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Abstract
Following an initial work on the isolation of a single geometric isomer from an indene–C70 bisadduct (IC70BA) mixture, we report

the full fractionation and identification of the bisadduct species in the material. Eleven fractions of IC70BA isomers were separated

by high-performance liquid chromatography. A number of fractions contained relatively pure isomer species and their configura-

tion were deduced using a variety of analytical techniques including 1H and 13C NMR and UV–vis spectroscopy. The electrochemi-

cal properties and the organic solar cell device performance were investigated for fractions where a reasonable quantity of sample

could be isolated.
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Introduction
Organic solar cells (OSCs) are an emerging renewable energy

technology that has achieved remarkable progress over the past

two decades. Compared to traditional inorganic semiconductor

solar cells, OSCs promise a number of advantages, such as

lightweight flexible devices and low-cost fabrication using roll-

to-roll printing [1]. Bulk-heterojunction organic solar cells (BHJ

OSC) are a specific type of OSCs which contain a blend of

organic electron donor and acceptor materials as the photoac-

tive component.

Fullerenes and their derivatives are widely used in BHJ OSC

devices as the electron acceptor material. They have several

characteristics that make them favorable for this application in-

cluding good electron transport [2], reversible reduction behav-

ior [3], and easily functionalized structures [4]. Indene fuller-

ene bisadducts, specifically the C60 (IC60BA) and C70 (IC70BA)

analogues (Figure 1), have been used successfully to boost the

performance of poly(3-hexylthiopehene) (P3HT) based devices.

The use of fullerene bisadducts improves the open circuit

voltage of the device compared to mono-functionalized deriva-

tives. In recent studies, the solar cell devices achieved power

conversion efficiency as high as 7.5% for IC60BA [5] and 7.4%

for IC70BA [6].

The IC70BA material used in most reports consisted of a mix-

ture of isomers [7-9]. The synthesis of IC70BA involves [2 + 4]

Diels–Alder cycloaddition reaction between C70 and two isoin-

dene molecules generated in situ from indene. The symmetry of

the ellipsoidal C70 molecule means that there are four different

bonds between two six membered rings ([6,6]-bonds) that can

participate in the Diel–Alder reaction. These are known as α-,

β-, ε- and κ-bonds (Figure 2a). The α-bonds are the most reac-
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Figure 1: Molecular structure of IC60BA and IC70BA.

Figure 2: a) Schlegel diagram of C70; b) illustrations of three regioisomers of IC70BA and their geometrical isomers.
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tive as they situated at the ends of the C70 molecule and there-

fore experience higher strain from the curvature of the mole-

cule [10]. While reaction at non-[6,6]-bonds are possible, the

thermodynamic products of fullerene adducts are usually locat-

ed on the [6,6]-bonds [11]. Therefore, bisadducts of C70 usually

consist of three major regioisomers, which have been described

as the 12 o’clock, 2 o’clock and 5 o’clock isomers (Figure 2b)

[10]. Each of these three regioisomers also includes two or three

geometric isomers as a result of the conformation of the substit-

uents.

Given the numerous possible isomers in IC70BA, our group

took interest in examining the possibility of isolating single

isomers from the mixture. It was anticipated that material con-

taining a single isomer would have higher crystallinity com-

pared to the mixture and this would have significant effects on

device performance. In a previous communication [9], an

isomer of IC70BA was obtained by chromatographic separation

using both flash chromatography and high pressure liquid chro-

matography (HPLC). X-ray crystallography revealed that this

sample contained the 2 o’clock-B isomer (Figure 2b). This ma-

terial was used with P3HT in solar cell devices that showed

higher performance compared to devices containing the isomer

mixture. Analysis of the materials and devices indicated that the

single isomer had better charge transport properties probably as

a result of higher crystallinity of the material.

It is noteworthy that there are a handful of other studies in the

literature that reported on chromatographic separation of fuller-

ene bisadduct isomers [8,12-14]. To the best of our knowledge,

this is the first comprehensive analysis of IC70BA mixture using

HPLC. Eleven fractions were collected and analyzed. Among

these fractions, all of the major regioisomers as well as some

minor regioisomers of IC70BA were identified. The separation

process, full characterizations as well as the device perfor-

mance of these isomers of IC70BA are presented in this work.

Results and Discussion
The synthesis of the isomeric mixture of IC70BA was achieved

by heating C70 with indene at 180 °C in 1,2-dichlorobenzene

[9]. Following the reaction, flash chromatography (silica gel,

toluene: cyclohexane, 1:9) was performed to remove any excess

reagents, mono-adducts of C70 as well as other impurities. In

our previous work, the mixture of IC70BA was separated into

two fractions by means of flash chromatography; however in

this case these two fractions were combined and further puri-

fied by HPLC using a Cosmosil Buckyprep-D column (4.6 i.d.

× 250 mm, toluene, 0.2 mL/min, UV detection 325 nm). More

than thirteen peaks were observed in the HPLC chromatogram

(Figure 3). From these, eleven fractions were collected by the

liquid handler of the HPLC equipment (see details in Support-

ing Information File 1 and Figure S1). The cleanest fractions

were 1, 4 and 9 as shown in the chromatograms (Figure 3) and

fractions 2, 3, 9 and 11 contained the biggest portions of the

original mixture, enough for device testing. Notably, fraction 9

contained two IC70BA species and was further separated by

flash chromatography (silica gel, toluene/cyclohexane 1:9) into

fraction 9-1 and fraction 9-2 which are known to contain the

2 o’clock-B isomer [9].

Figure 3: Chromatograms of IC70BA mixture and fractions 1, 4 and 9
separated by HPLC (Cosmosil Buckyprep-D column, toluene,
0.2 mL/min). Note that fraction 9 was further separated by flash chro-
matography (silica gel, toluene/cyclohexane 1:9) into fractions 9-1 and
9-2.

According to the 1H NMR spectra, there are five fractions

which show clear identifiable proton resonances. These are

fractions 1, 4, 9-1, 9-2 and 11 (Figure 4, see Supporting Infor-

mation File 1, Figure S2 for comparisons between other frac-

tions). The resonances located in the area of 4 ppm to 5 ppm

belonged to CH protons (Hb) of IC70BA, while the resonances

between 2 ppm to 3 ppm were attributed to the CH2 protons

(Ha). Due to the limitations of the separating efficiency of

HPLC, other fractions were either too low in yield or mixed
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Figure 4: 1H NMR spectrum of IC70BA fractions containing a major isomer species.

with neighboring fractions. In those cases, the 1H NMR experi-

ments did not provide useful information for identifying the

configuration of isomers contained in the samples (see Support-

ing Information File 1).

As shown in Figure 2, some geometrical isomers of IC70BA

belong to the C2 or Cs point group while others are in the C1

point group. For isomers in C2 or Cs configurations, each of

their two substituents is in the same chemical environment. As a
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result, their –CH2 resonances should spilt into two doublet

peaks and the –CH resonances should also spilt into two singlet

or doublet peaks depending on whether it couples with the

protons of the –CH2 group. According to the 1H NMR spectra,

fractions 4, 9-2 and 11 were symmetrical isomers due to their

simplified 1H resonances, while the compounds in fractions 1

and 9-1 did not have any plane or point of symmetry (Figure 4).

Although fraction 3 included approximately 30% impurities of

fraction 2, we could still observe clearly two sharp singlet reso-

nances at 4.75 and 4.14 ppm, which suggested that the major

compound in fraction 3 had C2 or Cs symmetry (Supporting

Information File 1, Figure S2). The 13C NMR spectrum of frac-

tions 4, 9-2 and 11 showed 40 resonances in the 120–165 ppm

region where the sp2 carbon resonances of the fullerene mole-

cule were commonly observed (see Supporting Information

File 1). This was a strong indication that these fractions

contained C2 or Cs symmetric derivatives. On the other hand,

there were more than 70 resonances in that region for fractions

1 and 9-1. This was further evidence that the fullerene deriva-

tives in fractions 1 and 9-1 did not have any plane or point of

symmetry.

The separation mechanism of the Cosmosil Buckyprep-D

column is based on the electronic π-orbital interactions be-

tween fullerene species and the nitrocarbazoyl-functionalized

silica stationary phase [15]. As a consequence, it was envisaged

that the fullerene derivatives with smaller π-conjugated area

would interact less strongly with the stationary phase of the

column and therefore elute faster than derivatives with larger

π-surface. In addition, the substitution on fullerenes may block

the interaction between fullerene and the stationary phase which

also shortens the retention time on the Cosmosil Buckyprep-D

column. Considering the configurations of the three major

regioisomers of IC70BA, the 5 o’clock regioisomers are likely

to elute first because the substituent geometry blocks the largest

fullerene surface area. In contrast, the 12 o’clock regioisomers

are expected to elute last as a result of the smallest angle be-

tween the two indene adducts. Applying logical deduction, we

would anticipate that the isomers of IC70BA elute from the

HPLC in the following order: 5 o’clock, 2 o’clock and then

12 o’clock. This is consistent with our previous isolation and

identification of the known single isomer, 2 o’clock-B, which is

located in the middle of the HPLC chromatogram (Supporting

Information File 1, Figure S1 and Table S1) [9].

The fast HPLC elution time of fractions 1, 2 and 3 meant that

these fractions were likely to contain 5 o’clock regioisomers

(Supporting Information File 1, Figure S1 and Table S1). With

symmetry information from NMR experiments, there is a high

probability that fraction 1, assigned to the C1 point group,

contained the 5 o’clock-A isomer (Figure 2b). Fraction 2 has a

slightly shorter retention time relative to fraction 3. This indi-

cates that fraction 2 could be in 5 o’clock-C configuration with

its two indene substituents covering a larger conjugated area of

C70 than fraction 3. Meanwhile, fractions 4 and 9-1 are more

likely to be in the 2 o’clock-A and 2 o’clock-C configuration,

respectively. That is because they are in the center of the HPLC

chromatogram while in the C1 and C2 point groups, respective-

ly. Fractions 10 and 11 are thought to be the 12 o’clock isomers,

because of their locations in the rear of the HPLC stream. These

two fractions were analyzed with a silica gel HPLC column

(cyclohexane 1.0 mL/min), respectively, to assess their relative

polarity. The HPLC chromatogram clearly illustrated that the

retention time of fraction 10 was shorter than of fraction 11,

which suggested that the configuration of fraction 10 was less

polar than fraction 11 (Figure 5). With this information in mind,

we are confident that fraction 10 contained the 12 o’clock-B

isomer while fraction 11 contained the 12 o’clock-A isomer

(Figure 2b).

Figure 5: The retention time of the first species in fraction 10 is shorter
than the species in fraction 11 on silica gel HPLC column (cyclo-
hexane, 1.0 mL/min) providing information on the relative polarity of
the compounds under investigation.

The assignments from chromatography and NMR experiments

were supported by the analysis of the UV–vis absorption spec-

trum of the IC70BA fractions. It is widely known that the

UV–vis spectrum of fullerene derivatives are highly correlated

to their conjugated structures [16]. Therefore, comparison of the

UV–vis spectrum of each fraction with known C70 bisadducts,

for example the known 2 o’clock-B isomer of IC70BA [9] and
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C70 bis-malonate isomers [17], was expected to provide further

information on adduct configurations. The UV–vis spectra of

fractions 1, 2 and 3 showed very similar spectral features when

compared with the spectrum of the 5 o’clock isomer of C70

bis-malonate, suggesting that they are all 5 o’clock isomers

(Figure 6a). Similarly, the spectrum of fractions 4 and 9-1

matched that of the previously identified 2 o’clock-B IC70BA

quite well. They all show an absorption maximum at 410 nm

and a shoulder at around 478 nm (Figure 6b). Finally, fractions

10 and 11 showed a very similar UV–vis spectrum profile to the

12 o’clock C70 bis-malonate (Figure 6c). Thus the eight major

regioisomers of IC70BA were identified. However, the

remaining fractions 5–8, were also confirmed to be IC70BA

isomers by mass spectrometry. Since the UV–vis spectrum of

these fractions did not correlate to those of the known α-bonds

C70 bisadducts (Supporting Information File 1, Figure S13), it

was reasonable to expect that these fractions contained IC70BA

compounds with at least one indene substitution located on non-

α-bonds of C70. A summary of the isomer configuration assign-

ments and related characterization data for the various fractions

of IC70BA is shown in Table 1.

In order to analyze the electrochemical properties of the

IC70BA fractions, cyclic voltammetry was performed on each

fraction. The first reduction potentials of all 11 fractions were

found to be in the range of −1.13 to −1.25 eV versus that of

ferrocene/ferrocenium (see Supporting Information File 1,

Figure S14). Therefore, the LUMO energy level of all single

isomer of IC70BA and the isomer mixture were close to

−3.6 eV. The UV–vis and electrochemical characterization are

summarized in Table 1.

The solar cell devices were fabricated in the architecture: ITO/

PEDOT:PSS/active layer/Ca/Al (Figure 7a). The active layer

consisted of a blend of the listed fractions of IC70BA with

P3HT (see details in Table 2), in the ratio of 1:1 by weight. The

fractions were chosen depending on their abundance and puri-

ties (Supporting Information File 1, Table S1). The open circuit

volatge (Voc) of all devices were at around 0.8 eV which

corresponded to the ELUMO values from electrochemical

experiments (Table 1 and Table 2). Figure 7b shows the current

density–voltage (J–V) curves of the solar cell devices, under the

illumination of AM1.5G, 100 mW cm−2. The photovoltaic per-

formance data of the devices are summarized in Table 2 for a

clear comparison between various ICBA fractions. The device

with fraction 9-2 exhibits highest power conversion efficiencies

(PCE) of 5.2% which is superior than the ICBA mixture (PCE

of 4.5%) based device. The enhanced performance might be

due to the favorable molecular packing in the active layer due

to crystalline isomer fraction 9-1 as well as nanoscale phase

separation morphology (Supporting Information File 1,

Figure 6: The UV–vis spectrum of each fraction of IC70BA as well as
known C70 bisadducts: a) fraction 1, 2, 3 and 5 o`clock bis-malonate
[17]; b) fraction 4, 9-1 and 2 o`clock-B of IC70BA [9]; c) fraction 10, 11
and 12 o`clock bis-malonate [17].

Figure S16d) of active layer blend [14]. The other fullerene

fractions (2, 3 and 9-1) showed the moderate device perfor-

mance with short circuit current density (Jsc) and PCE value in

the range of 8.0–8.3 mA/cm2 and 3.1–4.4%, respectively. How-

ever, the Jsc and PCE and of the devices containing fractions 4

and 11 were significantly lower in performance compared

(Table 2) to the devices of other fractions.
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Table 1: Characterization data of various IC70BA fractions.

Configuration of major
isomer in the samplea

UV–vis
λmax (nm)b

Reduction
E½ (eV)c

ELUMO
(eV)d

IC70BA mixture – – −1.24 −3.56
Fraction 1 5 o’clock-A 447 (1.1) −1.13 −3.67
Fraction 2e 5 o’clock-C 446 (2.1) −1.19 −3.61
Fraction 3 5 o’clock-B 417 (1.8) −1.19 −3.61
Fraction 4 2 o’clock-C 417 (1.6) −1.22 −3.58

Fraction 9-1 2 o’clock-A 410 (1.2) −1.15 −3.65
Fraction 9-2 2 o’clock-B 411 (2.1) −1.25 −3.55
Fraction 10e 12 o’clock-B 390 (1.2) −1.20 −3.60
Fraction 11 12 o’clock-A 389 (2.0) −1.17 −3.63

aAssignments made using a combination of NMR, UV–vis and chromatographic experiment data; bSolution UV–vis data. Absorption coefficient
(×103 M−1 cm−1) in brackets; cHalf-wave potential of first reduction; dCalculated from ELUMO = −4.8 + E½; eFractions 2 and 10 contained a substantial
quantity of other IC70BA isomers.

Figure 7: Schematic diagram of the architecture of BHJ solar cell devices (a) and J−V curves of the devices containing P3HT and each IC70BA frac-
tions (b).

Table 2: Performance of BHJ solar cell devices based on a blend of P3HT and each IC70BA fractions as the active layer.a

Active layer
P3HT/IC70BA (1:1)

Jsc
(mA/cm2)

Voc
(V)

FF
(%)

PCE
(%)

Mixture 8.6 ± 0.30 0.82 ± 0.02 64 ± 3 4.5 ± 0.25
Fraction 2 8.1 ± 0.20 0.80 ± 0.02 66 ± 2 4.4 ± 0.20
Fraction 3 8.0 ± 0.30 0.76 ± 0.02 50 ± 3 3.1 ± 0.30
Fraction 4 3.9 ± 0.35 0.74 ± 0.02 34 ± 4 0.9 ± 0.40

Fraction 9-1 8.2 ± 0.25 0.78 ± 0.02 55 ± 2 3.6 ± 0.25
Fraction 9-2 9.3 ± 0.15 0.82 ± 0.02 68 ± 2 5.2 ± 0.15
Fraction 11 5.7 ± 0.30 0.72 ± 0.02 44 ± 3 1.8 ± 0.30

aThe data shown are the average values obtained from 10 devices with standard deviation.
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It is important to point out that fraction 4 had the highest purity

among all the fractions (Supporting Information File 1, Table

S1), which demonstrated that the purity is not the only factor

influencing the performance of devices. Taking into account

both fraction purity and assigned geometric configuration, a

surprising trend emerged with apparent decrease in Jsc with in-

creasing fraction purity and crystallinity. The crystallinity of a

given fraction can be considered as dependent on the symmetry

of the assigned isomer configuration. That is, the degree of

symmetry varies in the order C1 < C2 < Cs, which resulted in

the order of crystallinity for the five fractions ranked as 9 < 2 ≈

3 < 4 < 11. Considering fraction 4 had the highest purity, the

order of crystallinity may be modified to 9 < 2 ≈ 3 < 11 < 4,

which corresponded to the decreasing Jsc of the devices con-

taining these fractions. One way to rationalise this observation

is that increasing crystallinity of IC70BA can improve the

charge carrier mobility of the bulk material but the miscibility

with the P3HT electron donor material can also change. A key

feature of efficient BHJ solar cell devices is the nanoscale phase

separation of the electron donor and acceptor materials into

continuous interpenetrating networks. Some indications on the

degree of phase separation can be obtained in tapping mode

atomic force microscopy (AFM) experiments (see Supporting

Information File 1 for experimental details). Both height and

phase AFM images suggested unfavourable phase separation

for blend films containing IC70BA fractions 4 and 11 with

domain sizes in the micrometre range (Supporting Information

File 1, Figure S16c and S16e). This larger domain size is

usually detrimental for charge separation and this is reflected in

the lower Jsc and PCE for the devices containing fractions 4 and

11 as shown in Table 2.

Conclusion
Herein we report the successful isolation of isomers of IC70BA

through HPLC. Eleven distinct fractions were collected and

analyzed to identify the various geometrical and regioisomers of

this fullerene derivative. Furthermore, photophysical and elec-

trochemical characterization was performed to evaluate the

properties of these materials. From the eleven fractions, all

major (α-bond) regioisomers of IC70BAs were identified with

the details of their configuration and symmetry factors con-

firmed. It was found that material purity and crystallinity and

their effects on the thin film nanostructure are key factors in de-

termining the performance of these fullerene derivatives in BHJ

solar cell devices. With the observations in this study, it can be

argued that the success of IC70BA (and in extension, IC60BA)

as the electron acceptor component in BHJ solar cells is

serendipitous and surprising given the large number of chemi-

cal structures involved. It is noteworthy that there have been

several studies on reducing the number of isomers in fullerene

bisadduct materials using synthetic strategies and about the suc-

cessful application in solar cell devices [18-22]. While high ma-

terial purity and composition is generally considered an advan-

tage for organic electronic materials, the material criteria for

bulk heterojunction organic solar cell applications is less clear.

This is owing to the fact that bulk heterojunctions are a mixture

of at least two materials (an electron donor and an electron

acceptor) with the film nanostructure being extremely impor-

tant for the device performance.

Supporting Information
Supporting Information File 1
Details on the separation procedure and characterization of

the materials as well as device fabrication and testing.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-12-88-S1.pdf]
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