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Abstract

Beyond Parameter Estimation: Analysis of the Case Cohort Design in

Cox Models

Susan E. Connolly

Cohort studies allow for powerful analysis, but an exposure may be too expen-

sive to measure in the whole cohort. The case-cohort design measures covariates in

a random sample (subcohort) of the full cohort, as well as in all cases that emerge,

regardless of their initial presence in the subcohort. It is an increasingly popular

method, particularly for medical and biological research, due to its efficiency and

flexibility. However, the case-cohort design poses a number of challenges for estima-

tion and post-estimation procedures. Cases are over-represented in the dataset, and

hence estimation of coefficients in this design requires weighting of observations.

This results in a pseudopartial likelihood, and standard post-estimation methods

may not be readily transferable to the case-cohort design.

This thesis presents theory and simulation studies for application of estimation and

post-estimation methods in the case-cohort design. In the majority of extant liter-

ature considering methods for the case-cohort design, simulation studies generally

consider full cohort sizes, sampling fractions, and case percentages that are dissim-

ilar to those seen in practice. In this thesis the design of the simulation studies

aims to provide circumstances which are similar to those encountered when using

case-cohort designs in practice. Further, these methods are applied to the InterAct

dataset, and practical advice and sample code for STATA is presented.

Estimation of Coefficients & Cumulative Baseline Hazard: For estimation of co-

efficients, Prentice weighting and Barlow weighting are the most commonly used

(Sharp et al, 2014). Inverse Probability Weighting (IPW), in this context, refers

to methods where the entire case-cohort sample at risk is used in the analysis, as

opposed to Prentice and Barlow weighting systems, where cases outside the subco-

hort sample are only included in risk sets just prior to their time of failure. This

thesis assesses bias and precision of Prentice, Barlow and IPW weighting methods in
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the case-cohort design. Simulation studies show IPW, Prentice and Barlow weight-

ing to have similar low bias. Where case percentage is high, IPW weighting shows

an increase in precision over Prentice and Barlow, though this improvement is small.

Checks of Model Assumptions: Appropriateness of covariate functional form in the

standard Cox model can be assessed graphically by smoothed martingale residuals

against various other values, such as time and covariates of interest (Therneau et

al, 1990). The over-representation of cases in the case-cohort data, as compared to

the full cohort, distorts the properties of such residuals. Methods related to IPW

that adapt such plots to the case-cohort design are presented. Detection of non-

proportional hazards by use of Schoenfeld residuals, scaled Schoenfeld residuals,

and inclusion of time-varying covariates in the model are assessed and compared

by simulation studies, finding that where risk set sizes are not overly variable, all

three methods are appropriate for use in the case-cohort design, with similar power.

Where case-cohort risk set sizes are more variable, methods based on Schoenfeld

residuals and scaled Schoenfeld residuals show high Type 1 error rate.

Model Comparison & Variable Selection: The methods of Lumley & Scott (2013,

2015) for modification of the Likelihood Ratio test (dLR), AIC (dAIC) and BIC

(dBIC) in complex survey sampling are applied to case-cohort data and assessed in

simulation studies. In the absence of sparse data, dLR is found to have similar power

to robust Wald tests, with Type 1 error rate approximately 5%. In the presence of

sparse data, the dLR is superior to robust Wald tests. In the absence of sparse data

dBIC shows little difference from the näıeve use of the pseudo-log-likelihood in the

standard BIC formula (pBIC). In the presence of sparse data dBIC shows reduced

power to select the true model, and pBIC is superior. dAIC shows improvement

in power to select the true model over näıeve methods. Where subcohort size and

number of cases is not overly small, loss of power from the full cohort for dAIC,

dBIC and pBIC is not substantial.
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Notation

The following notation is used throughout this dissertation. This is intended as a

reference and, along with all additional notation, shall be properly introduced within

the main body of the document.

t(j) Failure time for the jth subject in an ordered list of failure times

t(0)i Entry time of the ith subject

ti Recorded survival time of the ith subject

R(j) Set of observations at risk at time t(j) in the full cohort, not includ-

ing the failure at time t(j)

RC
(j) The subset of R(j) consisting only of cases

RNC
(j) The subset of R(j) consisting only of non-cases

R∗(j) Set of observations at risk at time t(j) in the case cohort, not in-

cluding the failure at time t(j)

R∗C(j) The subset of R∗(j) consisting only of cases

R∗NC(j) The subset of R∗(j) consisting only of non-cases

N(j) Size of R(j) (and similar for other risk sets)

N Number of observations in the full cohort prior to any failures

NC Number of cases in the full cohort prior to any failures

NNC Number of non-cases in the full cohort prior to any failures

NSC Number of observations in the subcohort prior to any failures

N∗C Number of cases in the subcohort prior to any failures

N∗NC Number of non-cases in the subcohort prior to any failures

α The overall subcohort sampling fraction

xvii



α(j) The subcohort sampling fraction for R(j) (and similar for other risk

sets)

pC The proportion of cases in the full cohort.

D Indicator variable taking value 1 for cases and 0 for non-cases

Z Vector of covariates

β Vector of coefficients

γ Individual coefficients

Z[j] Vector of covariates for the subject failing at time t(j)

w[j] Weights for the subject failing at time t(j)

wk(j) Weights for the risk set Rk
(j)

∆ Change in hazard ratio between the 25th and 75th percentiles of

survival times

Zφ Vector of covariates which interact with time

βφ Coefficient vector for Zφ

φ Vector of coefficients for the interation of Zφ with time

h(t) Hazard function

h0(t) Baseline hazard function

H(t) Cumulative hazard function

H0(t) Cumulative baseline hazard function

S(t) Survival function

S0(t) Baseline survival function

L Likelihood

pL Partial likelihood

pL∗ Pseudopartial likelihood

rcs Cox Snell residual

rmg Martingale residual



rs[j]k Schoenfeld residual for covariate k failing at time t(j)

rsc[j]k Scaled Schoenfeld residual for covariate k failing at time t(j)

DE Design effects matrix (dLR, dBIC)

∆E Design effects matrix (dAIC)

I Fisher information

I Observed information matrix

V The variance matrix for the vector of coefficients β

V̂ Design-based variance estimate of V

V̂ n Näıeve variance estimate of V

WD The design-based Wald statistic





Abbreviations

All abbreviations will be introduced in the text. A summary of abbreviations follows

for reference:

AIC Akaike’s information crtierion

dAIC Modification of Akaike’s information crtierion (Lumley & Scott)

BIC Bayesian information criterion

dBIC Modification of the Bayesian information criterion (Lumley & Scott)

pBIC Modification of the Bayesian information criterion (Xue)

BMI Body mass index

df Degrees of freedom

DGM Data-generating mechanism

ESE Empirical standard error

FC Full Cohort

HR Hazard ratio

IPW Inverse probability weighting

LOWESS Locally Weighted Scatterplot Smoothing

lpoly Kernel-Weighted Local Polynomial Smoothing

LR Likelihood ratio

dLR Näıeve modification of the Likelihood ratio (Lumley & Scott)

pLR Modification of the Likelihood ratio (näıeve)

MCSE Monte Carlo standard error

MSE Mean squared error
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NPH Non-proportional hazards

PH Proportional hazards

WC Waist circumference

WHR Waist-to-hip ratio

WHtR Waist-to-height ratio

SD Standard deviation

SE Standard error

SC Subcohort



Chapter 1

Introduction

1.1 Motivation

1.1.1 The Case-Cohort Design

Survival analysis concerns analysis of data where time until a specified event is the

outcome of interest. Research questions in this field often take the form ”How do

certain characteristics affect the risk of an event occurring?”. A straightforward

approach is a cohort study: a cohort is defined consisting of subjects who have yet

to experience the event, covariates of interest are measured for each subject, and

times of events (cases) over a specified period of time are recorded. However, where

the event of interest is uncommon, or covariates of interest are expensive, time-

intensive or otherwise difficult to measure in large numbers, analysis of a full cohort

may not be achievable. Since most of the information is contained in the cases,

alternatives to analysis of the cohort often consist of designs that include all cases

and a subsample of the non-cases, allowing for a substantial reduction in number

of subjects and associated costs, with only a minor reduction in efficiency. The

case-cohort study design is nested within a cohort study; a subcohort is randomly

selected from the full cohort, covariates of interest are measured for each subcohort

subject, and times of any events in the subcohort over a specified period of time

are recorded. Times of events and covariate measurements are also recorded in

cases outside the subcohort. The case-cohort dataset consists of all cases in the full

cohort, and the non-case members of the subcohort. Compared to other alternatives

to analysis of the full cohort, such as nested case-control studies, advantages of the

case-cohort design include that as a random sample of the full cohort, the subcohort

can be used for multiple events of interest. It can also be used to assess distributions

of covariates in the population, as may be of interest in genomic studies. Further,

while samples may be collected from the full cohort, measurement of potentially

expensive biomarkers is required only for the cases and subcohort non-cases.
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1.1.2 Post-Estimation in the Case-Cohort Design

Extant literature on the methodology of analysis of the case-cohort design is in

general concerned with estimation of coefficients. In order to fully exploit the case-

cohort design, we must look beyond parameter estimation. While parameter es-

timates are necessary for investigation of the research question posed above, they

are not sufficient; proper interpretation and application of these estimates requires

the ability to investigate violations of model assumptions and to compare alterna-

tive selections of explanatory covariates. Where model assumptions are violated,

parameter estimates are invalid, and may lead to erroneous conclusions. While clin-

ical judgment and other information can give indications of potential explanatory

variables, model and variable selection methods can help to refine such indications.

For example, clinical judgment may indicate that obesity is likely to affect risk of

an event occurring, but model and variable selection methods can help in choos-

ing between measures of obesity such as body mass index, waist circumference and

waist-to-hip ratio for inclusion in the model.

The overarching aims of this thesis are to investigate post-estimation methods in the

case-cohort design, to adapt existing methods or devise new methods where existing

methods are inappropriate, and provide guidance for the use of these methods.

1.1.3 The Cox Proportional Hazards Model & Case-Cohort

The Cox proportional hazards (PH) model (Cox, 1972) is commonly used in the

analysis of case-cohort studies. In a review of 32 papers reporting case-cohort studies

published between January 2010 and March 2013, only one paper did not use some

form of Cox regression in the analysis (Sharp et al., 2014). Hence, in this thesis,

I consider estimation and post-estimation procedures for analysis of case-cohort

studies under the Cox PH model. In this section, I outline detection of violations

of model assumptions and methods of model and variable selection in the Cox PH

model in the full cohort, and then describe the particular challenges posed by the

case cohort design.

1.1.3.1 Full Cohort

The Cox PH model makes three key assumptions: (1) that covariates are multiplica-

tively related to the hazard i.e. the hazards are proportional over time; (2) that the

functional form of each covariate included in the model has a linear relationship

with the hazard; and (3) that the link function is exponential, i.e. the relationship

between the baseline hazard function and the linear predictor is log-linear. In the

full cohort, assumptions (2) and (3) can be assessed by visual inspection of smooths
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of Martingale residuals against covariates and the linear predictor, respectively (Th-

erneau et al., 1990). Methods for assessment of the proportional hazards assumption

include tests of a non-zero slope in generalized linear regression models of Schoen-

feld residuals or scaled Schoenfeld residuals against a function of event time, and

inclusion in the model of interactions of covariates with functions of time.

In the full cohort, variable and model selection in maximum likelihood methods

has a number of extant and commonly used methods, including Akaike’s informa-

tion criterion (AIC), Bayesian information criterion (BIC), and for nested models,

Likelihood ratio and Wald tests. Apart from Wald tests, each of these methods

includes the likelihood in its formula. In the full cohort, the Cox PH Model max-

imises a partial likelihood function rather than a likelihood function. Cox (1975)

showed that large-sample properties and tests that are valid for maximum likelihood

methods and an asymptotic chi-squared distribution are justified in the case where

there is a partial likelihood, under broad conditions.

1.1.3.2 Case Cohort

In the case-cohort design, cases are over-represented in the case-cohort sample, and

the Cox proportional hazards model must be weighted (described in Section 1.2.2),

resulting in the maximisation of a pseudopartial likelihood rather than a partial

likelihood.

Use of martingale residuals to detect violations of model assumptions will require ad-

justments to reflect the over-representation of cases. For detection of non-proportional

hazards in the case-cohort design, inclusion of an interaction with time appears the-

oretically justified, as it relies on significance of parameter estimates, however, use of

Schoenfeld and scaled Schoenfeld residuals may require weighting. For variable and

model selection methods, robust Wald tests are theoretically justified, as they are

again based upon significance of parameter estimates. However, the pseudopartial

likelihood means that likelihood-based methods may not be readily transferable to

the case-cohort design. Further, a number of different methods for weighting of the

Cox model in the case-cohort design have been proposed and the choice of weight-

ing system may have an impact on performance of post-estimation methods. In this

thesis, I investigate these checks of model assumptions and model selection methods

in the analysis of the case cohort design under the Cox model with a variety of

weighting methods.

3



1.2. Background Chapter 1

1.2 Background

1.2.1 Data Structure

1.2.1.1 Definitions of Time

Description and analysis of survival data may involve several distinct definitions of

time. Consider a study investigating the effect of lifestyle factors on time to develop-

ment of clinical arthritis. Subjects become at risk at origin times TB, are observed

from entry times T(0), and are followed until arthritis develops at event times T .

Let superscript D refer to calendar time, superscript F refer to follow-up time, and

superscript A refer to analysis time.

Calendar time refers to the dates of recruitment and events in the study. Hence

subjects are recruited at times TD(0), and events occur at TD. Analysis time refers to

the time-scale under which the data will be analysed, with entry times TA(0) referring

to the time period between the subject becoming at risk and the subject entering

the study, and event times TA referring to the time period between the subject be-

coming at risk and experiencing the event. Follow up times refer to the period of

time for which each subject was under observation. Hence, T F(0) = 0 for all subjects,

and T F = TD − TD(0) = TA − TA(0).

Unless otherwise specified, throughout the rest of this thesis, references to time

without a superscript refers to analysis time.

1.2.1.2 Analysis Time-Scales

Survival analysis under the Cox PH model requires a well-defined origin and analysis

time-scale. To illustrate the diversity of relationships between calendar time, follow-

up time and analysis time, three examples of analysis time-scale are described below.

Scenario 1 - Recruitment as Origin: If subjects are considered to become at risk

at their date of recruitment, the data can be analysed with a fixed entry time

TA(0) = T F(0) = TB = 0 ∀i and failure occuring at times TA = T F . Such a time-scale

choice is often appropriate for clinical trials, where a drug is administered at time

of recruitment. Exit time is hence the duration for which subjects were observed.

Scenario 2 - Common Exposure as Origin: Alternatively, if subjects are consid-

ered to become at risk at some fixed date tDB , prior to recruitment, then analysis

entry times TA(0) = TD(0)− tDB , and exit times TA = TD− tDB . Such a time-scale may be

appropriate where the study is concerned with subjects who suffered some common
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exposure, such as a chemical leak. Entry time to the study is hence the duration

from exposure to recruitment, and exit time the duration from exposure to event.

Scenario 3 - Subject-Specific Origin: Further, if subjects are considered to become

at risk at some subject-specific date TDB prior to recruitment , then analysis entry

times TA(0) = TD(0) − TDB , and exit times TA = TD(0) − TDB . Such a time-scale may be

appropriate where subjects are considered to become at risk at birth. Entry time

to the study is hence their age at recruitment, and exit time their age at event.

It is important to note that the same dataset can be analysed with differing analysis

time-scales depending on the choice of the researcher.

1.2.1.3 Censoring

In the arthritis study above, the subjects were followed until arthritis developed at

event times T . However, survival data commonly displays right-censoring, that is,

for some subjects, the event times T are not observed. Rather, it is known only that

for each censored subject, the event occurred after some censoring time TC . Hence

the recorded survival times TR = min(TC , T ). The arthritis study above could fol-

low the subjects for a period of 10 years, with subjects who did not experience the

event of interest administratively censored at that time.

It is also likely that it would not be possible to observe all subjects throughout

the study period. Death, withdrawal of consent, relocation or other reasons may

mean that subjects cannot be observed after some particular time, before experi-

encing the event of interest and before the end of the study. In this thesis, such

subjects are denoted as lost-to-follow-up or early censored, with the survival time at

which they were last observed referred to as the early-censoring time.

1.2.1.4 Risk Sets

Consider a dataset of ordered event times t(1)...t(j). Subscript (0) refers to the time

prior to any failure. Subscript i refers to the subject i, and subscript [j] refers to the

subject experiencing the event at time t(j). t(0)i refers to the entry time of subject i

to the study and ti refers to the recorded survival time of the subject i. Superscript

C refers to cases and superscript NC refers to non-cases. Let N , NC and NNC refer

to the number of subjects, cases and non-cases in the dataset, respectively.
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For each failure time t(j), the risk set of observations still at risk not including the

failure at time t(j) is denoted R(j) and is of size N(j) subjects, with NC
(j) cases and

NNC
(j) non-cases.

R(j) = i : {t(0)i < t(j) < ti}, i 6= [j]

This is a non-standard definition of the risk set, as normally the subject [j] failing

at time t(j) is considered part of the risk set for that failure time. This non-standard

definition is used in this thesis because, in the case-cohort design, the failure at time

t(j) may be weighted differently to the other observations at risk at that time.

1.2.1.5 Entry and Exit Types

Both entry and exit times of an analysis dataset can be categorised as fixed or

staggered, depending on whether these times are common across subjects or vary

between subjects. Choice of analysis time-scale can affect whether the same data

will display fixed or staggered entry and exit times. The number of subjects in

each risk set R(j) with staggered entry and/or exit will be smaller and more variable

than for similar data with fixed entry and/or exit. In terms of the effects on risk

sets, times can be considered fixed even where entry and/or exit times vary between

subjects, as long as all subjects enter the analysis prior to the first failure, and exit

the analysis after the last failure.

In Scenario 1 above, all subjects will display the same entry time to the study.

Scenario 2 will display fixed entry if subjects are recruited on the same calendar

date, but if recruitment is carried out over a period of time, then analysis entry

times TA(0) will vary. Scenario 3 will display staggered entry unless recruitment dates

were tailored so as to provide fixed entry.

If early censoring is present, the dataset will likely display staggered exit under

all analysis time-scales. However, even where early censoring is not present, choice

of time-scale can also effect whether the data displays staggered or fixed exit in the

analysis. For Scenario 1 above, if the calendar data displayed a staggered entry, the

analysis data will display fixed entry and staggered exit, as the variation in entry

time has been “shifted” to the right. For Scenario 2, the type of entry and exit

displayed in the calendar data will be replicated in the analysis data. For Scenario

3, it is likely the analysis data will display both staggered entry and staggered exit.
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1.2.2 The Cox Model

In analysis of survival data, the hazard function h(t) describes the risk of experienc-

ing an event at time t, conditional on survival to time t, and can be considered as the

number of events in the population at risk per unit time. The hazard function h(t)

can be considered as made up of two elements; the baseline hazard function h0(t),

which describes how the risk of event per unit time changes over time at baseline

levels of covariates, and the vector of coefficients β, describing how the hazard varies

in response to the vector of explanatory covariates Z.

Under the Cox PH model it is assumed that, for any subject i, the ratio of the

hazard over time to the hazard for any other subject j is some constant mij = hi(t)
hj(t)

.

It is also assumed that the hazard function is of the form h(t) = h0(t)exp(β
TZ).

These assumptions allow for inferences about the ratio of the hazard between indi-

viduals without specification of the baseline hazard itself.

hi(t)

hj(t)
=
h0(t)exp(β

TZi)

h0(t)exp(βTZj)
= exp{βT (Zi − Zj)}

Hence, we can use estimates of β to describe the difference in risk between subjects

with varying values of Z.

Using the notation and risk set structure from Section 1.2.1.4, the partial likeli-

hood for the Cox model is given by:

pL(β) =
NC∏
j=1

exp(βTZ[j])

exp(βTZ[j]) +
∑

i∈R(j)

exp(βTZi)

The cumulative baseline hazard function H0(t) =
∫ t
0
h0(s)ds, can be interpreted as

the number of events that would be expected by time t, given survival to time t, for

a subject with all covariates equal to 0, if the event were a repeatable process (Clark

et al., 2003). Estimates of H0(t) are important for a number of post-estimation

methods. In the full cohort, the Breslow estimator of H0(t) (Breslow, 1972) is given

by:

Ĥ0(t) =
∑
t(j)≤t

ĥ0(t(j)) =
∑
t(j)≤t

1

exp(βTZ[j]) +
∑

i∈R(j)

exp(βTZi)

In analysis of the case-cohort design, a weighted Cox model is used, with various

weighting methods proposed and used in practice. In general, weights are assigned

based on some discrete classification of the subjects by categories such as subcohort

status and case or non-case status. In some weighting systems, weights may also

7
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vary by failure time t(j). Based on this classification, the risk set R(j) can hence be

decomposed into K disjoint subsets, to be described later, such that R(j) = ∪Kk=1R
k
(j).

Appropriate weights wk(j) can then be defined for each subset and failure time. The

pseudopartial likelihood for a case-cohort sample is given by:

pL∗(β) =

NC
(0)∏

j=1

w[j]exp(β
TZ[j])

w[j]exp(βTZ[j]) +
K∑
k=1

wk(j)
∑

i∈Rk
(j)

exp(βTZi)

The weighted Breslow estimator of H0(t) is given by:

Ĥ0(t) =
∑
t(j)≤t

ĥ0(t(j)) =
∑
t(j)≤t

1

w[j]exp(βTZ[j]) +
K∑
k=1

wk(j)
∑

i∈Rk
(j)

exp(βTZi)

1.3 Literature Review

In the following section I review the extant literature concerning the analysis of the

case-cohort design under the Cox proportional hazards model. Literature regarding

parametric modeling, accelerated failure time models, repeated events, bootstrap,

and comparison of case-cohort methods with non-case-cohort alternatives is beyond

the scope of this thesis and is not included.

1.3.1 Estimation of Coefficients

The vast majority of methodological papers concerning the case-cohort design under

the Cox PH model concern estimation of coefficients. A number of papers have

compared estimation methods for the Cox PH model in the case-cohort design.

These studies and their results are described in 3.2.1.5.

1.3.1.1 Prentice Weighting

Prentice (1986) proposed a design which involves members of a subcohort, randomly

selected without regard to eventual failure status, and any additional non-subchort

cases. This case-cohort design is similar to that of Kupper et al. (1975) and Miettinen

(1982). In Prentice’s method, subcohort observations have weight 1 when at risk,

and non-subcohort cases have weight 1 at their failure time and weight 0 at all other

times. The asymptotic normality of estimates under Prentice weighting is shown in

Self and Prentice (1988).

8
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1.3.1.2 Self & Prentice Weighting

Self and Prentice (1988) proposed a modification to Prentice weighting. In this

weighting system, subcohort observations have weights as in Prentice and non-

subcohort cases have weight 0 in the denominator at all times and weight 1 in

the numerator at their failure time.

1.3.1.3 Barlow Weighting

Barlow (1994) proposed an alternative weighting system, where non-subcohort cases

are weighted as in Prentice (1986), subcohort cases take weight 1 at their failure

time, and both subcohort non-cases and subcohort cases prior to their failure time

take weight equal to the ratio of the number of cohort members at risk to the number

of subcohort members at risk. These weights are hence dependent on the size of

the full cohort and subcohort risk sets at each failure time t(j). Barlow et al. (1999)

approximated these time-dependent weights by the inverse of the overall subcohort

sampling fraction (the subcohort sampling fraction at time t(0)).

1.3.1.4 Inverse Probability Weighting

Kalbfleisch and Lawless (1988) proposed an Inverse probability weighting (IPW)

method for the case-cohort design. In this method, all cases take weight 1, and

subcohort non-cases take weight equal to the inverse of the subcohort sampling

probability.

Kulich and Lin (2004) established the asymptotic properties of this estimator and

proposed a class of weighted estimators with general time-varying weights. Kang

and Cai (2009) extended this estimator to studies with multivariate failure time out-

comes, and Kim et al. (2013) also applied and adapted the estimator to multivariate

failure time outcomes.

Chen and Lo (1999) defined a similar estimator to Kalbfleisch & Lawless, with

the exception that subcohort non-cases take weight equal to the inverse of the non-

case sampling fraction. The consistency and asymptotic normality of this estimator,

under certain regularity conditions, was also detailed.

Chen (2001, 2004) proposed IPW methods for the case-cohort design that esti-

mate contribution from unselected controls. This is accomplished by incorporating

averages of covariates from subjects with similar failure times into calculation of

weights.
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1.3.1.5 Full Likelihood Approaches

The above weighting methods all result in a pseudopartial likelihood. More recently,

methods considering the case-cohort design as a missing data problem have been

proposed, resulting in a full likelihood approach where the likelihood expression is

constructed for the complete cohort. Scheike and Martinussen (2004) proposed us-

ing the expectation maximisation (EM) algorithm for parameter estimation, whereas

Kulathinal and Arjas (2006) proposed Bayesian data augmentation. Efficiency gain

from the full likelihood approach is minor in case of a rare disease (Scheike and

Martinussen, 2004) and the large amount of missing covariate data generated re-

sults in more computational demands. Additionally, Saarela and Kulathinal (2007)

proposed another likelihood based approach where only the case-cohort data is used,

but the likelihood is conditioned on the inclusion in the case-cohort sample.

1.3.1.6 Stratified Case-Cohort

The case-cohort design can be extended to include stratification. In this design, the

full cohort is divided into non-overlapping sections or strata, and the subcohort is

selected by stratified random sampling.

Borgan et al. (2000) considered several types of weights under case-cohort designs

where the subcohort is selected by stratified random sampling. Borgan I weights are

Self & Prentice weighting with additional weights applied to each subject equal to

the sampling fraction for the appropriate stratum; static Borgan II weights are the

application of the IPW weighting in Chen and Lo (1999), with non-case sampling

fraction calculated individually for each stratum, and Borgan III weights are a score

unbiased adaptation of Borgan I weights where, if the case failing at time t(j) is a

non-subcohort case, it is included in the risk set in the place of a randomly selected

subcohort member of that stratum.

Further, they propose adaptations for these methods where the above weights are

replaced by their time-dependent equivalents. For example, the Borgan I weights at

failure time t(j) are replaced by the stratum sampling fraction at that time, i.e. the

ratio of the number of observations at risk in the full cohort stratum at time t(j) to

the number of observations at risk in the subcohort stratum at time t(j).

Samuelsen et al. (2007) considered the application of a post-stratification approach

to weighting of cohort sampling designs, including the case-cohort design, by which

the methods of Chen (2001) can be placed into the framework of Borgan et al. in

stratified case-cohort designs.
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1.3.1.7 Estimation of Coefficient Sampling Variance

Analysis of the case-cohort design with the weighted Cox PH model requires partic-

ular care in estimation of coefficient sampling variance. Näıeve variance estimation

via the standard methods for the Cox regression model are invalid, as the case-cohort

sampling introduces a covariance between score terms, resulting in a larger variance

for coefficient estimates than would result from standard methods.

Several variance estimators have been proposed for the case-cohort design including

asymptotic variance estimators (Prentice, 1986; Self and Prentice, 1988), approx-

imate jackknife variance estimators (Barlow, 1994; Lin et al., 1993), design-based

variance estimators (Binder, 1992; Lin, 2000), super-population variance estimators

(Wacholder et al., 1989), and bootstrap variance estimators (Wacholder et al., 1989).

In addition, the robust variance estimator of Lin and Wei (1989) was shown by Bar-

low (1994) to be equivalent to a jackknife variance estimator and hence applicable

to the case-cohort design.

Standard implementation of “robust“ variance estimates in STATA and R statis-

tical packages uses the Huber sandwich estimator, also known as White’s estimate,

the Horvitz-Thompson estimate, the working independence variance, the infinites-

imal jackknife, and the Wei, Lin, Weissfeld (WLW) estimate. In this thesis, the

Huber sandwich estimator is used throughout as a variance estimator that accounts

for the case-cohort design. Particularly, the Huber sandwich estimator is used in

Chapter 6 as the design-based variance estimator required for implementation of the

modified methods for model selection described therein.

1.3.2 Estimation of Cumulative Baseline Hazard

Prentice (1986) further proposes a case-cohort estimator of cumulative baseline haz-

ard; a weighted version of the Breslow estimator, where the case failing at time t(j)

and the subcohort observations at risk are weighted by the inverse of the subcohort

sampling fraction. The asymptotic normality of this estimator is shown in Self and

Prentice (1988).

In addition to proposing a class of weighted estimators for coefficients, Kulich and

Lin (2004) also propose related estimators for the cumulative baseline hazard. How-

ever, to my knowledge, performance of estimation of cumulative baseline hazard

under IPW in the case-cohort design has not been investigated.
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1.3.3 Post-Estimation

Methodological literature on post-estimation procedures of case-cohort data under

the Cox PH model is sparse.

To the best of my knowledge, detection of inappropriate functional form and in-

appropriate link function have not been studied in the case-cohort design, and de-

tection of non-proportional hazards has been investigated only by Xue et al. (2013),

who define “case-cohort Schoenfeld residuals” under Prentice weighting, and assess

the use of the correlation of these residuals with functions of event time in detection

of non-proportional hazards.

Barlow (1997) proposes a modification of the Pettitt and Bin Daud (1989) Like-

lihood Displacement measure of individual influence to allow for multiple failure

time data and case-cohort designs. To the best of my knowledge, use of deviance

residuals in the case-cohort design has not been studied.

Ganna et al. (2012) consider risk prediction measures in the case-cohort design, in-

cluding the Grønnesby and Borgan (1996) goodness-of-fit test for calibration, the net

reclassification improvement, and the concordance-index, and conclude that case-

cohort designs can be used in evaluation of the prediction ability of new markers.

For model selection, Lumley and Scott (2013) consider the case-cohort design as

a special case of complex survey sampling in a paper where they introduce a modi-

fied Likelihood Ratio test dLR.

In complex survey sampling, Xu et al. (2013), propose replacement of the log maxi-

mum likelihood with the log maximum pseudolikelihood for a modified BIC (pBIC),

and Lumley and Scott (2015) build on their 2013 paper to describe modifications to

AIC and BIC (dAIC and dBIC), however, these papers do not refer to the case-

cohort design specifically.

Newcombe et al. (2018) propose use of Bayesian variable selection, a method based

on Bayesian sparse logistic regression, and compare its performance with (a) one-at-

a-time significance testing of potential variables, and (b) forwards stepwise selection.

Ni et al. (2016) propose use of the smoothly clipped absolute deviation penalty, a

penalty-based variable selection procedure.
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1.3.4 The Case-Cohort Design in Practice

Sharp et al. (2014) conduct a review of 32 papers reporting case-cohort studies

published from Jan 2010 to March 2013. Some of these used case cohort samples

from centres or groups of centres from the European Prospective Investigation into

Cancer and Nutrition (EPIC) study, a cohort study with 521,000 subjects recruited

across 23 centres in 10 European countries (Riboli et al., 2002). Treating each EPIC

centre/group of centres as a separate cohort, the 32 papers were based on 17 cohorts.

Nine of the 17 original cohorts used stratified sampling to select the subcohort.

The stratifying variables were age, gender, race, location or a combination of these.

The median size of the full cohort before exclusions was 48,532 (interquartile range

14,610 to 124,426). The median subcohort sampling fraction before exclusions was

4.1% (interquartile range 3.7% to 9.1%)

As expected, the published studies were carried out on the case-cohort samples

after some exclusion of observations, with exclusions dependant on the purpose of

the study. Complete information on full cohort size, subcohort size and number

of cases post-exclusions was not available for 8 of the 32 papers detailed in the

report. This complete information post-exclusions for the remaining 24 papers is

summarized in Table 1.1 below (pers comm Sharp).

Table 1.1: Summary Statistics (Post-Exclusions) for 24 Case-Cohort Papers

min 25th pctile median 75th pctile max

Full Cohort N 950 9,630 27,548 76,364 340,234

Full Cohort Case N 77 421 597 2,007 12,403

Subcohort N 190 1,290 1,920 3,034 16,154

Full Cohort Case Percentage 0.6 2.4 3.6 5.3 24.1

Subcohort Sampling Fraction 0.029 0.044 0.065 0.131 0.255

Case-Cohort Non-Case to Case Ratio* 0.70 1.26 1.98 3.23 6.17

*calculated assuming equal case and non-case exclusion from the subcohort

Of the 32 papers, a single paper used logistic regression, with the remainder using

some form of the Cox PH model. In the papers using Cox regression, ten used

unweighted Cox regression, which is inappropriate for the case-cohort design, ten

used Prentice weights, seven used Barlow weights, three papers were unclear as to

which weights had been used, and only one paper used a full-likelihood approach.

Of the 31 papers using Cox regression, 12 reported that the proportional hazards

assumption was tested. Nine used age as the underlying timescale rather than study

duration. Seventeen papers specified that robust standard errors were calculated.
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1.4 Research Focus

The literature review reveals a number of areas where further investigation could

allow greater exploitation of the case-cohort design in the Cox PH model.

Despite a number of alternative methods for estimation of coefficients having been

proposed, Prentice and Barlow weighting methods appear to be those most com-

monly used in practice. In this thesis, I consider Prentice, Barlow, and IPW meth-

ods, with IPW included due to reports from the literature that its performance is

superior to Barlow (see Section 3.2.1.5), its ease of implementation using standard

statistical software, and its possible value in post-estimation methods where residu-

als and other quantities must be weighted in the case-cohort design.

In the majority of literature considering methods for the case-cohort design, sim-

ulation studies generally consist of full cohort sizes, sampling fractions, and case

percentages that are dissimilar to those seen in practice. That is, full cohort sizes

are small, and sampling fractions and case percentages are high (see Section 3.2.1.5.1,

where simulation studies from the literature are described). In this thesis the design

of the simulation studies aims to provide circumstances which are more similar to

those encountered when using case-cohort designs in practice.

There is a clear dearth of research in post-estimation methods in the case-cohort de-

sign. In this thesis, I will assess application and modification of full cohort methods

for detection of violation of Cox PH model assumptions in the case-cohort design.

Further, I will investigate the application and modification of standard model and

variable selection methods for use in the case-cohort design.

Finally, in order for methods to be useful in practice, they should be possible to

implement in statistical software without overly complex coding and with minimal

opportunities for user error. In an appendix I will include sample STATA code for

these methods and comment on the the practicality of their implementation.

1.5 Dissertation Structure

In this introductory chapter, I have outlined the motivation for the investigation of

the Cox PH model in the case cohort design, with regard to estimation and post-

estimation procedures. Further, I have outlined the main considerations of data

structure in this investigation, specifically, censoring, time-scale, and risk sets, and

defined a case-cohort pseudo-partial likelihood for the weighted Cox model. I have
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reviewed the relevant extant literature, and described my research focus.

In Chapter 2, I describe and justify a general data-generating mechanism for the

simulation studies in this thesis. Specific simulation studies have any alterations to

this general data generating mechanism described in the relevant chapter.

In Chapter 3, I investigate estimation of coefficients and cumulative baseline hazard

in the case-cohort design. Simulation studies are performed to compare Prentice,

Barlow, and IPW methods. I also investigate whether post-stratification on case or

non-case status and failure time t(j) provide improvements in performance.

In Chapter 4, I investigate use of martingale residuals in detection of inappropriate

functional form in the case-cohort design. A simulation study is performed with

statistical assessment of non-linearity of weighted linear splines used as a proxy for

subjective visual assessment of weighted smooths.

In Chapter 5, I investigate detection of non-proportional hazards in the case-cohort

design. Methods involving Schoenfeld residuals, scaled Schoenfeld residuals, and

inclusion of an interaction with time are assessed by a simulation study.

In Chapter 6, I investigate methods for model and variable selection in the case-

cohort design. The robust Wald test, and modifications to the Likelihood Ratio

test, Bayesian Information Criterion, and Akaike Information Criterion are assessed

by simulation study. Modifications to likelihood-based methods include näıeve re-

placement of the partial likelihood with the pseudopartial likelihood, the modified

Likelihood Ratio test as proposed by Lumley & Scott as applicable to the case-

cohort design, and application to the case-cohort design of the modified AIC and

BIC proposed by Lumley & Scott for complex survey data.

In Chapter 7, I apply the methods described in the previous chapters to a real-

world dataset, InterAct; a case–cohort study designed to allow for examination of

genetic and lifestyle factors on incidence of type 2 diabetes in the EPIC Study.

In Chapter 8, I summarize the conclusions of this thesis and discuss possible av-

enues for future research.

Finally, in an Appendix, provide sample STATA code for the methods described

in this thesis. I also discuss the general approaches and challenges to implementa-

tion of the methods under Prentice and IPW weighting in STATA.
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Chapter 2

General Data-Generating

Mechanism

2.1 Introduction

In this thesis, a number of different simulation studies are presented. The overall

goal of each simulation study was to assess the performance of case-cohort estima-

tion and post-estimation procedures, often with regard to a “gold standard” such as

full-cohort results or a commonly-used method. Methods were assessed across dif-

ferent combinations of case percentages, non-case to case ratios, β, time-scales, and

other factors to assess whether the performance of methods is affected by such fac-

tors. In designing these simulation studies, I aimed to provide circumstances which

are more similar to those encountered when using case-cohort designs in practice

than are sometimes found in the literature, such as in the studies described in Sec-

tion 3.2.1.5.1. Further, I aimed to provide a level of consistency in follow-up times,

case percentages and subcohort sampling fractions, to mitigate any potential con-

founding effects that large amounts of variation in these factors may cause when I

assessed the performance of methods across the combinations of factors listed above.

A general data-generating mechanism applies to all simulation studies in this thesis,

unless otherwise specified. In this chapter, I describe and justify this general data-

generating mechanism. Choice of covariates, covariate functional forms, associated

coefficients, and other model parameters vary according to the purpose of the sim-

ulation study and are detailed separately in each chapter.

In Section 2.2 I describe my use of the Cambridge centre of the InterAct dataset

to model plausible baseline survival distribution for events such as would be the

focus of a case-cohort study. In Section 2.3.1 I describe the methods of Bender

et al. (2005) for simulation of survival times with proportional hazards under fixed
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entry and my adaptation to allow for simulation of survival times under staggered

entry. In Section 2.3.1.1 I describe how scaling can be applied to the parameters

obtained in Section 2.2 to obtain broadly similar follow-up times across simulation

studies, regardless of differing hazard ratios and case percentages. In Section 2.3.2

I describe the methods of Bender et al. (2005) for simulation of survival times with

non-proportional hazards under fixed entry and my adaptation to allow for simula-

tion of survival times under staggered entry. In Section 2.3.2.1 I describe how, when

simulating datasets with non-proportional hazards, the direction and magnitude of

the non-proportionality of the hazard can be specified.

In Section 2.4 I justify my choices of subcohort size, sampling fractions, and case

percentages, describe the procedure I use to administratively censor the dataset to

achieve a desired case percentage, and describe the sampling procedure by which

I achieve a desired subcohort sampling fraction and the final case-cohort dataset.

In Section 2.7 I provide summary statistics for full cohorts generated via this data-

generating mechanism, and finally, in Section 2.8 I discuss the potential limitations

of this general data-generating mechanism, and alternatives that were considered.

2.2 Baseline Survival Distributions

In this thesis, a variety of estimation and post-estimation procedures were assessed

for a variety of covariates and coefficients. This required baseline survival distribu-

tions from which event times and early censoring times could be simulated. In order

that the simulation studies in this thesis were reflective of datasets that might be

seen in practice, initial parameters for simulation of survival times were modelled

from the Cambridge centre of the InterAct dataset, a case-cohort study described

briefly below and in more detail in 7.2. Note that the aim of this procedure is not

to simulate the Cambridge centre of the InterAct dataset itself, but rather to obtain

plausible baseline survival distributions for events such as would be the focus of a

case-cohort study.

2.2.1 The InterAct Study

The InterAct case-cohort study is designed to allow for examination of genetic and

lifestyle factors on incidence of type 2 diabetes in the EPIC Study. Standard an-

thropometric data and biological samples were collected from 346,055 of 455,680

individuals over 11 study locations. Individuals with prevalent diabetes (n=5821)

at baseline were excluded. The InterAct study consists of 12,403 incident type 2

diabetes cases and a randomly selected subcohort of 16,154 individuals, drawn from
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a total cohort of 340,234 participants with 3.99 million person-years of follow-up.

The participants, methods, study design and measurements are described in more

detail in Chapter 7 and comprehensively in InterAct Consortium et al. (2011).

The Cambridge centre of the InterAct dataset consists of 960 subcohort non-cases,

29 subcohort cases, and 758 non-subcohort cases drawn from a full cohort of 23,081

subjects. Following exclusion of 77 subcohort non-cases, 3 subcohort cases and 41

non-subcohort cases with missing data for Physical Activity, the Cambridge centre

of the InterAct dataset consists of 1,626 subjects, comprising 743 non-subcohort

cases, 26 subcohort cases and 883 subcohort non-cases, drawn from a full cohort of

20,023. The subcohort sampling fraction is 4.38%, the subcohort non-case sampling

fraction is 4.41%, and the full-cohort case percentage is 3.58%. For study end de-

fined as 31st December 2007, 121 subjects were lost-to-follow-up, comprising 13.31%

of the subcohort sample and 13.7% of the non-cases. In the rest of this section, for

brevity, the Cambridge centre of the InterAct dataset after exclusions on Physical

Activity is referred to as the InterAct dataset.

The median and interquartile range for survival times of cases under duration as

time-scale and age as time-scale in the InterAct dataset is shown in Table 2.1.

Table 2.1: Survival Times of Cases (Years) - InterAct

Min 25th Percentile Median 75th Percentile Max

Follow-Up Time 0.25 4.73 6.14 7.66 12.69

Age at Event 43.09 62.69 69.25 74.98 85.56

2.2.2 Modeling of Full Cohort Parameters from InterAct

In this thesis I simulate survival times using two distinct time-scales, each modelled

from the InterAct dataset using a different analysis time-scale. In the first, denoted

fixed entry, subjects become at risk at recruitment to the study, such that entry

times T(0) = 0 ∀i. In the second, denoted staggered entry, subjects become at risk

at “birth”, such that entry times t(0)i vary by subject. Note that regardless of the

“true” type of entry, a researcher could choose to analyse the data using study

duration or using age as time-scale, and indeed, the same dataset may be analysed

using different timescales as I do below. However, in simulation studies in this thesis,

analysis time-scale corresponds to simulation time-scale.
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To obtain a baseline survival distribution for an event of interest, a selection of co-

variates were centred with mean equal 0, so as to allow for parametric modeling of

a baseline survival distribution for an “average” subject. The covariates included

in the model were: Physical Activity, a 4-level categorical covariate, treated here as

continuous; body mass index (BMI), a continuous covariate; Sex, a binary covari-

ate; Any Smoking History, a binary covariate; Any Hypertension, a binary covariate;

Any Hyperlipidemia, a binary covariate; and Family History of Diabetes, a binary

covariate. The event of interest was diagnosis of type 2 diabetes.

The data was modelled separately using study duration as time-scale and age as

time-scale. For duration as time-scale, entry time was set as 0, and exit times were

calculated as days since recruitment. For age as time-scale, entry and exit times

were calculated as age in days at recruitment and age in daysat event or censoring.

For each time-scale, a parametric Weibull model was fitted for the mean-centred

covariates, with IPW Classic weighting, where cases had weight 1 and non-cases

were weighted by the inverse of the non-case sampling fraction.

The resulting parameters for baseline Weibull distributions were, for time in years,

λ = 6.32 × 10−10, v = 2.99, and λ = 4.17 × 10−2, v = 1.39, for data modelled with

age as time-scale and duration as time-scale, respectively.

Figure 2.1: Baseline Hazard Functions as Modelled from InterAct for Type 2 Dia-
betes as Outcome
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2.3 Simulation of Survival Times

Bender et al. (2005) describe methods for simulation of survival times T for simula-

tion studies regarding Cox proportional hazards models. These methods are detailed

for simulations of survival times for covariates with proportional hazards and non-

proportional hazards, and with baseline survival distributions under the exponen-

tial, the Weibull and the Gompertz models. In the general form T = H−1(−log(U)),

where U ∼ Uniform(0, 1).

A limitation of these methods as described is that only fixed entry is specified.

I have extended these methods for a Weibull model with staggered entry and detail

these methods below under proportional hazards and non-proportional hazards.

In this thesis, for staggered entry, values for age at recruitment t(0)i are drawn

using Normal(60, 10), truncated at 40 and 80 years. For fixed entry, t(0)i = 0 ∀i

2.3.1 Survival Times under Proportional Hazards

Let Z be a vector of covariates with associated coefficient vector β.

For a Weibull distribution with entry times t(0)i, scale parameter λ, shape parameter

v, and h(t) = λvtv−1exp(βTZ):

H0(t, t(0)) =

∫ t

t(0)

h0(s)ds =

∫ t

t(0)

λvsv−1ds = λtv − λtv(0)

H−10 (t) =

(
tv(0) +

t

λ

) 1
v

T =

(
tv(0) −

log(U)

λexp(βTZ)

) 1
v

Hence, for fixed entry with t(0)i = 0 ∀i:

T =

(
− log(U)

λexp(βTZ)

) 1
v

2.3.1.1 Scaling of λ

In order to compare results from simulation studies, I aimed for the full cohorts in

each simulation study to have broadly similar survival times regardless of differing

hazard ratios and case percentages. This was to mitigate any confounding effects

that large differences in survival times may have on interpretation of the results of
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simulation studies. It is possible to obtain medians and interquartile ranges of sur-

vival times that are reasonably consistent across differing combinations of covariates

and associated coefficients and case percentages by scaling the λs used to generate

the survival times.

The scaling factor has two components. The first accounts for varying vectors of

covariates and coefficients by ensuring that the expectation of h(t) at a particular

survival time remains constant regardless of the vectors of covariates and coeffi-

cients used for simulation. Hence this first component is set as
(

1
N

∑
exp(βTZ)

)−1
.

The second component accounts for varying case percentages in the data, and was

found by performing a grid search with case percentages 1%, 5%, 10%, and 15%.

The following procedure was performed separately for each time-scale. A lower and

upper bound for the scaling factor was found by exploratory simulation. Scaling

factors assessed were for 200 increments from the lower to the upper bound. For

each case percentage, survival times were generated for 100 full cohort datasets of

size N=10,000 with a single covariate ∼ N(0, 1). The scaling factor resulting in a

median survival time closest to that found in the Cambridge Centre of the InterAct

dataset was recorded, resulting in a dataset consisting of 100 scaling factors × 4 case

percentages. A linear regression of scale against case percentage was performed and

the resulting coefficient used to provide the second component of the scaling factor.

Table 2.2 summarizes the parameters modeled from InterAct, the survival distri-

butions, and the scaling derived from the above methods.

Table 2.2: Survival Distributions for Simulation Studies

Staggered Entry/Exit

Observation Becomes at Risk t0 ∼ Normal(60,10); truncated at 40 & 80

Baseline Survival Distribution: Weibull: λ = 6.32× 10−10, v = 2.99

Baseline λ scaling: 0.28pC
(

1
N

∑
exp(βTZ)

)−1
Fixed Entry

Observation Becomes at risk t0 = 0

Baseline Survival Distribution Weibull: λ = 4.17× 10−2, v = 1.39

Baseline λ scaling: 0.35pC
(

1
N

∑
exp(βTZ)

)−1
pC = proportion of cases; N = full cohort size; t˙0 = time of entry to study
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2.3.2 Survival Times Under Non-Proportional Hazards

Survival times for non-proportional hazards can be simulated by incorporating a

time dependent effect φ. Let Z be a vector of covariates which do not interact

with time, with coefficient vector β, and Zφ be a vector of covariates which interact

with time, with coefficient vector βφ, and vector of interaction effect with log time φ.

For a Weibull distribution with h(t) = λvtv−1exp(βTZ + βTφZφ + log(t)φZφ) and

entry times t(0)i:

H(t) =

∫ t

t(0)

h(s)ds =

∫ t

t(0)

λvsv−1exp
(
βTZ + βTφZφ + log(s)φZφ

)
ds

H(t) = λvexp(βTZ + βTφZφ)
tφZφ+v − tφZφ+v(0)

φZφ + v

H−1(t) =

(
t

φZφ + v

λvexp(βTZ + βTφZφ)
+ t

φZφ+v

(0)

) 1
φZφ+v

T =

(
−log(U)

φZφ + v

λvexp(βTZ + βTφZφ)
+ t

φZφ+v

(0)

) 1
φZφ+v

Hence, for fixed entry with t(0)i = 0 ∀i:

T =

(
−log(U)

φZφ + v

λvexp(βTZ + βTφZφ)

) 1
φZφ+v

2.3.2.1 Choice of φ and βφ

For simulation of datasets where covariates(s) display non-proportional hazards by

the methods described in Section 2.3.2, φ and βφ must be specified. In this thesis,

φ and βφ are chosen by the following method, which allows for stipulation of the

direction and magnitude of the non-proportionality of the hazard.

φ and βφ are chosen with regard to survival times for a reference proportional haz-

ards dataset, where the reference dataset has the same time-scale, case percentage,

vector of covariates, and vector of coefficients for those covariates with proportional

hazards, as will be specified for the non-proportional hazards dataset. Let Zk be

a covariate to be simulated under non-proportional hazards, and let βk refer to a

specified coefficient of Zk in the reference dataset. Let tp25, tp50, and tp75 refer to

the survival times for the 25th percentile, median, and 75th percentile of cases in

the reference dataset.
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The aim is to choose φk and βφk so that (1) at time tp50, βφk + φkln(t) = βk,

βφk + ln(tp50)φk = βk

βφk = βk − ln(tp50)φk

and (2) there is a specified change in hazard ratio ∆ between times tp25 and tp75.

exp(βφk + ln(tp75)φk) = ∆exp(βφk + ln(tp25)φk)

φk =
ln(∆)

ln(tp75)− ln(tp25)

With this method, the median survival time for a particular coefficient βk under

proportional hazards is used as a “pivot” for choice of φk and βφk, so as to give a

desired ratio between the Hazard Ratios at the 25th and 75th percentiles of survival

times of cases under proportional hazards. Converging hazards, diverging hazards,

and crossing hazards of different magnitudes can all be achieved by appropriate

choice of ∆ and βk.

2.4 Subcohort Size, Censoring & Sampling

As described in Chapter 1, Sharp et al. (2014) conducted a review of 32 published

analyses of case-cohort studies, summarized in Table 1.1. In this thesis, subcohort

sizes considered are 200 and 1000, chosen based on the minimum and 25th percentile

of published analyses for which complete information on full cohort size, subcohort

size and number of cases post-exclusions was available. Subcohort sampling fractions

considered are 3% and 15%, with full cohort case percentages such as to give non-case

to case ratios of 1:1 and 4:1, both chosen to incorporate the interquartile ranges from

same. The full cohort sizes and number of cases corresponding to these subcohort

sizes, sampling fractions and non-case to case ratios are given in Table 2.3.

2.4.1 Right-Censoring

Following simulation of survival times as described in previous sections, the result-

ing dataset has a known event time for each subject. In this section, I describe the

methods by which a desired full cohort case percentage is achieved. Regardless of

time-scale, in this thesis I use a single study design where recruitment is considered

to take place at the same calendar time for all subjects, and administrative censor-

ing takes place after a fixed period of follow-up tF for all subjects. Note that in

practice, studies will generally display recruitment over a period of time, for logis-
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tical reasons, and that “fixed” administrative censoring may also take place over a

period of time, for same. Studies will also likely display a degree of loss to follow-up.

tF is chosen to achieve a specified proportion of cases pC . The uncensored dataset

consists of N subjects, each with uncensored survival time TU and entry time to the

study T(0). For each subject, the uncensored follow-up time T FU = TU − T(0). RU

= the rank order of T FU . The scalar tF = the value of T FU for the subject with RU

= NpC , and the administratively censored survival time TA = T(0) + tf . The final

recorded survival time TR = min(TU , TA).

Let the case indicator D = 1 if TR = TU and D = 0 else. The resulting full

cohort dataset consists of N(0) subjects with NpC cases, final recorded survival time

TR, entry time to the study T(0) and binary indicator variable D indicating case or

non-case status.

2.4.2 Case-Cohort Sampling

In this thesis, simulated datasets are randomly sampled so that the resulting dataset

will have a specified subcohort sampling fraction α. For each observation, a random

value U is independently drawn from Uniform(0, 1). RS = the rank order of U for

each subject and the scalar uS = the value of U for the subject with RS = Nα. The

subcohort indicator S = 1 if U ≤ uS and S = 0 else. The final case-cohort dataset

consist of subjects with S = 1 or D = 1.

Table 2.3: Full Cohort Sizes and Number of Cases Considered in this Thesis

NSC :

Subcohort size
200 1000

NNC

NC

Non-case to case ratio

α (%)

Sampling Fraction

N

Full cohort size

NC

No. of cases

N

Full cohort size

NC

No. of cases

4
15 1,333 48 6,667 241

3 6,667 50 33,333 248

1
15 1.333 170 6,667 850

3 6,667 194 33,333 970

2.5 Independence and Replicates

Separate full cohorts are simulated for each combination of time-scale, subcohort

size, subcohort sampling fraction, non-case to case ratio, vector of covariates and

vector of coefficients. Each simulation study is carried out over 1000 replicates.
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2.6 Centering

In this thesis, covariates are centred with mean equal 0 prior to simulation of survival

times. Covariates are also centred with mean equal 0 prior to analysis, with IPW

Classic weighting used to calculate the means in the case-cohort sample.

2.7 Checking the Simulation Design

In order to demonstrate consistency of survival times in datasets with proportional

hazards under this general data-generating mechanism, 100 full cohort replicates

were generated for the following scenarios:

• Time-Scale: staggered entry, fixed entry

• Case Percentage: 0.5%, 1%, 5%, 10%, 15%

• Full Cohort Size: 1000, 5000, 10000, 20000, 50000

• Covariates: two covariates centred with mean equal 0; both ∼ Binomial(0.5),

both ∼ Normal(0, 1), one ∼ Binomial(0.5) and the other ∼ Normal(0,1)

• Correlation: covariates drawn independently, covariates with ρ = 0.5

• Coefficients: ln(2)/SD, ln(0.5)/SD, ln(.8)/SD, ln(1.25)/SD

Figure 2.2 shows boxplots for recorded survival times of cases by entry type and

number of cases in the dataset. Staggered entry displays greater variability of sur-

vival times than fixed entry. Smaller numbers of cases in the datasets correspond

to increasing variability of survival times. Survival times for each benchmark are

broadly consistent, with medians similar to the survival times seen in the Cambridge

centre of the Interact Dataset.
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Figure 2.2: Survival Times (Years) in the General Simulation Design

∑
d = number of cases

y axis starts at birth for staggered entry and at recruitment for fixed entry

To demonstrate survival times for datasets with non-proportional hazards under this

general DGM, 100 full cohorts were generated for the following scenarios:

• Time-Scale: staggered entry, fixed entry

• Full Cohort: 10,000

• Case Percentage: 4%

• Covariates: two covariates centred with mean equal 0 generated independently

∼ Binomial(0.5).

• Coefficients (reference datasets): ln(2)/SD, ln(0.5)/SD, ln(.8)/SD and ln(1.25)/SD.

• ∆ (for one covariate) = 0.5, 0.8, 1, 1.25, 2. ∆ = 1, or no change, serves as a

reference for the corresponding results under proportional hazards.

Table 2.4 shows values of φ and βφ for the scenarios detailed above. Note that βφ is

the coefficient of the covariate Zφ at time t = 1 where log(t) = 0. As time in days t

increases, the influence of βφ on the overall hazard, compared to that of φ decreases.
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Hence, while βφ is large in Table 2.4, the corresponding hazard ratios (HR) shown

in Fig. 2.3 are less extreme. Fig. 2.4 shows boxplots for the median survival times

of cases in each replicate. Divergence of HR from the reference corresponds to

that of the median survival times, with increase/decrease of median survival times

dependant on the signs of φ and βk.

Table 2.4: φ and βφ Corresponding to ∆ and HR/SD

Time-Scale Covariate HR/SD

∆:

0.5 0.8 1 1.25 2

φ βφ φ βφ φ βφ φ βφ φ βφ

Stag. Entry

Binary

0.5 -3.87 37.87 -1.25 11.25 0 -1.39 1.25 -14.02 3.87 -40.64

0.8 -3.87 38.81 -1.25 10.33 0 -0.45 1.25 -13.08 3.87 -39.70

1.25 -3.87 39.70 -1.25 10.33 0 0.45 1.25 -12.19 3.87 -38.81

2 -3.87 40.64 -1.25 10.33 0 1.39 1.25 -11.25 3.87 -37.87

Normal

0.5 -3.87 38.56 -1.25 10.33 0 -0.69 1.25 -13.33 3.87 -39.95

0.8 -3.87 39.03 -1.25 10.33 0 -0.22 1.25 -12.86 3.87 -39.48

1.25 -3.87 39.48 -1.25 10.33 0 0.22 1.25 -12.41 3.87 -39.03

2 -3.87 39.95 -1.25 10.33 0 0.69 1.25 -11.94 3.87 -38.56

Fix. Entry

Binary

0.5 -1.44 9.71 -0.46 0.71 0 -1.39 0.46 -4.96 1.44 -12.48

0.8 -1.44 10.65 -0.46 0.71 0 -0.45 0.46 -4.02 1.44 -11.54

1.25 -1.44 11.54 -0.46 0.71 0 0.45 0.46 -3.12 1.44 -10.65

2 -1.44 12.48 -0.46 0.71 0 1.39 0.46 -2.18 1.44 -9.71

Normal

0.5 -1.44 10.40 -0.46 0.71 0 -0.69 0.46 -4.26 1.44 -11.79

0.8 -1.44 10.87 -0.46 0.71 0 -0.22 0.46 -3.79 1.44 -11.32

1.25 -1.44 11.32 -0.46 0.71 0 0.22 0.46 -3.35 1.44 -10.87

2 -1.44 11.79 -0.46 0.71 0 0.69 0.46 -2.88 1.44 -10.40

∆ change in hazard ratio between 25th and 75th percentile of reference survival times

Coefficient of covariate Zφ is betaφ + log(t) ∗ φ

HR/SD refers to the coefficient of the reference dataset
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Figure 2.3: Hazard Ratios against Survival Time (Years) for varying ∆ and, varying
β in the reference dataset

∆ change in hazard ratio between 25th and 75th percentile of reference survival times
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∆ change in hazard ratio between 25th and 75th percentile of reference survival times
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Figure 2.4: Median Survival Times of Cases for varying ∆ and, varying β in the
reference dataset
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2.8 Discussion

The methods described in this chapter bring in their own possible confounding fac-

tors and limitations.

The choice of a Weibull model for simulation of survival times limits the scope

of the results. It is possible that the methods explored in this thesis may exhibit

differing behaviours under exponential, Gompertz, or other distributions. Further,

the choice of a Weibull model for simulation of survival times requires that under

non-proportional hazards the covariate interacts with ln(time). It is possible that

interactions with other functions of time may give different results.

The choices to model parameters for the Weibull distribution from the InterAct

dataset, to scale λ, and to choose values for φk and βφk such that non-proportional

hazards datasets show some similar characteristics to the proportional hazards datasets

simulated in this thesis, all introduce the concern that the scope of simulation stud-

ies in this thesis is limited to datasets that are similar to InterAct. However, in

any simulation study design, limiting choices must be made, and the advantages of

consistency across simulation studies, and applicability to at least one example of a

real-world case-cohort dataset motivated these decisions.

There are alternatives for the censoring and sampling methods described in this

chapter. Administrative censoring could be carried out at a specified follow-up time,

based on some model that is expected to give the desired case percentage. Subco-

hort sampling could be carried out by selecting as the subcohort all subjects with

U ≤ α, as the CDF of a U(a, b) distribution is x−a
b−a . Both such alternatives would

introduce a level of variation in the case percentages and sampling fractions seen

in each simulated dataset. As part of the aim of this data-generating mechanism is

to minimise any potential confounding effects, it was decided not to introduce such

variation in this thesis.

In practice, recruitment and, in some cases, administrative censoring, will likely take

place over a period of time, for logistical reasons, whereas in this data-generating

mechanism, recruitment and administrative censoring are instantaneous. The fixed

entry data generating mechanism is therefore a “best case scenario”, with no loss of

subjects due to staggered entry, staggered exit or loss-to-follow-up. Note, however,

that for evaluating whether estimation and post-estimation methods are appropriate

in the case-cohort design, such a “best case scenario” may be valuable.
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Estimation

3.1 Introduction

In the case-cohort design, estimation under the Cox PH model requires adjustments

for the over-representation of cases in the case-cohort sample. Going forward, such

adjustments will be referred to as weighting methods.

A number of weighting methods, as described in Chapter 1, have been proposed. In

section 3.2, I describe the weighting methods for estimation of β considered in this

chapter. As described in Chapter 1, in practice, the most commonly used weighting

methods in the case-cohort design are those proposed by Prentice (1986) and Barlow

(1994) (Sharp et al., 2014). Prentice and Barlow weighting are hence considered due

to their wide use in practice. Inverse probability weighting (IPW), is also consid-

ered due to its ease of implementation and reports from literature that it may have

improved performance over Prentice and Barlow in certain circumstances. Further,

in future chapters, IPW may be more easily applied where weighting is required for

post-estimation procedures to be adapted to the case-cohort design. Application of

time-based post-stratification to weighting methods is also described in this section.

A number of simulation studies comparing the performance of weighting methods for

estimation of β exist in the literature. Kim (2014) attempts to reconcile these con-

flicting results with the explanation that the relative performance of weighting sys-

tems depends upon the interplay between full cohort size, full cohort case-percentage,

and subcohort sampling fraction. However, I hypothesise that the relationship is

somewhat more nuanced. In Section 3.2.1.5, I briefly describe these comparisons

and theorise that relative performance of case-cohort weighting systems depends

upon the interplay of censoring type, subcohort size, sampling fraction, and case to

non-case ratio in the case-cohort sample.
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In Section 3.3, I describe the weighting methods for estimation of cumulative base-

line hazard H0(t) considered in this chapter. In section 3.4, I perform a simulation

study comparing the performance of these weighting methods in a variety of cir-

cumstances. In section 3.6, I discuss the results of the simulation study, reconcile

my results with the extant literature, and make recommendations for estimation of

β and H0(t) in the case-cohort design.

Overall, results from the simulation study indicated that both IPW and Prentice

are appropriate for estimation of β in the case-cohort design, and offer improved

performance over Barlow. IPW weighting shows similar performance to Prentice in

estimation ofH0(t), with post-stratification based on time providing an improvement

in precision for both weighting methods, particularly where the sampling fractions

of non-cases in the risk sets for each failure time show high variability.

3.2 Estimation of Coefficients

3.2.1 Weighting Methods

Recall from Chapter 1, that, using the notation and risk set structure from 1.2.1.4,

the partial likelihood for the Cox model is given by

pL(β) =
NC∏
j=1

exp(βTZ[j])

exp(βTZ[j]) +
∑

i∈R(j)

exp(βTZi)

and the pseudopartial likelihood for a case-cohort sample is given by

pL∗(β) =
NC∏
j=1

w[j]exp(β
TZ[j])

w[j]exp(βTZ[j]) +
K∑
k=1

wk(j)
∑

i∈Rk
(j)

exp(βTZi)

Let the subcohort sample refer to a randomly selected sample of the full cohort, with

each observation having probability of selection p. Let the case-cohort sample refer

to the subcohort sample and any full-cohort cases not included in the subcohort

sample. Let α(j) refer to the subcohort sampling fraction for the risk set associated

with each failure time. i.e. the proportion of the full cohort risk set R(j) included in

the subcohort sample. Let α, the subcohort sampling fraction at time t(0), refer to

the proportion of the full cohort included in the overall subcohort sample. Let R(j)

= RC
(j) ∪ RNC

(j) , the union of the cases at risk at time t(j) and the non-cases at risk

at time t(j). Hence, let αC and αNC , refer to the subcohort non-case and subcohort
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case sampling fractions, and let αC(j) and αNC(j) refer to the proportion of the full

cohort cases and non-cases at risk at time t(j) at risk in the subcohort at time t(j),

respectively.

3.2.1.1 Prentice Weighting

Analysis of the case-cohort sample in the Cox PH model, as proposed by Prentice

(1986), is carried out via a modification of the partial likelihood. Non-subcohort

cases are excluded from the denominator risk sets at all times except for at their

time of failure. This can be accomplished by giving subcohort observations weight 1

at all times, with non-subcohort cases taking weight 0 prior to failure, and weight of

1 at failure time t(j). Alternatively, entry time of non-subcohort cases can be altered

so that the non-subcohort cases enter the study just prior to their failure time.

3.2.1.2 Barlow Weighting

Barlow weighting treats non-subcohort cases as in Prentice weighting, with a weight

of 0 prior to failure, and a weight of 1 at their failure time t(j). Subcohort cases are

also given weight 1 at their failure time t(j), and all other subcohort observations

at risk at time t(j) are weighted by the inverse of the subcohort sampling fraction.

Two separate variations for the subcohort sampling fraction have been proposed.

Originally, Barlow (1994) proposed use of the subcohort sampling fraction at time

t(j), α(j) =
NSC

(j)

N(j)
. However, as this required different weights at each failure time,

with the subcohort being enumerated each time, Barlow et al. (1999) suggests use

of the overall subcohort sampling fraction, α = NSC

N
as an estimator for α(j). This

appears to be common practice, however given advances in computing, this repeated

enumeration is no longer such a barrier should it result in improved performance.

For ease of description, let the Barlow weighting method where α is used for weight-

ing of i ∈ R∗j be termed Barlow Classic and let the Barlow weighting method where

α(j) is used for weighting of i ∈ R∗j be termed Barlow Time.

3.2.1.3 Inverse Probability Weighting

Inverse probability weighting (IPW) gives each observation a weight inverse to its

probability of inclusion in the analysis. In the case-cohort design, while both cases

and non-cases are included in the subcohort sample with probability p, cases are

included in the case-cohort sample with probability 1. Hence, use of a weight of 1

for all cases in the case-cohort sample can be justified under IPW analysis. The risk

set for cases is the same as that of the full cohort and variation occurs only with

regard to the selection of subcohort non-cases.
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This was first explicitly proposed for case-cohort analysis by Kalbfleisch and Lawless

(1988) with p = α for non-cases. Chen and Lo (1999) also proposed a case-cohort

estimator which can be considered to be an IPW variant with p = αNC for non-cases,

however it is not presented as a form of IPW. For the stratified case-cohort design,

Borgan et al. (2000) describes a number of IPW weighting methods, including that

of Chen extended to the stratified case-cohort design, and an adaptation where non-

cases are the above weights are replaced by their time-dependent equivalents αNC(j) .

For ease of description, let the IPW weighting method where αNC is used for weight-

ing of i ∈ R∗NCj be termed IPW Classic and let the IPW weighting method where

αNCj is used for weighting of i ∈ R∗NCj be termed IPW Time.

3.2.1.4 Post-Stratification Approach

Both Barlow and IPW weighting methods can be considered as an attempt to mimic

or duplicate the denominator of the full cohort likelihood, with IPW using the addi-

tional information of the cases outside the subcohort at times other than their failure

time. Note that this is not a requirement for correct estimation, but is a similarity

between the methods. Unlike Prentice weighting, under Barlow and IPW weighting

the expectation for the denominator of the pseudolikelihood at each failure time t(j)

is equal to that of the full cohort, since the subcohort case and non-case risk sets

at each failure time t(j) can be considered as a simple random sample from the full

cohort cases or non-cases at that failure time t(j).

For a particular failure time t(j), IPW Classic and Barlow Classic are likely to assign

weights that do not reflect the true composition of the full cohort at that time. This

is due to variation in the empirical overall subcohort sampling fractions and non-case

subcohort sampling fractions, as their sizes at particular times t(j) vary. Essentially,

the use of α and αNC to estimate α(j) and αNC(j) , respectively, likely means that there

are elements of the variation in the denominator of the pseudolikelihood which can

be compensated for by adjusting weights based on empirical sampling fractions at

each failure time t(j). While this does not directly mean there will be a decrease in

variation of β̂, a reduction in variance of this denominator might imply an improve-

ment in precision of β̂.

Barlow Time and IPW Time can be considered as post-stratification approaches

that make use of available information on substrata of the full cohort so as to reduce

variation in the denominator of the pseudolikelihood, accounting for the variation in

the ratio of subcohort size to full cohort size, and subcohort non-cases to full cohort
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non-cases at a particular time t(j), respectively. This approach can be generalised to

any definition of potentially relevant strata where the number of observations within

each stratum is known for both the full cohort and the subcohort sample.

Table 3.1 summarizes variant weights for each component of the pseudolikelihood.

Table 3.1: Weights for Each Component of the Pseudolikelihood at risk at time t(j)

Prentice
Barlow

Classic

Barlow

Time

IPW

Classic

IPW

Time

Case failing at time t(j) 1 1 1 1 1

Non-Subcohort Case at risk at time t(j) 0 0 0 1 1

Subcohort Case at risk at time t(j) 1 1/α 1/α(j) 1 1

Subcohort Non-Case at risk at time t(j) 1 1/α 1/α(j) 1/αNC 1/αNC(j)

α overall subcohort sampling fraction; αNC overall subcohort non-case sampling fraction;

α(j) subcohort sampling fraction at t(j); α
NC
(j) subcohort non-case sampling fraction at t(j)

3.2.1.5 Comparative Performance of Weighting Methods

Some studies exist that compare the relative performance of Prentice, Barlow,

and/or IPW methods. Drawing overarching conclusions from these studies is diffi-

cult, as each study considers different combinations of full cohort sizes, case percent-

ages, sampling fractions, and analysis time scales. Reporting of results as they relate

to various case-cohort characteristics of interest is also not consistent. Datasets are

generally described in terms of full cohort size, subcohort sampling fraction, and

case percentage, which allows for understanding of performance of weighting systems

as compared to the full cohort. However, for comparison of performance between

weighting systems, and guidance to end-users as to which weighting method to use,

subcohort size (NSC) and non-case to case ratio in the case-cohort sample may be

more relevant and estimates of these quantities are also presented here.

I theorise that relative performance of case-cohort weighting systems depends upon

the interplay of entry and exit type, subcohort size, sampling fraction, and case to

non-case ratio. Under fixed entry analysis, with no loss to follow-up, the maximum

subcohort risk set size is the size of the subcohort, with risk set size decreasing with

time, as subcohort cases reach their failure time. The minimum subcohort risk set

size is the size of the subcohort non-cases. With loss-to-follow-up, the maximum

subcohort risk set size is the same, and risk set size still decreases with time, but to

a greater degree, as a portion of the subcohort non-cases are absent from risk sets

after reaching their censoring time. Under staggered entry, subcohort risk set sizes

will be smaller and more variable than if the same dataset was analysed under fixed
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entry. Size of subcohort risk sets will decline steadily over time, as subjects display

delayed entry. As subcohort size and sampling fraction decrease, subcohort risk set

sizes become more variable. As non-case to case ratio increases, Barlow and Prentice

weighting lose more information from exclusion of non-subcohort cases from risk sets.

In this section, the characteristics of each of the studies are first summarized, fol-

lowed by an overall summary of their results and conclusions.

3.2.1.5.1 Characteristics of Studies Comparing Weighting Methods

Barlow et al. (1999) compares Barlow Classic and Prentice in the Welch Nickel

Refinery dataset, which is a full cohort of 637 subjects with ∼ 9% cases, analysed

with age as time-scale (staggered entry). Sampling fractions from 10%-90% were

considered, each drawn from the the Welch Nickel Refinery dataset over 200 repli-

cates. NSC was therefore ∼ 64 to 570, with non-case to case ratios from 1:1 to 9.2:1.

In a simulation study comparing estimators in the stratified case-cohort design,

Borgan et al. (2000) also compare Prentice and IPW Classic in an unstratified sam-

ple from a full cohort of 1000 subjects with 10% cases and 10% sampling fraction

over 1000 replicates, analysed with fixed entry and 20% early censoring. NSC was

therefore ∼ 100 with non-case to case ratio 1:1.

Petersen et al. (2003) compares Barlow Classic, Prentice, and IPW Classic in full

cohorts of 12,301 with 13.6% cases, analysed with age as time-scale (staggered en-

try). Sampling fractions of 3%, 11%, and 20% percent were considered, each over

1000 replicates. NSC was therefore ∼ 370, 1350, 2500, with non-case to case ratios

0.2:1, 0.7:1 and 1.3:1, respectively.

Onland-Moret et al. (2007) compares Barlow Classic and Prentice under a number

of scenarios, each analysed with fixed entry over 50 replicates. Type of right cen-

soring was not explicitly specified, but appears to be fixed administrative censoring.

Scenarios considered were 8% cases and full cohorts of 1,000 for sampling fractions

ranging from 5%-70%; 8% cases and sampling fractions of 5%, 10% and 20% in full

cohorts ranging from 200-2000; sampling fraction of 10% and full cohort of 2000

with case percentages ranging from 1-30%. NSC was therefore ∼ 10, 20, 40, 50, 100,

with non-case to case ratio 0.6:1, 1.2:1, 2.3:1, 0.6:1, and 0.6:1, respectively; NSC

∼ 200 with non-case to case ratios 0.2:1, 1.2:1, and 9.9:1; NSC ∼ 400 with non-case

to case ratio 2.3:1; and NSC ∼ 700 with non-case to case ratio 8.1:1.

Kim (2014) compares Barlow Classic, Prentice, and IPW Classic under a number of
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scenarios, each analysed with fixed entry over 5000 replicates. Right censoring was

carried out by generating random censoring times, uniformly distributed between 0

and c, with c chosen such that the desired case percentage would be achieved. The

earlier of censoring or failure time was observed for each subject. This study hence

included loss-to-follow-up, though the degree of this was not specified. Scenarios

considered were 15% cases in full cohorts of 500, 1000, and 1500, and sampling frac-

tions of 14%, 25% and 49%; and case percentages pC of 0.1%, 1%, 5%, 10%, each

with sampling fraction 14%, 25%, 49% and full cohorts equal to 7500pC , 15000pC ,

and 22500pC . The simulation study with 15% cases was also conducted with fixed

administrative censoring times.NSC therefore ranges from ∼ 70−200 with non-case

to case ratio 0.8:1 to 2.8:1; NSC from ∼ 250− 750 with non-case to case ratio 1.3:1

to 9.3:1; NSC from ∼ 1000 − 7500 with non-case to case ratio 4.4:1 to 48.5:1; and

NSC from ∼ 10000− 110000 with non-case to case ratio 48.5:1 to 489.5:1.

3.2.1.5.2 Results for Barlow vs. Prentice

In no comparison does Barlow offer improved performance over Prentice. Petersen

found no differences in bias or efficiency between Barlow Classic and Prentice Classic.

Onland Moret suggests that where the subcohort is 15% or more of the full cohort

size, Barlow Classic and Prentice give extremely similar results, that are also very

similar to the full cohort estimates. A number of comparisons found that Barlow

overestimates the coefficients where subcohort sample sizes are small (between 90

and 140 subjects, depending on sampling fraction and full cohort size). Further,

a number of comparisons found that Barlow showed higher variance of coefficient

estimates when subcohort size was small (100 subjects in Onland Moret, 200 subjects

in Barlow, and 140 subjects in Kim. It should be noted that Kim did not specify the

relative performance of Prentice and Barlow in the study with fixed administrative

censoring, and this finding is for the study with random right censoring. In general,

where differences were found, it appears that the magnitude of the hazard ratios,

and use of binary or continuous covariates makes little difference to the relative

performance of Barlow Classic and Prentice weighting.

3.2.1.5.3 Results for IPW vs. Barlow/Prentice

Petersen found no differences in bias or efficiency between Prentice, and IPW Classic.

Borgan found that IPW Classic displays improved efficiency over Prentice where

the covariate is more variable or has a greater mean. Kim found that IPW Classic

yielded higher efficiency than Prentice and Barlow, with this increase in efficiency

greater at higher magnitude of β. Kim also found that IPW Classic had greater

power than Prentice, but the relative difference of power was moderate even where

difference of variance was relatively large. Kim also found that as the proportion of
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failure events in the full cohort became smaller (< 10%), differences in performance

between weighting methods reduced. Overall, the literature suggests that IPW

Classic weighting may show similar or improved performance compared to Prentice

weighting, and improved performance compared to Barlow Weighting.

3.3 Estimation of Cumulative Baseline Hazard

Recall from Chapter 1 that, using the notation and risk set structure from Chapter

1 Section 2.1.4, the the Breslow estimator of H0(t) in the full cohort is given by:

Ĥ0(t) =
∑
t(j)≤t

ĥ0(t(j)) =
∑
t(j)≤t

1

exp(βTZ[j]) +
∑

i∈R(j)

exp(βTZi)

and the weighted Breslow estimator of H0(t) in the case-cohort is given by:

Ĥ0(t) =
∑
t(j)≤t

ĥ0(t(j)) =
∑
t(j)≤t

1

w[j]exp(βTZ[j]) +
K∑
k=1

wk(j)
∑

i∈Rk
(j)

exp(βTZi)

Prentice (1986) proposes a case-cohort estimator of cumulative baseline hazard

where non-subcohort cases are excluded from the denominator risk sets at all times

except for at their time of failure. The case failing at time t(j) and the subcohort

observations at risk are weighted by the inverse of the subcohort sampling fraction

α. Kulich and Lin (2004) propose a general class of weighted estimators for H0(t),

of which IPW Classic and IPW Time can be considered special cases.

In this Chapter, I consider IPW Classic, IPW Time, Prentice’s estimator (Pren-

tice Classic), and an adaptation Prentice Time, extending the post-stratification

based on the ratio of subcohort size to full cohort size at a particular time t(j) to

Prentice’s estimator. In Prentice Time, the case failing at time t(j) and the sub-

cohort observations at risk are weighted by the inverse of the subcohort sampling

fraction at that time t(j), α(j).

Sanderson et al. (2013) compare Prentice Classic and Barlow Classic estimates of

H0(t) in the context of risk prediction measures and find that both methods provide

similar estimates, but that Prentice Classic is slightly more accurate than Barlow

Classic. To my knowledge no simulation study comparing the performance of IPW

and Prentice estimators of H0(t) are extant in the literature.
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3.4 Simulation Study

This simulation study compares the performance of selected weighting methods to

each-other and the full cohort in estimation of coefficients and cumulative baseline

hazard in the case-cohort design, in circumstances similar to those that might be

seen in practice.

3.4.1 Data Generating Mechanism

Data generation was carried out as per Chapter 2, with the following specifications:

For comparison of estimation of coefficients, full cohorts were simulated with three

binary covariates drawn independently from Binomial(1, 0.5) and three continuous

covariates drawn independently from Normal(0, 1), for six covariates per dataset.

Survival times were generated with vector of coefficients for each covariate type equal

to hazard ratios (HR) per standard deviation (SD) of 1, 1.25, and 2, respectively. For

comparison of estimation of cumulative baseline hazard, full cohorts were simulated

with a binary covariate drawn independently from Binomial(1,0.5) and a continuous

covariate drawn independently from Normal(0,1), for a total of two covariates per

dataset. Coefficients for each covariate are equal, with two coefficients considered,

equal to hazard ratios per standard deviation of 1.25 and 3.

3.5 Estimands

For estimation of coefficients, a Cox PH model was fitted using each weighting

method of interest, with all six covariates included in the model. Where weights

varied by time, weights were rounded to one significant digit to reduce computation

time. Coefficient estimates and their associated standard errors were recorded for

each weighting system and the full-cohort. For estimation of H0(t), a Cox PH

model was fitted using Prentice Classic weighting, with both covariates included in

the model. Case-cohort estimates of H0(t) were calculated using the Prentice Classic

estimate of β and the Breslow estimator weighted appropriately for the weighting

system. For fixed entry, H0(t) was calculated from time t(0) = 0. For staggered entry,

H0(t) was calculated from times chosen so as to avoid many missing estimates early

in time, based on the number of cases NC in the case-cohort dataset.

t(0) =



45, if 500 ≤ NC

50, if 150 ≤ NC < 500

55, if 75 ≤ NC < 150

60, if NC < 75
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For each combination of time-scale, subcohort size, subcohort sampling fraction,

non-case to case ratio, and vector of coefficients, a reference full cohort dataset was

generated using the same data-generating mechanism, with the exception that the

full cohort was of size 50000. 100 benchmark survival times were recorded for the

reference dataset as 100 quantiles of the survival times of cases that survived beyond

the appropriate time t(0) above. Estimates of H0(t) in the case-cohort dataset for

the benchmark survival times were carried forward from the previous survival time.

Full cohort estimates were also calculated.

3.5.1 Methods

For estimation of coefficients, Prentice, Barlow Classic, Barlow Time, IPW Classic

and IPW Time were considered, as well as the full cohort. For estimation of cumu-

lative baseline hazard, Prentice Classic, Prentice Time, IPW Classic and IPW Time

were considered, as well as the full cohort.

3.5.2 Performance Measures

Statistics for performance measures were calculated using the simsum Stata package

(White, 2010), together with their associated Monte Carlo standard errors (MCSE)

which quantify the uncertainty due to a finite number of simulations.

For estimation of coefficients performance measures calculated were bias, mean

squared error, empirical standard error, power, coverage, and proportional error

in the model-based standard error. For estimation of H0(t), performance measures

bias, empirical standard error, and mean square error were calculated at each bench-

mark survival time.

MCSE bounds for each performance measure statistic were calculated as the statistic

+/-1.96*MCSE. Where the MCSE bounds of the weighting methods do not overlap,

it indicates a statistically significant difference in the performance of the weighting

methods. While this is a conservative assessment, and a lack of statistical signifi-

cance should not be inferred from overlapping of MCSE bounds, it does provide a

level of objectivity.

3.5.3 Results

3.5.3.1 Estimation of Coefficients

Time weighting made only minimal difference and hence these variants are not

presented here. All case-cohort estimators performed similarly for Power, Type
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1 error, coverage, and proportional error in the model-based standard error. In

general, Type 1 error was close to a nominal 5%, coverage was close to a nominal

95%, and proportional error in the model-based standard error was within 5% of 0.

Where this pattern was not followed, it was usually in combinations of the smaller

subcohort size of 200, smaller 3% sampling fraction, and/or staggered entry. Further

details on these results are included in the Appendix. Results for Bias, empirical

standard error (ESE) and mean square error (MSE) are discussed below. Graphs of

these results for the subcohort of size 200 presented in Figure 3.1.

3.5.3.1.1 Bias Under the null, MCSE bounds for bias of all weighting systems

overlap with the full cohort and eachother, and generally encompass 0. At subcohort

size 1000, point estimates for bias do not exceed∼ +/-4% of the true β, upper MCSE

bounds do not exceed 6.5% of the true β and lower MCSE bounds do not exceed ∼
+/-4% of the true β. As β increases, case-cohort estimators tend to display more

bias away from the null, especially at the 3% sampling fraction and subcohort size

200. This is not unexpected, as in small samples β̂ has a heavy-tailed distribution.

At subcohort size 200, point estimates do not exceed 17%, 16% and 10% of the

true β, for Barlow, IPW, and Prentice, respectively. Their respective upper MCSE

bounds do not exceed 21%, 19%, and 15%, and lower MCSE bounds do not fall

below 1%, 0%, and -4%. Barlow generally displays greatest bias, and Prentice the

smallest. Differences in bias between Prentice and IPW exceed MSE bounds for the

Binary covariate with β = ln(2)/0.5, sampling fraction 3%, and staggered entry.

3.5.3.1.2 Empirical Standard Errors MCSE bounds for ESE of case-cohort

weighting systems tend to overlap, although Barlow tends to show higher ESE than

IPW and Prentice. IPW tends to show lower ESE than Prentice at the 15% sampling

fraction, and Prentice tends to show lower ESE than IPW at the 3% sampling frac-

tion and subcohort size 200, though these differences do not exceed MCSE bounds.

3.5.3.1.3 Mean Square Error MSE reflect the previous results; Barlow tends

to show highest MSE, Prentice the lowest at the 3% sampling fraction and subcohort

size 200 and IPW the lowest at the 15% sampling fraction. The differences in MSE

between Prentice and IPW cause MCSE bounds to fail to overlap for the Normal

covariate with β = ln(2), sampling fraction 15% and case to non-case ratio 1:1.
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Figure 3.1: Bias, Empirical Standard Error, and Mean Square Error of Estimates of β

FC= Full Cohort; BC = Barlow Classic; PC = Prentice Classic; IC = IPW Classic

Shaded bars indicate 95% CI reflecting Monte Carlo error
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3.5.3.2 Estimation of H0(t)

Minimum and maximum true values for H0(t) in each scenario are included in the

Appendix.

3.5.3.2.1 Fixed Entry

In fixed entry, post-stratification based on time does not apply to IPW, and for

Prentice resulted in performance measures that were almost identical to Prentice

Classic, except for a small increase in bias in the latter half of reference times, the

difference not exceeding 0.5% of the true value of H0(t). IPW Classic showed greater

bias than Prentice Classic, underestimating the true hazard, and greater empirical

standard error. These differences did not exceed 1.2% of the true value of H0(t) for

bias and 2.5% of the true value of H0(t) for empirical standard error, and did not

cause MCSE bounds of the performance measures to fail to overlap.

Overall, in fixed entry, all case-cohort estimators perform similarly to the full cohort,

particularly at the higher subcohort size. Where sampling fraction and subcohort

size are small, and β and case to non-case ratio is high, case-cohort estimators under-

estimate the true hazard, with MCSE bounds of bias falling outside MCSE bounds

of the full cohort. Empirical standard error for case-cohort estimators is similar to

the full cohort at β = ln(1.1)/SD. At β = ln(2)/SD and case to non-case ratio 1:1,

case-cohort MCSE bounds for empirical standard error fail to overlap with those of

the full cohort. Results for MSE reflect those of empirical standard error.

Except for subcohort size 200 and case to non-case ratio 1:4, bias for full cohort

and case-cohort estimators is less than 6% of the true H0(t) at all reference times.

At subcohort size 200 and case to non-case ratio 1:4, bias is of larger magnitude

towards the beginning and end of the timescales, particularly at the 3% sampling

fraction in the last 20 reference times where it reaches 16% of the true H0(t). How-

ever, this bias late in time is similar in the case-cohort and the full cohort, and is

likely an artefact of the analysis method. Recall that H0(t) estimates for unobserved

reference times were carried forward from the previous failure time in the replicate.

Empirical standard error is generally not substantial compared to the true H0(t),

except at the beginning of analysis time (first 10 reference times) where few events

have occurred. Excluding those first 10 reference times, empirical standard error

does not exceed 10%, 25% and 50% of true H0(t) for all scenarios at subcohort size

1000, subcohort size 200 and case to non-case ratio 1:1, and subcohort size 200 and

case to non-case ratio 1:4, respectively.
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3.5.3.2.2 Staggered Entry

Figure 3.2 demonstrates the effect of risk sets comprised only of cases (case-only

risk-sets) in subcohorts of size 200. With staggered entry, a number of replicates dis-

played such risk sets early and late in time in the case-cohort samples. Exploratory

analysis indicated that the presence of case-only risk sets did not affect performance

of weighting methods in estimation of coefficients. However, exploratory analysis

indicated that presence of case-only risk sets had a substantial effect on performance

of IPW estimators of H0(t) late in time, and a lesser effect under Prentice weighting

variants. In this simulation study, such case-only risk sets occurred only towards the

very end of the reference analysis times, For the remainder of the results, reference

times 95+ are excluded from analysis under staggered entry.

Figure 3.2: Effect of Case-Only Risk Sets on estimates of H0(t)

PC = Prentice Classic, PT = Prentice Time, IC - IPW Classic, IC = IPW Time
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Figure 3.3 shows bias, empirical standard error and mean squared error under stag-

gered entry for all estimators, relative to the true H0(t) for β = ln(2)/SD, case to

non-case ratio 1:4, subcohort size 1000, sampling fraction 15%; and β = ln(1.1)/SD,

case to non-case ratio 1:1, subcohort size 200, and sampling fraction 3%.

As in section 3.5.3.2.1, the following discussion of results does not include the be-

ginning of analysis time (first 10 reference times) where few events have occurred.

Further detail on the results discussed below can be found in the appendix.

In staggered entry, Prentice Time displays more bias then Prentice Classic, some-

what underestimating the true hazard, particularly towards the end of analysis time.

However, this difference in bias does not exceed 1.5% of true H0(t). Difference in

bias between IPW Classic and IPW Time is more variable, ranging from -1.5% of

true H0(t) to +1.4% of true H0(t).
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IPW variants show similar bias to the full cohort, with MCSE bounds overlap-

ping those of the full cohort in all scenarios except at the very end of analysis time.

MCSE bounds for bias of Prentice variants, however, fail to overlap with those of

the full cohort at the smaller subcohort, with this occuring in more scenarios for

Prentice Time than Prentice Classic. At subcohort size 1000, bias for full cohort

and all case-cohort estimators is less than 4.2% of the true H0(t) at all reference

times.

At subcohort size 200, bias for the full cohort and IPW variants is less than 3.2%,

4.2% and 5.9% of the true H0(t) for case to non-case ratio 1:4 and sampling fraction

15%, case to non-case ratio 1:1, case to non-case ratio 1:4 and sampling fraction 3%,

respectively. Bias for Prentice variants is less than 5.2%, 8% and 8.3% of the true

H0(t) for case to non-case ratio 1:4 and sampling fraction 15%, case to non-case

ratio 1:1, case to non-case ratio 1:4 and sampling fraction 3%, respectively.

Both Prentice Time and IPW time consistently display lower empirical standard

errors than their Classic counterparts, with the difference in empirical standard

error higher at smaller sampling fractions, subcohort sizes and β. Difference in em-

pirical standard error between Time and Classic variants does not exceed 3% and

3.9% of true H0(t) for Prentice and IPW, respectively. This is reflected in MSE with

Time variants also displaying lower MSE than their classic equivalents. For both

empirical standard error and MSE, MCSE bounds for Classic and Time variants

fail to overlap in more than 20% of reference times when β = ln(1.1)/SD, case to

non-case ratio is 1:1 and sampling fraction is 3%.

At β = ln(1.1)/SD, IPW Time and Prentice Time show similar empirical stan-

dard error to the full cohort, with MCSE bounds overlapping. MCSE bounds for

empirical standard error of all case-cohort estimators to overlap with those of the full

cohort at β = ln(2)/SD and case to non-case ratio 1:1. Otherwise, MCSE bounds

for empirical standard error of all case-cohort estimators generally overlap with the

full-cohort in more than 90% of reference times.

In subcohort size 1000 empirical standard error for full cohort and case-cohort esti-

mators does not exceed 17% and 24% of the true H0(t) at case to non-case ratios 1:1

and 1:4, respectively. In subcohort size 200 empirical standard error for full cohort

and case-cohort estimators does not exceed 31% and 52% of the true H0(t) at case

to non-case ratios 1:1 and 1:4, respectively.
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Figure 3.3: Performance Measures for H0(t)

(a) β = ln(2)/SD; non-case to case ratio 4:1; subcohort size 1000; sampling fraction 15%
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(b) β = ln(1.1)/SD; non-case to case ratio 1:1; subcohort size 200; sampling fraction 3%
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3.6 Discussion

3.6.1 Estimation of β

Overall, the simulation study offered no evidence that post-stratification based on

time affected the performance of case-cohort estimation of β. While computational

speed has advanced since Barlow’s paper in 1999, there is still an increase in com-

putational time when enumerating the subcohort at each failure time. Hence, given

a lack of evidence to suggest any improvement in performance, post-stratification

based on time is not recommended for the case-cohort design. It should be noted

that, in the stratified case-cohort design, Borgan reports an improved efficiency for

IPW Time over IPW Classic, however, as Borgan notes, this improvement is of little

practical relevance, at most 0.2% relative to full cohort efficiency.

The simulation study gives evidence that Prentice shows improved performance over

Barlow. Barlow generally displays greater bias, with these differences outside MCSE

bounds where β was larger, subcohort size smaller, and under staggered entry. Bar-

low also showed lower precision than Prentice, with these differences more likely

to be outside MCSE bounds where subcohort size, sampling fraction, and non-case

to case ratio were smaller. While Petersen found no difference in bias or precision

between Barlow and Prentice, the smallest subcohort size considered in that study

was 370. Onland Moret suggest that bias of Prentice and Barlow does not differ

when sampling fraction reaches 15%, however, this study does not appear to have

considered staggered entry. Extant literature shows some disagreement on the sub-

cohort size at which Barlow shows reduced efficiency compared to Prentice, possibly

due to differences in data-generating mechanisms between papers. Results from this

simulation study are most similar to those of Barlow and Kim. These differing re-

sults can be reconciled by considering the interplay of censoring type, subcohort size,

sampling fraction, and case to non-case ratio in the case-cohort sample. As already

mentioned, Onland Moret did not consider staggered entry. At subcohort size 200,

Barlow considered only non-case to case ratio 3.3:1. Kim included loss-to-follow-up,

with subcohort size 140 and non-case to case ratio 0.8:1 and subcohort size 250 with

non-case to case ratio 1:4.

IPW generally displayed greater bias than Prentice, and less than Barlow, how-

ever, the differences in bias between Prentice and IPW caused MCSE bounds to fail

to overlap only at sampling fraction 3%, subcohort size 200 and under staggered en-

try. MCSE bounds of empirical standard error for Prentice and IPW overlapped in

all cases, though Prentice tends to show lower empirical standard errors than IPW

at the 3% sampling fraction and subcohort size 200, and IPW tends to show lower
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empirical standard errors than Prentice at the 15% sampling fraction. The improve-

ment in MSE for IPW over Prentice cause MCSE bounds to fail to overlap for the

Normal covariate with β = ln(2), sampling fraction 15% and case to non-case ratio

1:1. In the extant literature, Petersen again found no difference in bias or efficiency

between IPW and Prentice, but the non-case to case ratio, sampling fractions, and

subcohort sizes considered in that study are discordant to those considered here.

Results from this simulations study are similar to those found by Borgan, with

the circumstance where IPW shows improved efficiency over Prentice including the

normal covariate, which is more variable than the binary covariate. Results from

this study at the 15% sampling fraction also reflect the findings of Kim, that IPW

yields higher efficiency than Prentice at higher magnitudes of β. However, many

of the circumstances considered in Kim, particularly those with very large non-case

to case ratios were not considered in this simulation study. While IPW displays a

small improvement in power for β = ln(2)/SD over Prentice at subcohort size 200,

sampling fraction 15% and non-case to case ratio 1:1, this improvement does not

cause MCSE bounds for these weighting methods to fail to overlap. Kim reports a

similar increase in power of 2% for subcohort size 125, sampling fraction 25% and

non-case to case ratio 1.4:1.

Overall, results from the simulation study indicated that both IPW and Prentice

offer improved performance over Barlow in estimation of β, and that while IPW

may show a small increase in bias over Prentice under staggered entry at smaller

subcohort sizes and sampling fractions, this does not effect mean squared error. At

higher sampling fractions, smaller non-case to case ratios, and with more variable

covariates, IPW shows improved efficiency over Prentice. The simulation study in-

dicates that both IPW and Prentice weighting are appropriate for estimation of β

in the case-cohort design.

The bias in full cohort estimates is likely due to the small number of observed

events, i.e. high censoring proportion of the full cohort, exacerbated where full co-

hort sizes are small. As described by Kotz Johnson (1985), the Cox estimator is

asymptotically unbiased, not unbiased. Persson and Kamis (2005) investigate bias in

the Cox model in full cohorts under various circumstances, and find that even under

proportional hazards, the Cox estimate is slightly biased, with larger bias in smaller

sample sizes and higher censoring rates. Further, they find that early censoring

produces a more biased estimate than random or late censoring, especially for high

censoring proportions. While they do not consider full cohort sizes in excess of 100

observations, they also do not consider censoring in excess of 50%, whereas in this

Chapter, censoring is always in excess of 85%, reaching 99% in some circumstances.
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3.6.2 Estimation of H0(t)

The use of reference failure times in the simulation study design for estimation of

H0(t) was imperfect, causing a degree of bias towards the end of reference times as

estimates of H0(t) were carried forward. However, for comparison of relative perfor-

mance of case-cohort estimators and the full cohort, this artefact is less problematic,

The simulation study shows little evidence that any considered estimator is inap-

propriate for estimation of H0(t) in the case-cohort design. The simulation study

indicated that IPW Classic weighting offers comparable performance to Prentice

Classic in estimation of H0(t), with a small reduction in bias. Post-stratification

based on time provides an improvement in precision for both IPW and Prentice,

with a small degree of bias-variance trade-off. This improvement in precision is

greatest where sampling fractions of non-cases in the risk sets for each failure time

show high variability; under Staggered Entry, with small subcohort sizes, small sam-

pling fractions, and low non-case to case ratio. Where sampling fractions of the risk

sets for each failure time show high variability, post-stratification based on time may

be useful for estimation of H0(t).

3.6.3 Further Considerations

The effect of case-only risk sets on estimation of β and H0(t) was not intended to be

demonstrated by the simulation study, however, it indicates that while estimates of

of β are not unduly effected, estimates of H0(t) for analysis times at and following

such a risk set can display profound bias, particularly with IPW weighting. Case-

only risk sets are most likely to arise with staggered entry, smaller full cohorts, and

smaller sampling fractions. Estimates of H0(t) and other quantities which rely on

such estimates should be regarded with caution where case-only risk sets are present

in the dataset.

This simulation study fails to consider the effect of early censoring on weighting

methods for estimation in the case-cohort design. However, one might expect that

the general patterns would follow through, with early censoring introducing increas-

ing variability into the sampling fractions of non-cases in the risk sets for each failure

time, and reducing the number of non-cases in the risk sets at later failure times in

fixed entry.
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Chapter 4

Detection of Inappropriate

Functional Form

4.1 Introduction

One of the key assumptions of the Cox Proportional Hazards Model is that the

functional form of each covariate included in the model has a linear relationship

with the hazard. That is, for a vector of covariates Z with associated coefficient

vector β, the hazard function is of the form h(t) = h0(t)exp(β
TZ). Figure 4.1 below

shows linear predictors for a single covariate Z ∼ U(0.5, 1.5), simulated from three

functional forms; Z, ln(Z) and -1/Z (each mean-centred at 0) with β = 0.5 and

β = 1, plotted against linear Z. From this figure it can be seen that the effect of

inappropriate functional form depends upon the magnitude of β and the degree of

difference between the ”true” functional form and the candidate functional form.

Figure 4.1: Linear Predictors for Varying Functional Forms
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Where a particular covariate Zi violates the assumption of linear relationship with

the hazard, and a transformation of Zi that fulfills this assumption can be found,

the solution is straightforward; the model must be fitted with Zi transformed appro-

priately. However, straightforward is not always easy; to apply the above method,

we require a method to detect inappropriate functional form in a fitted model.

Therneau et al. (1990) describe the use of graphical methods in the full cohort

in evaluation of martingale, deviance and score residuals, where martingale resid-

uals are plotted against covariate values to assess functional form of the covariate,

deviance and martingale residuals are used to detect individual observations which

are poorly predicted by the model, and score residuals are used to detect influen-

tial observations and non-proportional hazards. The purpose of this chapter is to

investigate how such methods for assessing functional form of the covariate may be

applied to case-cohort datasets, including the development of numerical methods by

which graphical methods from individual datasets may be assessed in a simulation

study over replicates.

In Section 4.2 I describe these graphical methods in the full cohort, and in Sec-

tion 4.3 I describe how weighting can be applied in the case-cohort sample. In

Section 4.4 I describe an analytical method using linear piecewise regression to re-

place subjective graphical interpretation of smooths for comparison of full cohort

and case-cohort methods over replicates, and present example graphs of smooths

and fits from linear piecewise regression in the full cohort and case-cohort. In Sec-

tion 4.5 I perform a simulation study.

I find some evidence to suggest that weighted smooths of IPW martingale resid-

uals can be used to assess the appropriateness of the functional form of a covariate

in the case-cohort design. Power in the case-cohort design increases with sampling

fraction, and with number of cases in the case-cohort sample. However, the results

strongly suggest that there will be a loss of power as compared to the full cohort,

and in individual datasets deviations from linearity and 0 slope may be less obvious

in the case-cohort design than in a full cohort. Use of piecewise linear regression as

a proxy for visual comparison of smooths in the full cohort and weighted smooths

in the case-cohort appears to be inadequate, with the case-cohort substantially less

sensitive to departures from linearity than the full cohort.
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4.2 Full Cohort Methods

The Cox Snell residual for an observation i, with vector of covariates Zi and asso-

ciated vector of coefficients β, with entry time t(0)i, failing or censored at time ti is

an estimate of the cumulative hazard for that observation at that time.

rcsi = exp(βTZi)
{
Ĥ0(ti)− Ĥ0(t(0)i)

}
The martingale residual for an observation i with failure di = 0 if the observation

was censored and di = 1 if the observation failed can be defined as rmgi = di− rcsi.
The martingale residual can be interpreted as the observed number of deaths minus

the expected number of deaths, given the model, for that subject over the interval

[t(0)i, ti].

Where the correct functional form has been included in the model, a smooth of the

martingale residuals against that covariate functional form should show zero-slope

linearity - that is, the smooth should be linear with no obvious trend (Therneau

et al., 1990). Note that even where the correct functional form is modelled, there

may be departures from zero-slope linearity in the tails if data is sparse and there

are observations with unusually large or small covariate values. (Fleming and Har-

rington, 2011, p184).

A number of options exist for the smooth used to assess the Martingale Residuals,

including Locally Weighted Scatterplot Smoothing (LOWESS) and Kernel-Weighted

Local Polynomial Smoothing (lpoly).

4.3 Case-Cohort Implementation

In the case-cohort, calculation of the individual Cox-Snell and martingale residuals

does not differ from the full cohort, however, case-cohort estimates of β, H0(ti) and

H0(t(0)i) are used. Where case-cohort estimates are similar to the corresponding full

cohort estimates, then case-cohort estimates of rmgi should likewise be similar to

full-cohort estimates.

However, interpretation of the martingale residuals in the case-cohort design is less

straightforward. In a case-cohort dataset, only the subcohort sample of the non-

cases is present. Since non-cases are under-represented in the case-cohort sample,

the smooth of the martingale residuals must account for this under-representation

in order to be interpretable. One approach to this problem is to consider each non-
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case in the case-cohort dataset to be representing a number of full cohort non-cases

equal to the inverse of the subcohort non-case sampling fraction, and hence weight

the smooth using IPW Classic weights.

In STATA, frequency-weighted smoothing can be implemented with the fweights

option in the local polynomial smooth command lpoly. Note that while this option

is sufficient for visualising the smooth, fweights will provide inappropriate vari-

ances and so further options such as plotting of confidence intervals for the smooth

should not be used without manual calculation of variances. For datasets containing

non-integer weights, as is likely, the weight for each subject can be multiplied by

some common factor, chosen to give a desired amount of precision, then rounded to

the nearest integer.

STATA’s LOWESS command does not allow specification of weights. However,

for integer weights, the dataset can be expanded such that the number of records

per subject is equal to the value of the weight for that subject, and LOWESS then

performed with each record considered an individual observation. While this is pos-

sible, it is likely impractical with large datasets, since in LOWESS calculations, the

number of regressions performed is equal to the number of observations.

4.4 Quantitative Assessment of Methods

Sections 4.2 and 4.3 describe methods for use in an individual dataset, where graphs

are subjectively assessed by visual inspection. Subjective graphical interpretation

is impractical as a method of assessment or analysis over a simulation study with a

large number of replicate. Ideally, there would be an objective measure which can

be used in each replicate in a simulation study to detect deviations of the martingale

residual-covariate plot from zero-slope linearity and hence to allow for comparison

of full cohort and case-cohort results.

One option is to record the smoothed values for each replicate and calculate the

mean value of the smooth over the replications at benchmark covariate values. How-

ever, this is problematic, as while the mean smooth may show clear deviations from

zero-slope linearity, this may not be apparent in the graphical visualisations from

individual replicates, as would be encountered by an end-user. Similarly, the mean

smooth may obfuscate deviations from zero-slope linearity that would be apparent

in individual visualisations.

Where a martingale residual-covariate plot shows a linear or monotonic relation-
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ship, Pearsons correlation coefficient or Spearman’s rho could be used, respectively,

to quantify this relationship. However, these measures are not appropriate for cap-

ture of non-monotonic relationships.

Instead, I devised replacement of the graphical assessment of good fit with a sta-

tistical test in order to assess the properties of case-cohort residuals at the level of

the single dataset and fitted model. A piecewise linear regression is fitted to the

martingale residuals against the candidate functional form of the covariate, with the

candidate functional form reparameterised such that the regression has one linear

element and a change in slope at the median value of the covariate.

Functional forms are classified as inappropriate based on a Wald test for the marginal

effects of the spline being equal to 0, i.e. whether the change in slope at the median

is statistically significant. Reports from the literature (Graubard & Korn 1991)

indicate that use of sampling weights in linear regressions can lead to low power

for Wald tests, due to inflation of standard errors. Further, a subjective visual in-

terpretation of a smooth may reveal departures from 0-slope linearity that do not

meet statistical significance in the substitution of a piecewise linear regression for

a smooth, and vice-versa, particularly when combined with the potential for low

power of Wald tests in IPW-weighted linear regression. Hence it is important to

note that this is not proposed as a replacement for visual inspection of smooths in

individual datasets, but rather as a proxy to allow for comparison of full-cohort and

case-cohort smooths in a simulation study that does not rely on individual subjec-

tive assessment of smooths.

Figures 4.2a and 4.2b show examples of full cohort and IPW-weighted local polyno-

mial smooths and linear piecewise regressions of martingale residuals against can-

didate functional forms for staggered entry, subcohort size 1000 and β = ln(3)/SD,

generated according to the data generating mechanism in Section 4.5. Smooths use

the STATA defaults Epanechnikov kernel, degree 0, smooth at min(N, 50) points,

and rule-of-thumb bandwidth. Sampling fraction 15% with non-case to case ratio

1:1, and sampling fraction 3% with non-case to case ratio 4:1 are shown

In the 15% sample, the case-cohort smooths and piecewise regressions appear simi-

lar to those of the full cohort. Additionally, the correctly modeled form appears to

have smooths and linear fits closer to 0-slope linearity than the incorrectly modeled

forms. Coefficients for the regression are substantially smaller in the 3% sample,

and behaviour of smooths and piecewise regressions are less similar between the full

cohort and the case cohort.
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Figure 4.2: Example Piecewise Linear Fits and Local Polynomial Smooths

(a) sampling fraction 15%; non-case to case ratio 1:1 - y-axis: martingale residuals value
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(b) sampling fraction 3%; non-case to case ratio 4:1 - y-axis: martingale residuals value
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4.5 Simulation Study

The purpose of this simulation study is to compare the results of the piecewise

regression test method in the full cohort the case-cohort as a measure of the ade-

quacy of weighted graphical assessment of IPW-weighted martingale residuals for

functional form in the case-cohort.

4.5.1 Data Generating Mechanism

Data generation was carried out as described in Chapter 2, with the following spec-

ifications:

The presence of particularly large or small covariate values can have a profound

effect on the appearance of a smooth and the significance of marginal splines, par-

ticularly under certain transformations. While in individual plots a subjective judge-

ment can be made on which values can be considered outliers, for the purposes of a

simulation study, such effects should be minimized insofar as possible. As such, full

cohorts were simulated with six initial continuous covariates independently drawn

from ∼ U(0.5, 1.5). For simulation of survival times, two covariates remained un-

transformed, two covariates were transformed to log form, and two covariates were

transformed to reciprocal form, resulting in three pairs of covariates. Each covariate

was centred at mean 0 prior to generation of survival times.

Survival times were generated with vector of coefficients for each covariate pair

equal to hazard ratios per standard deviation of 2 and 3, respectively. 1 million

initial observations of each functional form were generated to estimate standard

deviations which were 0.29, 0.31, and 0.36 for linear, log, and reciprocal forms, re-

spectively. Distributions of mean-centred covariates and their linear predictors are

demonstrated in Figure 4.3.

4.5.2 Estimands

For each of the candidate functional forms linear, log and reciprocal, IPW Classic

weighted Cox models were fitted with all six covariates included in the model, trans-

formed to the candidate functional form, and martingale residuals were calculated.

Martingale residuals for the full-cohort were also calculated.

IPW Classic was used to weight the data when creating the splines and performing

the regression in the case-cohort sample. Wald and robust Wald test results for

the marginal effect of the splines were recorded in the full cohort and case-cohort,
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respectively. A number of methods for estimation of standard errors, including

Huber sandwich, jacknife and bootstrap were considered, but exploratory analysis

indicated that all methods gave similar power in the case-cohort linear regression.

Robust (Huber sandwich) standard errors were used in the simulation study due to

their smaller computational time.

Figure 4.3: Distributions and Linear predictors of Covariate Functional Forms
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4.5.3 Methods

Full cohort and IPW Classic-weighted case-cohort methods were considered. Mar-

tingale residuals are calculated based on estimates of H0(t) and β. Given the results

of Chapter 3, it was not expected that Prentice weighting would result in large dif-

ferences in martingale residuals compared to IPW, except possibly in the presence

of case-only risk sets, which can lead to inappropriate estimates of H0(t).

Exploratory simulations were carried out such that where case-only risk-sets were

present in the datasets, martingale residuals were calculated with estimates for H0(t)

for such observations replaced by the previous non-case only risk set estimate of

H0(t). However, this modification did not appear to affect the results and hence

was not included in the full simulation study.

4.5.4 Performance Measures

A cutoff criteria of p < 0.05 was used to classify the Wald tests as indicating inappro-

priate functional form. MCSE bounds for power and Type 1 error were calculated

using the simsum STATA package.
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4.5.5 Results

Results for staggered entry and fixed entry were similar. Hence, for clarity and

brevity only staggered entry is presented here in Tables ??, 4.2, and 4.3.

In the full cohort, power is primarily influenced by the number of cases, β and

the relationship between the true and candidate functional form. Full cohort size

has a minimal effect on power in this simulation study. Power is greatest for distin-

guishing between linear and reciprocal forms, and lowest for distinguishing between

log and linear forms.

In the case cohort, β and the relationship between the true and candidate func-

tional form have a similar influence on power as in the full cohort. Power increases

with sampling fraction. Power increases with non-case to case ratio and subcohort

size, but where this results in the number of cases being similar, power is also similar

within a particular sampling fraction (e.g. subcohort size 200, noncase to case ratio

1:1 vs subcohort size 1000, noncase to case ratio 4:1). Loss of power is substantial,

particularly at the 3% sampling fraction, however. This loss of power tends to be

associated with a lower Type 1 error rate than the full cohort.

Overall, results show that, as evaluated by piecewise linear regression, the case-

cohort is substantially less sensitive to departures from linearity than the full cohort,

with this reflected in both power and Type 1 error rates.
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Table 4.1: Classification of Inappropriate Functional Form Rates for True Form Z, Staggered Entry

HR/SD NSC NNC

NC α NC N Modelled: Z ln(Z) 1/Z

Sample: FC IC FC IC FC IC

Class MCSE Class MCSE Class MCSE Class MCSE Class MCSE Class MCSE

2

200

4
3 50 6667 3.1 0.5 1.9 0.4 5.7 0.7 2.0 0.4 13.6 1.1 4.3 0.6

15 48 1333 2.4 0.5 2.1 0.5 5.2 0.7 3.4 0.6 13.8 1.1 7.1 0.8

1
3 194 6667 3.4 0.6 4.0 0.6 15.5 1.1 4.7 0.7 51.8 1.6 10.9 1.0

15 174 1333 3.3 0.6 3.7 0.6 16.6 1.2 7.5 0.8 51.5 1.6 21.1 1.3

1000

4
3 248 33333 2.8 0.5 1.3 0.4 15.5 1.1 2.5 0.5 58.9 1.6 13.4 1.1

15 241 6667 2.3 0.5 2.5 0.5 18.1 1.2 8.5 0.9 62.9 1.5 28.7 1.4

1
3 971 33333 3.2 0.6 1.8 0.4 61.8 1.5 9.3 0.9 99.9 0.1 34.8 1.5

15 870 6667 3.8 0.6 4.1 0.6 64.4 1.5 26.2 1.4 99.8 0.1 80.6 1.3

3

200

4
3 50 6667 0.5 0.2 0.4 0.2 4.2 0.6 0.8 0.3 12.7 1.1 2.4 0.5

15 48 1333 1.4 0.4 0.9 0.3 3.9 0.6 1.5 0.4 15.0 1.1 5.0 0.7

1
3 194 6667 1.4 0.4 0.1 0.1 14.1 1.1 1.6 0.4 65.2 1.5 6.6 0.8

15 174 1333 1.4 0.4 1.9 0.4 21.3 1.3 6.9 0.8 73.9 1.4 29.5 1.4

1000

4
3 248 33333 0.5 0.2 0.0 0.0 15.3 1.1 1.5 0.4 65.6 1.5 9.3 0.9

15 241 6667 0.5 0.2 0.5 0.2 20.0 1.3 4.0 0.6 77.9 1.3 32.0 1.5

1
3 971 33333 1.5 0.4 0.2 0.1 76.0 1.4 4.7 0.7 100.0 0.0 37.4 1.5

15 870 6667 1.6 0.4 1.9 0.4 85.9 1.1 33.3 1.5 100.0 0.0 95.4 0.7

FC= Full cohort; IC = IPW Classic; NSC Subcohort size; NNC

NC non-case to case ratio; α sampling fraction (%); N Full cohort size;

68



C
hapter

4
4.5.

S
im

u
lation

S
tu

dy

Table 4.2: Classification of Inappropriate Functional Form Rates for True Form ln(Z), Staggered Entry

HR/SD NSC NNC

NC α NC N Modelled: Z ln(Z) 1/Z

Sample: FC IC FC IC FC IC

Class MCSE Class MCSE Class MCSE Class MCSE Class MCSE Class MCSE

2

200

4
3 50 6667 4.4 0.6 2.4 0.5 2.5 0.5 1.3 0.4 5.0 0.7 1.5 0.4

15 48 1333 6.5 0.8 3.8 0.6 3.8 0.6 2.6 0.5 6.6 0.8 3.3 0.6

1
3 194 6667 14.1 1.1 4.5 0.7 3.7 0.6 2.1 0.5 14.2 1.1 3.5 0.6

15 174 1333 13.0 1.1 7.9 0.9 3.7 0.6 3.5 0.6 15.3 1.1 7.3 0.8

1000

4
3 248 33333 14.1 1.1 2.5 0.5 3.4 0.6 1.0 0.3 15.7 1.2 4.4 0.6

15 241 6667 19.5 1.3 7.0 0.8 3.3 0.6 1.6 0.4 17.7 1.2 7.4 0.8

1
3 971 33333 55.1 1.6 6.9 0.8 2.5 0.5 1.5 0.4 63.5 1.5 9.9 0.9

15 870 6667 56.2 1.6 19.4 1.3 3.3 0.6 3.6 0.6 61.9 1.5 24.3 1.4

3

200

4
3 50 6667 2.3 0.5 1.1 0.3 1.0 0.3 0.7 0.3 2.2 0.5 0.8 0.3

15 48 1333 3.4 0.6 1.8 0.4 1.2 0.3 0.6 0.2 4.6 0.7 1.5 0.4

1
3 194 6667 12.1 1.0 1.7 0.4 1.6 0.4 0.6 0.2 15.3 1.1 1.5 0.4

15 174 1333 20.4 1.3 7.0 0.8 2.1 0.5 1.4 0.4 17.4 1.2 5.2 0.7

1000

4
3 248 33333 14.6 1.1 1.6 0.4 1.6 0.4 0.1 0.1 14.1 1.1 1.7 0.4

15 241 6667 19.0 1.2 4.4 0.6 1.0 0.3 1.1 0.3 18.5 1.2 5.3 0.7

1
3 971 33333 73.6 1.4 4.6 0.7 1.1 0.3 0.7 0.3 79.1 1.3 5.9 0.7

15 870 6667 80.1 1.3 28.8 1.4 2.6 0.5 1.9 0.4 84.1 1.2 30.9 1.5

FC= Full cohort; IC = IPW Classic; NSC Subcohort size; NNC

NC non-case to case ratio; α sampling fraction (%); N Full cohort size;
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Table 4.3: Classification of Inappropriate Functional Form Rates for True Form 1/Z, Staggered Entry

HR/SD NSC NNC

NC α NC N Modelled: Z ln(Z) 1/Z

Sample: FC IC FC IC FC IC

Class MCSE Class MCSE Class MCSE Class MCSE Class MCSE Class MCSE

2

200

4
3 50 6667 13.7 1.1 3.9 0.6 4.6 0.7 2.4 0.5 1.5 0.4 1.1 0.3

15 48 1333 15.1 1.1 8.0 0.9 5.7 0.7 4.8 0.7 2.1 0.5 3.2 0.6

1
3 194 6667 58.1 1.6 11.7 1.0 17.0 1.2 4.3 0.6 1.6 0.4 1.8 0.4

15 174 1333 53.4 1.6 25.6 1.4 17.9 1.2 9.2 0.9 2.5 0.5 3.3 0.6

1000

4
3 248 33333 68.1 1.5 15.4 1.1 20.7 1.3 4.8 0.7 2.0 0.4 0.7 0.3

15 241 6667 68.9 1.5 33.3 1.5 21.3 1.3 8.7 0.9 1.7 0.4 2.4 0.5

1
3 971 33333 99.9 0.1 42.7 1.6 72.4 1.4 11.3 1.0 2.9 0.5 1.5 0.4

15 870 6667 99.8 0.1 83.5 1.2 72.4 1.4 33.3 1.5 2.8 0.5 4.0 0.6

3

200

4
3 50 6667 13.3 1.1 1.8 0.4 2.7 0.5 0.3 0.2 0.3 0.2 0.1 0.1

15 48 1333 15.7 1.2 5.1 0.7 4.1 0.6 1.3 0.4 0.9 0.3 1.1 0.3

1
3 194 6667 70.8 1.4 7.1 0.8 16.2 1.2 1.6 0.4 0.4 0.2 0.2 0.1

15 174 1333 80.7 1.2 39.4 1.5 26.2 1.4 8.8 0.9 0.9 0.3 1.4 0.4

1000

4
3 248 33333 75.2 1.4 8.4 0.9 15.8 1.2 0.8 0.3 0.4 0.2 0.0 0.0

15 241 6667 84.4 1.1 38.8 1.5 22.5 1.3 6.1 0.8 0.4 0.2 0.2 0.1

1
3 971 33333 100.0 0.0 46.9 1.6 85.8 1.1 3.9 0.6 0.6 0.2 0.0 0.0

15 870 6667 100.0 0.0 98.9 0.3 92.4 0.8 52.3 1.6 1.5 0.4 1.3 0.4

FC= Full cohort; IC = IPW Classic; NSC Subcohort size; NNC

NC non-case to case ratio; α sampling fraction (%); N Full cohort size;
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4.6 Discussion

Evaluation of the behaviour of smooths of martingale residuals in the case-cohort

design presents a number of challenges. Visual assessment of individual smooths in

each simulated dataset of the simulation study is both impractical and subjective.

However, the statistical test based on piecewise regression is also imperfect. While

the goal of the piecewise linear regression was not to serve as a formal statistical test

for use in individual datasets, it was hoped that it would serve as a useful proxy for

comparison of smooths in the full cohort and weighted smooths in the case-cohort.

However, the method appears to be inadequate.

Low power of Wald tests in weighted linear regression where there are unequal

sampling fractions is a known issue in complex survey sampling, with no clear solu-

tion obvious in the literature. Resolution of this issue is, further, beyond the scope

of this thesis. It is hence difficult to distinguish between loss of power due to the

case-cohort design itself, and loss of power due to the inadequacy of Wald tests in

the linear regression. The correspondence in the case-cohort of low power to low

Type 1 error rate indicates that a degree of the loss of power may be attributed to

the known issue of low power of Wald tests in IPW-weighted linear regression due to

inflation of standard errors. However, the degree of power loss suggests that other

factors may be at play.

Given the results of Chapter 3, it appears unlikely that the loss of power is made

up in any large part by differing estimates of β and H0(t) in the full cohort and the

case cohort. The loss of power here is far in excess of that which might be expected

from the results for estimation of β seen in Chapter 3. Note, however, that this

comparison is not like-with-like. Chapter 3 assesses power for estimation of a Cox

model, whereas this chapter assesses power for a linear regression.

The coefficients for the linear piecewise regressions are substantially smaller in the

worst-performing scenarios than the best-performing scenarios, as seen in the dif-

fering scales in Figure 4.2a. However, the magnitude of the coefficients does not

differ substantially between the full cohort and the case cohort, despite the large

differences in power.

It is possible that the piecewise linear regression is a worse approximation to the

smooth in the case-cohort than in the full-cohort. It is also possible that the ap-

proximations perform similarly, but that the weighted smooths themselves differ sig-

nificantly between the full cohort and the case cohort. However, from exploratory
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visual inspection of a sample of smooths, this does not appear to account for the

degree of loss of power.

Hence, the results of this simulation study are more advisory and indicative than

they are prescriptive.

There is no evidence from the results that IPW-weighted smooths of the martingale

residuals gives inappropriate Type 1 error. The simulation study gives some evidence

to suggest that, when properly weighted, smooths of the IPW martingale residuals

can be used to assess the appropriateness of the functional form of a covariate in the

case-cohort design. However, the results strongly suggest that there will be a loss

of power as compared to the full cohort. As such, in individual datasets deviations

from linearity and 0 slope may be less obvious in the case-cohort design than in a

full cohort. Power in the case-cohort design increases with sampling fraction, and

with number of cases in the case-cohort sample, with subcohort size and non-case

to case ratio of lesser influence.

Interestingly, in exploratory studies, modifications for case-only risk sets did not

affect the results. This is possibly due to the fact that estimates of H0(t) made

only a small contribution to the martingale residuals in the simulation study, due

to the relative magnitudes of β and H0(t). In individual datasets, when assessing

a graphical smooth, guidance already indicates that the presence of particularly

large or small covariate values can have a profound effect on the appearance of a

smooth, and such values should be treated with caution. Where case-only risk sets

are present in the data, caution would indicate that the smooth should also be

assessed for martingale residuals modified to exclude case-only risk sets from the

estimates of H0(t).
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Chapter 5

Detection of Non-Proportional

Hazards

5.1 Introduction

A critical assumption of the Cox proportional hazards model, so critical that it is

included in the name, is that the hazards are proportional over time. i.e. that

covariates are multiplicatively related to the hazard. In the full cohort, a number of

methods exist for detection of violations of the assumption of proportional hazards.

In Section 5.2 I describe a selection of these methods in the full cohort. In section 5.3,

I describe their implementation in the case-cohort design. In Section 5.4 I perform a

simulation study to assess the performance of Schoenfeld residuals, scaled Schoenfeld

residuals, and inclusion of time-varying covariates in the model for detection of non-

proportional hazards in the case-cohort design. I find that where risk set sizes are not

overly variable, all three methods are appropriate for use in the case-cohort design,

with similar power. Where case-cohort risk set sizes are more variable, methods

based on Schoenfeld residuals and scaled Schoenfeld residuals show high Type 1

error rate.

5.2 Full Cohort Methods

In the Cox model, there are three general classes of approach for assessment of non-

proportional hazards; graphical interpretation of survival curve estimates, statistical

tests of residuals, and model-based statistical tests. In the following sections I outline

three survival curve methods, log-log plots, Kaplan Meier baseline survival estimate

plots, and comparison of Kaplan Meier and Cox-predicted baseline survival curves;

two statistical tests based on residuals, correlation of Schoenfeld residuals with time,

and Grambsch and Therneau’s scaled Schoenfeld residual test statistics; and two
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model-based statistical tests, Cox’s interaction method, and Schemper’s piecewise

regression method. These methods were chosen based on prevalence in the literature

and ease of implementation in STATA. In addition to these methods, a number of

further methods are extant in the literature, e.g. the score test of Lin et al. (2006),

tests based on cumulative sums of martingale residuals Lin et al. (1993), Therneau’s

score test (Therneau et al., 1990) and Moreau’s score test (Moreau et al., 1985).

5.2.1 Graphical Interpretation of Survival Curve Estimates

Graphical methods for detection of non-proportional hazards in the full cohort based

on survival curves include log-log plots, Kaplan Meier baseline survival estimate

plots, and comparison of Kaplan Meier and Cox-predicted baseline survival curves.

Log-log plots, first suggested by Kalbfleisch-Prentice (1980), plot −ln(−ln(Ŝ(t)))

against ln(t) for each category of a nominal or ordinal covariate, where Ŝ(t) is the

estimated survival function based on the Cox model. When the curves are not par-

allel it indicates violation of the proportional hazards assumption.

Kaplan and Meier (1958) define a nonparametric maximum likelihood estimate of

the survivor function as Ŝ(t) =
∏

t(j)≤t(
Nj−dj
Nj

) for Nj = the number at risk of failure

just before t(j) and dj = the number of failures at t(j). Where Kaplan Meier baseline

survival estimate curves for each category of a nominal or ordinal covariate against

time cross or converge, it indicates violation of the proportional hazards assumption.

Divergence of observed Kaplan Meier and Cox-predicted baseline survival curves

indicates violation of the proportional hazards assumption.

5.2.2 Formal Statistical Tests

5.2.2.1 Tests based on Residuals

Schoenfeld (1982) described partial residuals for the proportional hazards model.

Schoenfeld residuals are defined for each event or failure, with a seperate Schoenfeld

residual for each covariate in the model. For a particular observation and particular

covariate, the Schoenfeld residual is the difference between the value of the covariate

and its weighted mean conditioned upon the risk set at the failure time of that ob-

servation. Using the risk set notation earlier described, in the full cohort, Schoenfeld

residuals for covariate Zk and an observation failing at time t(j) can be defined as:

rs = Z[j]k − E
(
Z[j]k|R(j)

)
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where:

E
(
Z[j]k|R(j)

)
=

exp(β̂Z[j])Z[j]k +
∑

l∈R(j)

exp(β̂Zl)Zk

exp(β̂Z[j]) +
∑

l∈R(j)

exp(β̂Zl)

Under the proportional hazards assumption, the Schoenfeld residuals have mean

zero and are uncorrelated with time. Graphical assessment and formal correlation

tests of this relationship can be employed to assess violations of the assumption.

Grambsch and Therneau (1994) present scaled Schoenfeld residuals rsc[j]. Let V

refer to the variance of the vector of coefficients β. Grambsch and Therneau (1994)

originally proposed scaling the Schoenfeld residuals by the weighted variance of the

covariates at each failure time time t(j). They note that this weighted variance

can become unstable as the number of observations in the risk set decreases, they

propose substitution with the average variance V/NC , such that scaled Schoenfeld

residuals are estimated as

rsc[j] = NC V̂ (β)−1rs′[j]

Under the proportional hazards assumption, smoothed scaled Schoenfeld residuals

can be interpreted as a nonparametric estimate of the log hazard-ratio function

and should have slope 0 when plotted against functions of event time. Grambsch

& Therneau present a test statistic based on the least squares slope of linear re-

gressions of scaled Schoenfeld residuals against time for individual covariates, with

this test statistic asymptotically distributed as χ2 with degrees of freedom 1. They

also present a global test for m covariates, with the test statistic asymptotically

distributed as χ2 with degrees of freedom m.

5.2.2.2 Model-Based Tests

Non-proportional hazards implies that covariates will have different impacts on the

hazard rate at different analysis times. Schemper (1992) suggests splitting analysis

time at some predetermined value(s), fitting separate Cox regressions in each ele-

ment of the partition, and examining whether parameter estimates differ between

Cox regressions in the different subsets of time.

Cox (1972) suggests adding a time-varying covariate to the model in the form of

an interaction between a function of time and the covariate of interest. The signif-

icance of this interaction can then be assessed by Wald, Likelihood ratio or score

tests.
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5.2.3 Comparison of Methods

Log-log plots have come under substantial criticism (Chastang, 1983; Schemper,

1992) for failure to consistently and correctly detect nonproportionality. Assess-

ment of parallel curves and divergence of curves for log-log plots and comparison of

Kaplan-Meier and Cox-predicted baseline survival curves is a subjective graphical

assessment, with an inherent lack of objectivity. Assessment of log-log plots and

crossing of Kaplan Meier estimates is straightforward only for categorical or ordinal

covariates, with continuous covariates requiring some decision on partitioning of the

covariate. Convergence of Kaplan Meier estimates is also subjectively assessed.

Of the formal statistical tests described above, Cox’s method is most computa-

tionally intensive. All require a choice of the function of time g(t) for which non-

proportionality will be assessed. Analysis time, log of analysis time, and rank of

analysis time are popular choices, and are often native options in statistical soft-

ware. Park and Hendry (2015) note that choice of function of time can have a

profound effect on the performance of Grambsch and Therneau’s scaled Schoenfeld

residual tests, and recommend choosing rank of time where outliers are present in the

dataset. Schemper’s method also requires a choice of how to partition the time-scale.

A number of comparisons of methods for detection of NPH in the full cohort are

extant in the literature, including Austin (2018), Grant et al. (2014), Song and

Lee (2000), Ng’andu (1997) and Hess (1995). Broadly, the literature suggests that

relative performance of tests and power of tests depends upon the form and mag-

nitude of departure from the proportional hazards assumption, correlation between

covariates, covariate distributions, and the number of cases observed in the dataset.

While the form and magnitude of the violation of proportion hazards will not be

known outside of simulation studies, the other factors can be assessed from the data.

A distinction can be drawn between methods that detect the presence of non-

proportional hazards in the model as a whole, and methods that allow for the identi-

fication of which covariates(s) display non-proportional hazards - that is, global and

covariate-specific methods. If the goal is only to assess whether non-proportional

hazards are present, global tests are sufficient. However, should the goal be to allow

for analysis under the Cox model, perhaps by means of inclusion of an interaction

with time in the model, or stratification, identification of the specific covariate(s)

that display non-proportional hazards is necessary.

Amongst the graphical methods, log-log plots and crossing Kaplan-Meier curves are
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covariate-specific, whereas comparison of Kaplan Meier and Cox-predicted baseline

survival curves is a global method. Linear correlation of Schoenfeld residuals with

g(t) are covariate-specific, whereas Grambsch & Therneau provide both covariate-

specific and global tests. Piecewise regression and the extended Cox model can be

implemented as covariate-specific or global tests, depending on which covariates are

allowed to interact with time, and the use of single or multiple parameter Wald

tests. Where non-proportional covariates are correlated with proportional covari-

ates, one might expect that covariate-specific tests and one-at-a-time inclusion of

covariates interacting with time would lead to high Type 1 error rate. However,

single-parameter Wald tests following the global inclusion of covariates interacting

with time via Cox or Schemper’s methods may allow for identification of the specific

covariate(s) that display non-proportional hazards in the presence of correlation.

Winnett and Sasieni (2001) note that for scaled Schoenfeld residuals, the substi-

tution of the average variance for the weighted variance of the covariates at each

failure time may result in misleading estimates of time-varying coefficients when

variance of covariates changes substantially over time.

5.3 Case-Cohort Adaptations

5.3.1 Graphical Interpretation of Survival Curve Estimates

The survival function S(t) can be defined as the exponent of the negative cumulative

hazard function H(t). The survival function can therefore be estimated as

Ŝ(t) = exp(−Ĥ0(t)exp(β̂
TZ))

It is logical, therefore, to expect that the methods from Chapter 3 regarding estima-

tion of H0(t) and β will extend to the estimation of S0(t) and S(t). In the context

of absolute risk (1 − S(t)) Sanderson et al. (2013) estimate S(t) in the case-cohort

design with Prentice Classic weights and find that on average the absolute risk tends

to be overestimated at low subcohort sampling fractions, and the variability at low

subcohort sampling fractions is also greater. These results also correspond to the

findings from Chapter 3 of this thesis. Recall, however, from Chapter 3, that empir-

ical standard error of estimates of H0(t) is greater towards the beginning of analysis

time, and that presence of case-only risk sets can introduce substantial bias. Diver-

sions from the patterns expected from datasets with proportional hazards should be

regarded with caution when they appear only early in analysis time or as the result

of case-only risk sets being present in the data.
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5.3.2 Methods Based on Residuals

In the case-cohort design, the Schoenfeld residuals differ from the full cohort only

insofar that case-cohort estimates of β are used, and as regards the risk sets on which

the mean of the covariate is conditioned. Let Prentice-weighted Schoenfeld residu-

als refer to residuals calculated with all observations taking weight equal to 1, and

non-subcohort cases considered at risk only at their failure time. Let IPW-weighted

Schoenfeld residuals refer to residuals calculated with all cases taking weight equal

to 1, and subcohort non-cases taking weight appropriate to the IPW variant (e.g
NNC

N∗NC for IPW Classic).

Where small full cohort risk sets are present in the data, due to random chance,

covariates in individual subcohort risk sets are at greater risk of being unrepresen-

tative of the covariates in the full cohort risk sets, with this effect exacerbated by

small sampling sizes. Tests based on correlation can be sensitive to outliers (Ab-

dullah, 1990) and this may affect the performance of tests based on correlation of

Schoenfeld residuals with time.

In their critique of the use of the average variance substitution for scaled Schoenfeld

residuals, Winnet & Sasieni note that this substitution may lead to inappropriate

residuals when effect size is large or covariates have skewed distributions. However,

one would also expect that the weighted variance of the covariates at each failure

time t(j) would show increasing variation where risk set sizes vary. In the case co-

hort, additional variation in risk set sizes is introduced by random sampling of the

full cohort. Under IPW weighting, the inclusion of all cases and a weighted sample

of the non-cases could also lead to increased variation in scenarios where, due to

random chance, the non-cases sampled from particular risk sets are not represen-

tative of the non-cases in the full cohort risk set, with this then exacerbated by

weighting. Under Prentice weighting, non-cases are only included in the risk set at

their failure times, so this effect may be reduced. The combination of the average

variance substitution with the possibility of non-representative case-cohort risk sets

impacting on calculation of the Schoenfeld residuals could lead to an additive issue

with use of scaled Schoenfeld residuals tests in the case-cohort design.

Note that since Schoenfeld and scaled Schoenfeld residuals are defined only for

cases, and the test statistic for scaled Schoenfeld Residuals relies only upon the fail-

ure times, whether Prentice or IPW weighting was used to calculate the residuals

is not relevant for performing the tests. For scaled Schoenfeld residuals, care must

be taken with the variance used for calculation of the residuals and implementation
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of the statistical tests. The average variance as defined by Gramsch & Therneau is

the inverse of the information matrix, divided by the total number of cases. Hence,

the robust variance, as used for estimation of coefficients, is inappropriate and the

model-based variance should be used.

Xue et al. (2013) perform a simulation study that assesses performance of Prentice-

Weighted Schoenfeld Residuals in the case-cohort design. They use 1000 replicates

of a full cohort of 2000 with a random subcohort of 500 subjects and a uniform cen-

soring distribution such that the event rate was set to be between 5-10%. They state

that “Several different cohort and subcohort sample sizes were assumed, however

... changes in sample size did not affect the findings” however they do not describe

these full cohort and subcohort sizes. Analysis time-scale is not explicitly described,

but it appears to be fixed entry. They assess models with a single binary covariate, a

single continuous covariate generated from a standard normal distribution, and both

a binary and an independent continuous variable. They assess the PH assumption

by calculating a Pearson correlation coefficient and its significance for the covariate

between its Schoenfeld residuals and each of time, rank order of time, and Kaplan

Meier estimates. Broadly speaking, all tests showed similar Type 1 error, within

1% of a nominal 5%. Power was also similar, with analysis time showing somewhat

reduced power for the single binary covariate with certain forms of non-proportional

hazards. However, note that the simulation study described had a subcohort sam-

pling fraction of 25% and 500 subcohort members, with a maximum of 200 cases at

the 10% event rate. If the assumption of fixed entry is correct, the minimum risk

set size would therefore be 301 subjects for the last failure. It is therefore unclear

whether the results of this simulation study would apply to data with smaller risk

set sizes, at might occur with smaller full cohorts, smaller sampling fractions or data

analysed with age as time-scale.

5.3.3 Model-Based Tests

The model-based tests described above are, essentially, tests of the power of the

model to detect an interaction effect. While Chapter 3 did not consider interac-

tions specifically, one might expect to see similar results as were demonstrated for

estimation of β in that chapter. No obvious further necessary modification for the

case-cohort design presents itself.
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5.4 Simulation Study

The purpose of this simulation study is to compare full cohort statistical tests for

detection of non-proportional hazards with case-cohort methods.

5.4.1 Data Generating Mechanism

Data generation was carried out as described in Chapter 2, with the following spec-

ifications:

One independent binary covariate was generated from Binomial(1, 0.5). One inde-

pendent Normal covariate was generated from Normal(0, 1). Two binary covariates

with correlation 0.5 were generated from Binomial(1, 0.5).

Survival times were generated with the normal covariate and one correlated bi-

nary covariate displaying non-proportional hazards. For each combination of subco-

hort size, non-case to case ratio, sampling fraction, and time-scale, initial reference

proportional hazards datasets were generated with full cohorts of size 10,000 and

coefficients for all four covariates equal to ln(2)/SD. The changes in hazard ratio ∆

from the 25th percentile to the 75th percentile of survival times of cases were 0.8 and

1.25. To assess Type 1 error for global tests, full cohorts were also generated with

∆ = 1, i.e. with no violations of the proportional hazards assumption. Examples of

the associated values of βphi and φ are detailed in Chapter 2, Table 2.4. Example

graphs of Hazard ratios against time are shown in Chapter 2, Figure 2.2.

5.4.2 Target

For all methods investigated in this study, the target was evaluation of the null

hypothesis of proportional hazards, as assessed by the various methods.

5.4.3 Methods

Full Cohort, IPW-Classic and Prentice-weighted methods were considered. In ex-

ploratory simulations, use of time-dependent weights as for estimation of β or Pren-

tice Classic as for estimation of H0(t) in Chapter 3, and removal of case-only risk

sets, had only minimal effects on results. Hence they were not considered.

In exploratory simulations, choice of function of time from analysis time, log of

analysis time and rank of analysis time had minimal impact on the relative per-

formance of tests in the case-cohort as compared to the full cohort. Hence, only

analysis time was considered.
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The methods investigated in this chapter can be classified as single-parameter or

global tests. Note that while the single-parameter Cox test implemented here ac-

counts for non-proportional hazards in the other covariates, the single-parameter

tests for Grambsch & Therneau and correlation of Schoenfeld residuals with time

do not.

Single-Parameter Tests

1. Pearson correlation of Schoenfeld residuals with g(t).

2. Cox’s method, assessed for the interaction of a single covariate with g(t) fol-

lowing inclusion of interactions of all covariates with g(t) in the model.

3. Grambsch & Therneau’s method, assessed for a single parameter

Global Tests

1. Cox’s method, assessed for the interactions of all covariates in the model with

g(t).

2. Grambsch & Therneau’s method, assessed for all covariates in the model.

For Cox’s methods, Wald tests were used to assess the significance of the interactions

with g(t).

5.4.4 Performance Measures

Performance measures for each target were power and Type 1 error, with a a cutoff

of p = 0.05 used to classify a violation of the assumption of proportional hazards.

5.4.5 Results

∆ = 0.8 and ∆ = 1.25 had similar impact on the relative performance of tests

between case-cohort and full cohort. Hence, for clarity and brevity, only ∆ = 1.25

is presented. Table 5.1 shows Type 1 error rate and power for the global Cox

interaction test and the global Grambsch & Therneau test. Table 5.2 and 5.3 show

Type 1 error rate and power, respectively for ∆ = 1.25 for the single-parameter Cox

interaction tests, the single-parameter Grambsch & Therneau tests, and the Pearson

correlation of Schoenfeld residuals with time.
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5.4.5.1 Global Tests

In the full cohort, Type 1 error for the global Cox method and global Grambsch

& Therneau tests are broadly similar. Type 1 error is slightly higher in Staggered

Entry than Fixed Entry, but does note exceed 5.9% for Cox Interaction and 6.6%

for Grambsch & Therneau. Power is also very similar. Power increases as full co-

hort size and number of cases increases. Power is somewhat higher in fixed entry

than staggered entry, with the largest difference in power for subcohort size 1000,

sampling fraction 3% and non-case to case ratio 4:1, where power is ∼ 50% and 69%

for staggered entry and fixed entry, respectively. This corresponds to a full cohort

size of 33,333 and 248 cases.

In the case-cohort, the tests are more different. For the Cox method, Type 1 error

for both weighting methods is similar, differing by at most 2%. In fixed entry, Type

1 error ranges from 4% to 6% at subcohort size 1000. At subcohort size 200, Type

1 error is similar when non-case to case ratio is 1:1, but is ∼ 15% when non-case to

case ratio is 4:1, indicating that this may be due to the small number of cases (∼ 50)

seen in this scenario. In staggered entry, Type 1 error ranges from from 7% to 8% at

subcohort size 1000. At subcohort size 200, Type 1 error ranges from 11% to 20%,

with Type 1 error increasing as number of cases decreases. It appears, therefore,

that inappropriately high Type 1 error rates are associated with smaller numbers of

cases, with this exacerbated by the smaller risk set sizes seen in staggered entry.

These results are reflected in those for power of the global Cox method, where,

for both entry types, at subcohort size 200 and non-case to case ratio 4:1, case-

cohort power is greater than that seen in the full cohort. Under fixed entry, IPW

and Prentice display similar power to each-other and to the full cohort at subcohort

size 1000. Under staggered entry at subcohort size 1000, there is a greater loss of

power from the full cohort than in fixed entry, and IPW displays greater power

than Prentice, with this difference in power between weighting methods increasing

as sampling fraction increases and non-case to case ratio decreases. The largest

difference in power is seen at sampling fraction 15% and non-case to case ratio 1:1

where power is 98%, 77%, and 60% in the full cohort, IPW-weighted case-cohort

and Prentice-weighted case-cohort, respectively.

Results for the global Grambsch & Therneau test are more sensitive to entry type.

Under fixed entry, IPW shows somewhat higher Type 1 error than the full cohort,

but still reasonable close to a nominal 5%, ranging from 5.1% to 6.9%. Type 1

error for Prentice is similar, except at non-case to case ratio 1:1 and sampling frac-
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tion 15% where it is ∼ 10%. Power is broadly similar for both weighting systems.

At subcohort size 1000, power for case-cohort methods is similar to the full cohort.

At subcohort size 200, power for case-cohort methods slightly exceeds the full cohort.

Under staggered entry, both case cohort weighting methods display inappropriately

high Type 1 error for Grambsch & Therneau in all scenarios. At subcohort size 200,

IPW has higher Type 1 error rate than Prentice. These results are reflected in those

for power, where both weighting methods tend to show greater power than the full

cohort, to a greater degree for IPW at subcohort size 200.

Table 5.1: Type 1 Error and Power for Global Tests

Entry

Type
NSC NNC

NC α

Type 1 Error Power

Cox Interaction Gra. & The. Cox Interaction Gra. & The.

FC IC P FC IC P FC IC P FC IC P

Fix.

200

4
3 2.9 14.7 16.5 4.8 6.6 6.0 15.6 24.5 27.2 19.5 22.7 20.2

15 2.8 15.3 16.3 5.5 5.8 5.9 11.1 23.3 23.6 13.5 17.1 15.7

1
3 3.5 3.8 4.8 4.0 5.0 6.3 47.7 39.4 40.1 48.2 53.9 50.8

15 4.4 6.0 6.3 4.5 6.9 9.2 37.3 37.0 29.8 37.8 44.3 40.8

1000

4
3 5.5 6.1 5.9 5.9 5.6 5.6 68.8 66.6 66.9 69.3 70.2 70.3

15 4.1 5.8 6.3 4.5 5.1 4.9 49.0 47.0 45.4 49.6 49.9 49.0

1
3 4.9 4.6 4.4 4.9 5.9 5.9 99.7 99.3 99.1 99.7 99.7 99.8

15 4.8 5.2 5.3 4.8 5.9 10.1 97.7 96.1 92.5 97.7 97.8 97.2

Stag.

200

4
3 4.1 17.7 19.8 6.6 27.6 16.1 9.8 27.7 27.5 12.6 38.7 22.9

15 3.5 15.5 17.4 4.7 15.3 10.7 9.7 24.8 26.5 12.2 25.2 20.8

1
3 5.2 15.8 14.1 5.8 50.8 41.0 36.3 34.3 30.3 35.8 67.1 56.0

15 4.8 11.9 10.7 4.7 26.3 29.3 32.9 33.8 28.9 32.9 52.9 50.8

1000

4
3 4.9 6.6 7.8 4.9 19.2 17.4 50.0 32.6 31.4 49.5 59.1 52.6

15 4.5 7.1 6.8 4.7 14.1 13.6 44.6 37.7 31.6 44.0 54.6 50.5

1
3 5.9 7.7 7.6 5.7 48.0 48.1 97.7 58.5 47.7 97.8 91.9 90.1

15 5.1 8.2 7.5 5.3 29.9 39.0 98.1 77.4 59.8 97.8 95.3 91.1

FC =Full Cohort, IC= IPW Classic, P = Prentice

NSC Subcohort size; NNC

NC non-case to case ratio; α sampling fraction (%)

5.4.5.2 Single-Parameter Tests

In the full cohort, Type 1 error for the single parameter Cox method, Grambsch &

Therneau, and Schoenfeld correlation tests ranges from 3.0% to 5.9%, 3.8% to 7.3%;

and 4.1% to 10.6%; respectively. For the Cox method and Grambsch & Therneau
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tests, entry type, full cohort size, number of cases, and correlation with the NPH

covariate does not appear to have major impact on Type 1 error. Correlation with

the NPH covariate does impact Schoenfeld correlation tests, with Type 1 error 4.1%

to 7.0% for the uncorrelated covariate, and 4.9% to 10.6% for the correlated covari-

ate. Power for single-parameter tests is similar, with power for all tests within 3% of

each-other. Power is greater for the Normal covariate, fixed entry, larger full cohorts

and more cases, with number of cases having a greater effect than full cohort size.

Again, in the case-cohort, the tests are more dissimilar. They are also more ef-

fected by entry type. In the Cox method, Type 1 error is broadly similar in both

weighting methods, and does not appear to be affected by correlation with the NPH

covariate except at subcohort size 200 when non-case to case ratio is 4:1, where

Type 1 error rate is ∼ 11% for the correlated covariate as compared to ∼ 6% and

∼ 7.5% for the uncorrelated covariate under fixed and staggered entry, respectively.

Excluding this scenario, Type 1 error rate under fixed entry ranges from 4.4% to

6.1%. Type 1 error is higher in staggered entry than in fixed entry, ranging from

5.2% to 9.4% (with the same exclusions as in fixed entry), with Type 1 error higher

at the smaller subcohort size.

Reflecting the results for Type 1 error, at subcohort size 200 when non-case to

case ratio is 4:1, power of the Cox method for case-cohort methods tends to exceed

that of the full cohort, to a greater degree for the binary covariate than the Normal

covariate. At subcohort size 200 when non-case to case ratio is 1:1, power is close

to that of the full cohort except in staggered entry for the normal covariate, where

loss of power is ∼ 15% for IPW and ∼ 20% for Prentice. Power is within 2% of the

full cohort at subcohort size 1000.

In fixed entry, Type 1 error for both weighting methods is slightly elevated from

the full cohort for Grambsch % Therneau and is similar to the full cohort for corre-

lation of Schoenfeld residuals with time. Under staggered entry, inappropriate Type

1 error in excess of that of the full cohort is seen. IPW displays noticeably higher

Type 1 error than Prentice at the 3% sampling fraction and non-case to case ratio

4:1, while Prentice displays higher Type 1 error than IPW at the 15% sampling frac-

tion and non-case to case ratio 1:1. The Grambsch & Therneau single-parameter

tests display somewhat higher Type 1 error rates than those of the correlations of

Schoenfeld residuals, most noticeably at the 3% sampling fraction.

Power reflects these results. In fixed entry, case-cohort methods have power within

6.5% of the full cohort. In staggered entry, power tends to exceed the full cohort.
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Table 5.2: Type 1 Error for Single-Parameter Tests in NPH Datasets

Entry

Type
NSC NNC

NC
α Cov

Cox Interaction Gra. & The. Scho. Corr.

FC IC P FC IC P FC IC P

Fix.

200

4

3
Corr 3.3 10.6 10.7 7.3 7.2 7.0 5.4 5.3 5.4

UnCorr 4.0 5.7 6.1 5.0 5.4 5.2 5.0 5.0 5.1

15
Corr 3.0 10.1 10.3 5.5 6.2 6.0 5.5 5.6 5.6

UnCorr 3.8 5.8 5.6 5.1 5.4 5.2 4.6 4.8 4.8

1

3
Corr 3.9 5.0 4.7 4.5 6.0 5.6 6.4 6.9 6.6

UnCorr 4.7 4.9 5.2 5.0 6.2 6.5 4.7 4.7 5.6

15
Corr 4.6 5.8 5.6 4.8 6.5 6.2 5.3 5.8 6.2

UnCorr 4.5 5.4 5.2 4.5 6.4 7.1 4.9 5.2 5.6

1000

4

3
Corr 4.9 5.5 5.4 5.4 5.9 6.1 7.3 7.2 7.4

UnCorr 4.0 4.5 4.4 4.4 4.5 4.5 4.4 4.3 4.4

15
Corr 5.2 5.1 5.4 5.4 5.3 5.5 7.3 7.3 6.9

UnCorr 5.0 5.3 5.2 5.0 5.4 5.3 5.4 5.5 5.7

1

3
Corr 3.7 3.9 3.8 3.8 4.9 5.1 10.6 10.8 10.5

UnCorr 5.5 5.8 5.6 5.6 6.9 7.1 5.4 5.6 5.5

15
Corr 4.9 5.6 5.1 5.1 6.5 6.4 7.2 7.3 8.2

UnCorr 5.7 4.8 5.0 5.6 5.4 6.2 5.0 5.8 6.2

Stag.

200

4

3
Corr 3.5 10.6 12.0 5.1 13.1 8.5 4.9 9.5 7.5

UnCorr 3.8 7.5 7.6 5.0 15.7 8.4 4.9 10.4 7.2

15
Corr 5.0 12.5 14.2 6.1 11.9 9.5 5.1 9.1 8.2

UnCorr 3.9 6.8 7.1 4.7 10.1 7.3 4.7 7.1 6.2

1

3
Corr 5.7 8.6 8.7 6.2 22.0 18.4 6.4 18.0 14.4

UnCorr 3.7 9.1 9.4 3.9 25.6 21.0 4.1 21.6 19.6

15
Corr 5.9 8.5 9.4 6.5 14.3 15.3 6.8 14.1 14.8

UnCorr 5.6 8.9 9.3 5.2 16.8 19.3 5.0 15.7 16.6

1000

4

3
Corr 5.9 6.6 6.8 6.1 10.6 9.2 6.3 9.9 8.9

UnCorr 5.2 6.8 6.4 5.5 15.4 13.7 5.3 13.9 12.8

15
Corr 5.9 6.0 6.1 6.0 8.5 8.7 7.7 10.3 10.2

UnCorr 4.9 6.8 6.5 5.2 10.3 9.7 5.7 9.0 8.9

1

3
Corr 5.4 6.6 6.6 5.5 19.3 19.7 7.4 20.8 19.6

UnCorr 5.9 7.7 6.6 5.5 26.1 26.5 5.4 24.9 25.4

15
Corr 4.9 5.6 6.4 5.1 15.1 18.4 5.8 14.2 16.0

UnCorr 5.5 5.2 6.2 5.5 16.4 20.6 7.0 15.4 20.0

FC =Full Cohort, IC= IPW Classic, P = Prentice

NSC Subcohort size; NNC

NC non-case to case ratio; α sampling fraction (%)
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Table 5.3: Power for Single-Parameter Tests in NPH Datasets

Entry

Type
NSC NNC

NC α Cov
Cox Interaction Gra. & The. Scho. Corr.

FC IC P FC IC P FC IC P

Fix.

200

4

3
Bin 6.2 10.3 10.7 8.6 10.1 9.8 9.1 9.2 9.1

Norm 26.4 24.4 27.1 26.5 30.5 28.9 25.5 26.0 26.3

15
Bin 5.8 11.1 11.2 7.7 7.9 7.9 7.0 6.7 6.9

Norm 18.1 20.7 21.0 18.4 21.3 20.0 17.8 19.2 18.8

1

3
Bin 13.3 12.9 13.3 13.6 16.5 16.3 14.7 15.0 15.5

Norm 62.3 58.2 55.1 62.4 68.6 62.1 61.9 64.3 60.7

15
Bin 11.1 12.3 11.7 11.2 13.8 13.2 11.5 11.9 11.8

Norm 53.3 50.6 42.1 53.4 57.9 51.7 52.1 55.1 50.3

1000

4

3
Bin 18.9 17.6 17.6 19.6 19.5 19.5 20.6 20.6 20.7

Norm 83.1 81.3 80.5 83.1 83.6 82.7 82.9 83.1 82.1

15
Bin 12.9 13.1 13.3 13.3 13.8 14.0 13.1 13.1 13.7

Norm 62.7 60.5 59.3 62.9 63.3 62.9 62.1 62.7 61.1

1

3
Bin 42.5 39.2 38.2 42.4 42.6 41.5 45.1 45.3 44.5

Norm 100.0 99.9 99.9 100.0 99.9 99.9 100.0 99.9 99.9

15
Bin 36.5 34.8 34.1 35.8 36.8 37.3 33.0 33.8 33.5

Norm 99.2 98.3 97.0 99.3 98.7 98.4 98.9 98.6 98.7

Stag.

200

4

3
Bin 4.9 13.0 13.0 6.6 14.5 9.4 6.3 11.2 8.5

Norm 19.2 25.2 23.8 19.5 36.6 23.8 18.5 28.3 23.4

15
Bin 5.3 12.3 14.0 8.1 12.4 9.7 6.9 9.4 8.3

Norm 17.3 19.5 19.7 15.9 24.2 20.8 15.4 20.4 18.9

1

3
Bin 11.4 13.0 12.5 11.5 26.9 22.5 11.6 24.4 20.3

Norm 53.9 36.1 33.4 53.9 57.8 49.3 52.3 51.9 46.9

15
Bin 11.1 12.7 12.5 11.6 21.9 20.1 10.2 18.7 17.8

Norm 48.1 34.9 32.0 45.8 48.0 45.0 44.9 44.3 43.4

1000

4

3
Bin 12.3 12.2 11.7 12.7 17.9 16.1 13.8 16.8 15.4

Norm 62.9 44.3 41.3 62.8 65.2 58.0 62.9 63.1 58.1

15
Bin 11.6 13.2 12.8 11.3 17.4 16.4 13.1 16.1 15.4

Norm 60.7 48.5 44.2 59.8 60.1 55.8 59.6 58.1 55.4

1

3
Bin 29.6 19.5 17.4 29.5 36.2 33.1 30.9 37.1 32.9

Norm 99.5 68.2 59.9 99.5 91.0 88.0 99.5 90.8 88.3

15
Bin 33.3 23.3 20.6 32.1 38.2 36.6 25.6 32.9 29.6

Norm 98.9 87.2 74.1 98.7 94.9 91.0 98.6 94.4 90.1

FC =Full Cohort, IC= IPW Classic, P = Prentice

NSC Subcohort size; NNC

NC non-case to case ratio; α sampling fraction (%)
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5.5 Discussion

The results from this chapter indicate that where risk sets at individual failure times

are small or more variable, tests based on correlation of Schoenfeld residuals with

g(t) are inappropriate in the case-cohort design. Further, the scaled Schoenfeld

residuals tests of Grambsch & Therneau as implemented in STATA are also inap-

propriate. This is likely due to the reasoning given by Winnett and Sasieni (2001),

that the substitution of the average variance for the weighted variance of the covari-

ates at each failure time may be inappropriate when variance of covariates changes

substantially over failure times. It is possible that use of the time-specific weighted

variances rather than the average in the case-cohort would result in improvements

in performance by taking this into account. While the individual variances at each

failure time are readily obtainable in R, they are not recorded in STATA, and hence

this approach was not further investigated in this thesis.

Cox’s method is more promising as a method for detection of non-proportional

hazards in case-cohort samples. Single-parameter tests following global inclusion of

interactions displayed improved Type 1 error rate and less loss of power than a global

test of all interactions, and have the advantage of facilitating identification of the spe-

cific covariates(s) that display non-proportional hazards, where present, while still

accounting for correlation between covariates with proportional hazards and those

with non-proportional hazards. IPW weighting showed a small improvement in Type

1 error rate and power over Prentice weighting in some scenarios with this test. As

such, global inclusion of interactions in an IPW-weighted Cox model, followed by

single-parameter Wald tests is recommended for detection of non-proportional haz-

ards in the case-cohort. Where risk set sizes are small or highly variable, number of

cases is small, covariates are continuous, or covariates are highly correlated, results

indicating presence of non-proportional hazards should be regarded with caution.

The simulation study presented in this chapter displays an example of where results

from simulations analysed under fixed entry may not apply to datasets analysed un-

der staggered entry. While the impact of time-scale was small in Chapter 3, where

estimates can be considered to be aggregated over risk sets, they were more impact-

ful here, where values from individual risk sets had more influence. The findings

of Xue et al. (2013) regarding Prentice-weighted Schoenfeld residuals are not con-

tradicted by the results presented in this Chapter, rather, a wider range of risk set

sizes and risk set variation is considered here.
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The simulation study did not consider a wide range of forms of non-proportional

hazards, nor did it consider a wide range of φ or β. It is possible that varying forms

of non-proportional hazards or values of φ and β may have differing impacts on the

case-cohort sample. However, in this simulation study, there was very little difference

seen in relative performance of full cohort and case-cohort methods between the

two values of ∆ considered, 0.8 and 1.25. Further, Xue et al. (2013) also found

only small differences in performance of Prentice-weighted Schoenfeld residuals for

a wider range of forms of non-proportional hazards.
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Chapter 6

Model & Variable Selection

6.1 Introduction

Methods for model selection in maximum likelihood estimation include Akaike’s In-

formation Criterion (AIC), Bayesian Information Criterion (BIC), and, for nested

models, Likelihood ratio (LR) and Wald tests. These methods can also be used

for variable selection. In the proportional hazards model, for the full cohort, large-

sample properties and tests based on the likelihood ratio method and an asymptotic

chi-squared distribution are justified in the case where there is a partial likelihood

rather than a likelihood, under broad conditions (Cox, 1975). Wald tests are valid

in the case-cohort design when appropriate methods have been used for variance

estimation, but there has been little work on the other methods in the case-cohort

design. The field of complex survey sampling, however, has seen work which may

apply to the case-cohort model. Lumley and Scott (2013) considered the case-cohort

design as a special case of complex sampling when they introduced a modified Like-

lihood ratio test dLR. For complex survey sampling, though not discussing the

case-cohort design, Xu et al. (2013) proposed replacement of the likelihood with the

pseudolikelihood for a modified BIC (pBIC), and Lumley and Scott (2015) built

on their 2013 paper to describe modifications to AIC and BIC (dAIC and dBIC).

In this chapter I first, in Sections 6.2 and 6.3, describe the methods mentioned

above. In Section 6.4 I perform a simulation study comparing näıeve replacement of

the likelihood with the pseudolikelihood (denoted pAIC, pBIC, and pLR) with the

modifications of Lumley & Scott (dAIC, dBIC, and dLR) in the case-cohort, and

with the standard methods in the full cohort. The effects of sparse data are also

demonstrated. In the absence of sparse data, dLR is found to have similar power

to robust Wald tests, with Type 1 error rate approximately 5%. In the presence of

sparse data, dLR is superior to robust Wald tests. In the absence of sparse data,
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dBIC shows little difference from the naieve use of the pseudo-log-likelihood in the

standard BIC formula (pBIC). In the presence of sparse data dBIC shows reduced

power to select the true model, and pBIC is superior. dAIC shows improvement

in power to select the true model over naieve methods. Where subcohort size and

number of cases is not overly small, loss of power from the full cohort for dAIC,

dBIC and pBIC is not substantial.

6.2 Wald Test and Likelihood Ratio Test

Full cohort methods for assessing significance of variables in a model include the

Likelihood ratio test, the Wald test, and the score Test. These tests are asymptoti-

cally equivalent, but make different approximations in small samples. The score test

assesses improvement based on movement towards the alternative from the null, the

Wald test assesses improvement based on movement to the null from the alternative,

and the Likelihood ratio test directly compares the two hypotheses (Engle, 1984).

Define a full model MM with kM parameters βM , and likelihood LM . Consider the

partition of βM into β1 of dimension k1 and β2 of dimension k2. Define submodel

M1 with k1 parameters β1 and submodel M2 with k2 parameters β2. Consider an

analysis where the aim is to assess whether the covariates corresponding to β2 con-

tribute to the model MM , perhaps in order to choose between models MM and M1.

The Wald test (Wald, 1943) assesses whether all elements of β2 are simultaneously

equal to 0. A Taylor series approximation to the score function about the MLE finds

that estimator β̂ is approximately normal with mean β and variance V equal to the

inverse of the Fisher Information I. Let VM be the variance of β̂M and let V2 refer

to the submatrix of VM corresponding to β2. The Wald test statistic is defined as:

W =
β̂2
2

V̂2
for k2 = 1

W = β̂′2(V̂2)
−1β̂2 for k2 > 1

The Likelihood ratio test statistic (Neyman and Pearson, 1928), can be defined:

LR = −2ln
L1

LM
= 2(ln(LM)− ln(L1))

Both test statistics are asymptotically chi square with degrees of freedom k2. While

the Likelihood Ratio Test requires fitting of both MM and M1, the Wald Test only

requires fitting of MM . However, note that the Wald test of a parameter is valid
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only if the profile likelihood for the parameter is well approximated by a normal

likelihood (Pawitan, 2000).

6.2.1 Case-Cohort Implementation

The Wald test relies only on estimates of β2 and V2, given by MM . As such, it is the-

oretically justified in the case-cohort model, despite the presence of a pseudopartial

likelihood rather than a partial likelihood, as long as the variance estimates of β2

are appropriate for the case-cohort design. The Likelihood ratio test, by contrast,

relies upon the values of the likelihoods for MM and M1. A näıeve modification for

the case-cohort model would be to replace the likelihoods in the formula with the

pseudopartial likelihoods pL∗ from the case-cohort models to give pLR, and assume

that pLR is also asymptotically chi square with degrees of freedom k2, such that

pLR = −2ln
pL∗1
pL∗M

= 2(ln(pL∗M)− ln(pL∗1))

Lumley and Scott (2013) introduced a modified Likelihood Ratio test, dLR, with

identical test statistic to the näıeve pseudopartial likelihood substitution pLR. The

modification is in the distribution of the test statistic. In complex sampling, under

the null hypothesis that β2 = 0, the test statistic converges in distribution to Q2, a

linear combination of k2 independent χ2
1 random variables. The coefficients (dei) of

this linear combination are the eigenvalues of the design effects matrix DE. Let V̂ n

refer to the na”́ieve variance estimate and let V̂ refer to the design-based variance es-

timate, accounting for the case-cohort design. Let the observed information matrix Î
be the inverse of the naieve variance estimate matrix V̂ n. As before, let subscript M

refer to the maximal model. Let V̂Mij refer to the submatrix of V̂M corresponding to

the covariance of β̂i with β̂j and let ÎMij refer to the corresponding submatrix of ÎM .

DE is estimated from the full model MM , with

D̂E = (ÎM 22 − ÎM 21ÎM−111 ÎM 12)V̂M 22

The distribution of Q2 can be approximated by matching the moments, via their

cumulants q, to a known distribution. One method for this approximation is that of

Satterthwaite (1946). This approximation equates the first two moments of Q2 with

those of a Γ(ĝ, θ̂) distribution, with a final test distribution of Γ(ĝ, dLR
θ̂

), where:

q1 =

k2∑
i=1

dei, q2 = 2

k2∑
i=1

(dei)
2, ĝ =

q21
q2
, θ̂ =

q2
q1

.
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6.3 AIC and BIC

For a model fitting k parameters β with likelihood L, the Akaike Information Cri-

terion (Akaike, 1974) for the model can be defined as:

AIC = −2ln(L) + 2k

and where n is the sample size, the Bayesian Information Criterion (Schwarz, 1978)

BIC = −2ln(L) + k × ln(n)

When choosing between models, the candidate model with the smallest criterion

value is preferred. The criteria differ in the penalty term used to penalise for inclu-

sion of additional explanatory variables. Use of BIC requires a choice of n; Volinsky

and Raftery (2000) proposed that in the Cox model, n be defined as the number of

failures, rather than the number of individuals or observations, with the justification

that this corresponds to a more realistic prior on the parameter space.

6.3.1 Case-Cohort Implementation

As with the Likelihood Ratio test, in the case-cohort design, a basic adaptation for

both methods would be to use the pseudopartial likelihood pL∗ as a substitute for

the partial likelihood from the full cohort, such that:

pAIC = −2ln(pL∗) + 2k

pBIC = −2ln(pL∗) + k × ln(n)

For variable and model selection in complex survey data, Xu et al. (2013) propose

this adaptation of BIC for survey data to give pBIC, and show that, if one or more

of the models is true, then the probability that the most parsimonious true model

is selected converges to one as n → ∞. The case cohort design is not explicitly

mentioned.

Lumley and Scott (2015) used similar theory to their work on the Likelihood Ratio

test to propose principled survey analogues of AIC and BIC, dAIC and dBIC,

where the second term penalises for larger design effects as well as for increasing

numbers of parameters. The case-cohort design is not mentioned, but, following the

same logic as in their 2013 paper, can be considered as a special case of such models.
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6.3.1.1 dAIC

For dAIC criterion, the pseudopartial likelihood is substituted for the likelihood in

the AIC formula, and the penalty term, −2k in AIC, is scaled by a quantity δ̄ε.

δ̄ε is defined as k−1 times the trace of the design effects matrix ∆E, where ∆E is

estimated as the product of the observed information matrix Î and the design-based

variance estimate V̂ .
ˆ̄δε = k−1tr(ÎV̂ )

dAIC = −2ln(pL∗) + 2k ˆ̄δε

dAIC will place a greater penalty on additional parameters than pAIC where esti-

mates of design-based variance are larger than those of na”́ieve variance.

Note that ∆E, the design effects matrix for dAIC is distinct from DE, the de-

sign effects matrix for dLR. When comparing models, ∆E is estimated separately

for each candidate model without reference to any other models. DE, by contrast

is estimated for submodel M1 with reference to a maximal model MM .

6.3.1.2 dBIC

For a modified BIC for complex survey sampling, Lumley & Scott conceptualize

candidate models as submodels of a maximal model MM fitted on kM parameters

βM . A particular submodel, fitted on k1 parameters β1 can hence be conceptualised

as setting the remaining k2 = kM − k1 parameters β2 equal to 0. The approach is

similar to the Wald test for nested models, but unlike the Wald test, the submodels

of MM need not be nested within eachother to be directly compared. Lumley &

Scott describe the substitution of WD the “design-based” Wald statistic for β2 =

0, for the first term in the BIC formula. Note that this Wald statistic is that

derived from the näıeve estimate of the variance-covariance matrix, and so their

terminology is different in that respect from that used in this thesis. The penalty

term is k2ln(n/ ˆ̄de), where d̄e is the geometric mean of the eigenvalues of the design

effect matrix DE.

dBIC = WD − (k2)ln(n/ ˆ̄de)

For calculation of dBIC for M1, a submodel of MM , the design effect matrix is the

same as that which would be used in the calculation of the distribution of the test

statistic of dLR for comparison of the models M1 and MM . Hence, when using dBIC

to compare multiple submodels of a maximal model MM , a unique DE and WD are

calculated for each candidate model, but for each submodel they are calculated with

reference to the same maximal model MM . The submodel with the smallest dBIC

is preferred. Note that under this formulation, dBIC for the maximal model is 0.
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Lumley & Scott noted that if design effects are large, pBIC will overestimate the

amount of information in the sample and choose a more complex model, but that if

design effects are less than one, as can happen with an effective stratification, pBIC

will underestimate the amount of information and prefer simpler models. They con-

cluded that while dAIC and dBIC may often select identical models to pAIC and

pBIC, dAIC and dBIC will be more accurate in some circumstances, and so should

be preferred. However, the Wald test statistic included in the dBIC formula, has

potential to be invalid where the profile pseudolikelihood is non-normal.

6.4 Simulation Study

The purpose of this simulation study is to compare the performance of the above

methods in the full cohort and the case cohort, in the presence and absence of sparse

data. To my knowledge, comparison of dLR and Wald tests in the case-cohort with

sparse data has not previously been investigated, nor has use of pBIC, dBIC, pAIC

and dAIC in the case-cohort design.

6.4.1 Data Generating Mechanism

Data generation was as described in Chapter 2, with the following specifications:

Four binary covariates, X1, X2, X3 and X4 were generated from Binomial(1, 0.5).

X1 and X2 were correlated with ρ = 0.5, and X3 and X4 were generated indepen-

dently. Survival times were generated from X1 and X3, each with equal coefficients

of ln(HR) per standard deviation of the covariate, for Hazard Ratios 1.1 and 1.3.

To demonstrate the effect of sparse data, a similar simulation study was performed

for subcohort size 1000, sampling fraction 3% and non-case to case ratio 1:1, with

the data generated so as to produce sparse data as might yield a non-normal profile

likelihood (Greenland (1986), Cole et al. (2014)).

X1, X2 and X4 were generated as above. X3 was generated from Binomial(1, .01).

Survival times were generated from X1 and X3. β for X1 was equal to ln(1.1)/SD.

Two values of β for X3 were considered; ln(0.92)/SD and ln(0.85)/SD. Only full

cohorts where precisely 2 cases had X3 = 1 were accepted, with full cohorts not

meeting this condition redrawn.
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6.4.2 Targets

6.4.2.1 Hypothesis Testing

Wald and Likelihood ratio tests were assessed as follows. In the notation of Section

6.2, the maximal model MM contained 4 covariates, and featured 24 − 1 = 15

potential submodels M1i each with k1i estimated parameters β̂1i. Test parameters

were defined as the remaining k2i parameters β2i not included in M1i. For example,

let γq be the parameter for covariate Xq. Then, for the submodel containing only

X1, X2 and X3, the test parameter is γ4, corresponding to X4. The null hypothesis

for each set of test parameters β2i is that in the maximal model MM , β2i = 0. The

target is the evaluation of the null hypothesis. Hence when γ1, γ3, or both γ1 and γ3

were included in the test parameters, the target was rejection of the null hypothesis.

When neither γ1 nor γ3 were included in the test parameters, the target was failure

to reject the null hypothesis. While Wald and Likelihood ratio methods could be

used to select a preferred model by means of e.g. backward selection, this target

was not considered.

6.4.2.2 Model Selection

pAIC, pBIC, dAIC and dBIC were assessed as follows. Including the null model,

the maximal model, and all its submodels, there were 24 = 16 candidate models.

The target was selection of the true model, the model containing only X1 and X3.

6.4.3 Methods

Full cohort, IPW Classic and Prentice-weighted estimation methods were considered.

The “robust” Huber sandwich estimator was used for estimation of the design-based

variance.

6.4.3.1 Hypothesis Testing

For each set of test parameters, test-statistics with reference to the maximal model

MM were calculated, together with their associated p-values. A cutoff criteria of

p < 0.05 was used to reject the null hypothesis. The Satterthwaite (1946) method

was used to approximate the distribution of dLR.

6.4.3.2 Model Selection

pAIC, pBIC, dAIC and dBIC were calculated for each of the candidate models,

and for each criterion, the model with the smallest value was selected. Following

the recommendation of Volinsky and Raftery (2000). NC was used for the value of

n for BIC, dBIC and pBIC.
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6.4.4 Performance Measures

6.4.4.1 Hypothesis Testing

For each set of test parameters, power was calculated as the proportion of replicates

where the null hypothesis was rejected when test parameters contained at least one

of γ1 and γ3, and Type 1 error rate was calculated as the proportion of replicates

where the null hypothesis was rejected for each set of test parameters that did not

contain at least one of γ1 and γ3.

6.4.4.2 Model Selection

The proportion of replicates where the true model was selected was calculated. As a

secondary measure of interest, to illustrate the differing behaviours of the methods

in particular circumstances, the proportion of replicates where each submodel model

was selected was also calculated.

6.4.5 Results

In this section I first describe the results for hypothesis testing and model selection

in the data-generating mechanism that was not designed to create sparse data, fol-

lowed by presenting results in the presence of sparse data.

In both the full cohort and the case-cohort, results for all methods are most in-

fluenced by β and NC , the number of cases in the dataset. Full Cohort size and

number of controls per case in the corresponding case-cohort sample have minimal

influence. Entry type and case-cohort weighting system also had only minor effects.

Hence, for clarity and brevity, presented here are results for staggered entry, IPW

Classic weighting, and the 3% sampling fraction. The full cohort size and number

of cases corresponding to each combination of subcohort size, non-case to case ratio,

and sampling fraction was shown in Chapter 2 and is reproduced here for reference.

Table 6.1: Full Cohort Sizes and Number of Cases Considered in this Thesis

NSC :

Subcohort size
200 1000

NNC

NC

Non-case to case ratio

α (%)

Sampling Fraction

N

Full cohort size

NC

No. of cases

N

Full cohort size

NC

No. of cases

4
15 1,333 48 6,667 241

3 6,667 50 33,333 248

1
15 1.333 170 6,667 850

3 6,667 194 33,333 970
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6.4.5.1 Hypothesis Testing

Table 6.2 shows results for Type 1 error in the full cohort and case cohort. pLR

showed inappropriate Type 1 error rate ranging from 6.4% to 26.1% (MCSE 0.8% -

1.4%), with Type 1 error rate higher at lower numbers of controls per case. Type 1

error rate and associated MCSE was broadly similar for the remaining tests, ranging

from 2.8% to 6.6% for Type 1 error rate and 0.5% to 0.8% for MCSE. MCSE bounds

for these tests encompassed a nominal alpha level of 5% in all scenarios except for LR

in the full cohort at subcohort size 200, HR/SD 1.1, N∗NC

NC =1 and test parameters

γ2 γ4, where it was slightly elevated (5.1%-8.1%), and for both Wald and dLR

in the case cohort for subcohort size 1000, where at HR/SD 1.1, N∗NC

NC =4, and test

parameter γ4, it was slightly depressed (3.3%-4.9% for Wald and 2.6%-5% for dLR);

and at HR/SD 1.3, N∗NC

NC -1. and test parameters γ2 γ4 it was somewhat depressed

(1.9%-3.9% for Wald and 1.8%-3.8% for dLR).

Table 6.2: Type 1 Error Rate for Hypothesis Tests of Parameters in MM

(Staggered Entry, sampling fraction 0.03, and IPW Classic)

NSC
(0) : 200 1000

HR/SD NNC

NC

Test

Parameters

Full Cohort Case Cohort Full Cohort Case Cohort

Wald LR Wald dLR pLR Wald LR Wald dLR pLR

1.1

4

γ2 4.2 4.3 5.2 5.6 9.5 5.0 5.2 5.5 5.5 8.6

γ4 3.9 4.3 5.3 5.5 9.2 4.4 4.6 3.7 3.8 6.4

γ2 γ4 4.2 4.7 4.7 4.6 12.0 4.2 4.3 4.3 4.1 8.7

1

γ2 5.2 5.3 4.3 4.5 20.4 5.3 5.3 4.9 4.9 17.0

γ4 5.7 5.9 5.3 5.3 18.5 5.0 5.1 6.3 6.3 18.4

γ2 γ4 6.4 6.6 4.5 4.4 2.6 4.9 4.9 5.2 5.1 2.5

1.3

4

γ2 3.9 4.1 3.9 4.2 9.3 4.4 4.4 5.0 5.2 7.7

γ4 4.5 5.1 5.0 5.5 10.9 4.7 4.7 5.9 6.2 8.8

γ2 γ4 4.2 4.7 4.2 4.5 10.3 4.6 4.6 4.8 5.0 10.5

1

γ2 5.2 5.1 4.2 4.1 18.0 4.8 4.8 4.2 4.2 17.2

γ4 4.4 4.7 4.8 5.0 20.3 5.2 5.2 5.0 5.0 19.7

γ2 γ4 4.3 4.2 5.3 5.3 26.1 4.5 4.6 2.9 .28 25.6

NSC Subcohort size; NNC

NC non-case to case ratio

Table 6.3 shows full cohort and case cohort results for power. As pLR showed highly

inappropriate Type 1 error, results for pLR are not presented for power. For any

particular combination of “true” test parameters γ1 and γ3 included in the test

parameters, results were similar when either γ2, γ4 or both γ2 and γ4 (“false” test

parameters) were also included. Hence, for clarity and brevity the mean of power
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for such combinations is presented. Wald tests and dLR in the case-cohort show less

power than their equivalents in the full cohort. Loss of power from the full cohort

increases with subcohort size and number of cases in the case-cohort sample, and

is not dissimilar from that seen in Fig. A.1b indicating that loss of power is due to

the lesser information in the case-cohort.

Table 6.3: Power for Hypothesis Tests of Parameters included in MM

(Staggered Entry, sampling fraction 0.03, and IPW Classic)

NSC
(0) : 200 1000

HR/SD NNC

NC

Test Parameters Full Cohort Case Cohort Full Cohort Case Cohort

true false Wald LR Wald dLR Wald LR Wald dLR

1.1

4

γ1 γ3
none 11.9 12.9 9.4 9.9 37.6 38.3 32.7 32.7

γ2 and/or γ4 10.0 11.8 8.4 8.8 35.3 36.0 28.1 28.1

γ1
none 9.2 9.9 8.2 8.7 24.8 25.0 20.6 20.7

γ2 and/or γ4 7.6 8.7 6.9 6.9 20.8 21.1 17.7 17.6

γ3
none 10.2 10.8 9.1 9.8 31.2 31.5 25.4 25.8

γ2 and/or γ4 7.8 8.8 7.1 6.8 22.8 23.0 17.6 18.0

1

γ1 γ3
none 31.1 31.8 14.4 14.9 94.1 94.1 69.5 69.7

γ2 and/or γ4 28.5 29.1 12.9 13.8 92.9 92.9 64.7 64.9

γ1
none 18.3 18.6 9.9 9.8 71.8 71.8 43.7 43.7

γ2 and/or γ4 15.9 16.3 8.8 9.0 67.1 67.3 38.0 38.3

γ3
none 29.7 29.9 16.2 16.5 84.1 84.1 54.5 54.7

γ2 and/or γ4 19.9 20.3 10.8 11.3 74 74 42 42

1.3

4

γ1 γ3
none 55.1 56.8 44.3 46 99.9 99.9 99.4 99.3

γ2 and/or γ4 48.9 52.7 38.5 39.9 99.8 99.8 99.1 99.2

γ1
none 35.2 35.9 27.2 28.4 95.3 95.5 87.3 87.4

γ2 and/or γ4 29.4 31.8 22.6 23.1 94.5 94.6 86.5 86.5

γ3
none 41.9 43.2 34.8 36.4 98.5 98.5 94.7 95.0

γ2 and/or γ4 29.9 32.2 24.4 26.0 95.6 95.7 88.2 88.6

1

γ1 γ3
none 98.6 98.6 83.5 83.9 100 100 100 100

γ2 and/or γ4 98.5 98.5 81.4 82.1 100 100 100 100

γ1
none 87.6 87.6 58.6 59.1 100 100 99.9 99.9

γ2 and/or γ4 85.4 86.0 54.3 54.6 100 100 99.9 99.9

γ3
none 93.8 93.9 66.8 67.2 100 100 99.9 99.9

γ2 and/or γ4 87.6 87.8 53.9 54.2 100 100 99.9 99.9

NSC Subcohort size; NNC

NC non-case to case ratio
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6.4.5.2 AIC and BIC

Tables 6.5 and 6.4 show selection rates of the true model by AIC, BIC, and their

case-cohort modifications. Additionally, selection rates for certain other models and

combinations of models is shown to illustrate the behaviour of the methods.

In the full cohort, selection of the true model by both AIC and BIC was low where

β was small and/or number of cases was low. In the case-cohort, pBIC and dBIC

perform similarly to each-other, with pBIC slightly more parsimonious. Loss of

power to select the true model from the full cohort was not substantial, especially

at the higher β, with both pBIC and dBIC in the case-cohort somewhat less parsi-

monious than BIC in the full cohort, as indicated by a greater tendency to select a

model including an additional covariate as well as X1andX3, and a lesser tendency

to select the null model at the lower β.

dAIC and pAIC are much more dissimilar. In general, dAIC gives results more

similar to the full cohort than pAIC for selection of the true model. Loss of power to

select the true model from the full cohort was not substantial for dAIC, especially

at the higher β. pAIC is substantially less parsimonious than dAIC, as indicated

by a lesser tendency to select the null model at the lower β and a greater tendency

to select a model including an additional covariate as well as X1andX3.

As in hypothesis testing, loss of power from the full cohort for modifications of

AIC and BIC decreased as subcohort size and number of cases increased. Substi-

tution of the correlated X2 for the true X1 did not appear to be overly different

in case-cohort methods than the full cohort. Selection rates for a univariate model

containing X1 or X3 were similar in full cohort and case-cohort methods.
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Table 6.4: Model Selection: Percentage Selection Rates for BIC and Modifications

(Staggered Entry, sampling fraction 0.03, and IPW Classic)

HR/SD: 1.1 1.3

Model α N∗NC

NC BIC pBIC dBIC BIC pBIC dBIC

True Model

200 4 1.0 2.4 2.6 16.5 17.4 17.6

200 1 2.1 3.9 4.9 76.0 49.0 48.4

1000 4 3.2 4.1 4.6 88.8 79.7 79.4

1000 1 36.5 29.4 31.1 98.0 85.8 82.3

True Model

And Only One

of X2 or X4

200 4 0.05 0.45 0.45 0.8 1.95 2.35

200 1 0 0.8 1.2 1.05 6.8 8.7

1000 4 0.2 0.3 0.4 1.35 3.6 3.9

1000 1 0.5 1.8 2.5 1.0 6.85 8.5

Univariate

Model

X1 or X3

200 4 8.15 9.45 9.5 22.0 18.6 18.25

200 1 12.55 13.25 13.2 8.95 10.8 9.05

1000 4 14.2 14.95 15.4 3.3 4.95 4.8

1000 1 22.8 19.95 19.3 0 0 0

X3 and X2

Only

200 4 0.2 0.7 0.7 1.8 2.9 3.0

200 1 0.8 3.1 3.9 1.9 4.7 5.1

1000 4 0.3 1.1 1.4 1.2 2.0 2.0

1000 1 2.0 3.8 4.4 0 0.1 0.1

Null Model

200 4 73.3 60.6 59.4 27.9 25.8 24.5

200 1 65.5 46.2 41.0 0.7 3.0 2.4

1000 4 63.2 57.1 54.9 0.2 0.2 0.2

1000 1 13.5 13.9 10.9 0 0 0

NSC Subcohort size; NNC

NC non-case to case ratio
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Table 6.5: Model Selection: Percentage Selection Rates for AIC and Modifications

(Staggered Entry, sampling fraction 0.03, and IPW Classic)

HR/SD: 1.1 1.3

Model NSC NNC

NC AIC pAIC dAIC AIC pAIC dAIC

True Model

200 4 4.7 5.0 4.0 30.3 22.7 22.4

200 1 13.5 8.8 5.6 66.2 35.5 49.9

1000 4 18.7 16.5 13.8 70.5 60.5 69.1

1000 1 60.7 32.6 37.9 71.2 42.9 69.8

True Model

And Only One

of X2 or X4

200 4 0.9 1.9 1.0 5.05 7.6 4.15

200 1 2.35 5.25 1.3 13.7 18.85 8.9

1000 4 2.85 3.95 2.7 13.05 16.05 12.3

1000 1 10.35 14.55 6.25 13.25 23.35 14.1

Univariate

Model

X1 or X3

200 4 12.75 12.4 12.3 15.65 14.1 17.7

200 1 15.95 10.7 13.8 0.8 2.35 8.7

1000 4 17.15 15.35 17.25 0.15 0.45 0.7

1000 1 4.45 5.8 12.8 0 0 0

X3 and X2

Only

200 4 2.7 3.3 2.2 5.8 6.4 5.0

200 1 5.8 6.4 4.3 1.3 3 5.3

1000 4 4.7 5.3 4.7 0.4 0.7 1.4

1000 1 3.5 5.3 6.7 0 0 0

Null Model

200 4 39.2 30.4 41.4 7.0 6.6 11

200 1 20.4 12.8 35.6 0.1 0.3 1.6

1000 4 17.5 15.0 21.4 0 0 0

1000 1 0.4 1.4 4.7 0 0 0

NSC Subcohort size; NNC

NC non-case to case ratio
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6.4.5.3 Sparse Data

Table 6.6 shows the effect of sparse data on the performance of hypothesis tests in

the full cohort and case cohort. As in Table 6.3, the mean of power for all combina-

tions of “false” parameters γ2 and γ4 included with specific combinations of “true”

test parameters γ1 and γ3 in the test parameters is presented. In this table, column

”false” presents the number of such false parameters included in the test parame-

ters. For clarity and brevity, the mean Type 1 error rate over all combinations of

false parameters γ2 and γ4 is shown. Recall that covariate X3 was generated with

extremely sparse data as might yield a non-normal likelihood in the full cohort, with

only 2 events with X3 = 1 in each replicate.

Type 1 error rate is similar for all tests. LR and dLR behave similarly to 6.3 where

the DGM was not designed to generate sparse data. The Wald tests, by contrast,

show lower power than LR and dLR when γ3 is included in the test parameters.

This is most apparent at the lower HR/SD for X1, as the high power in the full

cohort when HR/SD for X1 = 1.3 obfuscates this result for the full cohort Wald

test.

Table 6.6: Sparse Data: Performance of Hypothesis Tests of Parameters in MM

(Staggered Entry, sampling fraction 0.03, non-case to case ratio 1 and IPW Classic)

HR/SD (X1): 1.1 1.3

Test Parameters Full Cohort Case Cohort Full Cohort Case Cohort

true false Wald LR Wald dLR Wald LR Wald dLR

Type 1 Error 0 >0 5.4 5.4 5.6 5.6 5.1 5.1 5.5 5.6

Power

γ1 γ3
0 94.5 100 66.1 80.0 100 100 99.9 99.9

>0 90.8 99.9 60.5 72.1 100 100 99.8 99.9

γ1
0 72.7 72.8 43.6 43.8 100 100 99.9 99.9

>0 70.3 70.3 39.2 39.3 100 100 99.7 99.7

γ3
0 100 100 53.9 81.5 100 100 55.9 79.9

>0 32.6 99.8 30.1 52.0 34.2 99.8 31.1 51.0

Table 6.7 shows the effect of sparse data on AIC, BIC, and their case-cohort mod-

ifications. While pBIC, pAIC and dAIC show similar behavior as in the previous

simulation study, dBIC is less likely than BIC or dBIC to select models that con-

tain X3, the covariate with non-normal profile likelihood, resulting in low power to

select the true model.
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Table 6.7: Sparse Data: Model Selection

(Staggered Entry, sampling fraction 0.03, non-case to case ratio 1 and IPW Classic)

HR/SD

(X1)
Model AIC pAIC dAIC BIC pBIC dBIC

1.1

True Model 65.2 34.1 46.8 63.1 33.2 9.4

True Model + X2 or X4 11.3 16.75 7.95 0.35 2.3 0.95

Univariate Model X1 0 1.1 2.7 0.2 15.5 39.2

Univariate Model X3 4.7 6.5 16.3 32.8 23.4 6.7

X3 and X2 Only 3.3 6.6 7.9 3 5 1.6

Null Model 0 0.6 1.8 0 11.2 25.5

1.3

True Model 71 43.7 65 97.9 57.5 18.3

True Model + X2 or X4 13.25 20.85 12.6 1.05 4.5 1.85

Univariate Model X1 0 1.9 5.1 0 28.1 65.1

Univariate Model X3 0 0 0 0 0 0

X3 and X2 Only 0 0 0.1 0 0.1 0.1

Null Model 0 0 0 0 0 0

6.5 Discussion

I first discuss the results where the data generating mechanism was not designed

to introduce sparse data, followed by the impact of sparse data, and an overall

conclusion.

6.5.1 Hypothesis Testing

In the full cohort, the Wald and Likelihood Ratio tests generally behaved as ex-

pected. They showed Type 1 error rates close to 5%, and similar power to each-

other. In the case-cohort, robust Wald tests showed similar Type 1 error rates to

the full cohort, and power was diminished from the full cohort to a similar degree as

seen in comparable scenarios in Chapter 3. Loss of power diminished as subcohort

size and number of cases in the dataset increased. The na”́ieve pLR showed high

Type 1 error rates > 10%. The dLR modification, however, shows similar results to

the Wald tests. Overall, this simulation study confirms the work of Lumley & Scott

in the application of dLR to the case-cohort design.

6.5.2 Model Selection

In the case cohort, pBIC and dBIC perform similarly to each-other, and indeed,

Lumley & Scott note in their 2015 paper that pBIC and dBIC are likely to select

the same model in many scenarios. The application of dAIC to case-cohort data in
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these simulation studies showed that dAIC selected models more similarly to AIC

in the full cohort than did pAIC. The rate of selection of the true model was low

for both full cohort and case cohort when β was small and/or number of cases was

low. As the subcohort size and number of cases increased, loss of power from the

full cohort in the case cohort diminished.

6.5.3 Impact of Sparse Data

In this study, the data-generating mechanism created extremely sparse data, and

results may not be as dramatic in real world applications. However, in this simula-

tion study, Wald tests showed substantially reduced power when the test parameters

included the γ corresponding to the covariate with sparse data. Similarly, dBIC

showed reduced power to select the true model when data was sparse.

6.5.4 Conclusion

The application of methods from the field of complex survey sampling has allowed

for valuable methods for hypothesis testing and model selection in the case-cohort

design. Overall, the results indicate that dLR and Wald tests display reasonable

Type 1 error rates in the case cohort, and that power increases as subcohort size and

number of cases increase. Similarly, as subcohort size and number of cases increase,

dAIC, pBIC, and dBIC behave mores similarly to their full cohort equivalents.

However, dBIC and Wald tests should be regarded with caution where data is

sparse or a non-normal profile pseudolikelihood is suspected.
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Application to InterAct

7.1 Introduction

In this chapter the use of the methods described previously is illustrated using the

InterAct dataset. In Section 7.2 I briefly describe the InterAct Case-Cohort Study.

In Section 7.3 I describe the InterAct Consortium et al. (2012a) paper, in which

both the independent association of Physical Activity with incident type 2 diabetes

and the association between Physical Activity and diabetes incidence within strata

of BMI or WC were assessed separately in men and women. In this section I also

discuss measures of obesity, and the role of obesity in the causal pathway of type

2 diabetes. In Section 7.4 I describe the aims of my analysis, which are to explore

what the methods of this thesis can tell us about the estimation, selection and crit-

icism of a selection of the models fitted by InterAct Consortium et al. (2012a). In

Section 7.5 I describe the subset of the InterAct data analysed in this chapter. The

subject-handling centres over which models were estimated are summarised in Table

7.1. In Table 7.2 I summarize the covariates included in the analysis dataset.

In Section 7.6 I fit an initial model to the analysis dataset, similar to that of InterAct

Consortium et al. (2012a) but with a stratified Cox model rather than combining

the effects using random effects meta-analysis. In Section 7.7 I choose functional

forms for Physical Activity and the other continuous covariates in each sex, with

the aim of capturing any non-linear effects. In Section 7.8 I test for violation of the

assumption of proportional hazards, and include a time-varying effect where viola-

tions are detected. In Section 7.9 I fit additional models by similar methods, each

including a different measure of obesity (Waist Circumference and Waist to Height

Ratio). In each sex, I then use model selection methods to choose between these 3

different obesity-measure-models. Finally, in Section 7.10 I discuss the analysis and

its results, and offer a final conclusion.
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I find that while results are slightly attenuated in the analysis of this chapter, the

results of InterAct Consortium et al. (2012a) in their investigation of the indepen-

dent association of Physical Activity with incident type 2 diabetes are overall robust

to their model assumptions, but that improved functional form of covariates atten-

uates the effect. I also find that the model with Waist-to-Height ratio is strongly

preferred in both sexes. I therefore conclude that, in this analysis, a one-level in-

crease in Physical Activity is independently associated with a relative risk reduction

of 6% in Males (95% CI 1% to 10%) and 5% in Females (95% CI 0% to 9%).

7.2 The InterAct Case-Cohort Study

The InterAct study is a large prospective case-cohort study nested within the Eu-

ropean Prospective Investigation into Cancer and Nutrition (EPIC), designed to

allow for examination of genetic and lifestyle factors on incidence of type II dia-

betes. The participants, methods, study design and measurements are described

in detail in InterAct Consortium et al. (2011). EPIC collected standardised infor-

mation on lifestyle exposures, socio-economic status, education, and occupation in

519,978 participants and 10 countries (Denmark, France, Germany, Greece, Italy,

the Netherlands, Norway, Spain, Sweden & the United Kingdom). All but Nor-

way and Greece participated in InterAct, for a total of 455,680 participants in 26

subject-handling centres (within-country study locations). 109,625 individuals with-

out stored blood and 5,821 individuals without information on diabetes status were

excluded, resulting in 340,234 participants eligible for inclusion.

A random sample of 16,835 individuals was selected from the 346,055 participants

with stored blood, stratified by centre. Of these, 548 individuals with prevalent

diabetes, 129 individuals without information on diabetes status, and 4 individuals

with post-censoring diabetes were excluded, resulting in a subcohort of size 16,154.

The final InterAct dataset consists of 27,779 individuals, consisting of 15,376 non-

cases, 778 subcohort cases, and 11,625 non-subcohort cases, drawn from a full cohort

of 340234 with 3.65% cases. The overall sampling fractions were therefore 4.75%

and 4.69% for all subcohort members and subcohort non-cases, respectively, with

non-case to case ratio in the case cohort sample 1.24:1.

Male subjects are not present in French centres, the Naples centre, and the Utrecht

centre. Male subjects consist of 11,892 total subjects, consisting of 5,727 non-cases,

384 subcohort cases and 5,781 non-subcohort cases, drawn from a full cohort of

125,233 subjects with 4.92% cases. The overall sampling fractions are therefore
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4.88% and 4.81% for all subcohort members and subcohort non-cases, respectively,

with non-case to case ratio in the case cohort sample 0.93:1. Female subjects are

present in all centres. Female subjects consist of 15,887 total subjects, consisting

of 9,649 non-cases, 394 subcohort cases and 5,844 non-subcohort cases, drawn from

a full cohort of 215,001 subjects with 2.90% cases. The overall sampling fractions

are therefore 4.67% and 4.62% for all subcohort members and subcohort non-cases,

respectively, with non-case to case ratio in the case cohort sample 1.55:1. The higher

non-case to case ratio seen in females than males is likely because subcohort selection

was not stratified by sex, and indicates that females have lower risk.

7.3 InterAct Consortium et al. (2012a)

In this paper, two separate investigations are performed, each again performed sep-

arately in men and women. The authors note that both obesity and low levels of

physical activity are important modifiable risk factors for type 2 diabetes, and ”pre-

vious observational studies have suggested that higher levels of physical activity are

associated with lower risk of diabetes independently of obesity”.

1. For independent association of Physical Activity with incident type 2 diabetes,

separate models were fitted, each considering one of two measures of obesity

as a confounder; body mass index (BMI) or waist circumference (WC). They

concluded that a one-category difference in physical activity was independently

associated with a reduction in risk of type 2 diabetes; 13% (HR 0.87, 95% CI

0.80, 0.94) in men and 7% (HR 0.93, 95% CI 0.89, 0.98) in women.

2. Considering obesity as an effect modifier, the authors also investigate the asso-

ciation between PA and diabetes incidence within strata of BMI or WC. They

concluded that increased physical activity was associated with a reduced risk

of type 2 diabetes across all strata of BMI, and also in abdominally lean and

obese men and women.

All investigations also included the following covariates as confounders; Alcohol Con-

sumption, Energy/Calorie Intake, Smoking Status, and School Level.

In this chapter, analysis (1) above is the target analysis to which I apply the meth-

ods described in previous chapters. As obesity is itself affected by physical activity,

the inclusion of a measure of obesity as a confounder means that, in this analysis,

the authors were not estimating the total effect of PA, only the direct effect i.e. the

part that is not mediated by BMI/WC. It is likely this analysis underestimates the

total effect of physical activity on type 2 diabetes. However, given a bi-direction
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association between physical activity and obesity, there is somewhat of a dilemma,

as not adjusting induces confounding while adjusting ignores the mediated effect.

This can be considered as an example of time-varying confounding as discussed in

Daniel et al. (2013). That said, the authors appear to have taken their associations

to have public health communication implications for the promotion of physical ac-

tivity and, given the effect of including an obesity measure as a confounder is to

underestimate the total effect of physical activity, this approach seems reasonable.

7.4 Investigation in this Chapter

In this chapter I investigate the independent association of Physical Activity with

incident type 2 diabetes, fitting similar models to those used for this investigation in

InterAct Consortium et al. (2012a). I use and demonstrate the case-cohort methods

described previously in this thesis, and compare the results at each step with the

results from this investigation in InterAct Consortium et al. (2012a).

I first fit an initial model in each sex, similar to that of InterAct Consortium et al.

(2012a), with the same covariates included in the model and all continuous covari-

ates in linear form. Keele (2010) notes that unmodeled nonlinearity can present as

a violation of the proportional hazards assumption, and recommends assessment of

and correction for non-linearity prior to tests for non-proportional hazards. Hence,

functional form of continuous covariates is considered first. I select functional forms

for the continuous covariates using the methods described in Chapters 4 and 6.

Next, I assess whether the assumption of proportional hazards has been violated

using the methods in Chapter 5, and include a time-varying covariate where viola-

tion is found. Finally, I select between three models using the methods of Chapter

6, each model differing by which measure of obesity is included; body mass index

(BMI), waist circumference (WC), or waist to height ratio (WHtR).

(InterAct Consortium et al., 2012b) found WC and BMI to be independently as-

sociated with type 2 diabetes in the InterAct dataset (note that this is a separate

investigation to the paper discussed in this Chapter, InterAct Consortium et al.

(2012a)). WHtR has been increasing in popularity as a universal non-sex-specific

measure (Mirzaei and Khajeh (2018), Son et al. (2016)). An alternative approach

would be to include all measures as potential confounders. Measures of obesity are

highly correlated, and Groenwold et al. (2016) note that where omitted confounders

are correlated with included confounders, the bias caused by omitted confounders

is mitigated. Additionally, reports from the literature indicate that interactions be-

tween measures of obesity may be informative (eg interactions of BMI and WC in

108



Chapter 7 7.5. Analysis Dataset

InterAct Consortium et al. (2012b)), however such interactions are not considered.

7.5 Analysis Dataset

In this section, I describe the subset of the InterAct dataset analysed in this chap-

ter. As in InterAct Consortium et al. (2012a), observations missing data for Physical

Activity are excluded. In Males, 96 subcohort non-cases, 6 subcohort cases, and 91

subcohort non-cases are excluded. In Females, 114 subcohort non-cases, 4 subco-

hort cases, and 74 subcohort non-cases are excluded. Exclusion rates vary between

subject-handling centres, even within countries. A number of subject-handling cen-

tres show no exclusions in the case-cohort sample and Bilthoven, Netherlands, dis-

plays the highest rate of exclusions at ∼15% of non-cases.

Waist measurements for the Umea centre in Sweden are not available, hence this cen-

tre is excluded from all analyses. With the exception of Umea, the rates of missing

data on Obesity Measures are low. Excluding Umea, the total number of observa-

tions with missing data for BMI, WC, WHR and WHtR, respectively, is 99, 71, 80,

and 89 for females; and 63, 78, 89, and 93 for males. The final analysis dataset

consists of 5,155 non-cases, 360 subcohort cases and 5,230 non-subcohort cases,

drawn from a full cohort of 104,205 in males; and 9036 non-cases, 373 subcohort

cases, and 5,408 non-subcohort cases, drawn from a full cohort of 192,089 in females.

Table 7.3 shows full cohort and subcohort size, subcohort non-case sampling frac-

tions, and case-cohort non-case to case ratios for males and females in each centre,

post exclusions. Due to the study design, sampling fractions and non-case to case

ratios vary between subject-handling centres. However, reflecting the study as a

whole, sampling fractions within centres are generally slightly larger for males than

females, and non-case to case ratios are generally larger for females than males.

Physical Activity is categorical with 4 levels; inactive, moderately inactive, moder-

ately active, and active. Smoking Status is categorical with 3 levels; never smoked,

past smoker, and current smoker. School Level is categorical with 5 levels; none, pri-

mary school, technical school, secondary school, and post-secondary school. School

level None is not present in Cambridge, Oxford, Netherlands, or Denmark, and

amounts to less than 20 observations for all other locations except Spain. Hence,

School level None and Primary are combined for this analysis. Frequencies for cat-

egorical covariates are shown in Table 7.1. BMI, WHR, WC, Alcohol Consumption

and Calorie Intake are recorded as continuous covariates. WHtR was calculated

from height and waist measurements. Summary statistics for continuous covariates

109



7.5. Analysis Dataset Chapter 7

are shown in Table 7.2. In tables, Alcohol is presented as g/day×10−1; Calories as

kcal/day×10−3; WHtR as WHtR×102; and WHR as WHR×102

Table 7.1: InterAct Study: Frequencies of Categorical Covariates

Male Female

Non-Case SC Case Non-SC Case Non-Case SC Case Non-SC Case

PA

Inactive 905 71 1285 2400 142 1887

Mod. Inactive 1623 124 1702 3223 123 1858

Mod. Active 1288 92 1144 1867 59 964

Active 1339 73 1099 1546 49 699

School

None/Primary 2039 188 2568 3708 224 2945

Technical 1155 80 1206 2091 89 1208

Secondary 599 44 500 1447 20 611

Further 1307 46 894 1658 35 525

Smoke

Never 1549 78 1192 5015 220 3071

Former 1918 153 2193 1968 68 1164

Current 1672 128 1829 2007 85 1140

Table 7.2: InterAct Study: Summary Statistics for Continuous Covariates

Male Female

Non-Case SC Case Non-SC Case Non-Case SC Case Non-SC Case

Calories

Mean 2.50 2.48 2.47 1.95 1.87 1.94

SD 0.64 0.66 0.67 0.52 0.55 0.55

Median 2.44 2.40 2.39 1.89 1.77 1.86

Alcohol

Mean 2.34 2.33 2.42 0.83 0.65 0.67

SD 2.40 2.50 2.67 1.18 1.06 1.09

Median 1.61 1.51 1.54 0.37 0.16 0.18

BMI

Mean 26.54 29.71 29.38 25.54 30.61 30.10

SD 3.42 3.56 4.03 4.32 5.41 5.32

Median 26.23 29.45 29.01 24.84 30.12 29.51

WHtR

Mean 54.46 60.09 59.30 50.12 58.98 57.98

SD 6.03 5.78 6.26 7.25 8.27 8.04

Median 54.12 59.86 58.83 49.07 59.45 57.59

WC

Mean 94.53 103.19 102.54 80.67 94.15 92.66

SD 9.76 9.39 10.47 10.78 12.38 12.23

Median 94.00 102.70 102.00 79.00 94.00 92.00

Note: Alcohol g/day×10−1; Calories kcal/day×10−3; WHtR×102; WHR×102
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Table 7.3: InterAct Study: Full Cohort (FC) and Subcohort (SC) Size, Sampling
Fractions, and Non-Case to Case Ratio Post Exclusions

Country Centre

Male Female

Non-Case N Case N
αNC NNC

NC

Non-Case N Case N
αNC NNC

NC

FC SC SC Non-SC FC SC SC Non-SC

France

Ile-de-France 0 0 0 0 4961 144 3 65 2.90 2.12

North-West 3724 110 1 52 2.95 2.08

North-East 3703 112 3 71 3.02 1.51

Rhone-Alpes 3172 89 1 42 2.81 2.07

Provence 2567 68 1 31 2.65 2.13

South-West 1995 56 0 18 2.81 3.11

Total 20122 579 9 279 2.88 2.01

Italy

Florence 3210 122 5 129 3.80 0.91 9421 408 8 255 4.33 1.55

Varese 2347 72 3 51 3.07 1.33 9017 282 6 186 3.13 1.47

Ragusa 2522 144 8 139 5.71 0.98 3001 172 6 104 5.73 1.56

Turin 5319 289 12 190 5.43 1.43 4078 223 3 85 5.47 2.53

Naples 4726 213 9 184 4.51 1.10

Total 13398 627 28 509 4.68 1.17 30243 1298 32 814 4.29 1.53

Spain

Asturias 2613 279 28 256 10.68 0.98 4984 451 33 240 9.05 1.65

Granada 1312 102 7 93 7.77 1.02 4583 395 25 193 8.62 1.81

Murcia 1996 224 18 208 11.22 0.99 4739 491 28 295 10.36 1.52

Navarra 3196 328 40 301 10.26 0.96 3636 377 31 209 10.37 1.57

San Sebastian 3341 306 35 341 9.16 0.81 3791 372 18 165 9.81 2.03

Total 12458 1239 128 1199 9.95 0.93 21733 2086 135 1102 9.60 1.69

UK

Cambridge 9002 376 13 419 4.18 0.87 11021 507 13 298 4.60 1.63

Oxford 3318 92 0 101 2.77 0.91 9563 246 1 136 2.57 1.80

Total 12320 468 13 520 3.80 0.88 20584 753 14 434 3.66 1.68

Netherlands

Bilthoven 7175 233 6 136 3.25 1.64 8492 243 7 110 2.86 2.08

Utrecht 15722 895 25 481 5.69 1.77

Total 7175 233 6 136 3.25 1.64 24214 1138 32 591 4.70 1.83

Germany

Heidelberg 9608 373 16 472 3.88 0.76 11465 465 16 276 4.06 1.59

Potsdam 9093 456 12 454 5.01 0.98 14343 700 16 322 4.88 2.07

Total 18701 829 28 926 4.43 0.87 25808 1165 32 598 4.51 1.85

Sweden

Malmo 9644 707 69 832 7.33 0.78 15709 1,090 60 791 6.94 1.28

Umea 10973 476 18 460 4.34 1.00 11974 499 17 362 4.17 1.32

Total 20617 1183 87 1292 5.74 0.86 27683 1589 77 1153 5.74 1.29

Denmark

Aarhus 7856 327 22 356 4.16 0.87 8288 297 18 244 3.58 1.13

Copenhagen 17063 725 66 752 4.25 0.89 19607 630 41 555 3.21 1.06

Total 24919 1052 88 1108 4.22 0.88 27895 927 59 799 3.32 1.08

Total (excl. Umea) 98615 5155 360 5230 5.23 0.92 186308 9036 373 5408 4.85 1.56

NNC

NC non-case to case ratio; αNC non-case sampling fraction (%)
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7.6 Initial Stratified Cox Model

I now describe in detail the procedures for analysis of models including BMI as

the measure of obesity, followed by model selection between models with alternate

measures of obesity (the results for each step for these models are included in the

appendix. Table 7.5 summarizes estimated HR for Physical Activity at each step of

the analysis, Compared with those from InterAct Consortium et al. (2012a).

Table 7.4: Hazard Ratios for Physical Activity - Comparison of Analysis Steps

Table 7.5

Model
Men Women

HR 95% CI HR 95% CI

Interact 2012 (BMI) 0.87 0.80, 0.94 0.93 0.89, 0.98

Startified Cox Model (BMI) 0.88 0.84, 0.93 0.93 0.89, 0.97

Improved Functional Form (BMI) 0.90 0.86, 0.94 0.94 0.90, 0.98

Included Non-Proportional Hazards (BMI) 0.90 0.86, 0.94 0.94 0.89, 0.98

WHtR Model 0.94 0.90, 0.99 0.95 0.91, 1.00
Outcome: Type 2 Diabetes Incidence

WHtR Model following Improved Functional Form and Inclusion of Non-Proportional Hazards

All Models Include Physical Activity, Calories, Smoking, School, Alcohol, BMI

In InterAct Consortium et al. (2012a) seperate models were fitted in each location

(centre) and the effects combined using random effects meta-analysis. In all my

analyses, stratified Cox models are fitted using stratified IPW weighting. In the

context of the Cox model, stratified Cox models refer to Cox models where coeffi-

cients are equal across strata but baseline hazards are allowed to vary across strata.

In this thesis, this procedure is referred to as stratified modelling. In all analyses,

stratified modelling is carried out with 10 potential strata; countries: Denmark,

France, Italy, Spain, the Netherlands, Sweden; individual study locations: Germany

- Potsdam, Heidelberg; UK - Oxford, Cambridge. As males are absent from French

centres, males are modelled with 9 strata. Subject-handling centres in Germany

and the UK are included as individual strata due to minor differences in measure-

ments of Obesity Measures and Physical Activity between centres in these countries.

In all analyses, age is used as time-scale, and Huber sandwich estimates are used for

calculation of coefficient standard errors, confidence intervals, and p-values. IPW

weighting is chosen rather than Prentice due to easier implementation of the meth-

ods in STATA with this weighting method. All covariates were centered at the

IPW-weighted mean of the case-cohort sample for each sex. The baseline hazard

function can hence be interpreted as the hazard function for an individual with “av-
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erage” values for the covariates. Post-Secondary/Further was used as the reference

category for School, and None was used as the reference category for Smoking. HRs

for Physical Activity following this step are: 0.88 (95% CI 0.84 to 0.93) in men and

0.92 (95% CI 0.89 to 0.97) in women. This is similar to the InterAct Consortium

et al. (2012a), though slightly attenuated in men (see Table 7.5).

7.7 Functional Form of Covariates

In InterAct Consortium et al. (2012a) and in this analysis, Physical Activity (PA)

was modelled as a linear effect. As PA contains only 4 levels, smooths of martingale

residuals are uninformative and not presented. Fig 7.1 shows smooths of martingale

residuals against continuous covariates for; models where all continuous covariates

are in linear form, and in final functional form. Smooths were fitted at 1000 quantiles

of the IPW-weighted covariate values, using the default Epanechnikov kernel, and

degree 0. Bandwidth was set as 1/50th the range of the covariate. Whether a non-

linear relationship might be appropriate is first assessed by inspection of smooths

of martingale residuals in combination with reports from the literature. Where

a non-linear relationship is indicated, it is modelled by restricted cubic splines,

which produce a continuous smooth function, linear in the tails and a piecewise

cubic polynomial between adjacent knots (Croxford, 2016). Choice of knots for

each covariate was guided by the appearance of smooths of martingale residuals,

commonly used benchmarks, and reports from the literature. In Section ?? results

for statistical assessment of non-linearity for these covariates are presented.

7.7.1 Calories

Smooths of martingale residuals against Calories appeared broadly linear in the bulk

of the data, with some fluctuations but without obvious trend. The most obvious

deviations were in the tails. Smooths of martingale residuals for evaluation of func-

tional form are known to be unreliable in the tails (Ganguli et al., 2015), particularly

where sample size is small, due to additional variation in cumulative baseline haz-

ard from reduction in the effective sample size by prior failure and censoring. Note

that in the location-stratified Cox model, cumulative baseline hazard, and hence

martingale residuals are calculated within each stratum. The risk sets over which

martingale residuals are calculated are therefore smaller than would be expected

from the overall size of the subcohort. Hence individual martingale residuals may

be less reliable than might be assumed. Weighting of smooths may exacerbate this

effect. I did not find indications from literature that Calories has a non-linear effect

on incidence of type 2 diabetes. Calories was hence modelled in linear form.
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7.7.2 Alcohol Consumption

There is some discordance in the literature for influence of Alcohol consumption on

risk of Type 2 diabetes. The literature variously reports reduced risk compared to

light and heavy drinkers in males at 6-48g/day and females at 6-24g/day (Koppes

et al., 2005), reduction of risk compared to non-drinkers and heavy drinkers in

males and females at <24g/day, (Li et al., 2016), reduced risk compared to non-

drinkers at alcohol consumption <71 g/day in females, and a small increase in risk

as compared to non-drinkers with any alcohol consumption in males (Knott et al.,

2015). Restricted cubic splines were fitted using 4 knots at prespecified locations

according to the percentiles of the distribution of Alcohol, the 5th, 25th, 75th, and

95th percentiles.

7.7.3 BMI

Smooths of martingale residuals against BMI displayed J-shaped curves. A non-

linear relationship of certain measures of obesity with diabetes and metabolic syn-

drome has been previously described (e.g. Su et al. (2016), Yu et al. (2018)). BMI

has two commonly used boundaries for increased health risk from the literature,

with BMI 25 and 30 corresponding to Overweight and Obese in WHO Guidelines

(WHO, 2008). Restricted cubic splines were fitted using 4 knots at prespecified lo-

cations according to the percentiles of the distribution of BMI, the 5th, 25th, 75th,

and 95th percentiles.

7.7.4 Statistical Assessment of Non-Linearity

I next use variable selection methods to assess whether use of restricted cubic splines

for the continuous confounders improves model fit. While in practice a particular

variable selection method or combination of methods might be chosen, here results

are presented for Wald, dLR, dAIC, dBIC and pBIC to demonstrate similarities

and differences between the available methods. Further, these methods could be

applied in a more formal selection procedure such as backwards stepwise selection.

Table 7.6 shows the results for the significance of the use of restricted cubic splines

by Wald Tests and dLR. In each test, the full model includes Physical Activity as

a linear effect, Calories in linear form, Smoking Status and School level as categor-

ical covariates, restricted cubic splines for Alcohol and restricted cubic splines for

BMI. The test parameters are the addition variables created by the restricted cubic

spline procedure. For example, the result of p=0.093 for Wald in row 2 indicates

that there is no evidence to reject the null hypothesis that the effect of including
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restricted cubic splines for Alcohol is equal to 0. Table 7.6 also shows the difference

in dAIC, dBIC and pBIC between a model where the covariate of interest is mod-

elled in linear form, and a model where the covariate of interest is modelled with

restricted cubic splines. All models also include Calories in linear form, Smoking

Status, School Level, Physical Activity as a linear effect, and the non-linear form of

whichever of Alcohol or the relevant Obesity Measure is not the covariate of interest.

For example, the result of -1.95 for dBIC in row 2 is the difference in dAIC between

a model in males with Physical Activity as a linear effect, Calories in linear form,

Smoking Status, School Level, restricted cubic splines for BMI and a linear effect

for Alcohol; and a model that is the same in all respects except that it includes

restricted cubic splines for Alcohol. As the result is negative, we hence prefer the

model with restricted cubic splines for Alcohol. Note that dBIC for the maximal

model will be equal to 0, and hence where dBIC is greater than 0, the restricted

cubic splines are preferred.

Table 7.6: InterAct Study: Assessment of Model Fit with Restricted Cubic Splines

dAIC Difference

from Linear Form

pBIC Difference

from Linear Form
dBIC Wald dLR

Male
BMI -227.60 -196.01 154.28 <0.001 <0.001

Alcohol -1.95 3.52 -1.05 0.093 0.094

Female
BMI -600.61 -565.27 488.50 <0.001 <0.001

Alcohol -47.82 -39.60 40.83 <0.001 <0.001
Outcome: Type 2 Diabetes Incidence

Model Includes Physical Activity, Calories, Smoking, School, Alcohol, BMI

In both sexes, restricted cubic splines for BMI improves model fit, as indicated

by both significance testing and the information criteria. In Females, all assess-

ments indicate that restricted cubic splines for Alcohol improve model fit. In Males,

dAIC indicates that the use of restricted cubic splines for Alcohol improves model

fit, though with a small magnitude. As unmodelled non-linearity can affect per-

formance of tests for non-proportional hazards, a less parsimonious approach was

taken and the linear splines for Alcohol were retained in the model for Males. In

summary, in both men and women, models are taken forward with restricted cubic

splines for BMI, restricted cubic splines for Alcohol, and Calories as a linear effect.

Hazard ratios for Physical Activity following this step are as follows: 0.90 (95%

CI 0.86 to 0.94) in men and 0.94 (95% CI 0.90 to 0.98) in women, a further attenu-

ation of effect from the previous step.
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Figure 7.1: InterAct Study: Smooths of Martingale Residuals in Men
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Figure 7.2: InterAct Study: Smooths of Martingale Residuals in Women

Linear Functional Forms

-0.
05

0.0
0

0.0
5

15 20 25 30 35 40

BMI (bwidth=1.07)

-0.
05

0.0
0

0.0
5

0 1 2 3 4 5 6
Alcohol (bwidth=0.29) 

-0.
05

0.0
0

0.0
5

.5 1 1.5 2 2.5 3 3.5

Calories (bwidth=0.08) 

Smooths Only

-2.
00

-1.
00

0.0
0

1.0
0

15 20 25 30 35 40 45 50 55

BMI (bwidth=1.07)

-2.
00

-1.
00

0.0
0

1.0
0

0 2 4 6 8 10 12 14
Alcohol (bwidth=0.29) 

-2.
00

-1.
00

0.0
0

1.0
0

.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Calories (bwidth=0.08) 

Smooths and Residuals

Dotted lines indicate 5th and 95th percentiles of covariates
Plots of smooths only exclude top 1% of covariate values
A random sample of 10% of residuals were plotted between the 5th & 95th percentiles of covariate values
One observation with residual < -2 excluded from plots

Final Functional Forms

-0.
05

0.0
0

0.0
5

15 20 25 30 35 40

BMI (bwidth=1.07)

-0.
05

0.0
0

0.0
5

0 1 2 3 4 5 6
Alcohol (bwidth=0.29) 

-0.
05

0.0
0

0.0
5

.5 1 1.5 2 2.5 3 3.5

Calories (bwidth=0.08) 

Smooths Only

-2.
00

-1.
00

0.0
0

1.0
0

15 20 25 30 35 40 45 50 55 60

BMI (bwidth=1.07)

-2.
00

-1.
00

0.0
0

1.0
0

0 2 4 6 8 10 12 14
Alcohol (bwidth=0.29) 

-2.
00

-1.
00

0.0
0

1.0
0

.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Calories (bwidth=0.08) 

Smooths and Residuals

Dotted lines indicate 5th and 95th percentiles of covariates
Plots of smooths only exclude top 1% of covariate values
A random sample of 10% of residuals were plotted between the 5th & 95th percentiles of covariate values
One observation with residual < -2 excluded from plots

Outcome: Type 2 Diabetes Incidence

Model Includes Physical Activity, Calories, Smoking, School, Alcohol, BMI

118



Chapter 7 7.8. Detection of Non-Proportional Hazards

7.8 Detection of Non-Proportional Hazards

Using the functional forms chosen in Section 7.7, the models are re-fitted with all

covariates simultaneously allowed to interact with rank of time. For each covariate,

Wald tests are carried out for the null hypothesis that for all terms representing

that covariate, interactions with rank of time are simultaneously equal to 0. For

example, for School Level, the test parameters are the interactions of all levels of

School with rank of time.

As described in Chapter 6, dLR can be more reliable than Wald tests where data

is sparse or a non-normal profile pseudolikelihood is suspected. An advantage of

the Wald test is that multiple test parameters can be assessed after fitting a single

model. To assess the same test parameters with dLR requires fitting of the maximal

model twice (to retrieve robust and naieve variance estimates), and fitting each rele-

vant submodel, again twice. Inclusion of time-varying covariates is computationally

intensive. Given the computational load of calculating dLR for two sexes, and each

of those with 6 covariates, dLR is not assessed.

Table 7.7 shows the resulting p-values for each covariate. Covariates with p-values

below a threshold of 0.05 are considered to violate the assumption of proportional

hazards. In both men and women, BMI displays evidence of non-proportional haz-

ards. The remaining covariates do not display evidence of non-proportional hazards.

Going forward, I adjust both models to account for these effects by including inter-

actions with rank of time for all terms representing BMI in the model.

Table 7.7: InterAct Study:p-values for Wald Tests for Interaction of Covariates with
Rank Time

PA BMI Alcohol Calories School Smoke

Men 0.462 <0.001 0.671 0.445 0.819 0.891

Women 0.360 <0.001 0.437 0.478 0.411 0.154
Outcome: Type 2 Diabetes Incidence

Model Includes Physical Activity, Calories, Smoking, School, Alcohol, BMI

Hazard ratios for Physical Activity following this step are as follows: 0.90 (95% CI

0.86 to 0.94) in men and 0.94 (95% CI 0.89 to 0.98) in women, essentially unchanged

from the previous step.
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7.9 Model Selection

The procedure above was repeated for models that substituted an alternative obe-

sity measure (WHtR and WC) for BMI. Final functional forms were the same as

those for BMI. Evidence of violation of the assumption of proportional hazards was

found for the covariate measuring obesity. Martingale residual smooths, Tables of

assessment of model fit, and results for Wald tests for Interaction of covariates with

rank time for these models can be seen in the Appendix. The resulting final models

in each sex and for each Obesity Measure are now summarized: All models include

the categorical covariates School Level and Smoking Status. All models include

Physical Activity and Calories as linear effects. All models include Alcohol and the

relevant Obesity Measure as restricted cubic splines with 4 knots as described in

Section 7.7. All models include the restricted cubic splines for the relevant Obesity

Measure interacting with rank of time.

Table 7.8 shows Hazard Ratios, standard errors, p-values and 95% confidence inter-

vals in each model for the effect of a one level difference in Physical Activity on the

incidence of type 2 diabetes, together with the difference in dAIC and pBIC from

the preferred model in each sex. Ranking of models was the same for both dAIC

and pBIC. In both sexes, WHtR was the preferred model. I therefore conclude

that, in this analysis, a one-level increase in Physical Activity is independently as-

sociated with a relative risk reduction of 6% in Males (95% CI 1% to 10%) and 5%

in Females (95% CI 0% to 9%). In Females, this reduction in relative risk is not

statistically significant at a threshold of p = 0.05.

Table 7.8: InterAct Study: Estimation Results for the Independent Association of
Physical Activity and Incidence of Type 2 Diabetes

Males Females

Model: WHtR BMI WC WHtR BMI WC

HR
0.94

(6%)

0.90

(10%)

0.95

(5%)

0.95

(5%)

0.94

(6%)

0.95

(5%)

95% CI
0.90, 0.99

(1%, 10%)

0.86, 0.94

(6%, 14%)

0.91, 0.99

(1%, 9%)

0.91, 1.00

(0%, 9%)

0.89, 0.98

(2%, 11%)

0.91, 1.00

(0%, 9%)

s.e. 0.022 0.020 0.022 0.023 0.022 0.023

p 0.006 <0.001 0.022 0.060 0.007 0.037

pBIC diff 0 295 284 0 649 166

dAIC diff 0 295 287 0 639 159
Model Includes Physical Activity, Calories, Smoking, School, Alcohol, Obesity Measure

Values in brackets percentage reduction in relative risk
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7.10 Discussion

7.10.1 Results for Different Obesity-Measure Models

In this investigation, the model using waist to height ratio as the measure of obesity

is strongly preferred in both males and females. Both dAIC and pBIC give the

same rankings, with similar intervals between criteria for the various models. In

males, the BMI model produces the largest point estimates of the hazard ratio for

Physical Activity, while WHtR and WC are similar. In females, the point estimates

are broadly similar in all models. Standard errors for Physical Activity are also

similar for each obesity-measure-model and each sex.

It is also interesting to compare the results of the models with BMI and WC to

the results of InterAct Consortium et al. (2012a) upon which this study was based.

For both Obesity Measures, and in both sexes, results are somewhat attenuated in

this chapter as compared to InterAct Consortium et al. (2012a). In the paper, the

same confounding variables are used as in this analysis, with the exception that,

in this analysis, School Level None and Primary were combined. Further, in this

chapter, the Umea centre in Sweden was excluded as waist measurements for this

centre are not available. Also, in the paper, hazard ratios are calculated separately

in each location with Prentice weighted Cox modelling, and then combined using

random effects meta-analysis. By contrast, in this analysis hazard ratios are calcu-

lated using stratified IPW Classic weighting and location-stratified Cox modelling.

Both the initial models fit and the change of functional form in this chapter show

a small degree of attenuation in Hazard Ratio as compared to InterAct Consortium

et al. (2012a), with adjustment for non-proportional hazards not an influence. It

appears that overall, the results of InterAct Consortium et al. (2012a) in their in-

vestigation of the independent association of Physical Activity with incident type 2

diabetes are robust to their model assumptions, but that improved functional form

attenuates the effect of Physical Activity.

7.10.2 Functional Forms of Covariates

While the appearance of the smooths of the martingale residuals for obesity mea-

sures were improved following the use of cubic splines, there was still some visual

divergence from linearity at the higher values of the covariate. Changes to number

of knots and knot placement were considered, but did not result in an improvements

to the visual smooth. It should be noted that alternative methods for modelling of

non-linear relationships, such as linear splines, may result in different results from

those presented here. Restricted cubic splines have the disadvantage that coeffi-

121



7.10. Discussion Chapter 7

cients are not easily interprable. However, all models included interactions of the

Obesity Measure with rank of time, which would also impact on the interprability

of the coefficients.

7.10.3 Non-Proportional Hazards

Keele (2010) notes that, in addition to unmodelled non-linearity, unmodelled inter-

actions and missing covariates can also present as a violation of the proportional

hazards assumption. Family history of diabetes is known to be a strong risk factor

(InterAct Consortium et al., 2013), but is not included in this analysis as data for

this covariate is not available for Italy, Spain, Oxford, and Heidelberg. These anal-

yses did not consider interactions, and it is possible that inclusion of interactions

might result in alterations to the tests for non-proportional hazards. For example,

one might expect that interactions of Calories with Obesity and/or Physical Ac-

tivity at baseline might serve as a measure of weight loss or weight gain over the

course of the study. Additionally, only a single measure of Obesity is considered as a

confounder in each model. InterAct Consortium et al. (2012a) find that inclusion of

both WC and BMI and their interaction is informative in modeling risk of diabetes.

Finally, it is of course possible that the methods and procedures used here to model

non-linearity do not accurately capture the non-linear relationships that are present.

The lack of a method to apply tests for detection of non-proportional hazards that

are based on Schoenfeld residuals to case-cohort data was keenly felt in the analysis

of this data. Inclusion of a single interaction of a covariate with time took approx-

imately 200 times longer in computational time than the same Cox model without

the interaction. Inclusion of all covariates interacting with time took approximately

600 times longer than the same Cox model without the interactions. Calculations of

Schoenfeld residuals and their associated tests is far less computationally intensive.

Further, visual inspection of Schoenfeld residuals against various functions of time

can assist in guidance of choice of function of time to use for formal statistical tests.

In this analysis, rank of time is used for the interaction based on the recommendation

of Park and Hendry (2015).

7.10.4 Stratified Modelling

Little adjustment was required in programming to apply the methods described in

previous chapters to stratified modelling with IPW weighting. Prentice weighting

would have required manual calculation of martingale residuals within each strata.

It should be noted, however, that application of the methods used in these analysis

to stratified modelling has not been studied by simulation in this thesis.
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7.10.5 Conclusion

The epidemiological goal of this chapter was to estimate the independent effect of

Physical Activity on the risk of incident type 2 diabetes in the InterAct dataset,

adjusting for Smoking Status, Education Level, Calorie Intake, Alcohol Consump-

tion and Obesity. As noted in InterAct Consortium et al. (2012a), Physical Activity

and Obesity Measures were recorded at baseline, and this analysis does not account

for any changes in Physical Activity and/or obesity between baseline and follow-up.

Adjustment for multiple measures of obesity or interactions between them was not

considered in this analysis and would be a valuable avenue for further research. It is

possible that further improvements to functional form of the covariates or inclusion

of interactions could further attenuate the independent effect of Physical Activity on

type 2 diabetes incidence, and this is also a valuable area for future research. Use of

model selection methods strongly preferred waist to height ratio over other Obesity

Measures in both men and women. Overall, the results indicate that, independent

of obesity, a one-level increase in Physical Activity is independently associated with

a reduction of risk of incident type 2 diabetes by 6% in men and 5% in women.

The methodological goals of this chapter were to apply the methods described in

previous chapters to a real-world dataset. The applications of the methods to IPW-

weighted stratified Cox models using STATA were not difficult in terms of pro-

gramming. Martingale residuals were informative in assessment of functional form.

Case-cohort variable and model selection methods allowed for statistical assessment

of non-linearity, and choice between candidate models. Detection of violations of

the proportional hazards assumption using interactions of covariates with time was

computationally intensive in this large dataset, highlighting the value of further in-

vestigations of the application to the case-cohort design of methods incorporating

Schoenfeld residuals.
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Chapter 8

Discussion

8.1 Introduction

In this final chapter I first summarize the key points from each preceding chapter. I

next place my contributions in context by discussing the key themes considered in

this thesis. Next, I consider the limitations of this thesis and discuss possible areas

for future work. Finally I give a conclusion.

8.2 Dissertation Summary

In Chapter 1, I first outlined the motivation of this thesis; to move beyond parame-

ter estimation and investigate post-estimation methods that would allow for greater

exploitation of the Cox proportional hazards model in the case-cohort design. I then

outlined the Cox proportional hazards model, the case-cohort design, and the data

structures of survival analysis relevant to this thesis. Next, I detailed the literature

regarding methods in the case-cohort design, and characteristics of the case-cohort

design in practice.

In Chapter 2, I described the general data-generating mechanism used for simulation

studies in this thesis. This data-generating mechanism was designed to reflect the

real-world applications of the case-cohort design as described in Chapter 1, while

allowing for comparison of results across different combinations of factors such as

non-case to case ratio and subcohort size.

In Chapter 3, I considered methods of parameter estimation under the Cox pro-

portional hazards model in the case-cohort design. I performed a simulation study

and concluded that IPW and Prentice weighting methods achieve comparable per-

formance for estimation of β in many scenarios, with IPW displaying improved
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efficiency at higher sampling fractions, smaller non-case to case ratios and where

covariates are more variable. I also compared estimation of cumulative baseline

hazard by Prentice and IPW methods, which has not previously been investigated,

and concluded that both weighting methods are appropriate, but noted that pres-

ence of risk sets composed only of cases can introduce profound bias, particularly

for IPW.

In Chapter 4, I investigated use of weighted smooths of martingale residuals against

covariate values in the choice of appropriate functional form for continuous covari-

ates. In a simulation study, statistical assessment of non-linearity of weighted linear

splines was used as a proxy for subjective visual assessment of weighted smooths.

Weighted smooths of martingale residuals gave depressed Type 1 error rate in the

case-cohort, and there was a large loss of power from full cohort methods. It is

unclear if this loss of power is due to known issues in complex survey sampling with

low power of Wald tests in weighted linear regressions, or is a true reflection of

a lesser usefulness of martingale residuals in the case cohort than the full cohort.

I concluded that while weighted smooths of martingale residuals against covariate

values may be useful in the case-cohort design, one should expect a significant loss

of power from the full cohort, particularly at smaller sampling fractions and where

the number of cases in the case-cohort sample is small.

In Chapter 5, I investigated methods for detection of violation of the assumption of

proportional hazards. In a simulation study, I found that in the case-cohort design,

methods that rely on inclusion of interactions of covariates with time give inappro-

priately high type 1 error rates when number of cases is small, especially when risk

set sizes are also small and correlation with a covariate displaying non-proportional

hazards is present. However, with larger numbers of cases (∼250+) Type 1 error

rate becomes more reasonable, especially where risk set sizes are larger and less

variable, and power approaches that of the full cohort. I further found that meth-

ods incorporating Schoenfeld residuals give inappropriately high type 1 error in the

case cohort design when risk set sizes are smaller and more variable, as may be seen

with analysis under staggered entry. Further, even in fixed entry, these methods

give inappropriately high Type 1 error rate with Prentice weighting when number

of controls per case is low or covariates are more variable.

In Chapter 6 I investigated methods of variable and model selection, focusing on

Wald tests, Likelihood Ratio tests, AIC, and BIC. In a simulation study, I in-

vestigated Wald tests and the dLR, the modified Likelihood Ratio test of Lumley

and Scott (2013), and concluded that while Wald tests are generally appropriate in
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the case-cohort design, dLR is a valuable alternative where sparse data is present. I

showed that the dAIC and dBIC modifications of Lumley and Scott (2015), and the

pBIC modification of Xu et al. (2013), proposed for complex survey sampling, can

equally be applied to the case-cohort design, but that dBIC can be inappropriate

if sparse data is present.

In Chapter 7 I applied all of these methods to a real-world dataset, the InterAct

Case Cohort Study, and investigated the independent effect of physical activity on

the risk of incident type 2 diabetes. I first described the study and the subset of data

used in the analysis. I then used smooths of martingale residuals to guide initial

choice of functional form for continuous covariates in each model, followed by vari-

able and model selection methods to assess whether such functional forms improved

model fit over a linear form. I then used inclusion of interactions of covariates with

time to assess violations of the proportional hazards assumption in each model, and

adjusted for such violations where found to finalise each model. Finally, in each sex,

I used dAIC and pBIC to select from the three final candidate models for each

sex, each model including a different measure of obesity. I found that the models

including waist-to-height ratio as the measure of obesity were preferred over those

including body mass index or waist circumference.

8.3 Dissertation in Context

In this thesis I have considered the validity of estimation and post-estimation pro-

cedures in the case cohort design under both staggered entry and fixed entry, and

with IPW and Prentice weighting. I have used simulation studies to assess the per-

formance of such methods in a number of scenarios, and compared these results to

those of the full cohort. Overall, this work takes place in a context where there

has been little investigation of post-estimation methods in the case-cohort design.

My investigations have shown three key areas where the case-cohort design affects

estimation and post-estimation procedures, which I now discuss. In Section 8.3.1 I

discuss the effects of case-cohort characteristics such as non-case to case ratio and

subcohort size, with particular regard to choice of weighting method and impact of

entry type on risk set size and variability. In Section 8.3.2 I discuss use of weighting

to account for the over-estimation of cases in the case-cohort design. Finally, in Sec-

tion 8.3.3 I discuss the importance of careful choice of variance estimation methods.
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8.3.1 Effects of Case Cohort Characteristics

In Chapter 3, I note that methodological papers regarding the case-cohort design

tend to design simulation studies so as to highlight changes in performance from

the full cohort and often consider scenarios that are not reflective of the case-cohort

design in practice. Further, in the literature, results and conclusions are often de-

scribed with reference to full cohort characteristics. Also in Chapter 3, I theorized

that case-cohort characteristics and influence of entry type may be more relevant to

the behaviour of estimation and post-estimation methods than a simple description

of the full cohort and the subcohort sampling fraction. Such characteristics include

size and variability of risk sets, number of cases in the sample, subcohort size, sub-

cohort sampling fraction and non-case to case ratio.

The results from previous chapters provide evidence supporting this approach. To

illustrate this, I first in Section 8.3.1.1 consider variability in the full cohort for R(j),

the observations at risk at time t(j), and then in Section 8.3.1.2 discuss the effects of

case-cohort characteristics and weighting method. Then, in Section 8.3.1.3 I discuss

the results of the simulation studies in this context.

8.3.1.1 Risk Sets in the Full Cohort

Estimation and post-estimation procedures rely upon a number of quantities de-

rived from risk sets. For example, estimation of coefficients and cumulative baseline

hazards relies upon quantities calculated for each risk set - the denominator in both

cases being
∑

i∈R(j)

exp(βTZi). Schoenfeld residuals are calculated for each individual

risk set, defined as the difference between the value of the covariate and its mean

conditioned upon the risk set at the failure time of that observation.

Smaller risk sets will see the quantities mentioned above become more variable.

Further, more variable covariates Z will also lead to greater variation. Recall that

under staggered entry, one would expect for risk sets to be smaller than for a similar

dataset analysed under fixed entry. Further, the sizes of risk sets across the entire

dataset would be more variable also.

8.3.1.2 Risk Sets in the Case Cohort

Smaller sampling fractions will lead to the subcohort risk set R∗(j) being more vari-

able, relative to the full cohort. Note further that due to random chance, individual

risk sets may see sampling fractions quite discordant from the overall sampling frac-

tion.
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In Prentice weighting, additional variation relative to the full cohort is present for

both cases and non-cases, as non-subcohort cases are included only at their failure

time. Note further that, as the proportion of non-subcohort cases in the case-cohort

dataset increases, a greater proportion of risk sets will include a non-subcohort

case. At smaller subcohort sizes, or where Z for cases is more discordant from Z

for non-cases, this non-subcohort case will have greater influence on the quantities

mentioned above. Further, Prentice weighting will lose more information from ex-

clusion of non-subcohort cases from the risk sets.

By contrast, in IPW weighting, the cases are identical to the full cohort in all

respects, and variance due to sampling occurs only for the non-cases. However,

note that where the weights for non-cases are calculated from the overall sampling

fraction, they may be discordant from the sampling fraction for the individual risk

set R∗(j).

8.3.1.3 Effect of Case-Cohort Characteristics on Case Cohort Estima-

tion and Post-Estimation Procedures

Given Section 8.3.1.2, one might expect for IPW weighting to be generally superior

to Prentice weighting. Further, one might expect results under fixed entry to be

generally superior to results under staggered entry, where risk sets are smaller and

more variable. However, this was not seen in the simulation studies. This can be

reconciled by considering that 8.3.1.1 and 8.3.1.2 consider individual risk sets, and

that a number of estimation and post-estimation procedures, to a greater or lesser

degree, in some way aggregate estimates or quantities from individual risk sets to

achieve their final results. For example, in estimation of β, model selection, and use

of martingale residuals to detect inappropriate functional form, only minor differ-

ences were seen between Prentice weighting and IPW. Results for staggered entry

and fixed entry were also very similar in the chapters on Martingale residuals and

Model Selection. Note that the number of cases in the dataset not only increases the

amount of information, it also increases the number of risk sets over which such ag-

gregation takes place. The differences between bias and empirical standard error of

estimates of β between entry types was most apparent with smaller numbers of cases.

However, where procedures are more sensitive to size and variability of individual

risk sets, more profound differences between entry types and case-cohort weighting

methods were seen. In detection of non-proportional hazards, when all covariates

were allowed to interact with time simultaneously and a global test for their signif-

icance was performed, inappropriately high type 1 error rates were associated with
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smaller numbers of cases, particularly in staggered entry. When p-values were con-

sidered separately for each covariate, Prentice weighting showed somewhat higher

Type 1 error rate and lower power than IPW. Type 1 error rate was also increased

in staggered entry compared to fixed entry.

Results for methods incorporating Schoenfeld residuals were particularly interesting.

Recall that Schoenfeld residuals are calculated for each individual risk set. With

these methods, entry type had a profound effect on performance. In fixed entry,

both IPW and Prentice weighting showed similar Type 1 error to the full cohort for

correlation of Schoenfeld residuals with time, and a slight elevation for the method

of Grambsch & Therneau. In staggered entry, both IPW and Prentice showed highly

inappropriate Type 1 error rate for both these methods in all circumstances. When

the proportion of non-subcohort cases was low, IPW showed higher type 1 error

than Prentice. Where the proportion of non-subcohort cases was high, IPW showed

lower type 1 error than Prentice. It appears, therefore, that both interactions of

covariates with time, and methods based on Schoenfeld residuals are more sensitive

than other post-estimation methods to both the proportion of non-subcohort cases

and the size and variability of the risk sets.

8.3.1.4 Conclusion

Overall, results from this thesis indicate that regard to case-cohort characteristics

such as non-case to case ratio, subcohort size, and proportion of non-subcohort cases

in the dataset, together with the effects of entry type on variability and size of risk

sets, can be valuable. Validity and performance of estimation and post-estimation

methods, and choice of weighting system, is better assessed by considering such

characteristics than by a simple assessment of full-cohort characteristics and the

subcohort sampling fraction.

8.3.2 Weighting in Post-Estimation

In the case-cohort design, cases are over-represented in the case-cohort sample. In

this thesis, IPW weighting was used to account for this where estimation or imi-

tation of a full-cohort quantity was desired, such as for mean-centering or smooths

of martingale residuals against covariate values. In general, IPW Classic appeared

appropriate for such aims.

Use of time-specific weights calculated for each individual risk set gave improve-

ment in precision for estimation of cumulative baseline hazard, particularly early

in analysis time where results from each individual risk set have more influence on
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the overall estimate. The results from Chapter 5 further indicate that use of time-

specific weights may be more valuable where quantities are calculated or estimated

for specific risk sets such as for Schoenfeld residuals and scaled Schoenfeld residu-

als. However, use of time-specific weights is computationally intensive and in other

circumstances may not result in gains in sufficient gains in performance to justify

the increased computational time for analysis.

8.3.3 Estimation of Variance

It is well known that näıeve estimation of variance that does not account for case-

cohort design gives inappropriately small results for variance of β. As discussed in

1.3.1.7, a number of methods for estimation of coefficient sampling variance that

account for the covariance between score terms in the case-cohort design have been

proposed.

Further, this thesis has shown that careful consideration is also required for estima-

tion of variance for post-estimation methods in the case-cohort design. As described

in Chapter 6, use of dAIC, dBIC and dLR requires calculation of design effects us-

ing both näıeve and robust estimates of variance. In Chapter 5, there are indications

that substitution of the average variance of the covariates for the weighted variance

of the covariance at each failure time in the methods of Grambsch and Therneau

(1994), is inappropriate in the case-cohort, even where it is valid in the full cohort.

8.4 Limitations

In this thesis I have not considered the effect of stratified Cox modelling on the

estimation and post-estimation procedures investigated. In certain post-estimation

procedures such as calculation of martingale residuals and Schoenfeld residuals, the

stratum-specific case-cohort characteristics appear more relevant than the charac-

teristics of the case-cohort sample as a whole. The degree of any such impact has not

been assessed in this thesis. In the review of the case-cohort design in practice by

Sharp et al. (2014), 9 of the 17 original cohorts used stratified sampling to select the

subcohort, indicating that evaluation of these methods in stratified Cox modelling

would be of value.

In Chapter 4, the lack of a valid method to quantify results of visual assessment

of smooths over a large number of replicates in a simulation study made assessment

of the behaviour of smooths of martingale residuals against covariate values difficult

to assess. In Section 4.4 I discuss the unsuitability of correlation coefficients and
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inspection of the mean value of the smooth over the replications at benchmark co-

variate values. The use of statistical assessment of non-linearity of weighted linear

splines as a proxy for subjective visual assessment of weighted smooths also appears

inadequate.

The general data-generating mechanism used throughout this thesis has its own

limitations, as discussed in Section 2.8. Briefly, loss to follow-up was also not con-

sidered in this thesis. A degree of loss-to-follow-up is likely to occur in real-world

studies, and may impact on the findings of this thesis. In general, loss-to-follow-up

will result in smaller and more variable risk sets, the effect of which has been ev-

ident throughout this thesis. A Weibull model was used for simulation of survival

times, with parameters modelled from the Cambridge Centre of the Interact dataset

and λ scaled to provide consistency in survival times. The administrative censoring

procedure and subcohort sampling procedure also aimed to provide consistency in

case percentages and empirical sampling fraction. The scope of simulation studies

in this thesis could hence be considered limited to datasets that are similar to the

Cambridge Centre of the Interact dataset.

8.5 Future Work

Areas for future work in the case-cohort design are extensive. Ideally, one would

seek to be able to apply to the case-cohort all the methods that might be used to

analyse a full cohort. However, below I outline four key areas in which I believe

further investigation would be particularly useful.

8.5.1 Application of Design Effects

The usefulness of dLR, dBIC, dAIC and pBIC, each originally proposed for the

field of complex survey sampling, highlights the value of considering complex survey

sampling methods for application to the case cohort design. It is possible that the

field of complex survey sampling has additional methods that can be applied to the

case-cohort design. With the exception of pBIC, each of these methods makes use

of a design effect, a measure of the loss of effectiveness by the study design as com-

pared to a simple random sample. Use of design effects may allow for adaptation of

full cohort methods to the case cohort design, particularly where such methods rely

on estimates of variance.

For example, Lin et al. (1993) propose graphical measures and numerical tests for as-

sessing model fit in the Cox model based on cumulative sums of martingale residuals.
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They describe tests for the functional form of a covariate, the form of the link func-

tion, the validity of the proportional hazards assumption, and an omnibus test for

model misspecification. These tests are based upon counting processes W , where

martingale residuals are summed cumulatively over covariate values and/or time,

and the limiting distribution of W is approached through Monte Carlo simulations,

with W simulated by replacing various unknown quantities with their respective

consistent estimates. The observed process w can be plotted against realizations

from W for a graphical check of model adequacy. The numerical test is to derive

1000 realizations from W and to calculate the proportion of times that the maximum

absolute value of w is less than the maximum absolute value of each realization, with

a p-value of ≤ .05 evidence for rejection of the null hypothesis of adequate model fit.

In exploratory work not presented in this thesis I had attempted to apply this

test for functional form of a covariate to the case-cohort design. IPW weighting

of the residuals provided similar graphical “shape” to the full cohort w, however,

the realizations from W were overly conservative, with low variance, and with even

the correct model displaying extremely low p-values. The methods of Lin et al.

(1993) for simulating realizations from W in the full cohort provide two possible

sources of increased “spread” of the realisations from W . The first is I, the ob-

served information of the full cohort. The second is random draws from a standard

normal distribution G ∼ (N(0, 1) with Martingale residuals Mi(t(j)), estimated in

the formula by Ni(t(j)))Gi where Ni(t(j))) is the observed counting process. This

approach is justified as the variance function of Mi(t(j)) is E(Ni(t(j)))). It is possible

that incorporating design effects may be useful in modifying these methods for the

case-cohort design.

8.5.2 Case-Cohort Scaled Schoenfeld Residuals

In Chapter 5, I found that the scaled Schoenfeld residuals test of Grambsch and

Therneau (1994), as implemented in STATA, was inappropriate for use in detection

of non-proportional hazards in the case cohort design. I theorized that the high type

1 error rates seen could be due to an effect noted by Winnett and Sasieni (2001),

that the average variance of the covariates is a poor proxy for the weighted variance

of the covariance at each failure time when the variance of the covariates changes

substantially over each failure time. In Chapter 7, I noted that a successful imple-

mentation of the methods of Grambsch and Therneau (1994) would be much less

computationally intensive than methods using interactions of covariates with time,

and would allow for more practical assessment of potential violations of the as-

sumption of proportional hazards. Investigation of the use of time-specific weighted
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variances of the covariates in the methods of Grambsch and Therneau (1994) would

hence be very valuable in the case cohort design.

8.5.3 Global Goodness of Fit

In addition to the omnibus test of Lin et al. (1993) above, a number of global

goodness-of-fit statistics have been proposed for the Cox Proportional Hazards

model in the full cohort (e.g. Schoenfeld (1980) Grønnesby and Borgan (1996)).

The tests, in general form, compare the model to an alternative, which includes

indicator variables for discrete partitions of the covariate space (May and Hosmer,

1998). Formal guidance on partitioning the covariate space is given by Parzen and

Lipsitz (1999) which allows for detection of need for interactions or higher order

powers of covariates in the model. Future work could include investigation of these

methods in the case-cohort design.

8.5.4 Firm Guidelines on Case-Cohort Characteristics

In Section 8.3.1 above, I discuss how estimation and post-estimation methods are

affected by various case-cohort characteristics. In my simulation studies I found

various circumstances in which, for example, a particular number of cases was too

small and a particular larger number of cases was adequate. For guidance of analysis,

clear thresholds or more comprehensive guidelines for the case-cohort characteris-

tics required for a particular method to be valid would be of use. In particular,

investigation of the effects of stratified Cox analysis, where simple consideration of

the characteristics of the whole case-cohort sample may be insufficient, would be

valuable.

8.6 Conclusion

In Chapter 1 I said that to fully exploit the case-cohort design, we must look beyond

parameter estimation. With this thesis, I sought to investigate existing methods,

adapt existing methods, and devise new methods for post-estimation in the case-

cohort design.

I have shown that IPW methods of estimation of β and cumulative baseline haz-

ard are appropriate in the case-cohort design. I have shown that weighted smooths

of martingale residuals may be informative in assessment of appropriate functional

forms of continuous covariates in the case cohort design, but that loss of power from

the full cohort may be substantial, and in excess of that seen for other case-cohort

estimation and post-estimation methods. I have shown that inclusion of interactions
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of covariates with time as a method of assessment of violation of the proportional

hazards assumption is appropriate in the case-cohort design, when risk set sizes and

number of cases are not overly small. In this work, approximately 250 cases sufficed

for reasonable Type 1 error rate, but further work to define thresholds to guide

analysts would be of value. Further, I show that methods incorporating Schoenfeld

residuals cannot be directly applied to the case-cohort design when risk sets are small

and/or variable, as may arise in staggered entry. I have shown that dLR, pBIC, and

dAIC are valuable methods of variable and model selection in the case-cohort design,

especially where data is sparse, and that Wald tests and dBIC may be inappropriate

where data is sparse. Finally, I have shown how use of these methods allowed for

a more comprehensive investigation and analysis in a real-world case-cohort dataset.

I hope, therefore, that this dissertation makes steps towards allowing for greater

exploitation of the case-cohort design in practice, and more comprehensive analysis

of the valuable datasets that are both extant and will be available in the future.
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Appendix A

Additional Results for Estimation

A.1 Additional Results for Estimation of β

In general, MCSE bounds for Type 1 error encompassed a nominal 5%, with excep-

tions generally for staggered entry and the 3% sampling fraction. Where Type 1

error was underestimated, upper bounds did not fall below ∼ 4.75%, point estimates

did not fall below ∼ 3.4% and lower bounds did not fall below ∼ 2.25 %. Where

Type 1 error was overestimated, upper bounds did not exceed ∼ 9%, point estimates

did not exceed ∼ 7.5%, and lower bounds did exceed ∼ 6%.

MCSE bounds for proportional error in the model-based standard error were within

5% of 0 except for certain combinations at a subcohort size of 200 where they were

below -5%. Upper MCSE bounds did not fall below ∼ -10%, point estimates did

not fall below ∼ -15%, and lower MCSE bounds did not fall below ∼ -20% All case-

cohort weighting methods showed similar (overlapping MCSE bounds) proportional

error in the model-based standard error.

MCSE bounds for coverage tended to fall below 95% at a subcohort size of 200,

predominantly for the normal covariate with β = ln(2). Bounds fell below 92% only

for staggered entry with a 3% sampling fraction, case to non-case ratio of 1, and the

normal covariate with β = ln(2) (point estimates ∼ 89%). All weighting methods

showed similar (overlapping MCSE bounds) coverage. Power for β = ln(1.25)/SD

is presented in Figure A.1. IPW Classic demonstrates a small improvement over

Prentice at subcohort size 200, sampling fraction 15% and case to non-case ratio

1:1, but this improvement does not cause MCSE bounds for these weighting meth-

ods to fail to overlap. Power for β = ln(2)/SD exceeds 94% for all weighting methods

at a subcohort size of 200 and case to non-case ratio 1:4, and is 100% for all other

combinations.
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Figure A.1: Point Estimates & MCSE Bounds for Power for β = ln(1.25)/SD

(a) BC = Barlow Classic; FC= Full Cohort; IC = IPW Classic; P = Prentice

(b) Shaded bars indicate MCSE bounds
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A.2 Additional Information on Results for Esti-

mation of H0(t)

Table A.1: Minimum and Maximum Values for True H0(t)

HR/SD NSC αNC Ratio Staggered Fixed

Min Max Min Max

1.1

200

3
1 0.0020 0.1154 0.0003 0.0282

4 0.0002 0.0234 0.0002 0.0082

15
1 0.0086 0.5322 0.0014 0.1415

4 0.0083 0.1206 0.0005 0.0355

1000

3
1 0.0030 0.1141 0.0003 0.0296

4 0.0007 0.0273 0.0001 0.0072

15
1 0.0169 0.5544 0.0012 0.1382

4 0.0027 0.1401 0.0047 0.0379

2

200

3
1 0.0014 0.0714 0.0002 0.0191

4 0.0001 0.0150 0.0000 0.0051

15
1 0.0056 0.3463 0.0009 0.0947

4 0.0006 0.0770 0.0003 0.0233

1000

3
1 0.0027 0.0784 0.0002 0.0198

4 0.0002 0.0192 0.0001 0.0048

15
1 0.0099 0.3578 0.0008 0.0972

4 0.0014 0.0888 0.0002 0.0239

In staggered entry, the difference in bias between Prentice Time and Prentice Clas-

sic does not exceed 2.5% of the true value of H0(t) in the first 10 reference times

and does not exceed 1.5% of true H0(t) in the remainder of analysis time. MCSE

bounds fail to overlap only at reference time 88+ in subcohort size 200, sampling

fraction 3%, case to non-case ratio 1:1 and β = ln(1.1)/SD. In the first 10 reference

times, difference in bias between IPW Time and IPW Classic ranges from -1.1% of

true H0(t) to +2.5% of true H0(t) and from -1.5% of true H0(t) to +1.4% of true

H0(t) in the remainder of analysis time. MCSE bounds fail to overlap in the first
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10 reference times where β = ln(1.1)/SD.

In staggered entry, difference in empirical standard error between Time and Classic

variants, for Prentice and IPW, respectively, does not exceed 5% of true H0(t) and

5.6% of true H0(t) in the first 10 reference times and does not exceed 3% of true

H0(t) and 3.9% of true H0(t) in the remainder of analysis time.

In staggered entry, MCSE bounds for bias of Prentice Classic fail to overlap with

those of the full cohort at β = ln(2)/SD, sampling fraction 3%, subcohort size 200,

and case to non-case ratio 1:1. MCSE bounds for bias of Prentice Time fail to

overlap with those of the full cohort at sampling fraction 3% and case to non-case

ratio 1:1; subcohort size 200, sampling fraction 15%, and case to non-case ratio 1:1;

and subcohort size 200, sampling fraction 3%, case to non-case ratio 1:4, and β =

ln(2)/SD;

In staggered entry, MCSE bounds for empirical standard error of IPW Classic and

Prentice Classic fail to overlap with those of the full cohort at β = ln(1.1)/SD when

case to non-case ratio is 1:1. MCSE bounds for empirical standard error of IPW

Classic fail to overlap with those of the full cohort at β = ln(2)/SD and case to

non-case ratio 1:4. MCSE bounds for empirical standard error of all case-cohort

estimators fail to overlap with those of the full cohort at β = ln(2)/SD and case to

non-case ratio 1:1; and at β = ln(2)/SD, case to non-case ratio 1:4, subcohort size

1000 and sampling fraction 3%.
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Appendix for Chapter 7

Table B.1: InterAct Study: Assessment of Improved Model Fit with Restricted
Cubic Splines (WC as Obesity Measure)

WC
dAIC Difference

from Linear Form
pBIC Difference

from Linear Form
dBIC Wald dLR

Male
BMI -279.89 -257.83 222.97 <0.001 <0.001

Alcohol -3.42 2.63 -0.11 0.071 0.076

Female
BMI -588.74 -569.89 500.87 <0.001 <0.001

Alcohol -27.15 -19.99 21.47 <0.001 <0.001
Outcome: Type 2 Diabetes Incidence

Model Includes Physical Activity, Calories, Smoking, School, Alcohol, BMI

Table B.2: InterAct Study: Assessment of Improved Model Fit with Restricted
Cubic Splines (WHtR as Obesity Measure)

dAIC Difference
from Linear Form

pBIC Difference
from Linear Form

dBIC Wald dLR

Male
BMI -469.44 -438.53 359.93 <0.001 <0.001

Alcohol -4.76 1.35 1.23 0.057 0.061

Female
BMI -612.18 -596.24 526.72 <0.001 <0.001

Alcohol -12.70 -16.73 18.24 0.002 0.001
Outcome: Type 2 Diabetes Incidence

Model Includes Physical Activity, Calories, Smoking, School, Alcohol, BMI

Table B.3: InterAct Study:Wald Tests for Interaction of Covariates with Rank Time
(WC as Obesity Measure)

PA BMI Alcohol Calories School Smoke
Men 0.089 <0.001 0.644 0.257 0.862 0.702

Women 0.584 <0.001 0.553 0.303 0.596 0.246
Outcome: Type 2 Diabetes Incidence

Model Includes Physical Activity, Calories, Smoking, School, Alcohol, Obesity Measure
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Table B.4: InterAct Study:Wald Tests for Interaction of Covariates with Rank Time
(WHtR as Obesity Measure)

PA BMI Alcohol Calories School Smoke
Men 0.181 <0.001 0.758 0.174 0.496 0.867

Women 0.483 <0.001 0.524 0.459 0.496 0.273
Outcome: Type 2 Diabetes Incidence

Model Includes Physical Activity, Calories, Smoking, School, Alcohol, Obesity Measure

Table B.5: Hazard Ratios for Physical Activity - Comparison of Model Steps (WC
as Obesity Measure)

Interact 2012 Model Stratified Cox Model
Adjusted for

Functional Form
Adjusted for

Non-Proportional Hazards

Men
HR 0.93 0.94 0.95 0.95

95% CI 0.86, 1.00 0.89, 0.98 0.91, 0.99 0.91, 0.99

Women
HR 0.93 0.94 0.95 0.95

95% CI 0.89, 0.99 0.89, 0.99 0.91, 1.00 0.91, 100

Outcome: Type 2 Diabetes Incidence

Model Includes Physical Activity, Calories, Smoking, School, Alcohol, WC

Table B.6: Hazard Ratios for Physical Activity - Comparison of Model Steps (WHtR
as Obesity Measure)

WHtR Interact 2012 Model Stratified Cox Model
Adjusted for

Functional Form
Adjusted for

Non-Proportional Hazards

Men
HR n/a 0.93 0.94 0.94

95% CI n/a 0.88, 0.97 0.90, 0.98 0.90, 0.99

Women
HR n/a 0.95 0.96 0.95

95% CI n/a 0.90, 1.00 0.91, 1.00 0.91, 1.00

Outcome: Type 2 Diabetes Incidence

Model Includes Physical Activity, Calories, Smoking, School, Alcohol, WHtR
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Figure B.1: InterAct Study: Smooths of Martingale Residuals in Men (WHtR)

Linear Functional Forms
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Figure B.2: InterAct Study: Smooths of Martingale Residuals in Women (WHtR)
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Figure B.3: InterAct Study: Smooths of Martingale Residuals in Men (WC
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Linear Functional Forms

-0.
05

0.0
0

0.0
5

60 65 70 75 80 85 90 95 10
0

10
5

11
0

WC (bwidth=2.08)

-0.
05

0.0
0

0.0
5

0 1 2 3 4 5 6
Alcohol (bwidth=0.29) 

-0.
05

0.0
0

0.0
5

.5 1 1.5 2 2.5 3 3.5

Calories (bwidth=0.08) 

Smooths Only

-2.
00

-1.
00

0.0
0

1.0
0

50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

WC (bwidth=2.08)

-2.
00

-1.
00

0.0
0

1.0
0

0 2 4 6 8 10 12 14
Alcohol (bwidth=0.29) 

-2.
00

-1.
00

0.0
0

1.0
0

.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Calories (bwidth=0.08) 

Smooths and Residuals

Dotted lines indicate 5th and 95th percentiles of covariates
Plots of smooths only exclude top 1% of covariate values
A random sample of 10% of residuals were plotted between the 5th & 95th percentiles of covariate values
One observation with residual < -2 excluded from plots

Final Functional Forms

-0.
05

0.0
0

0.0
5

60 65 70 75 80 85 90 95 10
0

10
5

11
0

WC (bwidth=2.08)

-0.
05

0.0
0

0.0
5

0 1 2 3 4 5 6
Alcohol (bwidth=0.29) 

-0.
05

0.0
0

0.0
5

.5 1 1.5 2 2.5 3 3.5

Calories (bwidth=0.08) 

Smooths Only

-2.
00

-1.
00

0.0
0

1.0
0

50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

WC (bwidth=2.08)

-2.
00

-1.
00

0.0
0

1.0
0

0 2 4 6 8 10 12 14
Alcohol (bwidth=0.29) 

-2.
00

-1.
00

0.0
0

1.0
0

.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Calories (bwidth=0.08) 

Smooths and Residuals

Dotted lines indicate 5th and 95th percentiles of covariates
Plots of smooths only exclude top 1% of covariate values
A random sample of 10% of residuals were plotted between the 5th & 95th percentiles of covariate values
One observation with residual < -2 excluded from plots

Outcome: Type 2 Diabetes Incidence

Model Includes Physical Activity, Calories, Smoking, School, Alcohol, WC

146



Appendix C

Stata Comments & Sample Code

C.1 Introduction

In this appendix, STATA (Version 15.1) sample code for the methods described in

this thesis is presented for IPW and Prentice weighting, together with additional

comments on the implementation of the methods in STATA.

C.2 Data Setup

Package carryforward, available from SSC is required. The sample code given in

this appendix is for a dataset with the following variables, scalars, and locals. Sample

code to create an example dataset in this format is given below.

• The variable id records subject id.

• The variable stime records time of event or censoring.

• The variable etime records time of entrance to study.

• The variable case records case or non-case status with 0=non-case, 1=case.

• The variable subco records subcohort status with 0 = subcohort case, 1 =

subcohort non-case, 2=non-subcohort case.

• The variable W_IPW records the IPW weights

• The variable W_Pren records the weights for cumulative baseline hazards in

Prentice weighting.

• The variables X1, X2, X3 record values for predictor variables.

• The local covlist lists the covariates included in the model.
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// ~~~Set up sample case-cohort dataset~~~

clear

set obs 5000

gen id = _n

gen X1 = rnormal(0,1)

gen X2 = rnormal(0,1)

gen X3 = rnormal(0,1)

gen etime = rnormal(10,1)

local beta 0.5 //define coefficient

local shape 3 //Weibull Parameters

local lambda 5.0e-5

//generate survival times

gen u1 = runiform(0,1)

gen stime = (etime^‘shape’ - log(u1)/(‘lambda’*exp(X1*‘beta’)))^(1/‘

↪→ shape’)

//admin. censoring for desired case percentage CP

local CP =0.05

gen ftime = stime - etime

sort ftime

gen case = cond(_n <= _N*‘CP’, 1, 0)

replace ftime = ftime[_n-1] if case ==0

replace stime = etime+ftime

count if case ==0

scalar FC_NC_N = r(N)

//Sample dataset at chosen level SF

local SF = 0.05

generate random = runiform()

sort random

generate _subco = cond(case ==1 & _n <= _N*‘SF’, 1, cond(case ==1 &

↪→ _n > _N*‘SF’, 2, cond(case !=1 & _n <= _N*‘SF’, 0, . )))

drop if _subco ==.

//Create Weights for CBH in Prentice and for IPW Classic

gen W_Pren = 1/‘SF’

count if _subco ==0

scalar SC_NC_N = r(N)

gen W_IPW = cond(case ==1, 1, FC_NC_N/SC_NC_N)

drop u1 random

save sampledata, replace
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C.3 Estimation and Prediction

C.3.1 IPW

Implementation of IPW weighting for estimation of coefficients and estimation of

cumulative baseline hazard is straightforward. Once weights have been calculated

and included in the stset command, robust standard errors are calculated automat-

ically and further adjustments are unnecessary.

Prediction of the linear predictor, relative hazard, Cox-Snell residuals, Martingale

residuals and Schoenfeld residuals is likewise straightforward, using STATA’s inbuilt

predict command.

//~~~ Estimation & Predictions - IPW~~~

use sampledata, clear

local covlist X1

//set as survival time data

stset stime [pw=W_IPW], failure(case) id(id) enter(etime)

stcox ‘covlist’ //fit model

predict xb, xb //predict linear predictor

predict hr, hr //predict relative hazard

predict h0t, basehc //predict baseline hazard contribution

predict CBH, basechazard //predict cumulative baseline hazard

predict mg, mg //predict martingale residuals

save IPW_Predictions, replace

C.3.2 Prentice

Implementation of Prentice weighting for estimation of coefficients and estimation

of cumulative baseline hazard requires a number of adjustments. For estimation of

coefficients, an adjustment must be made to the entry time of non-subcohort cases

and robust standard errors must be specified in the stcox command. Prediction of

the linear predictor and relative hazard are straightforward. Baseline hazard con-

tribution, cumulative baseline hazard, and martingale residuals must be calculated

manually.

Note that in stratified models, the sample code provided here for calculation of

cumulative baseline hazard and martingale residuals must be run separately for

each stratum.
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//~~~ Estimation & Predictions - Prentice~~~

use sampledata, clear

stset stime, failure(case) id(id) enter(etime)

replace _t0 = _t-.01 if _subco ==2 //adjust entry for non-subcohort

↪→ cases

stcox ‘covlist’, robust //fit model with robust variance estimate

predict xb, xb //predict linear predictor

predict hr, hr //predict relative hazard

//manually calculate h0t

sts gen nd_j = d // create variable recording # of failures

//stsplit at failure times with variable indicating risk sets

stsplit, at(failures) riskset(risk)

//calculate sum of weighted relative hazard for each failure

gen w_hr = hr*W_Pren

bysort risk: egen denom = sum(w_hr)

//account for tied failures, missing data

bysort stime case: gen dup = cond(_N==1,0,_n) if case ==1

replace denom = . if case !=1 | xb ==.

replace denom = denom/nd_j

gen temp_h0t1 =1/denom

gen temp_h0t2 = 1/denom if dup <=1

//manually calculate CBH

sort stime dup

gen temp_CBH = sum(temp_h0t2) if dup<=1

bysort id: egen h0t = max(temp_h0t1)

bysort id: egen CBH = max(temp_CBH)

//consolidate to single record per subject

drop nd_j risk w_hr denom dup temp_h0t1 temp_h0t2 temp_CBH

stjoin

sort stime case

carryforward CBH, replace

replace CBH = . if xb ==.
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//Calculate Martingale Residuals

//calculate CBH at etime

expand 2, gen(etemp)

replace stime = etime if etemp==1

gen temp_eCBH = CBH if etemp ==0 & case==1

gsort stime -case

carryforward temp_eCBH, replace

replace temp_eCBH = 0 if temp_eCBH ==.

bysort id: gen temp_eCBH2 = temp_eCBH if etemp==1

bysort id: egen eCBH = max(temp_eCBH2)

drop if etemp==1

drop etemp temp_eCBH temp_eCBH2

gen mg = case-hr*(CBH-eCBH)

save Pren_Predictions, replace

C.4 Functional Form

As described previously, martingale residuals can be used for detection of inappro-

priate functional form of a covariate. Inspection of a smooth of the martingale

residuals against the functional form should be approximately linear with slope 0

when the functional form is appropriate. Once martingale residuals have been cal-

culated using the above methods, the choice of weighting system has no impact on

the assessment of covariate functional form. Hence, only IPW weighted smooths

are presented here. Note that STATA will not accept sampling weights in the local

polynomial smooth command (lpoly). Frequency-style weights can be constructed

as a multiple of IPW weights rounded to the nearest integer for use in lpoly.

//~~~Smooths Of Martingale Residuals Against Covariate Values~~~

use IPW_Predictions, clear

//generate frequency-style IPW weights

gen fIPW = round(W_IPW*10, 1)

//plot lpoly smooth of martingale residuals against X1

lpoly mg X1 [fweight=fIPW]
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C.5 Detection of Non-Proportional Hazards

Inclusion of a time-varying covariate in the model is straightforward for all weighting

systems. Following specification of the survival time data in the stset command and

adjustment of entry time for subcohort non-cases in Prentice weighting, case-cohort

methods do not differ from full cohort methods, except that, as for estimation of

coefficients, one should ensure that robust variance is specified in the stcox command

for Prentice weighting.

//~~~Test for NPH by Inclusion of Interactions with Time~~~

//IPW

use sampledata, clear

stset stime [pw=W_IPW], failure(case) id(id) enter(etime)

stcox ‘covlist’, tvc(‘covlist’)

//Prentice

stset stime, failure(case) id(id) enter(etime)

replace _t0 = _t-.01 if _subco ==2

stcox ‘covlist’, tvc(‘covlist’) robust // note robust option

C.6 Model Comparison and Variable Selection

The following section considers the use of the robust Wald test, and case-cohort

modifications for the Likelihood Ratio Test, AIC and BIC.

Robust Wald tests are easily implemented in STATA. Recall that the robust op-

tion must be specified in the estimation command for Prentice weighting.

For likelihood-based methods, use of sampling weights in the stset command pro-

vides erroneous values for the pseudo-partial-log likelihoods. Hence, with IPW, the

pseudo-partial-log likelihoods must be obtained by using the stset command with

iweights.

All likelihood-based methods presented here require estimates of both the robust

and model-based variance-covariance matrixes. For IPW weighting this requires es-

timation after using each of iweights and pweights in the stset command. For

Prentice weighting it requires presence and absence of specification of robust vari-

ance in the stcox command.
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The sample code below will provide results for a Wald test and a dLR test for

comparison of the model M1 nested within MM , and the values of dBIC, pBIC,

and dAIC for both model M1 and model MM .

//~~~Model Selection~~~

local vars_M "X1 X2 X3"

local vars_1 "X1"

local vars_1b "X2 X3" //variables in M_M not included in M_1

local k_M : word count ‘vars_M’

local k_1 : word count ‘vars_1’

local k_1b : word count ‘vars_1b’

use sampledata, clear

//Extraction of required values - IPW

// First, iweights are used to extract the pseuodopartial log

↪→ likelihoods for M_1 and M_M, the naieve variance matrices, and

↪→ the naieve Wald test statistic (for dBIC)

stset stime [iw=W_IPW], failure(case) id(id) enter(etime)

stcox ‘vars_M’

local pLL_M=e(ll)

mat V_n_M = e(V)

test ‘vars_1b’

local WaldBIC_1 = r(chi2)

stcox ‘vars_1’

local pLL_1=e(ll)

mat V_n_1 = e(V)

// Next, pweights are used to extract the robust variance matrices

↪→ and perform robust Wald test

stset stime [pw=W_IPW], failure(case) id(id) enter(etime)

stcox ‘vars_M’

mat V_r_M = e(V)

test ‘vars_1b’

local Wald_1 = r(chi2)

local Waldp_1 = r(p)

stcox ‘vars_1’

mat V_r_1 = e(V)

153



C.6. Model Comparison and Variable Selection Chapter 3

//Extraction of required values - Prentice

stset stime, failure(case) id(id) enter(etime)

replace _t0 = _t-.01 if _subco ==2

// First, extract the pseuodopartial log likelihoods for M_1 and M_M,

↪→ the naieve variance variance matrices and the naieve Wald

↪→ test statistic (for dBIC)

stcox ‘vars_M’

local pLL_M=e(ll)

mat V_n_M = e(V)

test ‘vars_1b’

local Wald_1 = r(chi2)

local Waldp_1 = r(p)

stcox ‘vars_1’

local pLL_1=e(ll)

mat V_n_1 = e(V)

// Next, extract the robust variance matrices, and perform robust

↪→ Wald test

stcox ‘vars_M’, robust

mat V_r_M = e(V)

test ‘vars_M_1b’

local Wald_1 = r(chi2)

stcox ‘vars_1’, robust

mat V_r_1 = e(V)

//~~~Calculate pBIC~~~

count if case ==1

local pBIC_M = 2*‘pLL_M’ + ‘k_M’*ln(r(N))

local pBIC_1 = 2*‘pLL_1’ + ‘k_1’*ln(r(N))

//~~~Calculate dAIC~~~~

//calculate dAIC design effect matrices

mat I_M = inv(V_n_M)

mat DE_M = I_M*V_r_M

local delta_M = trace(DE_M)

local dAIC_M = -2*‘pLL_M’+2*‘delta_M’

mat I_1 = inv(V_n_1)

mat DE_dAIC_1 = I_1*V_r_1

local delta_1 = trace(DE_dAIC_1)

local dAIC_1 = -2*‘pLL_1’+2*‘delta_1’
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//~~~Calculate design effects matrix for dLR and dBIC~~~~

//create holding matrices

mat V_22 = J(‘k_1b’, ‘k_1b’, .)

mat I_22 = J(‘k_1b’, ‘k_1b’, .)

mat I_11 = J(‘k_1’, ‘k_1’, .)

mat I_12 = J(‘k_1’, ‘k_1b’, .)

mat I_21 = J(‘k_1b’, ‘k_1’, .)

//fill V_22 and I_22

local c1 = 1

foreach e1 of local vars_1b{

local c2 = 1

foreach e2 of local vars_1b{

mat V_22[‘c1’, ‘c2’] = V_r_M[rownumb(V_r_M,"‘e1’"),colnumb(V_r_M,"‘e2

↪→ ’")]

mat I_22[‘c1’, ‘c2’] = I_M[rownumb(I_M,"‘e1’"),colnumb(I_M,"‘e2’")]

local c2 = ‘c2’+1

}

local c1 = ‘c1’+1

}

if ‘k_1’ !=0{ // account for when M_1 is null

//fill I_11 and I_12

local c1 = 1

foreach e1 of local vars_1{

local c2 = 1

foreach e2 of local vars_1{

mat I_11[‘c1’, ‘c2’] = I_M[rownumb(I_M,"‘e1’"),colnumb(I_M,"‘e2’")]

local c2 = ‘c2’+1

}

local c3 = 1

foreach e3 of local vars_1b{

mat I_12[‘c1’, ‘c3’] = I_M[rownumb(I_M,"‘e1’"),colnumb(I_M,"‘e3’")]

local c3 = ‘c3’+1

}

local c1 = ‘c1’+1

}

//fill I_21
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local c1 = 1

foreach e1 of local vars_1b{

local c2 = 1

foreach e2 of local vars_1{

mat I_21[‘c1’, ‘c2’] = I_M[rownumb(I_M,"‘e1’"),colnumb(I_M,"‘e2’")]

↪→ local c2 = ‘c2’+1

}

local c1 = ‘c1’+1

}

}

//calculate design effect matrix, accounting for case where M_1 is

↪→ null

if ‘k_1’ ==0 mat Des_Eff = (I_22)*V_22

else mat Des_Eff = (I_22-I_21*inv(I_11)*I_12)*V_22

//calculate parameters for gamma approximation

matrix eigenvalues eig_DE im = Des_Eff

scalar q1 = 0

scalar q2 = 0

forvalues m = 1/‘k_1b’{

scalar q1 = q1+eig_DE[1,‘m’]

scalar q2 = q2+ 2*(eig_DE[1,‘m’])^2

}

local g_hat = (q1^2)/q2

local theta_hat = q2/q1

//calculate dLR

local dLR_1 = 2*(‘pLL_M’-‘pLL_1’)

local dLRp_1 = 1-gammap(‘g_hat’, ‘dLR_1’/‘theta_hat’)

//calculate geometric mean of eigenvalues

local dbar_1 =1

forvalues m = 1/‘k_1b’{

local dbar_1 = ‘dbar_1’*eig_DE[1,‘m’]

}

local d_bar = ‘dbar_1’/‘k_1b’

//calculate dBIC
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count if case ==1

local dBIC_1= ‘WaldBIC_1’-‘k_1b’*ln(r(N)/‘dbar_1’)

local dBIC_M = 0

//~~~~Display Results~~~~

display "Wald chi2 = ‘Wald_1’ p = ‘Waldp_1’"

display "dLR = ‘dLR_1’ p = ‘dLRp_1’"

display "pBIC M_M = ‘pBIC_M’ M_1 = ‘pBIC_1’"

display "dBIC M_M = ‘dBIC_M’ M_1 = ‘dBIC_1’"

display "dAIC M_M = ‘dAIC_M’ M_1 = ‘dAIC_1’"
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