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Identification of novel breast cancer susceptibility
loci in meta-analyses conducted among Asian and
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Known risk variants explain only a small proportion of breast cancer heritability, particularly in

Asian women. To search for additional genetic susceptibility loci for breast cancer, here we

perform a meta-analysis of data from genome-wide association studies (GWAS) conducted

in Asians (24,206 cases and 24,775 controls) and European descendants (122,977 cases and

105,974 controls). We identified 31 potential novel loci with the lead variant showing an

association with breast cancer risk at P < 5 × 10−8. The associations for 10 of these loci were

replicated in an independent sample of 16,787 cases and 16,680 controls of Asian women

(P < 0.05). In addition, we replicated the associations for 78 of the 166 known risk variants at

P < 0.05 in Asians. These findings improve our understanding of breast cancer genetics and

etiology and extend previous findings from studies of European descendants to Asian women.
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Breast cancer is the most commonly diagnosed malignancy
and the leading cause of cancer-related deaths in women
worldwide1. Genetic linkage studies and family-based stu-

dies have identified many high- and moderate-penetrance
mutations in breast cancer predisposition genes, including
BRCA1, BRCA2, PTEN, ATM, PALB2, and CHEK22. In addition,
large-scale genome-wide association studies (GWAS), conducted
primarily in Asian and European women, have identified more
than 180 susceptibility loci for breast cancer risk3–8. These
identified loci explain a relatively small proportion of familial
relative risk of breast cancer8.

The Asia Breast Cancer Consortium (ABCC) is the largest
breast cancer GWAS consortium conducted in Asian-ancestry
populations. We have shown previously that GWAS conducted in
Asians could uncover cancer genetic risk variants that are either
unique to the Asian population or more difficult to identify in
studies conducted in European women3,4,9–16. It also has been
shown that a large proportion of common susceptibility loci are
shared between Asian and European populations, although the
lead variants in many loci may differ between these two
populations6,8. To search for novel breast cancer susceptibility
loci, we conducted Asian-specific and cross-ancestry meta-ana-
lyses combining the data of the ABCC and the Breast Cancer
Association Consortium (BCAC) with a total sample size of
approximately 310,000 women (~82,000 Asians and ~228,000
Europeans). We herein report the discovery of 31 potential novel
risk loci for breast cancer and the replication of a large number of
known breast cancer susceptibility loci in Asian women.

Results
Overall associations for newly associated loci. We identified 28
loci with at least one common variant at each locus showing a
significant association with breast cancer risk in the cross-ancestry
meta-analysis (i.e., P < 5 × 10−8) (Table 1). None of these lead risk
variants reside within a 500 Kb region flanked by any of the 183
previously reported breast cancer risk variants. No obvious infla-
tion in statistical estimates was observed for either Asian-specific
or cross-ancestry meta-analysis after excluding known loci (sam-
ple size-adjusted λ1000= 1.012 and 1.001, respectively). No evi-
dence of heterogeneity in associations was observed between the
two racial populations except for rs2758598 and rs142360995
(Table 1, Pheterogeneity < 0.05, consistent in direction). The OR
estimates for these 28 SNPs by study within the ABCC and BCAC
consortia are presented in Supplementary Data 1 and 2. We
explored pleiotropic effects by assessing the newly identified lead
variants and their correlated SNPs (in LD with r2 > 0.4 in either
Asians or Europeans) from the online catalog of published GWAS
(GWAS catalog). Pleiotropy was found for seven of the 28 newly-
associated SNPs (Supplementary Table 2).

All of the 28 SNPs showed a nominally significant association
(P < 0.05) with ER-positive breast cancer risk (Table 2). Fourteen
of the 28 risk SNPs were also associated with ER-negative breast
cancer risk in the cross-ancestry meta-analysis (P < 0.05).
Heterogeneity between ER+ and ER- breast cancer risk
(Pheterogeneity < 0.05) was observed for rs73006998, rs7765429,
rs144145984, rs78588049, and rs12481286.

Of the 28 SNPs, 22 were investigated in an independent set of
10,829 cases and 10,996 controls included in ABCC and an
additional 5958 cases and 5684 controls from studies conducted in
Malaysia and Singapore (see Methods). A significant association at
P < 0.05 was found for 10 SNPs, all with the association direction
consistent with our main findings (Supplementary Table 3).
Among them, five SNPs showed significant associations at P <
2.3 × 10−3 (0.05/22), including rs3790585 (1p34.1), rs73006998

(3q25.1), rs6940159 (6q27), rs855596 (12q23.2), and rs75004998
(14q24.3).

To uncover possible secondary association signals in newly
identified breast cancer susceptibility loci, we performed analyses
for SNPs within flanking 500 kb of each lead SNP, with
adjustment for the lead SNPs within each dataset. We then
conduced meta-analyses to combine the results across studies of
Asian women. Six potential secondary associations were identi-
fied (conditional P < 1 × 10−4), and all correlated (r2 > 0.1 in 1000
Genome East Asians) except for rs7693779, at 4p12 (Supplemen-
tary Table 4).

Of the 28 SNPs newly identified to be associated with breast
cancer risk, 13 SNPs are intronic, one in UTR, and 14 in intergenic
regions. Using data from ENCODE and Roadmap, we found that
the majority of these 28 overlapped with genomic functional
biofeatures that were indicative of promoters or enhancers
(Supplementary Data 3 and 4). The enrichment analysis supported
this observation (Supplementary Fig. 2A). Of particular note is a
strikingly strong enrichment signal of transcribed chromatin states
that was found for the newly associated loci when compared to all
risk loci (Supplementary Fig. 2B). Enrichment signals of multiple
histone modifications were also observed for both newly identified
and overall association loci (Supplementary Fig. 2C, D). The newly
identified loci were enriched particularly for H4K78me2 and
H4K20me1. These results indicated that the newly identified loci
are tightly involved in active gene transcription events. Of the
28 lead SNPs, four (rs3790585 at 1p34.1, rs6756513 at 2p13.3,
rs10820600 at 9q31.1, and rs78588049 at 12q15) intersected with
chromosomal segments annotated as strong enhancers or active
promoters in breast tissue-originated cell lines. When all SNPs
that were in LD with the lead SNPs with r2 > 0.8 in either Asians
or Europeans were evaluated, evidence of regulatory function
was found for an additional seven (i.e., 1q22-rs2758598, 3q25.1-
rs73006998, 3q25.31-rs11281251, 8q22.2-rs2849506, 14q24.3-
rs75004998, 15q24.2-rs8027365, and 21q22.3-rs35418111).

eQTL and gene-based analyses. To identify target genes of the 28
newly identified lead SNPs, we conducted cis-eQTL analyses in
four independent datasets in breast tissue. Nine eQTL associa-
tions were identified with a P < 0.05 with same association
direction in two or more independent sets (Supplementary
Table 5). Potential candidate genes identified in this analysis
included LINC00886, ybeY metallopeptidase (YBEY), snurportin 1
(SNUPN), mannosidase alpha class 2 C member 1 (MAN2C1), T-
Box 1 (TBX1),MutY DNA glycosylase (MUTYH), lysyl oxidase like
2 (LOXL2), stanniocalcin 1 (STC1), and semaphorin 4 A
(SEMA4A). SNP rs144145984 was the eQTL for both LOXL2 and
STC1 genes, but the association for STC1 is much stronger.
Similarly, SNP rs8027365 was associated with expression levels of
two genes, MAN2C1 and SNUPN.

With the exception of TBX1 and LOXL2, we were able to build
breast-tissue and/or cross-tissue models for all other eQTL-
identified candidate genes with a prediction R2 > 0.01 (Supple-
mentary Table 6). Expressions of LINC00886, YBEY, MAN2C1
and SEMA4A could be predicted with a high accuracy by both
breast tissue and cross tissue models (R2 > 0.09). We imputed
expressions of seven genes other than TBX1 and LOXL2 and
showed that these genes were associated with breast cancer risk in
either the ABCC or BCAC data at P < 0.05 (Supplementary
Table 6). Of these, genes hypothesized to have a tumor-
suppressor function included LINC00886, MAN2C1, SNUPN,
and STC1, while YBEY, SEMA4A, and MUTYH may have an
oncogenic role in breast carcinogenesis based on their associa-
tions with breast cancer risk (Supplementary Table 7).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15046-w

2 NATURE COMMUNICATIONS |         (2020) 11:1217 | https://doi.org/10.1038/s41467-020-15046-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


T
ab

le
1
T
w
en

ty
ei
gh

t
no

ve
l
lo
ci

id
en

ti
fi
ed

by
th
e
cr
os
s-
an

ce
st
ry

m
et
a-
an

al
ys
is
.

S
N
P

C
hr

B
P

Ef
fe
ct

O
th
er

Lo
cu
s

A
si
an

-s
pe

ci
fi
c

Eu
ro
pe

an
-s
pe

ci
fi
c

C
ro
ss
-a
nc
es
tr
y

I2
,
%

P
h
e
t

EA
F

O
R
(9
5
%

C
I)

P
EA

F
O
R
(9
5
%

C
I)

P
EA

F
O
R
(9
5
%

C
I)

P

rs
72

9
0
6
4
6
8

1
17
77

20
9
3

A
T

1p
36

.1
3

0
.6
8

1.
0
6
(1
.0
3–
1.
0
9
)

1.
5
×
10

−
4

0
.7
7

1.
0
4
(1
.0
2–
1.
0
5)

2.
2
×
10

−
6

0
.7
6

1.
0
4
(1
.0
3–
1.
0
5)

4
.0

×
10

−
9

0
0
.5
9

rs
37

9
0
58

5
1

4
6
0
23

35
6

A
T

1p
34

.1
0
.6
9

1.
0
5
(1
.0
2–
1.
0
8
)

1.
4
×
10

−
3

0
.8
5

1.
0
4
(1
.0
3–
1.
0
6
)

8
.8
×
10

−
7

0
.8
1

1.
0
4
(1
.0
3–
1.
0
6
)

5.
3
×
10

−
9

5.
1

0
.3
9

rs
27

58
59

8
1

15
6
19
4
33

9
A

G
1q
22

0
.1
6

1.
0
7
(1
.0
3–
1.
11
)

1.
8
×
10

−
4

0
.3
3

1.
0
3
(1
.0
2–
1.
0
5)

8
.4
×
10

−
7

0
.3
1

1.
0
4
(1
.0
2–
1.
0
5)

3.
6
×
10

−
9

57
.7

0
.0
1

rs
6
75

6
51
3

2
70

17
25

8
7

A
G

2p
13
.3

0
.3
0

0
.9
6
(0

.9
4
–0

.9
9
)

0
.0
1

0
.2
9

0
.9
6
(0

.9
5–
0
.9
8
)

4
.2
×
10

−
7

0
.2
9

0
.9
6
(0

.9
5–
0
.9
8
)

1.
5
×
10

−
8

0
0
.8
0

rs
73

0
0
6
9
9
8

3
15
0
4
6
4
27

1
A

G
3q

25
.1

0
.3
3

0
.9
2
(0

.8
9
–0

.9
4
)

2.
4
×
10

−
9

0
.0
3

0
.9
4
(0

.9
1–
0
.9
8
)

5.
8
×
10

−
3

0
.2
2

0
.9
3
(0

.9
0
–0

.9
5)

1.
1×

10
−
10

10
.0

0
.3
5

rs
11
28

12
51

3
15
6
51
9
4
12

T
T
T
G
T
G
A
C

3q
25

.3
1

0
.1
8

0
.9
4
(0

.9
0
–0

.9
8
)

1.
9
×
10

−
3

0
.3
9

0
.9
7
(0

.9
6
–0

.9
8
)

4
.2
×
10

−
7

0
.3
7

0
.9
7
(0

.9
5–
0
.9
8
)

8
.4
×
10

−
9

24
.5

0
.2
4

rs
11
9
4
4
6
38

4
4
8
22

77
19

T
C

4
p1
1

0
.7
4

1.
0
8
(1
.0
4
–1
.1
1)

6
.0

×
10

−
6

0
.9
3

1.
0
5
(1
.0
2–
1.
0
8
)

3.
1×

10
−
4

0
.8
5

1.
0
6
(1
.0
4
–1
.0
8
)

1.
6
×
10

−
8

0
0
.8
3

rs
11
9
4
79

23
4

53
9
11
33

7
T

C
4
q1
2

0
.2
8

0
.9
6
(0

.9
3–
0
.9
9
)

0
.0
1

0
.3
7

0
.9
7
(0

.9
6
–0

.9
8
)

1.
0
×
10

−
6

0
.3
6

0
.9
7
(0

.9
6
–0

.9
8
)

4
.5
×
10

−
8

0
0
.7
6

rs
6
55

51
34

5
27

76
4
8
3

T
C

5p
15
.3
3

0
.2
6

0
.9
5
(0

.9
2–
0
.9
8
)

1.
5
×
10

−
3

0
.5
8

0
.9
7
(0

.9
6
–0

.9
8
)

3.
6
×
10

−
7

0
.5
4

0
.9
7
(0

.9
5–
0
.9
8
)

2.
9
×
10

−
9

0
0
.7
7

rs
77

6
54

29
6

21
9
0
4
16
9

T
C

6
p2

2.
3

0
.8
9

0
.9
4
(0

.9
0
–0

.9
8
)

6
.8
×
10

−
3

0
.4
6

0
.9
7
(0

.9
6
–0

.9
8
)

3.
3
×
10

−
7

0
.4
9

0
.9
7
(0

.9
6
–0

.9
8
)

1.
7
×
10

−
8

6
.4

0
.3
8

rs
77

6
8
8
6
2

6
8
50

8
8
8
4
6

A
T

6
q1
4
.3

0
.2
9

0
.9
5
(0

.9
2–
0
.9
7)

1.
7
×
10

−
4

0
.5
1

0
.9
7
(0

.9
6
–0

.9
8
)

6
.4
×
10

−
6

0
.4
8

0
.9
7
(0

.9
6
–0

.9
8
)

2.
0
×
10

−
8

0
.0

0
.5
2

rs
6
9
4
0
15
9

6
17
0
33

26
21

T
C

6
q2

7
0
.8
2

0
.9
4
(0

.9
1–
0
.9
7)

4
.6
×
10

−
4

0
.3
8

0
.9
7
(0

.9
6
–0

.9
8
)

2.
7
×
10

−
7

0
.4
3

0
.9
6
(0

.9
5–
0
.9
8
)

1.
7
×
10

−
9

7.
7

0
.3
7

rs
14
4
14
59

8
4

8
23

6
4
4
0
0
3

C
T

C
8
p2

1.
2

0
.4
3

0
.9
6
(0

.9
4
–0

.9
9
)

3.
4
×
10

−
3

0
.5
7

0
.9
7
(0

.9
6
–0

.9
8
)

1.
7
×
10

−
6

0
.5
5

0
.9
7
(0

.9
6
–0

.9
8
)

2.
4
×
10

−
8

0
0
.5
6

rs
28

4
9
50

6
8

10
13
29

13
4

C
G

8
q2

2.
2

0
.4
9

0
.9
6
(0

.9
3–
0
.9
8
)

9
.9
×
10

−
4

0
.4
0

0
.9
7
(0

.9
6
–0

.9
8
)

7.
5
×
10

−
6

0
.4
1

0
.9
7
(0

.9
6
–0

.9
8
)

4
.7
×
10

−
8

0
0
.9
4

rs
14
23

6
0
9
9
5

8
11
8
20

57
19

A
G

8
q2

4
.1
1

0
.0
9

1.
13

(1
.0
7–
1.
18
)

4
.1
×
10

−
6

0
.2
0

1.
0
3
(1
.0
2–
1.
0
5)

1.
0
×
10

−
5

0
.1
9

1.
0
4
(1
.0
3–
1.
0
6
)

3.
0
×
10

−
8

6
4
.0

0
.0
0
3

rs
10
8
20

6
0
0

9
10
6
8
56

6
9
2

T
C

9
q3

1.
1

0
.8
2

0
.9
5
(0

.9
2–
0
.9
9
)

7.
6
×
10

−
3

0
.4
4

0
.9
7
(0

.9
6
–0

.9
8
)

1.
8
×
10

−
7

0
.4
8

0
.9
7
(0

.9
6
–0

.9
8
)

5.
7
×
10

−
9

29
.1

0
.1
9

rs
54

10
79

4
79

10
22

8
6
15
33

C
A

C
10
p1
2.
2

0
.1
3

1.
0
6
(1
.0
1–
1.
11
)

0
.0
1

0
.4
2

1.
0
3
(1
.0
2–
1.
0
5)

7.
0
×
10

−
7

0
.3
9

1.
0
3
(1
.0
2–
1.
0
5)

4
.9
×
10

−
8

0
0
.8
3

rs
29

0
11
57

10
11
9
26

23
6
5

A
G

10
q2

6
.1
1

0
.7
5

1.
0
6
(1
.0
3–
1.
0
9
)

4
.2
×
10

−
4

0
.8
9

1.
0
5
(1
.0
3–
1.
0
7)

2.
3
×
10

−
6

0
.8
5

1.
0
5
(1
.0
3–
1.
0
7)

4
.0

×
10

−
9

0
1

rs
10
8
38

26
7

11
4
4
36

8
8
9
2

A
G

11
p1
1.
2

0
.3
3

1.
0
6
(1
.0
3–
1.
0
9
)

8
.2
×
10

−
5

0
.5
4

1.
0
3
(1
.0
2–
1.
0
5)

3.
2
×
10

−
7

0
.5
1

1.
0
4
(1
.0
3–
1.
0
5)

4
.2
×
10

−
10

11
.9

0
.3
4

rs
78

58
8
0
4
9

12
6
9
18
0
9
0
7

A
A
T
T
T
T

12
q1
5

0
.1
5

0
.9
3
(0

.9
0
–0

.9
7)

7.
5
×
10

−
4

0
.2
0

0
.9
6
(0

.9
5–
0
.9
8
)

3.
3
×
10

−
6

0
.1
9

0
.9
6
(0

.9
5–
0
.9
7)

3.
0
×
10

−
8

4
.0

0
.4
0

rs
8
55

59
6

12
10
30

4
55

19
T

C
12
q2

3.
2

0
.0
7

0
.9
0
(0

.8
6
–0

.9
5)

8
.3
×
10

−
5

0
.0
3

0
.9
2
(0

.8
9
–0

.9
6
)

1.
9
×
10

−
5

0
.0
4

0
.9
1
(0

.8
9
–0

.9
4
)

7.
5
×
10

−
9

5.
0

0
.3
9

rs
9
31
6
50

0
13

51
0
9
4
11
4

T
G

13
q1
4
.3

0
.3
6

1.
0
5
(1
.0
2–
1.
0
8
)

4
.0

×
10

−
4

0
.7
1

1.
0
3
(1
.0
2–
1.
0
5)

6
.7
×
10

−
6

0
.6
4

1.
0
3
(1
.0
2–
1.
0
5)

2.
1×

10
−
8

5.
7

0
.3
9

rs
75

0
0
4
9
9
8

14
77

51
77

8
6

A
G

14
q2

4
.3

0
.5
1

0
.9
6
(0

.9
4
–0

.9
9
)

7.
8
×
10

−
3

0
.3
3

0
.9
7
(0

.9
6
–0

.9
8
)

1.
8
×
10

−
6

0
.3
6

0
.9
7
(0

.9
6
–0

.9
8
)

4
.9
×
10

−
8

0
0
.9
2

rs
8
0
27

36
5

15
75

8
0
8
74

0
A

C
15
q2

4
.2

0
.6
2

1.
0
5
(1
.0
2–
1.
0
8
)

1.
3
×
10

−
3

0
.7
3

1.
0
4
(1
.0
2–
1.
0
5)

9
.7
×
10

−
8

0
.7
1

1.
0
4
(1
.0
3–
1.
0
5)

4
.6
×
10

−
10

8
.4

0
.3
7

rs
76

53
51
9
8

16
71
8
9
24

9
8

A
C

16
q2

2.
2

0
.7
2

1.
0
8
(1
.0
4
–1
.1
1)

1.
2
×
10

−
6

0
.8
6

1.
0
4
(1
.0
3–
1.
0
6
)

2.
3
×
10

−
6

0
.8
3

1.
0
5
(1
.0
4
–1
.0
7)

5.
4
×
10

−
11

0
.7

0
.4
3

rs
12
4
8
12
8
6

20
52

28
76

10
T

G
20

q1
3.
2

0
.3
1

1.
0
5
(1
.0
1–
1.
0
8
)

3.
5
×
10

−
3

0
.2
4

1.
0
4
(1
.0
3–
1.
0
6
)

1.
0
×
10

−
7

0
.2
6

1.
0
4
(1
.0
3–
1.
0
6
)

1.
1×

10
−
9

0
0
.5
2

rs
35

4
18
11
1

21
4
78

56
6
70

A
G

21
q2

2.
3

0
.2
0

1.
0
7
(1
.0
4
–1
.1
1)

3.
2
×
10

−
5

0
.0
7

1.
0
6
(1
.0
4
–1
.0
9
)

6
.1
×
10

−
7

0
.1
2

1.
0
7
(1
.0
5–
1.
0
9
)

1.
1×

10
−
10

0
0
.9
7

rs
34

33
11
22

22
19
76

24
28

C
T
T

C
22

q1
1.
21

0
.5
6

0
.9
4
(0

.9
1–
0
.9
7)

3.
7
×
10

−
5

0
.4
6

0
.9
7
(0

.9
6
–0

.9
8
)

7.
2
×
10

−
6

0
.4
7

0
.9
7
(0

.9
6
–0

.9
8
)

1.
0
×
10

−
8

2.
2

0
.4
1

BP
ba
se

po
si
tio

n,
N
C
BI

bu
ild

37
,E

A
F
ef
fe
ct

al
le
le

fr
eq

ue
nc
y,

O
R
od

ds
ra
tio

,C
I
co
nfi

de
nc
e
in
te
rv
al
.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15046-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1217 | https://doi.org/10.1038/s41467-020-15046-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Associations of previously reported risk variants in Asians. Of
the 183 risk variants of breast cancer reported previously, 11 and
172 were originally discovered in studies conducted in Asians and
European-ancestry populations, respectively. We were able to
investigate 166 variants because 15 variants originally discovered
in European populations were (nearly) monomorphic in Asians
and two in high LD with rs2747652 (ESR1, 6q25.1) were removed.
Of the 166 SNPs, 78 were found to be associated with breast
cancer risk at P < 0.05, while 131 showed associations that were
consistent in direction with those originally reported (Supple-
mentary Data 5). Associations for five variants achieved genome-
wide significance (P < 5 × 10−8, Asians), with two at 6q25.1 (ESR1
and TAB2), and one each at 15q26.1 (PRC1), 16q12.1 (TOX3),
and 21q22.12 (LINC00160). Additionally, borderline genome-
wide significant associations were found in seven loci including
2q14.1, 2q35, 3p24.1, 5q33.3, 9q33.3, 12p13.1 and 17q22 (P < 1 ×
10−6 in Asians).

Independent association signals within known susceptibility
loci. We searched extensively for additional independent asso-
ciations in Asians by conducting conditional analysis for variants
located 500 kb of the 166 previously reported SNPs. A total of 820
SNPs from 21 loci were associated with breast cancer risk after
conditioning on known risk variants in Asians (Supplementary
Data 6). Eight loci, 5q11.2, 6q25.1, 9p21.3, 10q21.2, 12q24.21,
16q12.1, 18q12.3 and 21q21.1, may harbor independent associa-
tion signals with genome-wide significance (Table 3, conditional
P < 5 × 10−8 in Asians). Five of these eight loci, including 5q11.2,
9p21.3, 12q24.21, 18q12.3, and 21q21.1, have not previously been
linked to breast cancer risk in Asian populations. Significant
heterogeneity between Asian and European-ancestry populations

was observed (Pheterogeneity < 0.05) at 5q11.2, 9p21.3, 12q24.21,
16q12.1, and 21q21.1, and the strength of the association was
stronger in Asian than European-ancestry women.

Polygenic risk scores. We evaluated the association between PRS
and breast cancer risk among SWHS participants, a subset of
samples included in the Asia Breast Cancer Consortium. The PRS
was generated using the weights (βs) obtained from Asian-specific
meta-analysis. Women with a high estimated PRS had a 3.6-fold
higher risk of breast cancer compared to those who had a low
PRS (highest decile vs. lowest decile, Supplementary Table 10).

Discussion
This large-scale meta-analysis, including approximately 310,000
women of Asian and European ancestry and represents the largest
GWAS to identify genetic determinants for breast cancer. In
addition to identifying 31 potential novel risk loci for breast
cancer (Table 1, Supplementary Table 8, and Statistical Methods),
we replicated in Asian women 78 of the GWAS-identified risk
variants for breast cancer. Since the risk variants initially reported
in European populations might not be the lead SNPs in Asians,
we performed further analyses to show that 21 known suscept-
ibility loci may harbor additional independent signals, of which
16 showed at least one stronger association than the originally
reported risk SNP. Our study has generated substantial novel
information to improve the understanding of breast cancer
genetics and etiology and provides clues for future studies to
functionally characterize the risk variants and candidate genes
identified in our study.

Similar to other GWAS, nearly all of the newly identified risk
variants mapped to intergenic regions or introns of genes. One

Table 2 Association analysis of 28 newly associated SNPs by estrogen receptor status.

SNP Chr BP Effect Other ER positive ER negative I2, % Phet

EAF OR (95% CI) P EAF OR (95% CI) P

rs72906468 1 17772093 A T 0.76 1.03 (1.02–1.05) 6.9 × 10−5 0.75 1.04 (1.01–1.06) 2.0 × 10−3 0 0.75
rs3790585 1 46023356 A T 0.81 1.05 (1.03–1.06) 7.3 × 10−7 0.80 1.03 (1.00–1.05) 0.05 28.8 0.24
rs2758598 1 156194339 A G 0.32 1.03 (1.02–1.05) 3.6 × 10−5 0.31 1.02 (1.00–1.04) 0.10 0 0.37
rs6756513 2 70172587 A G 0.29 0.97 (0.95–0.98) 6.9 × 10−6 0.29 0.98 (0.96–1.00) 0.12 33.4 0.22
rs73006998 3 150464271 A G 0.20 0.91 (0.88–0.93) 3.6 × 10−10 0.24 0.96 (0.92–1.00) 0.07 81.5 0.02
rs11281251 3 156519412 T TTGTGAC 0.37 0.96 (0.95–0.98) 1.7 × 10−7 0.36 0.96 (0.94––0.98) 3.9 × 10−4 24.5 0.24
rs11944638 4 48227719 T C 0.88 1.07 (1.04–1.09) 8.5 × 10−7 0.86 1.03 (1.00–1.07) 0.07 45.8 0.17
rs11947923 4 53911337 T C 0.36 0.97 (0.95–0.98) 2.4 × 10−6 0.36 0.96 (0.94–0.98) 4.5 × 10−4 0 0.79
rs6555134 5 2776483 T C 0.55 0.96 (0.95–0.98) 1.4 × 10−7 0.53 0.97 (0.95–0.99) 8.4 × 10−3 0 0.45
rs7765429 6 21904169 T C 0.49 0.96 (0.94–0.97) 8.8 × 10−10 0.50 1.00 (0.98–1.02) 0.79 90.1 0.002
rs7768862 6 85088846 A T 0.48 0.97 (0.96–0.98) 1.6 × 10−5 0.47 0.97 (0.95–0.99) 2.6 × 10−3 0 0.92
rs6940159 6 170332621 T C 0.42 0.97 (0.95–0.98) 1.8 × 10−6 0.44 0.97 (0.95–1.00) 0.02 0 0.49
rs144145984 8 23644003 CT C 0.55 0.96 (0.95–0.97) 1.3 × 10−8 0.54 1.00 (0.97–1.02) 0.65 86.9 0.006
rs2849506 8 101329134 C G 0.41 0.97 (0.95–0.98) 1.5 × 10−6 0.42 0.99 (0.97–1.01) 0.15 55.5 0.13
rs142360995 8 118205719 A G 0.20 1.04 (1.02–1.06) 4.0 × 10−6 0.19 1.04 (1.01–1.06) 7.4 × 10−3 0 0.72
rs10820600 9 106856692 T C 0.48 0.97 (0.96–0.99) 2.9 × 10−4 0.49 0.96 (0.94–0.98) 4.5 × 10−4 0 0.36
rs541079479 10 22861533 CA C 0.40 1.04 (1.02–1.05) 1.0 × 10−6 0.38 1.03 (1.00–1.05) 0.02 0 0.45
rs2901157 10 119262365 A G 0.86 1.05 (1.02–1.07) 2.8 × 10−5 0.85 1.05 (1.02–1.08) 1.5 × 10−3 0 0.81
rs10838267 11 44368892 A G 0.52 1.03 (1.02–1.05) 9.4 × 10−6 0.51 1.04 (1.01–1.06) 7.9 × 10−4 0 0.75
rs78588049 12 69180907 A ATTTT 0.19 0.95 (0.93–0.97) 3.1 × 10−9 0.19 0.98 (0.96–1.01) 0.21 79.7 0.03
rs855596 12 103045519 T C 0.04 0.92 (0.88–0.95) 3.9 × 10−6 0.05 0.93 (0.88–0.98) 5.4 × 10−3 0 0.74
rs9316500 13 51094114 T G 0.65 1.03 (1.02–1.05) 2.4 × 10−5 0.63 1.02 (1.00–1.04) 0.11 8.3 0.30
rs75004998 14 77517786 A G 0.36 0.97 (0.96–0.98) 2.2 × 10−5 0.37 0.97 (0.95–0.99) 3.2 × 10−3 0 0.96
rs8027365 15 75808740 A C 0.71 1.04 (1.02–1.05) 8.0 × 10−7 0.71 1.05 (1.03–1.08) 9.9 × 10−6 0 0.38
rs76535198 16 71892498 A C 0.83 1.05 (1.03–1.07) 3.1 × 10−6 0.83 1.06 (1.03–1.09) 8.3 × 10−5 0 0.55
rs12481286 20 52287610 T G 0.25 1.06 (1.04–1.07) 6.9 × 10−11 0.26 1.02 (0.99–1.04) 0.20 85.1 0.01
rs35418111 21 47856670 A G 0.11 1.07 (1.04–1.09) 6.8 × 10−8 0.12 1.05 (1.02–1.09) 3.6 × 10−3 0 0.48
rs34331122 22 19762428 CTT C 0.47 0.96 (0.95–0.97) 1.7 × 10−8 0.48 0.98 (0.96–1.00) 0.06 59.2 0.12

BP base position, NCBI build 37, EAF effect allele frequency, OR odds ratio, CI confidence interval.
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exception was rs10820600, which is located in the 5′-UTR region
of the SMC2 gene. SMC2 encodes the structural maintenance of
chromosomes protein-2, an essential subunit of the condensin
complex I and II. The protein is critically involved in chromo-
some condensation and segregation during cell cycles17. Emer-
ging evidence shows that SMC2 mutations and dysregulated
expression are associated with multiple cancers18.

Of the thirteen lead risk variants located in the introns of
genes, six showed strong evidence of cis-regulation for seven
genes nearby, including YBEY, SNUPN, MAN2C1, LINC00886,
TBX1, SEMA4A, and MUTYH. For example, the locus at 21q22.3
(rs35418111) showed compelling evidence of influencing
expression of YBEY, a gene that encodes a highly conserved
metalloprotein. Our gene-based analysis indicated a potential
oncogenic role of YBEY in breast cancer development. Although
the function of YBEY has not been fully elucidated, dysregulation
of its expressions caused by copy number variation has been
found in familial and early-onset breast cancer19, as well as col-
orectal cancer20. Further, we showed that MAN2C1 may play a
protective role against breast carcinogenesis in the gene-based
analysis. However, another study found that MAN2C1 promotes
cancer growth via a negative regulation of phosphatase and tensin
homolog (PTEN) function in prostate and breast cancer cell
lines21. These results suggested that MAN2C1 may have distinct
functional impact on cancer initiation compared to that on tumor
progression. Few studies have investigated the mechanistic roles
of LINC00886, SNUPN and SEMA4A in cancer initiation.
Germline mutations in SEMA4A have been linked to the pre-
disposition of familial colorectal cancer type X22. Our study
provides the first evidence linking these two genes to breast
cancer susceptibility.

Potential candidate genes were also revealed by the newly
associated variants lying in the intergenic regions between coding
genes. LOXL2 and STC1 were pinpointed as cis targets of
rs144145984 at 8p21.2. LOXL2 is a member of the lysyl oxidase
family of amine oxidases and STC1 belongs to the glycoprotein
hormones family. Research regarding the functions of LOXL2 and
STC1 in cancer development is limited. However, pre-clinical
studies have implicated LOXL2 and STC1 in the progression of
breast cancer23,24. Inhibiting LOXL2 activity shows a 55–75%
decrease in primary tumor volume in female athymic nude mice,
which were implanted with MDA-MB-231 human breast cancer
cells23. The reduction in tumor burden was suspected to be
mediated by the inhibition of angiogenesis. A recent study sug-
gested the role of STC1 played in the breast tumorigenesis could
be subtype-dependent24. A cancer promoting function was found
in murine mammary tumor cells and human triple negative
breast cancer lines (MDA-MB-231), while an opposite function

was shown in luminal breast cancer lines (ER+/PR+, T47D
cells).

The pleiotropy of rs855596 at 12q23.2 provided a plausible
mechanistic link for the observed genetic association with breast
cancer risk. The minor (T) allele of rs855596 is associated with
decreased breast cancer risk and is linked to the minor allele G of
the nearby rs703556 (r2= 0.94 in EA and 0.43 in East Asians).
The G allele of rs703556 is associated with lower mammographic
dense area in women25. Mammographic density, an established
risk factor for breast cancer26, is a measure based on the radio-
graphic appearance of the breast by mammography. Several loci
were related to other cancers or benign tumors. SNPs in 22q11.21,
1q22 and 4q12 were found to be associated with risk of prostate
cancer27, testicular germ cell tumor28 and leiomyoma, respec-
tively29. We hypothesize potential underlying mechanisms via
hormone metabolism for these loci. Variants at 10p12.2
(PIP4K2A) indicated an association with risk of acute lympho-
blastic leukemia30 and 6p22.3 (CASC15) with endometrial can-
cer31, lung cancer32, and neuroblastoma33. These regions
implicated in genetic susceptibility across different types of can-
cers may serve as prioritized target of interest for future fine-
mapping studies. For some of the phenotypes like blood cell
counts and sodium levels, we currently lack the proper knowledge
to decipher the likely mechanisms that link them to breast cancer
development.

Notable racial heterogeneity was found for the loci at 1q22
(rs2758598) and 8q24.11 (rs142360995), which may reflect the
differential regional LD structures and allele frequency between
the two populations at these loci. The effect sizes in Asians are
larger than those in European populations for both SNPs, over
four times for rs142360995 and two times for rs2758598. The
association at 3q25.1 (rs73006998) was dominant by estimates in
Asians (ABCC: 2.4 × 10−9; in BCAC, P= 5.8 × 10−3), although
no heterogeneity was observed. Previously, the same locus was
reported to be associated with hormonal receptor-positive breast
cancer, with a borderline genome-wide significance in a Japanese
population (rs6788895, LD r2= 0.76 in East Asians)34. We found
significant heterogeneity by ER status for this locus and the
association was primarily driven by ER-positive cancer. Racial
heterogeneity was also observed for many known risk variants
initially reported in European populations. It may be attributable
to multiple factors including the Winner’s curse35, population-
specific LD structure, and false positives in the original GWAS.

Sixty-seven of the 155 index SNPs originally reported in
European-ancestry women were replicated in women of Asian
descent at P < 0.05. For those not replicated in our analysis,
possible explanations include differences in local LD structure
and genetic architecture for the disease between these two

Table 3 Eight novel breast cancer risk-associated SNPs located within previously known loci in Asians: a conditional analysis.

SNP Chr BP Effect Other Reported Locus Nearest gene EAF OR (95% CI) P I2, % Phet
rs112776581 5 56054333 T TA rs62355902 5q11.2 LOC105378979 0.11 1.21 (1.15–1.27) 3.5 × 10−14 0 0.70
rs2941741 6 152008982 A G rs9397437,

rs2747652
6q25.1 ESR1 0.13 1.13 (1.08–1.17) 8.2 × 10−10 0 0.62

rs974336 9 22006348 T C rs1011970 9p21.3 CDKN2B 0.22 1.10 (1.06–1.13) 5.9 × 10−9 24.6 0.22
rs78053936 10 64300331 A C rs10822013,

rs10995201
10q21.2 ZNF365 0.80 1.11 (1.07–1.15) 1.7 × 10−8 20.4 0.27

rs61929345 12 116001403 T G rs1292011 12q24.21 LOC105370003 0.16 1.11 (1.07–1.15) 4.9 × 10−8 8.8 0.36
rs3803661 16 52586477 A G rs4784227 16q12.1 CASC16 0.63 1.08 (1.05–1.12) 3.7 × 10−8 0 0.61
rs12455117 18 42884026 A T rs6507583 18q12.3 SLC14A2 0.68 1.09 (1.06–1.12) 1.7 × 10−8 0 0.74
rs2823126 21 16561704 A G rs2823093 21q21.1 NRIP1 0.28 0.90 (0.88–0.93) 1.1 × 10−10 39.5 0.12

BP base position, NCBI build 37, EAF effect allele frequency, OR odds ratio, CI confidence interval.
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populations and a relatively small sample size of Asian studies. In
summary, in this large GWAS including 147,183 breast cancer
cases and 130,749 unaffected controls, we identified 31 poten-
tial novel breast cancer susceptibility loci by meta-analyzing data
of two large consortia conducted in Asian and European women.
Using an independent set of 16,787 cases and 16,680 controls of
Asian ancestry, we evaluated 22 lead variants and found that all
variants showed the same direction of the association, although
only ten of them were statistically significant. As many of the
associations were driven by GWAS of European women and the
sample size of our replication set was small, the low replication
rate is not unexpected. Nevertheless, our study reveals many
novel loci and potential targeted genes that may influence breast
cancer susceptibility, although the possibility of false-positives for
some loci cannot be completely ruled out. Future investigations
are warranted to replicate our findings.

Methods
Study population. The overall cross-ancestry meta-analysis was conducted using
data from two large consortia, the ABCC and BCAC. Detailed descriptions of
participating studies are included in Supplementary Note 1. Briefly, in the ABCC,
genome-wide SNP data were generated from 24,206 breast cancer cases and 24,775
unaffected controls recruited from studies conducted in mainland China, South
Korea, and Japan (Supplementary Table 1). The BCAC-Asian dataset was com-
posed of COGS (N= 10,716) and OncoArray projects (N= 14,337); twelve studies
contributed samples to either or both projects. The BCAC-European dataset
consisted of three sub-sets, GWAS (N= 32,498), COGS (N= 89,677), and
OncoArray projects (N= 106,776)8. A total of 80,428 and 26,948 cases had ER-
positive and -negative breast cancer, respectively.

Included as a replication set were an additional 10,829 cases and 10,996 controls
of Asian ancestry, recruited by eight studies from South Korea, Japan, Hong Kong,
and Taiwan (Supplementary Note 1). There was no overlap in samples from
participating studies.

Genotyping and quality control. All of the genotyping and quality control pro-
cedures for GWAS, except for the expanded MEGAEX chip, have been described
elsewhere3,4,6–12,34,36,37 (Supplementary Table 1). The MEGAEX chip contains
approximately 2.04 million variants with an excellent genomic coverage of com-
mon variants (a minor allele frequency of 0.01 or higher) across multi-racial
populations. We added to the MEGAEX chip ~80k variants selected from our
GWAS of breast and colorectal cancers and exome sequencing data for breast
cancer cases in Asian-ancestry populations. In total, 2.1 million variants were
included on this array. Quality control (QC) procedure include: samples were
excluded if they (i) had genotyping call rate <95%; (ii) were male based on genotype
data; (ii) had a close relationship with a Pi-HAT estimate >0.25; (iii) were het-
erozygosity outliers; (iv) were ancestry outliers. SNPs were excluded if they had (i)
a call rate <95%; (ii) no clear genotyping clusters; (iii) a minor allele frequency
<0.001; (iv) a Hardy-Weinberg equilibrium test of P < 1 × 10−6; (v) genotyping
concordance < 95% among the duplicated QC samples3,4,6–12,34,36,37. All of the
datasets were imputed using the 1000 Genomes Project Phase 3 mixed populations
as the reference panel, except for the BioBank Japan (BBJ1) study, in which the
HapMap Phase II (release 22) was used. Only SNPs with an imputation R2 > 0.3
were included in the further analyses.

Genotyping of the replication set of cases and controls was completed using the
iPLEX Sequenom MassArray platform (Agena Bioscience Inc., San Diego,
California, USA). One negative control (water), two blinded duplicates and two
samples from the HapMap project were included as QC samples in each 96-well
plate. Samples or SNPs that had a genotyping call rate of <95% were excluded. We
also excluded SNPs that had a concordance with the QC samples of <95% or an
unclear genotype call. If the assay could not be designed for the lead SNP, a
surrogate SNP which is in LD with the lead SNP with r2 > 0.8 in Asians (1000
Genome) was selected. Of the 28 newly identified risk variants, 22 were successfully
genotyped by Sequenom and evaluated in the association analysis, while six failed
in the probe designing stage. Additional 11,642 independent samples from
MYBRCA and SGBCC studies (Supplementary Note 1) were also included in the
replication stage in evaluation of the 22 newly identified risk variants.

Statistical methods. Logistic regression analysis was performed within each study
of Asian women to obtain a per-allele odds ratio (OR) for each SNP using
PLINK2.038. Principal components analyses were conducted within each GWAS
dataset. Age and the top two PCs were included as covariates for in all regression
models. Study (COGS) or country/region (OncoArray) was also included in the
analyses of BCAC data8. The number of PCs to be included in the regression was
determined by evaluation of Scree plot. Sensitivity analyses were conducted to
include top 10 PCs, which showed very similar ORs as those derived from analyses
adjusted for two PCs (Supplementary Table 11). A meta-analysis was performed

using METAL39 with a fixed-effects model to generate Asian-specific and cross-
ancestry estimates. Heterogeneity was assessed by the Cochran’s Q statistic and I2.
For the cross-ancestry meta-analysis, we were mainly interested in evaluating
variants that were associated with breast cancer risk at P < 0.01 in the Asian-specific
analysis (nsnp= 244,746). However, three additional lead SNPs that did not meet
this criterion can also be found in Supplementary Table 8. One representative SNP
with the lowest p value was reported as the index SNP for each of the newly
identified loci after variant pruning (LD r2 < 0.1). The significant locus is con-
sidered novel if it is located 500 kb away from the 183 known risk loci for breast
cancer The LD with known risk SNPs was also checked to verify the independence.
Among the newly associated loci, we further applied the method implemented in
MR-MEGA40 to account for the population heterogeneity for two loci showing
significant heterogeneity in the cross-ancestry fixed-effect meta-analysis. The
results were shown in the Supplementary Table 9. The association was slightly
more significant than the original fixed-effect meta-analysis for these two loci.
Inflation of the test statistics (λ) was estimated by dividing the 50th percentile of
the test statistic by 0.455 (the 50th percentile for a χ2 distribution on 1 degree of
freedom)41. We standardized the inflation statistic to account for the large size of
our study by calculating λ1000 (λ for an equivalent study with 1000 cases and 1000
controls)8. For the replication stage, analyses were conducted with an adjustment
for age and study.

For each of the Asian studies with GWAS data (Supplementary Table 1), we
searched for independent secondary association signals within a flanking +/− 500
kb region of the lead variant in each of the newly identified breast cancer risk
loci using conditional analysis, with an adjustment for the newly identified lead
risk SNPs when individual-level data was available log P

1�P

� � ¼ β0 þ β1SNPiþ
�

β2SNPnew index þ βCOVAR�. We used GCTA software (option -COJO)42 to
perform the conditional analysis for the BBJ1, Seoul Breast Cancer Study (SeBCS),
and BCAC European GWAS, for which only summary statistics data were
available. MEGA array genotyping data was used as reference panel for LD
estimation. The results of individual study were combined by a fixed-effect meta-
analysis using METAL. SNPs showing an association with breast cancer risk at
Pconditional < 1 × 10−4 were considered independent secondary association signals.
The analysis was also performed within known susceptibility loci. All statistical
tests were two-sided.

Statistical power. For the cross-ancestry meta-analysis (sample size shown in the
Supplementary Table 1, alpha set to 5.0 × 10−8), we had >80% power to detect the
association between SNP and breast cancer risk with an OR of >1.06, 1.07, and 1.11
and EAF of 0.10 in the analysis of ER-positive, ER-negative cancer and all cancer
combined, respectively (Supplementary Table 18).

Functional annotation and enrichment analysis. Novel risk loci were defined as
those ±500 Kb away from the lead risk variant reported by previous GWAS con-
ducted in populations of Asian or European-ancestry for breast cancer. The lead
risk SNPs newly identified in our study were defined as the variant showing an
association with breast cancer risk with the lowest P-value in a given locus in the
meta-analysis. Functional annotations of the lead SNPs and their correlated var-
iants (r2 > 0.8 in 1000 Genomes Project, East Asian or European populations) were
performed using HaploReg v4.143. The functional annotation of chromatin states
from chromHMM, DNase I hypersensitive and histone modifications such as
H3K4, H3K9 and H3K27, were based on the epigenetic data in human breast
mammary epithelial cells (HMEC), MCF-7 cells, and other cell lines from the
Encyclopedia of DNA Elements (ENCODE) Project and Roadmap Epigenetics
Project. We further applied GARFIELD44 to assess functional enrichment for all
risk loci identified to date for breast cancer risk and those newly reported in the
current study. According to GARFIELD, the significance level for the enrichment
analysis was set to 9.7 × 10−5. Known risk loci (±500 kb) were removed when
evaluating functional enrichment for the newly identified loci.

Expression quantitative loci (eQTL) analysis. To identify target genes, we per-
formed eQTL analysis utilized four independent sets of gene expression data
derived from normal breast (N= 85, GTEx, women of European ancestry), breast
tumor (women of European ancestry, TCGA, N= 672; METABRIC, N= 1904)
and adjacent normal tissues (women of Asian ancestry, SBCGS, N= 151). We
focused on cis-eQTL analyses for genes residing ±500 Kb flanking each newly
associated leading SNP. The details of data processing were described in Supple-
mentary Note 2.

A linear regression model was used to perform eQTL analyses to estimate the
additive effect for each leading SNP identified on gene expression levels. We
additionally adjusted for somatic copy number alteration and methylation levels in
the regression model for the analysis of TCGA data. We only adjusted for somatic
copy number alteration in the analysis for the METABRIC set.

Gene-based analysis. We recently conducted a transcriptome wide association
study (TWAS) to investigate associations of genetically predicted gene expression
with the risk of breast cancer45. We utilized the same approach to examine the
associations with breast cancer risk of genes located within flanking 500 kb of each
newly associated leading SNP. The breast-specific prediction model was generated
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using the elastic net method as implemented in the glmnet R package (α= 0.5),
with tenfold cross-validation45. To further increase statistical power, we also
utilized 6,124 samples across 39 tissue types from 369 unique European
individuals who had genome-wide genotype data available to build cross-tissue
models46,47. The expression of a gene for individual i in tissue t, Yi;t , is modeled as
Yi;t ¼ YCT

i þ Z0
iβþ εi;t , where YCT

i represents the cross-tissue component of
expression levels for a given gene. The mixed effect model parameters were esti-
mated using the lme4 package in R. The predicted gene expressions bYi in the

breast-specific models and dYCT
i in the cross-tissue models then were evaluated for

their associations with breast cancer risk in the ABCC and BCAC, using methods
implemented in MetaXcan48.

Polygenic risk score. We used the 11 risk SNPs originally reported in Asian
populations, 28 newly identified SNPs from the current analysis (Table 1), and 28
risk SNPs originally identified in European populations that were replicated in the
Asian populations in this current study (Supplementary Data 5, P < 0.05/166) to
generate polygenetic risk score (PRS). PRS were calculated as PRS ¼ P

βiSNPi .
The weights, βs, used to generate the score were obtained from Asian-specific
meta-analysis. The association between the score and breast cancer risk was tested
in the samples from Shanghai Women’s Health Study (SWHS, N total= 2427, N
case= 368, N control= 2059), which were also contributed to the Asian MEGA
project. The PRS was tested in both continuous (1 SD change) and categorical
forms (deciles in controls). The area under the curve was also calculated to show its
discriminatory ability. Overfitting is less a concern as SWHS participants only
accounted for a very small proportion in the Asian-specific meta-analysis (~8%).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Access to the ABCC data could be requested by submission of an inquiry to Dr. Wei
Zheng (wei.zheng@vanderbilt.edu). Request of access to the BCAC data could be
submitted directly to BCAC (http://bcac.ccge.medschl.cam.ac.uk/). Access to other data:
GTEx: https://gtexportal.org/home/datasets; TCGA - https://portal.gdc.cancer.gov/;
METABRIC: https://www.ebi.ac.uk/ega/studies/EGAS00000000083.

Code availability
Access to the custom code could be requested by submission of an inquiry to Dr. Wei
Zheng (wei.zheng@vanderbilt.edu).
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