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In 1986 the world was shaken by the Challenger space shuttle disaster. In the years that followed, 

the American National Aeronautics and Space Administration (NASA) called for a strategy change in 

space technology development [1]. Allowing technology to be developed without a specific space program 

in mind was central to the new strategy [2]. In order to evaluate resulting projects with no direct 

contribution to a space mission, NASA introduced the general concept of  technology readiness levels 

(TRLs) [3]. These nine levels, adopted by many EU institutions, assess the maturity level of technology 

and estimate its readiness to fly. 

 As machine learning is taking flight in the medical domain, intensive care medicine is facing a 

similar evaluation problem. Despite a surge in innovative models trained on intensive care data[4], it 

remains unclear which projects could actually make it to the patient’s bedside and improve care. We 

hypothesize that machine learning projects follow a trajectory to the patient’s bedside analogous to the 

way aerospace technology ventures into outer space. Therefore, we set out to translate the NASA 

technology readiness levels into a clinical applicable scale. We consequently applied the scale to ICU 

machine learning literature. 

 A panel of three experienced intensivists in medical data science research (PT, AE, PE) and an 

associate professor in machine learning (MH) iterated translations of the NASA TRLs into a clinically 

applicable scale until all unanimously agreed (see Table 1). Three authors (AE, PE, LF) applied the scale 

to all critical care machine learning papers identified by Shillan et al. in their recent review[4], where each 

paper was reviewed by at least one intensivist. Articles published before 2008 (n=55), pediatric articles 

(n=27), and reviews (n=2) were excluded. After an initial random 20 papers were reviewed, all panel 

members agreed level 3 and 4 be merged into a single ‘model development’ level. Any discrepancies in the 

final scoring were adjudicated by two panel members (PE, LF). 

 The clinical readiness levels for machine learning is presented in Table 1. A total 172 articles were 

scored, of which 160 articles (93%) scored level 4 or below, 8 articles (5%) validated results on data other 

than the initial data-split, 2 articles (1%) integrated a model into the workflow without exposing clinicians 

to the results, and only 2 articles (1%) evaluated models against clinical relevant outcomes. Reports on 

model integration (level 9) were not found. 

No single study design is suited to evaluate all departures of machine learning models into the 

clinical workflow, and some warrant more extensive testing than others. However, demonstration of model 

safety and efficacy is paramount for the transition from bench to bedside and to convince clinicians of 

potential benefits. Although a limitation of the study is that only models found in medical literature were 

considered, we would expect adequately designed and tested models to be published. The small minority 

of clinically implemented projects identified here arguably form a large gap to be bridged between bytes 

and bedside. With the current framework we hope to encourage critical appraisal of machine learning 

projects in order to estimate their readiness to fly. 
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