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Abstract

Background: A comprehensive understanding of the pre-existing genetic variation in genes associated with
antibiotic resistance in the Mycobacterium tuberculosis complex (MTBC) is needed to accurately interpret whole-
genome sequencing data for genotypic drug susceptibility testing (DST).

Methods: We investigated mutations in 92 genes implicated in resistance to 21 anti-tuberculosis drugs using the
genomes of 405 phylogenetically diverse MTBC strains. The role of phylogenetically informative mutations was
assessed by routine phenotypic DST data for the first-line drugs isoniazid, rifampicin, ethambutol, and pyrazinamide
from a separate collection of over 7000 clinical strains. Selected mutations/strains were further investigated by
minimum inhibitory concentration (MIC) testing.

Results: Out of 547 phylogenetically informative mutations identified, 138 were classified as not correlating with
resistance to first-line drugs. MIC testing did not reveal a discernible impact of a Rv1979c deletion shared by M.
africanum lineage 5 strains on resistance to clofazimine. Finally, we found molecular evidence that some MTBC
subgroups may be hyper-susceptible to bedaquiline and clofazimine by different loss-of-function mutations
affecting a drug efflux pump subunit (MmpL5).

Conclusions: Our findings underline that the genetic diversity in MTBC has to be studied more systematically to
inform the design of clinical trials and to define sound epidemiologic cut-off values (ECOFFs) for new and
repurposed anti-tuberculosis drugs. In that regard, our comprehensive variant catalogue provides a solid basis for
the interpretation of mutations in genotypic as well as in phenotypic DST assays.
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Background
Drug-resistant Mycobacterium tuberculosis complex
(MTBC) strains are estimated to account for one third
of all deaths due to antimicrobial resistance globally [1].
Owing to the inherently slow growth rate of MTBC, the
only realistic way to diagnose the majority of drug-
resistant cases is to use rapid genotypic drug-susceptibility
testing (gDST), which ranges from targeted assays to
whole-genome sequencing (WGS) [2]. In fact, it is becom-
ing increasingly clear that gDST assays are better suited
than phenotypic DST (pDST) to rule-in resistance caused
by known mechanisms that only confer modest minimum
inhibitory concentration (MIC) increases, such as for eth-
ambutol (EMB) [3–5].
The accuracy of gDST depends on the ability to distin-

guish valid markers for resistance (i.e. mutations that directly
confer resistance or, alternatively, play a compensatory role
in resistance) from neutral mutations that do not alter the
susceptibility to an antibiotic [6, 7]. In this context, one of
the major confounders is the pre-existing variation in genes
associated with resistance, which comprises neutral muta-
tions and, more rarely, changes that confer intrinsic/natural
resistance (i.e. resistance that arose by chance/genetic drift
prior to the clinical use of a drug or a related agent with a
shared resistance mechanism) [8]. Because MTBC displays a
strictly clonal population structure without any lateral gene
transfer, these mutations are typically phylogenetically in-
formative and unique (i.e. they are markers for a particular
subgroup of the global MTBC diversity). Consequently, they
form a barcode that is exploited by some targeted gDST as-
says to provide an epidemiological typing result at no add-
itional cost, albeit at a limited resolution compared with
WGS [9–11]. By contrast, homoplastic mutations have
arisen multiple times independently in the MTBC phylogeny
and are, consequently, not markers for a single subgroup. If
this diversity is not considered at the design stage of a gDST
assay, they can result in systematic false-resistant results. In-
deed, the World Health Organization (WHO) has just re-
vised the reporting language for line probe assays to reflect
this possibility (e.g. gyrA A90G causes false-resistance re-
ports for fluoroquinolones with the Hain GenoType
MTBDRsl assay) [12, 13].
The purpose of this study was, therefore, to catalogue

phylogenetically informative mutations in 92 genes im-
plicated in the resistance to a total of 21 antibiotics and,
where possible, to identify neutral mutations amongst
these changes by taking evolutionary information and
pDST data into consideration. Moreover, we searched
for evidence of previously unknown intrinsic resistance.

Methods
Strain collection
We analysed 405 phylogenetically diverse MTBC ge-
nomes, of which 214 were drawn from Comas et al. who

studied the evolutionary history of MTBC using isolates
from 46 countries [14]. This collection was supple-
mented with mostly pan-susceptible strains from the Re-
search Center Borstel (n = 69) [10] and the Karolinska
University Hospital in Sweden (n = 122) [4].

WGS
WGS at the Research Center Borstel was performed with
Illumina Technology (MiSeq, NextSeq 500, HiSeq 2500)
using Nextera XT library preparation kits as instructed
by the manufacturer (Illumina, San Diego, CA, USA).
Fastq files (raw sequencing data) for all strains analysed
in this study are available from the European Nucleotide
Archive, and details can be found within Additional file 1:
Table S1. All genomes were analysed with the MTBseq
pipeline [15]. First, reads were mapped to the M. tuber-
culosis H37Rv genome (GenBank ID: NC_000962.3) with
BWA [16]. Alignments were then refined with the
GATK [17] and Samtools [18] toolkits for base quality
recalibration and alignment corrections for possible PCR
and InDel artefact. Variants (SNPs and InDels) were
called if the following criteria were met: a minimum
coverage of four reads in both forward and reverse
orientation, four reads calling the allele with at least a
phred score of 20, and an allele frequency of 75%. Dele-
tions in Rv1979c were identified manually as the above
algorithms are not optimised to call large InDels.

Phylogenetic analysis
Regions annotated as repetitive elements (e.g. PPE and
PE-PGRS gene families), InDels, multiple consecutive
SNPs in a 12-bp window (possible InDel artefacts or rare
recombination scars), and 92 genes implicated in anti-
biotic resistance (Additional file 2: Table S2) were ex-
cluded for the phylogenetic reconstruction. In the
combined analysis, we considered all genome positions
that fulfilled the aforementioned criteria for coverage
and variant frequency in 95% of all samples in the data-
sets as valid and used the concatenated sequence align-
ment to calculate a maximum likelihood tree with Fast
Tree [19], employing a GTR substitution model, 1000
resamples, and Gamma20 likelihood optimisation to ac-
count for rate heterogeneity amongst sites. The consen-
sus tree was rooted with the “midpoint root” option in
FigTree [20], and nodes were arranged in increasing
order. MTBC strains were stratified into lineages and
subgroups using the classification schemes by Coll et al.
and/or Merker et al. [9, 21].
In the ML tree, we identified internal nodes/branches

with very good statistical support (bootstrap values ≥
0.9). Strains derived from one shared internal branch
(i.e. most common recent ancestor) were assigned to
groups, and group-specific mutations were extracted
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considering sequences of 92 genes implicated in anti-
biotic resistance (Additional file 2: Table S2).
Phylogenetic (branch-specific) mutations were further

classified using pDST data (mainly MGIT 960) for the
first-line drugs rifampicin (RIF), isoniazid (INH), EMB,
and pyrazimanide (PZA) from the CRyPTIC consortium
[7]. A mutation was regarded as likely neutral if > 90% of
strains that did not harbour known resistance mutations
were phenotypically susceptible, provided that pDST re-
sults were available for at least 10 strains.

MIC measurements
MIC values for INH (Sigma-Aldrich, Germany), prothio-
namide (PTO; Riemser, Germany), bedaquiline (BDQ;
Janssen, USA), and clofazimine (CFZ; Sigma-Aldrich,
Germany) were determined in the BACTEC MGIT 960
system (Becton Dickinson) in conjunction with the Epi-
Center TBeXiST software. The following drug concen-
trations were tested: 0.0125, 0.025, 0.05, 0.1, and 0.4 μg/
ml for INH; 0.3125, 0.625, 1.25, 2.5, and 5 μg/ml for
PTO; and 0.0625, 0.125, 0.25, 0.5, 1, and 2 μg/ml for
BDQ and CFZ. A strain was interpreted as resistant to a
drug at a particular concentration if the drug-containing
tube reached ≥ 100 growth units before the drug-free
control tube with the 1:100 diluted suspension of the
strain reached 400 growth units.

Results
MTBC strain collection and phylogeny
Our collection (n = 405) featured 296 evolutionary “mod-
ern”, i.e. TbD1 region deleted [22], M. tuberculosis
strains (i.e. lineages 2–4), and 109 evolutionary “ances-
tral” (TbD1 region intact) MTBC lineages, ranging from
lineages 1 and 7 (M. tuberculosis, n = 60) and lineages 5
and 6 (M. africanum, n = 35) to 14 animal-adapted spe-
cies (i.e. M. pinnipedii, M. microti, M. orygis, M. caprae,
M. bovis, including one M. bovis BCG vaccine strain
(Additional file 1: Table S1). Of these isolates, only 40
(9.9%) had a mutation in the RIF resistance determining
mutation in rpoB and were, consequently, RIF resistant.
A maximum likelihood (ML) tree with a general time-

reversible (GTR) substitution model and 1000 resamples
was calculated based on 42,760 single nucleotide poly-
morphisms (SNPs), excluding mutations in repetitive re-
gions and 92 genes implicated in antibiotic resistance
(Additional file 2: Table S2). Next, we identified all in-
ternal nodes/branches with a bootstrap support of 0.9
and higher (n = 334). All isolates that shared a common
node/branch with sufficient bootstrap support were
grouped together, and group-specific changes, i.e. SNPs
and insertions and deletions (InDels), in the aforemen-
tioned 92 genes were identified (Fig. 1).

Phylogenetically informative and unique mutations: an
overview
We found a total of 557 group-specific mutations in the
92 genes that had either been implicated in antibiotic re-
sistance, are confirmed resistance mechanisms, or are in-
volved in compensating for the reduced fitness of
resistance mutations in other genes. Out of 557 muta-
tions, we excluded 26 mutations as they were found in
groups that only comprised strains with a pairwise dis-
tance of up to five SNPs, suggesting recent transmission.
However, three H37Rv-specific mutations (4.9 subgroup)
and the aforementioned gyrA A90G change (4.6.1.2
subgroup) were exempt from this rule given their phylo-
genetic importance [12]. This list of mutations was fur-
ther supplemented with three known phylogenetic
mutations (i.e. tlyA N236K in the 4.6.2 subgroup [23],
cycA G122S in BCG, and mmaA3 G98D in a subgroup
of BCG [8]) that confer intrinsic antibiotic resistance
(Additional file 3: Table S3). These three mutations were
not highlighted by our algorithm because they featured
only in single strains in our collection. Where possible,
we compared the resulting 539 mutations with the typ-
ing scheme by Coll et al., the most widely used method
to stratify WGS data for MTBC [9]. Of the 89 SNPs that
were in common, 82 results were in agreement. Subse-
quent personal communications with Francesc Coll re-
vealed that the seven discrepancies were due to errors in
his study and were eventually resolved (Additional file 3:
Table S3).

Phylogenetically informative and unique mutations:
impact on resistance
We then proceeded to identify mutations that were
likely neutral (i.e. do not correlate with resistance) using
previously published pDST data for RIF, INH, EMB, and
PZA for over 7000 isolates [7], yielding 138 neutral mu-
tations (Additional file 3: Table S3).
Notably, we identified five group-specific mutations

that had been linked with drug resistance in the litera-
ture. This included the ndh R268H mutation, which had
been proposed as an isoniazid resistance marker, and we
classified it as a marker for a subgroup of lineage 1.1.2
[24]. Yet, our analysis of routine pDST data and add-
itional MIC testing demonstrated that ndh R268H was
likely neutral (Additional file 4: Tables S4). Moreover,
we undertook MIC testing to investigate the roles of the
ethA M1R, S266R, and G413D mutations, which had
been previously associated with PTO and ethionamide
(ETO) resistance (Additional file 4: Table S4) [25–27].
Of these mutations, only isolates with the ethA M1R
mutation tested resistant to PTO, which was expected as
this mutation should abolish the start codon of ethA.
This particular mutation was shared by four isolates that
formed a subgroup within lineage 4.2.2 (TUR genotype)
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with a median pairwise genetic distance of 22 SNPs and
were at least resistant to INH. Consequently, it was un-
clear whether this mutation arose in response to the ex-
posure to PTO/ETO or whether this represented an
example of intrinsic resistance.
In addition, we measured the CFZ MICs for the

Rv1979c V52G mutation, which yielded MICs in the sus-
ceptible range (Additional file 4: Table S4). This result,
therefore, supported a recent study that found that this
alteration, which was shared by a group of two Beijing
isolates, probably does not confer CFZ resistance [28].
Our analysis supported the hypothesis that the entire

MTBC branch that comprises both M. africanum lineages

and the animal-adapted strains (M. africanum/animal
branch) likely has intrinsically elevated MICs to cycloser-
ine (DCS), owing to a 1-bp frameshift deletion in ald,
which encodes alanine dehydrogenase (Additional file 3:
Table S3) [5, 29]. In addition, we expect the DCS MIC to
be raised further in M. microti and M. pinnipedii given
that both species harbour a frameshift in cycA, which
should impede DCS uptake, as is the case in all BCG vari-
ants due to a G122S mutation in the same gene [5, 29,
30].
In contrast to these cases, this study also raised the pro-

spect that some subgroups may be more susceptible to par-
ticular antibiotics due to their specific genetic background.

Fig. 1 MTBC phylogeny. ML phylogeny based on 42,760 SNPs from 405 genomes using a general time-reversible substitution model and 1000
resamples. Seven major MTBC lineages and animal-adapted species are highlighted. Where warranted, these were differentiated further into
subgroups (as shown on the circumference of the figure). Red dots indicate branches (n = 334) with a resampling support of > 0.9 and which
were investigated for branch-specific mutations in 92 genes implicated in antibiotic resistance
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For example, we observed different loss-of-function (LOF)
mutations in mmpL5 in two genetic backgrounds (in sub-
groups of lineages 1.1.1.1 and 4.6) that should render them
hyper-susceptible to bedaquiline (BDQ) and CFZ [31].
Moreover, we observed LOF mutations in eis and its tran-
scriptional activator whiB7, which might make the respect-
ive genotypes more susceptible to kanamycin (KAN) [4,
32]. Finally, we confirmed that most lineage 2 strains share
a frameshift in the tap efflux pump, which means that mu-
tations that result in the overexpression of whiB7 cannot
confer streptomycin (STR) resistance in these strains [33].

Convergent evolution: impact on resistance
We observed 27 changes that had evolved independently
in multiple genetic backgrounds and, consequently, were
not markers for only one phylogenetic group (Add-
itional file 5: Table S5), which is typically a sign of positive
selection [34]. Indeed, several classical resistance muta-
tions featured in this category, which were likely selected
in response to antibiotic treatment (e.g. rpoB S450L and
rpsL K43R). Another well-understood mutation affected
codon 220 of pykA. A glutamic acid to aspartic acid
change, which results in the inability to grow on glycerol
as the sole carbon source, occurred at the base of the M.
africanum/animal branch [35]. It has already been re-
ported that some strains within this group (i.e. M. suricat-
tae and all BCG variants) independently regained the
ability to grow on glycerol by reverting back to glutamic
acid [29]. Here, we found that this occurred on two more
occasions, i.e. in one lineage 6 strain (L6-N0060) and in
our variant of M. bovis ATCC 19210 (9564-00) [36].
As previously reported, Rv1979c was deleted inde-

pendently in all M. africanum lineage 5 strains (del
Rv1978-Rv1979c [37]), in our two M. pinnipedii strains
(del Rv1964-Rv1979c [38]), and also in more recently de-
rived BCG variants (Rv1964-Rv1988, i.e. RD2) [39, 40].
Given that mutations in Rv1979c are implicated in CFZ
resistance, this raised the possibility that intrinsic resist-
ance to CFZ might have arisen on at least three occa-
sions in MTBC [5, 28, 41]. However, testing of five M.
africanum lineage 5 strains did not reveal a discernible
increase of the CFZ MIC (Additional file 4: Table S4).
There was at least one example where convergent evolu-

tion was misleading. The ancestral nucleotide at position
-32 upstream of ald is adenine whereas glycine was ac-
quired independently by M. africanum lineage 5 and a
group of lineage 4 strains (i.e. 4.5, 4.6, 4.7, 4.8, and 4.9).
Yet, because ald is inactive in lineage 5, as mentioned
above, this mutation cannot have the same effect in both
genetic backgrounds.

Discussion
Compared with most bacterial pathogens, MTBC is
monomorphic [42]. Nevertheless, it has been known for

more than 60 years that this limited diversity can result in
intrinsic resistance [43]. Indeed, if resistance to an anti-
biotic can arise by LOF mutations that do not have major
adverse consequences for bacterial fitness, it is not a ques-
tion of whether intrinsic resistance exists but, rather, how
widespread this phenotype is. This, in turn, is a function
of how deeply rooted this phenotype is in the phylogenetic
tree of MTBC and how well these strains have subse-
quently transmitted. For example, the pncA H57D muta-
tion, which is estimated to have evolved approximately
900 years ago [44], is shared by the vast majority of M.
bovis strains and consequently renders them intrinsically
resistant to PZA [45]. Yet, owing to the control policies in-
troduced in well-resourced countries over the past cen-
tury, M. bovis is responsible for fewer than 3% of human
tuberculosis (TB) cases globally [46].
The remaining experimentally confirmed cases of in-

trinsic resistance have arisen more recently in MTBC
and, therefore, are less frequent. These include the in-
trinsic capreomycin resistance of some lineage 4.6.2
strains (Cameroon genotype) due to the tlyA N236K
mutation [23], the high-level DCS resistance shared by
all BCG variants [29], and the intrinsic resistance to
INH and ETH/PRO of BCG variants derived after 1926
as a result of mmaA3 G98D [39]. Finally, M. canettii,
which is not strictly speaking part of MTBC, is intrinsic-
ally resistant to PZA and pretomanid [45, 47, 48].
Yet, the molecular evidence from this study under-

scores that even more deeply rooted and thus older in-
stances of intrinsic resistance have either not been
studied sufficiently or may have been missed com-
pletely. The possibility that the entire M. africanum/
animal branch likely has intrinsically elevated MICs to
DCS is particularly concerning in light of the severe
toxicity of DCS and terizidone [5, 29]. More MIC data
are urgently needed to inform pharmacokinetic/phar-
macodynamic (PK/PD) modelling to set a clinical
breakpoint for DCS and to assess whether this increase
is clinically relevant [49].
Conversely, genetic diversity may also confer hyper-

susceptibility, which has not been studied systematically
in the TB field as MICs are typically truncated at the
lower end, i.e. sufficiently low concentrations are not
typically tested to define the lower end of “susceptible”
MIC distributions [5].
MIC testing of M. africanum lineage 5 strains did

not confirm the role of the deletion of Rv1979c in
CFZ resistance, as previously hypothesised [5]. This
apparent contradiction might be explained if only spe-
cific gain-of-function mutations as opposed to LOF
mutations in this gene, which includes a possible per-
mease, confer resistance [28, 41]. Knockout and com-
plementation experiments are currently ongoing to
investigate this question further.
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Finally, epistatic interactions may affect the way in
which mutations are interpreted, as illustrated by the ef-
fect of whiB7 promoter-up mutations, which confer
cross-resistance to KAN and STR [32]. However, this is
only the case in genetic backgrounds in which both eis
and tap are functional, which is not always the case (e.g.
in almost the entire lineage 2) [4, 33].
The number of open questions raised by our study is

symptomatic of the lack of rigour used to define break-
points to anti-TB drugs [3, 5, 50, 51]. The recent en-
dorsement of an MIC reference method by the
European Committee for Antimicrobial Susceptibility
Testing (EUCAST) and associated guidelines to cali-
brate other methods, such as the widely used MGIT
960 system, are designed to address these shortcomings
[52]. Indeed, these guidelines stipulate that representa-
tives of lineages 1–7 must be tested to define sound ep-
idemiologic cut-off values (ECOFFs). It would be in the
interest of pharmaceutical companies to follow the
EUCAST guidelines as early as possible during drug de-
velopment to identify agents that may not be equally ef-
fective against major MTBC genotypes [53]. These
antibiotics could either be abandoned or their develop-
ment adjusted to gather evidence that genotypes with
intrinsically elevated MICs are treatable at either stand-
ard or increased dosing (e.g. using nonclinical models
or by choosing clinical trial sites in countries where
these genotypes are sufficiently frequent to provide
enough statistical power to study these questions com-
prehensively [54–56]).

Conclusion
We provide a comprehensive catalogue of phylogenetic-
ally informative mutations in genes implicated in drug
resistance in MTBC. Our analysis underlines that despite
being monomorphic, the genetic diversity in MTBC has
to be studied systematically to inform the interpretation
of gDST results for existing drugs as well as the develop-
ment of urgently needed novel agents.
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