight markers 
(kDa) are indicated to the right of each blot. 
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complements our data, their conclusions differ from ours in several regards. Firstly, whilst 

they identified many sites that CDK1 potentially phosphorylated, these did not include the 

mTORC1 target sites. The sites Li and colleagues identified included 11 sites for ULK1: 

T282, T401, S403, S405, S411, S413, S479, T502, S543, S622, T635, T653 and 4 sites 

for ATG13: S44, S224, T332, T342. Importantly, they used a combination of mass 

spectrometry, phosphosite prediction and site directed mutagenesis to generate this list 

(though it is not entirely clear within the preprint which of these sites came from phosphosite 

analysis and which from mass spectrometry). Our results from mass spectrometry analysis 

of GFP-ATG13 also found paclitaxel-induced increases in phosphorylation of S44 and 

T342; however, this was a very low-proportion of the total protein and therefore we have 

not presented this data without further validation. Li generated a 3A mutant of ATG13 

(S44A, T332A, T342A) which arguably showed little reversal of the mitotic band shift 

compared to the WT protein, whereas further addition of S224A, a site we also identified, 

noticeably reduced the band shift.  We attempted to generate stable cell lines with ATG13 

and ULK1 mutated at the known mTORC1 target sites; however, these failed to express 

the protein despite selection. This would therefore need to be attempted again. It is not 

surprising Li and colleagues did not identify the mTORC1 target sites during mitosis, since 

they did not employ mTOR inhibitors during their mass spectrometry analysis. Therefore, it 

is very unlikely they would observe a significant difference from control cells. Indeed, P-

ULK (758; Western blot) and P-ATG13 (S259; Mass spectrometry) stoichiometry was only 

very modestly raised in mitotic cells compared to interphase cells, and mTOR inhibition was 

required to observe the switch in regulation. Furthermore, Li and colleagues still observed 

phosphorylation, albeit drastically reduced, of ULK1 and ATG13 by CDK1 in cells and in 

vitro, even after mutating all of their proposed sites. Thus, our data is entirely compatible 

and complements with the findings of Li and colleagues with regard to ATG13 and ULK1 

phosphorylation during mitosis.  

A critical difference between ours and Li’s study is the proposed effect these 

phosphorylation events have on autophagy. Li, in line with their group’s previous study, 

suggests that these phosphorylation events stimulate, not repress, autophagy. To assess 

this, they performed a mitotic shake-off of nocodazole treated cells expressing either the 

WT or mutant protein (in an ATG13 KO, ULK1 KO background) and then treated these with 

chloroquine and assessed LC3 lipidation. The arguments against this approach have been 

addressed several times within this text but briefly they should not be utilised due to the 

difficulties associated with LC3B interpretation during mitosis and the use of chloroquine 

promoting non-canonical autophagy. Thus, this experiment would require repeating utilising 

an omegasome marker such as WIPI2. Overall, our findings, including a failure to induce 
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P-ATG14 (S29) upon AZD8055 treatment during mitosis, directly challenge the hypothesis 

that ULK1 and ATG13 hyperphosphorylation stimulates autophagy.   

5.3.5 Further validation experiments 

Whilst potential future directions are developed in the thesis discussion section, 

directly linked experiments are outlined here. It would greatly support the hypothesis that 

CCNB1-CDK1 directly phosphorylates these autophagy regulators if they could be co-

immunoprecipitated. Whilst this was attempted with overexpressed GFP-CDK1 and some 

encouraging data acquired, the degree of co-immunoprecipitation with endogenous 

autophagy regulators was only moderately enriched compared to controls and, due to 

potential ambiguity, the data was not shown here. It is worth stressing that kinase-substrate 

interactions are notoriously transient and co-immunoprecipitation is not always deemed 

viable. Li and colleagues did show co-immunoprecipitation of CDK1 and overexpressed 

ULK1 in both asynchronous and mitotically enriched lysates (Z. Li et al., 2019). It is difficult 

to reconcile why there would be an interaction between these two proteins during 

interphase, suggesting this maybe an artefact of overexpression. Regardless, this is 

supportive of our hypothesis that CDK1 directly phosphorylates the ULK1 complex. Other 

potential methodologies which could be considered to validate an interaction between these 

proteins is GST-tagged protein pulldowns (either of the kinase or the substrate) or BIOID 

(Roux et al., 2012). 

We observed that whilst mTORC1 failed to recruit to lysosomes during mitosis, 

TFEB was still recruited to lysosomes in response to AZD8055 treatment. This further 

supports the hypothesis that alterations in mTORC1 localisation during mitosis are not a 

result of changes in Rag GTPase activity. To further validate this, the active Rag 

heteroduplex could be transfected into HeLa TFEB-GFP cells, since this appears to be 

sufficient to stimulate a prominent lysosomal localisation without the presence of mTOR 

inhibitors (Martina and Puertollano, 2013).  

Whilst we have demonstrated that TFE3 also undergoes mTORC1-independent 

phosphorylation during mitosis, we have not established if TFE3 can be phosphorylated by 

CDK1 in vitro. This is highly probable, and likely at the same site as TFEB S142 (TFE3 

S246). Therefore, since MITF S73 is highly conserved, it seems likely this is also a CDK1 

site. Importantly, MITF-M, the isoform present in melanocytes, lacks the N-terminal region 

required for lysosomal localisation and thus is constitutively nuclear and not phosphorylated 

by mTORC1 (Roczniak-Ferguson et al., 2012). Therefore, observing whether MITF-M is 

phosphorylated during mitosis would further support the hypothesis that phosphorylation of 

the potential CDK1-site (S73) site is independent of mTORC1. 
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Genetic ablation of a kinase of interest followed by re-expression of either a wild-

type, constitutively active or kinase-dead/ dominant-negative is a standard approach to 

validating kinase-substrate interactions in cells. This is currently not feasible in studies of 

CDK1 and is not currently employed. There are several reasons for this. CDK1 is an 

essential gene and its ablation in mouse embryos results in failure to progress beyond the 

first few cell divisions, whilst conditional knockout of CDK1 in MEFs drives the cells into 

senescence (Diril et al., 2012). Likewise, expression of a dominant-negative CDK1 causes 

a G2 arrest and prevents entry into mitosis (van den Heuvel and Harlow, 1993). Due to the 

failure of cells lacking CDK1 to make it through mitosis, any permanent genetic ablation 

such as CRISPR or shRNA are guaranteed to be unsuccessful. Whilst it has been 

suggested that Auxin-inducible degrons (AID) may circumnavigate this problem, there are 

several disadvantages when compared to inhibitors. Inhibitors will provide a rapid and 

consistent inhibition of CDK1 across all cells. By comparison, AID will likely lead to a more 

variable inhibition of CDK1. AID requires the disruption of the gene locus and, in yeast, the 

degron tag of cdc28 (yeast homolog of CDK1) impaired its interactions with its Cks1 

regulatory domain (Papagiannakis et al., 2017), thus demonstrating that this process can 

have unintended consequences on cell biology. Overall, even if it was feasible, CDK1 

depletion would result in mitotic exit, providing no further clarity than a panel of three CDK1 

inhibitors.  

PP2A- (Wong et al., 2015). 

PP2A-B55 is also an important family of phosphatases which oppose CDK1 activity, and 

thus help regulate the mitotic phosphoproteome, as well as timing of mitotic events 

(explained in detail within thesis introduction). Given this shared phosphatase, identifying 

mitotic phosphatases for ARs would be an intriguing line of further experimentation. 

ULK1 protein levels were consistently found to be reduced upon prolonged mitotic 

arrest. This could represent ULK1 being targeted for degradation during mitosis or could 

simply reflect turnover of the protein in a background of lower global translation during 

mitotic arrest.  Distinguishing between these possibilities would mean assessing properties 

of ULK1 in HCT116 cells during both interphase and mitosis, such as its half-life (assessed 

by use of emetine to inhibit translation) and whether paclitaxel-induced reductions in ULK1 

can be reversed by MG132 (proteasome inhibitor). Should ULK1 be degraded during 

mitosis, this may be a result of ULK1 hyperphosphorylation at other sites by CDK1 (Z. Li et 

al., 2019).  

Finally, it is clear from both our work, and an examination of the literature that no 

system of genetic mTORC1 inactivation exists where cell proliferation is unaffected. Whilst 
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this is unsurprising given mTORC1’s role as an essential gene, the fact that SW620:8055R 

cells proliferate in the presence of AZD8055 without mTORC1 signalling, challenges the 

notion that a chronic model of mTORC1 inactivation is not possible. Potential 

methodologies to circumnavigate cell cycle arrest whilst obtaining stable mTORC1 

inhibition are discussed in the main thesis discussion. It is worth noting here that even if it 

were possible to establish mTORC1 knockout cell lines, this would not prevent the 

development of compensatory mechanisms. Indeed, we observed that SW620:8055R cells 

exhibited reduced TFEB and ULK1 protein levels. The mechanism causing this reduction 

in protein requires further investigation. Regardless, the establishment of such a model 

would aid investigation of both mTORC1 signalling and autophagy research.    
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6 Discussion 
6.1 Is mTORC1 always the master regulator of autophagy? 

Autophagy is well described as a nutrient-sensitive catabolic pathway which is 

primarily regulated by mTOR. Initial studies, prompted by the idea that autophagy regulation 

was sensitive to both amino acids and insulin, identified that both S6 phosphorylation and 

autophagy were regulated by the same signalling pathway in rat hepatocytes (Blommaart 

et al., 1995). Both S6 dephosphorylation and proteolysis, which could be inhibited by 3-

methyladenine (an established inhibitor of autophagy), was stimulated by rapamycin 

(Blommaart et al., 1995). Since then, mTORC1 has been established as directly repressing 

autophagy via its phosphorylation of ATG13, ULK1, ATG14 and TFEB. In addition, mTOR 

is frequently described as a master regulator of cellular metabolism, stimulating anabolic 

processes whilst repressing catabolic ones. David Sabatini recently described how it has 

sometimes been ridiculed as a kinase capable of “doing everything” (Sabatini, 2017). It is 

this plethora of functional outputs that has stimulated the search for mTORC1-independent 

regulation of macroautophagy, with the aim of designing therapeutics with more selective 

targeting of autophagy. Our lab has extensive experience in studying CMGC kinases, which 

led us to investigating the potential role of ERK1/2 and CCNB1-CDK1 in the regulation of 

autophagy. This was prompted by previous studies which had implicated ERK1/2 in the 

regulation of TFEB and CCNB1-CDK1 in the regulation of VPS34. The results have been 

discussed in detail within the respective chapters. Briefly, we found little evidence to 

suggest that ERK1/2 was a key regulatory kinase of TFEB, and mTORC1 appeared to be 

dominant in this regard. However, mTORC1 was not the dominant regulatory kinase of 

autophagy during mitosis. Indeed, mTORC1 is inactive during mitosis, likely as a result of 

CDK1-dependent phosphorylation of RAPTOR. Yet paradoxically macroautophagy is 

suppressed during mitosis and this occurs even in the presence of mTOR inhibitors or 

starvation conditions. Instead, we find that CDK1 appears to take over the direct 

phosphorylation and regulation of ARs, thereby sustaining autophagy repression even in 

the absence of mTORC1 activity.  

Many questions arise from these findings, most of which can be addressed by 

further experimental work. Others will prove very challenging. It has long been hypothesised 

that autophagy may be repressed during nuclear envelope breakdown to ensure protection 

of the genome whilst condensed chromatin is contiguous with the cytosol. Supporting this 

hypothesis, autophagy repression appears to temporally correlate with nuclear envelope 

breakdown and CDK1 would appear to be the master regulator of both nuclear envelope 

breakdown and autophagy in mitosis. The true test of the physiological reasons for 
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Figure 6.1: Graphical summary of key findings.
During interphase, mTORC1 is localised to the lysosome in a nutrient-dependent
manner. This enables its activation, and subsequent phosphorylation of key
autophagy regulators ATG13, ULK1, ATG14 and TFEB. However, during mitosis,
CDK1-dependent phosphorylation of RAPTOR prevents mTORC1 localisation to the
lysosome, thereby preventing its activation. Instead, the repressive phosphorylation of
ARs is most likely catalysed by CCNB1-CDK1.
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autophagy repression during mitosis will require its reactivation. This is challenging given 

the numerous points that autophagy is repressed at. The only evidence which suggests that 

autophagy can be initiated during mitosis, is from electron microscopy evidence of 

autophagosomal engulfment of mitotic chromosomes (Sit et al., 1996). Whilst the conditions 

used to induce this were far from physiological, it does suggest it is feasible to initiate 

autophagy during mitosis. It could be hypothesised that whilst cells may have reserve 

capacity to sustain themselves through nutrient starvation for the short period of mitosis, 

how it would adapt to large-scale damage of organelles such as mitochondria or lysosomes 

is less clear. Likewise, Salmonella enterica, a well-established target of selective-

autophagy, has been suggested to have a preference for the invasion of mitotic cells 

(Santos et al., 2013). Thus, the investigation of selective autophagy inducers during mitosis 

would be an interesting field of study and could potentially open new therapeutic avenues 

if phenotypic differences are found with interphase cells.   

 During revisions of the submitted publication associated with the mitosis work, a 

reviewer suggested exploring cancer lines with mutations in the nutrient sensing pathways 

such that mTORC1 is constitutively active. As an example, cell lines with mutations in 

components of GATOR1 have constitutively active mTORC1 and recruitment to lysosomes 

(Bar-Peled et al., 2013). Thus, it would be useful to explore mTORC1 localisation within 

HCC1500, SW780, Li7, MRKNU1 or HA7-RCC cell lines during mitosis which would form 

further genetic validation that alterations to RAPTOR are responsible for mTORC1 

localisation during mitosis.  

There are also broad concepts which we have not explored which may have a role 

in our results. Whilst mTORC1 localisation to the lysosome is widely accepted as a critical 

activation mechanism, less is known about how it is activated by Rheb which has been 

observed predominantly at the Golgi (see Introduction). It is important to consider that the 

Golgi undergoes significant alterations during mitosis (reviewed: Colanzi and Sütterlin, 

2013). Rather than possessing the interphase morphology of interconnected pericentriolar 

ribbons, during mitosis the Golgi undergoes fragmentation and forms tubular and vesicular 

structures (Misteli and Warren, 1995). Likewise, known Golgi functions, such as protein 

transport, are halted during mitosis (reviewed: Yeong, 2013). Therefore, given that recent 

evidence suggests that Rheb activation of mTORC1 is dependent upon intricate 

connections between the lysosome and Golgi (Hao et al., 2017), it is likely that this also 

plays a role in mTORC1 inactivation. Furthermore, the PI3K/AKT/TSC signalling axis is not 

even active during mitosis (Ramírez-Valle et al., 2010), suggesting Rheb would be inactive 

during mitosis. Like the Golgi, the endoplasmic reticulum undergoes morphological 

changes during mitosis, such that it appears as extended cisternae, with little tubular 
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morphology (Lu, Ladinsky and Kirchhausen, 2009). Since autophagosomes form around 

pre-existing VMP1 (Koyama-Honda et al., 2013) and VPS34 (Axe et al., 2008) puncta, 

imaging of these proteins will provide further information on whether appropriate 

autophagosome initiation sites exist during mitosis.  

There are also a few conceptual points it is worth stressing when considering our 

findings. We have placed a strong emphasis on studying mTORC1-regulated autophagy 

during a normal mitosis. We have not looked at periods of mitotic arrest beyond 16 hours 

when considering the phosphorylation of autophagy regulators and have attempted to 

validate all our results with experiments not utilising microtubule inhibitors. We can 

therefore not exclude the possibility of either autophagy reactivation or AR 

hypophosphorylation during prolonged mitotic-arrest. Furthermore, we cannot rule out 

selective autophagy occurring during a normal mitosis. Such mechanisms may involve the 

direct sequestration of cargo and the ULK1 complex by selective receptors. Indeed, we 

have observed endogenous p62 puncta in mitotic cells (data not shown; Emma Duncan, 

personal communications). Clearly given the findings of selective autophagy of Cyclin A 

during prometaphase, this warrants further investigation (Loukil et al., 2014). Furthermore, 

whilst we postulate that starvation-induced bulk autophagy is repressed to protect exposed 

nuclear contents, specifically the genome, this need not conflict with previous data which 

shows selective autophagy of Lamin (Dou et al., 2015) or micronuclei (Rello-Varona et al., 

2012).    

6.1.1 Future direction: validating autophagy repression during mitosis in vivo 

In this study of autophagy during mitosis, we have only validated our findings in cell 

culture. If validation of our findings in vivo could be achieved and repression of autophagy 

during mitosis reversed, it would enable the observation of phenotypic effects including 

potential disease/ therapeutic implications. It may be possible to observe in vivo mitotic 

repression of autophagy via a number of potential methodologies. Transgenic mice 

expressing GFP-LC3 can enable cryosections to be obtained and observed by fluorescence 

microscopy (Mizushima et al., 2004). Whilst this study focused on terminally differentiated 

tissues, such as skeletal muscle and the glomerulus, focusing on areas of tissue which are 

usually well stained for proliferative markers (i.e. KI67) such as intestinal crypts may enable 

observation of mitosis. Since mouse studies typically employ starvation periods of 24 to 48 

hours, it may be that similar complications as in tissue culture arise, such as cell cycle 

arrest. The most rapid way to induce autophagy in vivo appears to be artery ligation (with 

the exception of exercise which affects terminally differentiated structures like the heart and 

skeletal muscle) (Moulis and Vindis, 2017). Therefore, ligation of the superior mesenteric 
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artery (SMA) supplying the small intestine may enable rapid ischaemia of tissues such that 

cells may still be in mitosis at the time of fixation. These proposals are laden with caveats, 

not least because SMA occlusion leads to inconsistent ischaemic injuries (Gonzalez, 

Moeser and Blikslager, 2015). Therefore, these studies offer minimal advantages over 

tissue culture, with a high number of complications.  

An alternative strategy may be the use of Caenorhabditis elegans. Like other 

metazoans, C.elegans undergoes an open mitosis; however, there are a number of key 

differences in both mitosis and autophagy between C. elegans and mammals which would 

affect interpretation of such studies. Mammalian nuclear envelope breakdown occurs in 

prophase and continues till late anaphase/telophase. By contrast, C. elegans nuclear 

envelope breakdown only occurs during midlate anaphase and reforms during telophase 

(reviewed Tzur and Gruenbaum, 2013). However, much of the regulatory system of the cell 

cycle is conserved between C. elegans and mammalian cells (Boxem, 2006). 

The significant advantage of C. elegans over murine models is the ability to perform 

live-cell imaging. Several publications have successfully monitored autophagy in living C. 

elegans by imaging GFP:LGG-1, the C. elegans ortholog of LC3B (reviewed: Palmisano 

and Meléndez, 2016). This model is likely to suffer from the same complications we 

originally attributed to interpreting LC3 in mammalian culture. Whilst an EGP-1-GFP 

(ATG13 ortholog) C. elegans model does exist, whether it forms puncta in response to 

starvation was not tested  (Tian et al., 2009).   

6.1.2 Future direction: Assessing autophagy-independent functions of the ULK1 

complex. 

During the course of Li’s pre-print study of CDK1 hyperphosphorylation of the ULK1 

complex, they proposed that it may be responsible for autophagy-independent functions (Z. 

Li et al., 2019). They observed that mutations at CDK1 sites on ATG13 and ULK1 

attenuated chemosensitivity to taxol, whilst knockout of ATG13 and ULK1 reduced the 

mitotic index of nocodazole-treated cells (Z. Li et al., 2019).  Recent published evidence 

suggests that the ULK1 complex phosphorylates MAD1L1 at S546 to mediate MAD1L1 

recruitment to the kinetochore, facilitating an appropriate spindle assembly checkpoint, and 

that knockout of ULK1 mediates aneuploidy (Yuan et al., 2019). Curiously, Yuan identified 

that this was independent of autophagy as they observed similar results in ATG3/7 

knockout lines. Clearly further work is required to validate these findings; however, an 

interesting hypothesis arising from these two pieces of work is that CDK1 phosphorylates 

ULK1 at sites other than those that mediate autophagy repression, to direct the timing of 
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mitotic exit via the SAC. Whilst we observed decreased phosphorylation of ATG14 at S29 

during mitosis, this does not exclude the possibility that ULK1 is active against other 

components. 

6.1.3 Future direction: status of selective-autophagy and non-canonical 

autophagy during mitosis 

Our study focuses on macroautophagy and the known mTORC1 repressive sites of 

autophagy regulation. There are numerous types of selective autophagy which have been 

suggested to utilise the same initiating complexes such as ULK1 yet appear to have active 

global mTORC1 signalling. It is not yet understood how this occurs and various models 

have been proposed such as localised mTORC1 inactivation, increases in phosphatase 

activity or ULK1 complex trans-autophosphorylation. Therefore, it would be interesting to 

see whether selective autophagy can be maintained during mitosis. Indeed, of the 

publications that suggest autophagy is active during mitosis, two of these refer to a high 

proportion of autophagosomes containing mitochondria (Liu et al., 2009; Doménech et al., 

2015). The cargo receptor optineurin is phosphorylated by PLK1 at S177, disrupting its 

interaction with Rab8 and regulating PLK1 temporal and spatial dynamics (Kachaner et al., 

2012); however, selective autophagy of Salmonella enterica, a known function of optineurin 

which involves S177 phosphorylation by TBK1 (Wild et al., 2011), was not assessed. 

Therefore, there is preliminary evidence that suggests selective autophagy could be 

maintained in mitosis and future experiments could involve the induction of mitophagy in 

HEK293 cells, or other Parkin-expressing cell lines, by utilising mitochondrial uncouplers 

such as oligomycin and antimycin A. 

One of the main points for our argument against the continued use of LC3 as a 

readout of autophagy during mitosis was its ability to be lipidated in response to a range of 

stimuli that elicit non-canonical autophagy. Whilst entosis (cell-in-cell engulfment) has been 

shown to be driven by mitosis, this is a complex setting to conclude as to whether non-

canonical autophagy can persist during mitosis since the interphase cell is the “host” cell 

and therefore will not be under an autophagy repression. Since the ULK1 complex (Florey 

et al., 2011) and ATG14-associated VPS34 complex (Martinez et al., 2015) are not required 

for non-canonical autophagy, none of the phosphorylation events described in this thesis 

would act to repress this process. Since the UVRAG-VPS34 complex has been implicated 

in non-canonical autophagy (Martinez et al., 2015), and VPS34 phosphorylation by CDK1 

has been shown to cause its dissociation with Beclin-1 (Furuya et al., 2010) this could impair 

non-canonical autophagy during mitosis. Clearly more work will be required to clarify this. 

A number of model systems have been generated which would enable its study, such as 
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HCT116 cells expressing either an ATG16 mutant deficient in canonical (FIP200-binding 

domain deletion mutant) or non-canonical autophagy (WD40 domain deletion mutant) 

(Fletcher et al., 2018). This would enable verification that any changes in LC3 during mitosis 

as a result of a treatment such as monensin, which induces both pathways, could be 

attributed to only one pathway within the same system.     

6.1.4 Future direction: CDK5 and autophagy 

In this thesis, we have described how a switch to CDK1-dependent regulation of key 

autophagy regulators occurs during mitosis. Given that these phosphorylation events all 

occur at proline-directed serine sites and that CCNB1-CDK1 can phosphorylate all of these 

substrates in vitro, it is most likely that this is a result of direct phosphorylation. CDK5 

exhibits a high homology (61%) with CDK1, and was originally named neuronal Cdc2-like 

kinase (Hellmich et al., 1992). Like CDK1, CDK5 has already been demonstrated to 

phosphorylate a number of shared substrates, including S6K at S411 (Lai et al., 2015). 

CDK5 has been implicated in a number of neurodegenerative pathologies, not least 

because of its pathological activity when interacting with p25, such as phosphorylation of 

Tau (Tsai et al., 1999).  Given that repression of autophagy has been implicated in a number 

of neurodegenerative diseases (Menzies et al., 2017), it would be prudent to investigate the 

potential links between CDK5 and autophagy more thoroughly. Furthermore, given CDK5 

is active during interphase, this would be a far more sensible background in which to study 

the effects of site-directed mutants if it was deemed CDK5 did phosphorylate ARs. Such an 

approach was taken with CDK-mediated phosphorylation of VPS34 (Furuya et al., 2010). 

6.1.5 Future direction: Developing a stable model of mTORC1 inactivation 

A weakness of our study into the status of autophagy during mitosis is a lack of 

genetic inactivation of mTORC1 to further validate that mTORC1 is not the main regulatory 

kinase of the mitotic phosphorylation events. This is because inhibition of mTORC1 leads 

to a pronounced G1 cell cycle arrest, most likely as a result of inhibited cap-dependent 

translation of cyclin D proteins (Cope et al., 2014). Several groups have attempted CRISPR-

Cas9 of mTORC1 components, only for it to have failed to produce any clones. Whilst we 

investigated the use of inducible Raptor knockout MEFs (Cybulski, Zinzalla and Hall, 2012), 

unsurprisingly these also lead to a pronounced cell cycle arrest (data not shown). Without 

any RAPTOR antibodies available for immunofluorescence, we cannot confidently be sure 

whether those few cells that continued to progress into mitosis are knockout or wild-type. 

The successful development of SW620 clones resistant to AZD8055 suggests that it is 

feasible for cells to acquire adaptive mechanisms enabling continued proliferation whilst 

possessing no active mTORC1 signalling. Thus, developing clones with CRISPR to 
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RAPTOR should be useful and would provide a useful genetic tool to studying mTORC1-

independent regulation of autophagy. The difficulty with such a strategy is that the selection 

pressure against knockout clones will be large, such that a very large number of clones 

would have to be screened to successfully grow out a resistant population. There are two 

potential strategies which would be currently feasible to attempt doing. The first is to perform 

RAPTOR CRISPR in CO115 cells, as these cells have an intrinsic resistance to mTOR 

inhibition, despite possessing active mTORC1 signalling which is inhibited by AZD8055 

(Cope et al., 2014). The second is to perform the CRISPR on HAP1 RAPTOR-GFP cells, 

since you could culture the cells as a bulk population for a set amount of time post-

transfection and then gate for cells no longer expressing GFP. Of these two proposals, we 

favour CRISPR in CO115 cells, since HAP1 RAPTOR-GFP cells have been previously 

shown to have altered, albeit active, mTORC1 signalling dynamics in response to amino 

acid stimulus (Manifava et al., 2016). The development of RAPTOR-null cell lines would 

likely enable a more suitable background to test different RAPTOR mutants, with the 

eventual aim of re-establishing mTORC1 signalling during mitosis, to observe phenotypic 

effects. 

It has previously been established that acquired resistance to mTOR/PI3K inhibitors 

can be established via upregulation of eIF4E (Ilic et al., 2011; Cope et al., 2014). It could 

therefore be anticipated that a way to avoid cell cycle arrest upon mTOR inhibition is to first 

exogenously express eIF4E, and then perform CRISPR of RAPTOR. It was found that 

ectopic expression of eIF4E only resulted in an approximately two-fold increase in total 

eIF4E protein levels (Ilic et al., 2011) and our research group has similarly struggled to 

generate cells stably expressing significant amounts of eIF4E (Rebecca Gilley, Personal 

communication). Overexpression of MYC in immortalized human mammary epithelial cells 

was found to confer resistance to the dual PI3K-mTOR inhibitor BEZ235 (Ilic et al., 2011). 

Therefore, overexpression of MYC or identifying high-expressing MYC lines may enable 

increased efficiency at deriving RAPTOR knockout clones.   

6.1.6 Future direction: Links between mitosis and nutrient deprivation 

During this work we have provided strong evidence that CCNB1-CDK1 operates to 

isolate autophagy regulation during acute nutrient deprivation (2 hours). It has been 

previously shown that the number of cells in mitosis dramatically reduces after 5 hours of 

leucine deprivation post-release from double-thymidine block (Smith and Proud, 2008). 

Complementing this, phosphorylation of eEF2K at S359, a CDK1 target site, was reduced 

during nutrient starvation.  Therefore, this suggests that there is a mechanism by which 

nutrient deprivation promotes a G2/M arrest. Such a mechanism may be beneficial given 
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that mitosis would theoretically require enough energy to complete. Furthermore, prolonged 

autophagy during G2 may drastically impair a cell’s ability to appropriately divide organelles 

between two daughter cells.  

6.1.7 Future direction: Identifying CCNB1-CDK1 interaction with ARs 

It has recently been demonstrated in fission yeast that mitotic cyclin, in complex with 

Cdk1, interacts with substrates which possess an LXF motif which acts as a docking domain 

(Örd et al., 2019). Such a docking mechanism has not yet been identified in mammalian 

substrates of CCNB1-CDK1 (Örd et al., 2019). Identifying how CCNB1-CDK1 interacts with 

ARs could present experimental opportunities, such as the ability to mutate the site with 

potential autophagy reactivation in mitotic cells whilst not impairing interphase mTORC1-

regulated autophagy regulation. 

6.1.8 Future direction: Why is S6 phosphorylation during mitosis rapamycin 

sensitive? 

It is important to note that whilst the conclusions by several independent groups on 

both autophagy and mTORC1 status are opposing one another, a majority do not identify 

differences in experimental output as a reason. Our findings here are generally compatible 

with the findings of the Schneider group, who concluded that mTORC1 is still active during 

mitosis (Ramírez-Valle et al., 2010). Curiously, they found that S6K and 4E-BP1 mitotic 

phosphorylation was not responsive to rapamycin, despite the interphase phosphorylation 

of both substrates being responsive, which would support that CDK1 directly 

phosphorylates these substrates. However, they did observe that phospho-S6 T240/T244, 

which was highly elevated in mitosis, was responsive to rapamycin and PP242 treatment 

(Ramírez-Valle et al., 2010). Likewise, it has been shown that mitotic cells released from 

RO-3306 mediated G2/M arrest, have elevated p-S6 S240/S244 that is rapamycin 

responsive (Z. Li et al., 2018). Conversely, the same study found that mitotic 

phosphorylation of p-S6 was not reversed by starvation, or elevated by insulin (Z. Li et al., 

2018). Overall, it is hard to reconcile how S6 is still rapamycin and PP242 responsive since 

S6K phosphorylation is no longer responsive to rapamycin in both these studies. Curiously, 

Li and colleagues found that mitotic p-S6 was blocked by the “p70S6K inhibitor” BI-D1870; 

however, BI-D1870 shows a strong selectivity for RSK over S6K with IC50s of 10-30nM 

(Sapkota et al., 2007). Therefore, further investigation into RSK 

activity during mitosis may enable resolution of these confounding findings. Furthermore, 

the experiment should be repeated comparing both RSK-selective inhibitors such as BI-

D1870 with S6K-selective inhibitors such as LY2584702. It is also worth noting that not all 
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studies agree that phospho-S6 remains under the control of mTOR during mitosis. The dual 

PI3K-mTOR inhibitor BEZ235 appeared to have no effect on phospho-S6 in mitotic cells, 

despite significant reductions in phopho-H3 (S10) negative cells (Ryan et al., 2019). 

6.1.9 Future directions: A global mTORC1-to-CDK1 switch during mitosis? 

Thus far every proline-directed site investigated that mTORC1 usually 

phosphorylates, undergoes a switch to CDK1 regulation during mitosis. This includes sites 

on S6K (Shah, Ghosh and Hunter, 2003), 4E-BP1 (Shuda et al., 2015), ATG13, ULK1, 

ATG14 and TFEB. Proline directed sites on many other proteins, such as LARP1 (S774) 

and Grb10 (T155 and S476) are also known to be direct substrates of mTORC1 (Hsu et al., 

2011). Therefore, it will be important to evaluate the phosphorylation of these other proteins 

during mitosis and whether they are also insensitive of mTOR inhibition. Likewise, it would 

be useful to assess phosphorylation of substrates which are not proline-directed, to see 

whether they follow the trend of P-S6K (T389) of being decreased during mitosis. Examples 

could include TFEB S211 (Martina et al., 2012; Roczniak-Ferguson et al., 2012) and 

UVRAG (S550 and S571) (Munson et al., 2015).  

6.1.10 Clinical implications of an mTORC1-to-CDK1 switch during mitosis 

There is ongoing debate as to the extent cancers are sensitive to autophagy 

inhibition. Theories regarding autophagy dependence in cancer tend to be based on the 

idea that rapid cell division will be accompanied by high levels of protein synthesis, therefore 

requiring autophagy to maintain nutrient demand. Microtubule inhibitors have been a 

mainstay of chemotherapy in the clinic, and it is a widely held view that the main therapeutic 

mechanism of action is through the ability to cause mitotic arrest. One curious possibility is 

whether the variable effectiveness of microtubule inhibitors is at least partially linked to a 

cancer cell lines dependence on autophagy? Furthermore, it has been suggested that 

resistance to microtubule therapies is established from cells undergoing eventual mitotic 

progression. Therefore, there is merit in improving the effectiveness of microtubule 

therapies in killing cells whilst they are arrested in mitosis. Cancer cells are generally 

considered to be more sensitive to microtubule inhibition and are more likely to arrest in 

mitosis compared to untransformed cells, and this is likely to be at least partially responsible 

for their relative therapeutic window. We postulate that mitotic autophagy is likely to be 

catastrophic for the cell, thus there may be therapeutic potential if autophagy can be 

stimulated during mitotic arrest. Since ATG13 puncta and P-H3 (S10) can both be 

visualised through immunofluorescence, it should be possible to perform high-content 

microscopy screens using small molecule inhibitors to determine whether additional factors 

are required for mitotic repression of autophagy other than CCNB1-CDK1. 
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6.2 Concluding statement 

We set out to investigate, via a hypothesis-driven approach, mTORC1-independent 

regulation of autophagy. Initially, this focused on the proposed ERK2 phosphorylation of 

S142, and the functional role that ERK2 played in TFEB regulation. Whilst multiple groups 

have been able to demonstrate that ERK2 can phosphorylate TFEB at S142 in vitro and 

that phosphorylation at this site leads to cytoplasmic retention/ nuclear export of TFEB, we 

find little evidence to support this in cells. Further experiments using EGF stimulation should 

be performed to assess what little role ERK1/2 may have in TFEB regulation. Clearly further 

work clarifying the nuclear export mechanisms of TFEB are also required.  

Presented within this thesis are numerous datasets that support the hypothesis that 

during mitosis, an mTORC1 to CCNB1-CDK1 switch occurs that maintains repression of 

autophagy. Such a hypothesis is understandably controversial given mTORC1’s 

longstanding status as an absolute master regulator of cellular metabolism. By using 

markers of the omegasome, we provide strong evidence that starvation-induced autophagy 

is repressed within mitotic cells and that there is a switch away from mTORC1-mediated 

regulation. Our preliminary data suggests that RAPTOR phosphorylation, mediated by 

CCNB1-CDK1, inhibits mTORC1 localisation to lysosomes. This inhibits mTORC1, as 

evidenced by decreased P-S6K (T389) in paclitaxel-treated lysates. Therefore, it is likely 

that another proline-directed serine/threonine kinase is responsible for the phosphorylation 

and repression of ATG13, ULK1, ATG14 and TFEB during mitosis. CCNB1-CDK1 

represents the most likely candidate kinase and is capable of phosphorylating fragments of 

these autophagy regulators at sites known to be targeted by mTORC1. Thus, we present 

data which suggests a global mTORC1-to-CDK1 switch during mitosis. Further experiments 

will be required to further investigate the details and potential nuances of this proposed 

switch in regulation, and some examples of possible experiments is provided in the 

conclusion.    
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7.1 Links to databases  

Consurf:  

Used for analysis of gene conservation through evolution 

Link: http://consurf.tau.ac.il/credits.php 

Reference: Ashkenazy H. et al. (2016) ConSurf 2016: an improved methodology to estimate 
and visualize evolutionary conservation in macromolecules, Nucl. Acids Res., doi: 
10.1093/nar/gkw408 

Cancer Cell Line Encyclopaedia (CCLE) 

Used to acquire TFEB mRNA values for gastrointestinal cell lines 

Link: https://portals.broadinstitute.org/ccle 

Reference: Barretina J. et al. (2012) The Cancer Cell Line Encyclopedia enables predictive 
modeling of anticancer drug sensitivity, Nature, doi: 10.1038/nature11003 

Cansar 4.0 

Used to acquire copy number variation data for TFEB  

Link: 
https://cansar.icr.ac.uk/cansar/#main_tab_holder:tab_search_main_protein:tab_search_1 

Reference: Halling-Brown M. et al. (2011) canSAR: an integrated cancer public translational 
research and drug discovery resource, Nucl. Acids Res., doi: 10.1093/nar/gkr881 
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