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Abstract

We report simulations of a spherical Janus particle undergoing exothermic surface reactions

around one pole only. Our model excludes self-phoretic transport by design. Nevertheless, net

motion occurs from direct momentum transfer between solvent and colloid, with speed scaling

as the square root of the energy released during the reaction. We find that such propulsion

is dominated by the system’s short-time response, when neither the time dependence of the flow

around the colloid nor the solvent compressibility can be ignored. Our simulations agree reasonably

well with previous experiments.

Self-propelled, or active, colloids display novel phenomena such as non-monotonic density-

dependent viscosity and swarming [1, 2]. The field has benefitted from the invention of syn-

thetic micro-swimmers [3]. Golestanian et al. suggested that asymmetric chemical reactions

on the surface of a sphere could generate a corresponding asymmetric distribution of molecu-

lar moities; the resulting concentration gradient should propel the particle by diffusiophoresis

[4]. Janus polystyrene colloids half coated with platinum [5] were thought to offer a paradig-

matic example; however, salt and pH dependence pointed instead to self-electrophoresis

[6–8]. Self-thermophoretic propulsion is considered unlikely (but see [9]); however, concen-

tration gradients around an asymmetrically laser-heated particle in a near-critical binary

mixture can propel micro-swimmers [10]. The idea of non-phoretic propulsion by osmotic

pressure gradients is less accepted [11, 12], but bubble-driven propulsion of macroscopic

swimmers [13, 14] is well established, and surface flows may propel emulsion droplets [15].

At a more microscopic level, Felderhof [16] has considered the propulsion of a Janus particle

due to the flow field caused by a sudden localized volume expansion in the fluid.

Strikingly, many phoretic micro-swimmers are propelled by decomposing high specific

impulse rocket monopropellants, principally hydrogen peroxide and hydrazine [17]. Inter-

estingly, the ‘detonation’ of energetic molecules on a particle surface generates an impulse

directly, but this has not yet been explored as a potential propulsive mechanism.

We demonstrate the viability of such ‘rocket propulsion’ by mesoscopic simulations of

an exothermic surface reaction that transfers momentum between solvent and colloid (while

conserving momentum), which causes a net displacement of the colloid. A finite reaction

rate then results in a relative motion of the colloid with respect to the solvent, at a speed

we estimate to be non-negligible compared to self-phoretic propulsion using H2O2 as fuel.
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Net colloidal propulsion that is not driven by the formation of a persistent (micro)bubble

is hydrodynamically unobvious. Intuitively, since the system momentum is conserved, impul-

sive transfer to the colloid is almost instantly cancelled by a counter-flow, dissipating energy

but giving no directional movement. But this neglects the finite time ∼ R2/ν for transverse

momentum to diffuse away from a colloid of radius R in a fluid of kinematic viscosity ν.

Moreover, a third of the momentum transferred to a compressible fluid is transported away

as sound [18] and so cannot contribute to the local, retarding flow. Therefore, the effect

of an impulsive surface force is neither cancelled immediately nor locally by hydrodynamic

drag forces.

To model impulsive transport, we use dissipative particle dynamics (DPD) [19, 20], which

conserves momentum and thus provides a realistic description of compressible hydrodynam-

ics. The colloid-fluid interaction has been chosen to give negligible excess enthalpy or density

of the fluid particles near the colloid. Hence, by design, self-phoretic transport should be

negligible. We allow exothermic reactions at the colloid-fluid interface, resulting in a local

pressure spike at the colloid’s surface.

The force on DPD fluid particle i is given by fi =
∑

j 6=i (FC
ij + FD

ij + FR
ij ), where FC,D,R

are, respectively, conservative, dissipative and random pair forces with particle j. For

convenience, we assume that the potential energy of interaction between two fluid parti-

cles is given by a soft quadratic effective potential, resulting in a conservative pair force

FC
ij = α(1 − rij/rc)r̂ij where rij denotes the distance |ri − rj| and r̂ij = (ri − rj)/rij is

the corresponding unit vector. The constant α sets the repulsion strength and mimics the

compressibility of water [20]. The dissipative and random forces connect via fluctuation-

dissipation relations [21]: FD
ij = −γω(rij)(vij · r̂ij)r̂ij and FR

ij =
√

2γkTω(rij)
dWij

dt
r̂ij, where

vij = (vi − vj) is the relative velocity, γ is the friction coefficient controlling energy dissipa-

tion into the fluid, and Wij is a Wiener process:
∫ ∆t

0
dWij =

√
∆tζij, where ζij is a standard

Gaussian random number. The weight function ω(r) takes the form ω(rij) = (1− rij/rc)2.

Table I summarises our units and parameters. A few comments are in order. Our DPD

particle has massmf corresponding to three average solvent molecules. As we aim to describe

a typical 10 wt.% H2O2 solution used in experiments, the average mass of a DPD particle

is 59.4 (in atomic units). To reproduce the mass density of this solution, 1040 kg m−3 [22],

we use a DPD density of ρr3
c = 3.0. To reproduce the compressibility of water at room

temperature, α = 25 and γ = 4.5 [20]. Using [20], we estimate a shear viscosity of η = 0.96
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TABLE I. Simulation units, parameters and time scales

Quantity DPD units Physical units

Mass Fluid particle mass mf = 1 9.76× 10−26 kg

Length Cut off distance rc = 1 6.56 Å

Energy Thermal energy ε = kBT = 1 4.11× 10−21 J

Speed (kBT/mf )0.5 = 1 205.2 m s−1

Time τ = rc(kBT/mf )−0.5 = 1 3.2 ps

Viscosity η0 = (ε/r3
c )τ = 1 0.047 mPa s

Parameter Value

ρ, α, γ 3.0, 25.0, 4.5

Time scale Value

R(= 1.36)/cs 0.35a

τS = m/λ 1.2

R(= 1.36)2/ν 6.4

Dimensionless speed propertiesb Value

Ma 10−3 − 10−2 Mach number

Re ∼ 0.5 Reynolds number

Pe ∼ 0.5 Péclet number

a Sound speed cs =
√

dp/dρ ≈ 4 from the equation of state [20].
b The fluid speed properties are for the calculated range of colloid sizes and resulting speeds in this work.

in DPD units, corresponding to 4.7× 10−5 Pa s, about 5% that of water; we correct for this

when comparing with experiments. The fluid equations of motion were integrated using the

modified velocity-Verlet algorithm [20] with a reduced time step of 5× 10−3.

We model the Janus colloid using a dense spherical layer of ‘frozen’ DPD particles, Fig. 1a.

Its radius R (= 2.3 ≡ 1.5 nm unless otherwise stated) is defined as the distance between the

center of the colloid and the centers of the surface particles. Our surface-particle density

is high enough to suppress penetration of fluid particles during the simulation. For surface

densities ρs & 25, the speed of the reaction-driven colloid was insensitive to ρs. With enough

fluid particles around the colloid, it is sufficient not to include dissipative and random forces
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(a)
(b)

FIG. 1. (a) An active colloid densely covered with “frozen” DPD particles. A pair of solvent

particles (black) in the vicinity of the active zone (grey) experiences a change of their velocities

according to Eqn 1 at the time of reaction. (b) Average momentum transferred to the colloid from

the fluid as function of square root of energy release. The line is a linear fit.

between the ‘frozen’ surface particles and fluid particles, and take this interaction as repul-

sive only. This has minimal effect on the hydrodynamic boundary conditions (the colloid

surface is still fairly rough) and does not change our conclusions qualitatively. Since the

fluid particles interact with the colloid through conservative forces, the colloid acquires the

temperature of the DPD fluid in the absence of chemical reactions. We freeze out the ro-

tational motion of the colloid, which only acts on longer time scales. This is sufficient for

particle speeds of ∼ 1 µm s−1 in sub-micro (∼ 100 nm) to micro Janus particles as rotational

diffusion ∼ R−3. The total force on the center-of-mass of the colloid is the sum of all (repul-

sive) forces between the frozen particles on its surface and the neighbouring fluid particles.

The colloidal equations of motion were also solved using the velocity-Verlet algorithm.

We chose parameters appropriate for the reaction 2 H2O2 −−→ O2 +2 H2O on a Pt surface

with standard enthalpy ∆H−◦ = 1.017 eV ≡ 39.6kBT at room temperature. A reaction is

modelled by increasing the kinetic energy of a pair of neighboring DPD particles close to the

catalytic surface by ∆H−◦ , conserving momentum and leaving all species unchanged. For

simplicity but without loss of generality, we constrain the active zone for reactions to a small

area on the particle surface (grey patch in Fig. 1a). Reactions occur at a rate, or frequency,

f (in inverse time units).

The DPD thermostat acts as a local energy sink and reduces the efficiency of momentum
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transfer due to reaction. For comparison, in a simulation without frictional forces, the speed

of the colloid increased by a factor of ∼ 2.2. The thermostat simply suppresses heating of

the fluid and minimises possible temperature gradients along the colloidal surface (see also

Supplementary Information (SI)), which in any case is probably less important as (by design)

our excess surface enthalpy (and hence any thermophoresis) is minimized. Diffusiophoresis

can also be ignored because (again by design) the reactants and products are identical and

so have the same interaction with the colloidal surface.

The energy release during an individual hydrolysis reaction event at time t∗ is modelled

by instantaneously increasing the kinetic energy of a pair of neighboring DPD particles close

to the catalytic surface by ∆H−◦ , conserving momentum and leaving all species unchanged.

Energy and momentum conservation then leads to:

∆v2 + ∆v · (va − vb) =
Er

mf

. (1)

where va and vb are the particle velocities before the reaction, which are changed by ±∆v

due to energy injection. The direction of ∆v is randomly chosen from a uniform distribution,

with magnitude from Eqn 1.

We measure an average net momentum transfer to the colloid as a result of near-surface

reactions, 〈∆p〉, which scales as E0.5
r , Fig. 1b, as expected on dimensional grounds for ‘rocket

propulsion’. This scaling rules out self-thermophoresis, for which 〈∆p〉 ∼ Er, and self-

diffusiophoresis, for which 〈∆p〉 ∼ E0
r . Only a fraction of ∆H−◦ is converted into momentum

of the colloid. The precise fraction depends on details, including the model parameters that

determine friction. In addition, for real catalytic surfaces, part of the reaction energy will

go into the colloid - how much depends on the microscopic details of the reaction. and the

surface morphology. However, it is plausible to assume that a fair fraction of the reaction

energy (tens of percents) will power the momentum transfer between colloid and solvent.

Detailed atomistic simulations would be needed to arrive at a quantitative estimate.

The finite momentum transfer imparts a net transient velocity to the colloid along its

polar, or z, axis, which points directly away from the active patch. Figure 2 (black line)

shows the colloidal velocity as a function of t − t∗, the time interval since the moment (t∗)

when the reaction energy was released to the fluid. 〈vz〉 was obtained by averaging over 104

independent reaction events. For the reaction rate used (f = 0.04), the effects of successive

reaction events are uncorrelated.
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FIG. 2. A transient profile of the velocity (black curve) and the total displacement (blue curve)

of an active colloid (R = 1.36) as function of time (t) from the time of reaction (t∗). The velocity

decay and the total displacement after the reaction impulse are compared to Stokes friction (black

dashed curve) and its time integral (blue dashed curve).The red curve shows the result of low pass

filtering (LPF).

At short times, v(t − t∗) shows strong oscillations because the fluid is compressible.

However, these oscillations do not appear to contribute to the particle displacement, i.e. the

time integral of v. We average out such short-time non-monotonicity as well as the noise

using a low-pass filter to give 〈vz〉(LPF) (red line). Neither the raw nor the low-pass filtered

data follow the single exponential (black dashed) from an initial 〈v0〉 predicted by Stokes

Law:

〈vz〉 = 〈v0〉 exp

[
−
(
t− t∗

τS

)]
, (2)

where τS = m/λ ≈ 1.2 (with λ the Stokes drag coefficient). The actual decay of 〈vz〉 is

substantially faster, because our ‘detonation’ ansatz generates a force dipole rather than a

monopole in the fluid.

Integrating the average transient velocity gives the average displacement of the colloid

in response to a reaction event, 〈∆z〉, Fig. 2 (blue line). There is a rapid rise at short

times. One might expect that this rapid rise should saturate beyond t − t∗ . R2/ν ≈ 6.4.

This is indeed what we see for the displacement from integrating the smoothed data (red

dot-dashed). The rise in the actual displacement (blue) does slow down around this time,

but continues to rise to saturate at a value that is about a third higher. This may be related
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(a) (b)

FIG. 3. (a) 〈∆r2〉/2∆t as function of ∆t for various reaction freq““. (b) Drift velocity in z direction

as function of reaction frequency (linear fit shown as dashed line). The average velocity and the

standard deviations are extracted from total of 15,000 reactions. In both parts, Er = 39.6kBT .

to the ‘long-time tail’ in the velocity autocorrelation function, although our statistics are

not good enough to quantify this effect. (Note that the long-time tail in our system will not

follow t−3/2 scaling because, once again, the chemical reaction results in a force dipole.)

Figure 3 shows the accumulated mean-squared displacement, 〈∆r2〉, of the colloid due

to a succession of chemical reactions as a function of the elapsed time, ∆t, at different

reaction frequencies, f . For f = 0, 〈∆r2〉/2∆t approaches the Stokes-Einstein diffusivity at

long times (see SI). At all f > 0, however, 〈∆r2〉/2∆t no longer saturates with time, but

asymptotes to a linear regime, indicative of ballistic motion at a constant drift speed.

We verified that the reaction causes no drift in the x and y directions. This average

drift speed along the z, or polar, axis of the colloid, |vz|, increases linearly with f , Fig. 3b.

Thus, the effects of successive reaction events are simply additive, and |vz| can be related

to the average momentum transfer per reaction 〈∆p〉, the reaction frequency f and the

hydrodynamic friction coefficient λ of the colloid by

|vz| =
〈∆p〉
λ

f =

(
〈∆p〉
6πη

)
f

R
. (3)

With the assumption that Stokes friction determines the drag on the Janus particle and that

the reaction mechanism is size independent, we can directly map the reaction rates density

in our simulation (1024-1027 m−2 s−1) to the (lower) reaction rates density in experiments

(order of 1022 m−2 s−1).
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The second equality, which follows from λ = 6πηR, predicts |vz| ∝ R−1, which is indeed

the case to within the statistical error, for simulations over the range 1.36 ≤ R ≤ 4.6 at

constant f (where the ratio of the colloidal radius to the box diameter is kept approximately

constant) (see SI). The fact that |vz| ∝ R−1 implies that 〈∆p〉 (the average momentum

transferred to the colloid) is independent of the the colloidal radius. Moreover, λvz, the

average momentum transfer per unit time, is effectively independent of R over this range of

radii (see Fig. SI-4) .

We now compare the prediction of Eqn 3 to experiments [6] for a 2 µm-diameter Janus

particle half coated with Platinum in 10 wt.% aqueous H2O2 with a measured reaction rate of

8× 1010 s−1, or R = 1524 and f = 0.24 in DPD units (cf. Table I). The linear fits in Fig. 3b

(and Fig. SI-4) with the DPD viscosity η = 0.96 give, via Eqn 3, the momentum transfer per

reaction, 〈∆p〉 = 0.62, which, as we have seen, is nearly R-independent in our simulation

range. We extrapolate this to larger radii. Additionally, the reaction is confined to a small

area around one pole in our simulations, Fig. 1a. A hemispherical coating will reduce the

effective momentum transfer by a factor of two, giving 〈∆p〉 = 0.31 for Janus particles. We

therefore predict a drift speed of 2.64×10−6 in DPD units. This is an overestimate, because

the viscosity of our DPD fluid is 20 times lower than that of water, so that we finally predict

a drift speed of 1.32× 10−7 in DPD units, or ≈ 27 µm s−1.

This is more than twice the observed value of 11 ± 6 µm s−1 [6]. Nevertheless, the good

order of magnitude agreement suggests strongly that the impulsive propulsion mechanism

cannot be ruled out, especially because it is a direct manifestation of momentum conserva-

tion, and so cannot be ‘designed out’ in the way that we have removed diffusiophoresis and

thermophoresis in our simulations. That our prediction is off by a numerical factor simply

reflects the crudeness of our model. However, that we have an overestimate merits further

investigation.

Our ‘detonation ansatz’ assumes that the direction of the relative motion of reaction

products is randomly distributed relative to the particle surface. However, if we constrain

the initial motion of the reaction products to the xz or xy plane (cf. Fig. 1), the resulting

z-drift velocity is reduced, and may even change sign (see Fig. SI-5). Adsorption of reactant

molecules on the catalytic surface in different orientations may impose such constraints,

reducing the drift speed. Moreover, real coatings are rough, so that reactions may occur

in solvent trapped in pockets. Indeed, a thought experiment in which reaction occur en-
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tirely within a spherical pocket inside the colloid, the net average momentum transfer will be

zero, suggesting a possible test of our model. Some particle geometries (e.g. oblate ellipsoids

with a small, polar reactive patch) should favour the impulsive propulsion mechanisms over

diffusio/thermo-phoresis, making it possible to disentangle phoretic and impulsive propul-

sion.

Further experimental confrontation is suggested by the near-R-independence of 〈∆p〉. In

a system where the reaction on the colloid surface is diffusion controlled, we expect f ∝ R,

and Eqn 3 predicts that |vz| should be independent of radius. On the other hand, if the

reaction is rate limited, f ∝ R2, so that |vz| ∝ R. For our geometry with surface reactions,

Felderhof’s model [16] predicts that the colloidal displacement due to a persistent localised

volume change scales as 1/R2. However, in our model with a fixed number of particles,

we do not expect a persistent volume change. Experiments are needed to distinguish our

scenario from Felderhof’s [16].

In sum, we find that energy release during an exothermic reaction can propel a colloid due

to impulsive momentum transfer, which can never be ‘turned off’ in experimental systems

of this kind. Our model is undoubtedly over-simplified and there are many other factors

that may affect the efficiency of momentum transfer between solvent and colloid, such as

the details of catalytic decomposition and surface topography. Nevertheless, we find the

magnitude of speeds attainable means that this mechanism can seldom, if ever, be ignored as

one of the propulsion mechanisms of real-life micron-sized Janus particles in which phoretic

mechanisms also operate.
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