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Abstract 

 

Modelling and forecasting port throughput enables stakeholders to make efficient decisions 

ranging from management of port development, to infrastructure investments, operational 

restructuring and tariffs policy. Accurate forecasting of port throughput is also critical for 

long-term resource allocation and short-term strategic planning. In turn, efficient decision- 

making enhances the competitiveness of a port. However, in the era of big data we are faced 

with the enviable dilemma of having too much information. We pose the question: is more 

information always better for forecasting? We suggest that more information comes at the 

cost of more parameters of the forecasting model that need to be estimated. We compare 

multiple forecasting models of varying degrees of complexity and quantify the effect of the 

amount of data on model forecasting accuracy. Our methodology serves as a guideline for 

practitioners in this field. We also enjoin caution that even in the era of big data more 

information may not always be better. It would be advisable for analysts to weigh the costs 

of adding more data: the ultimate decision would depend on the problem, amount of data 

and the kind of models being used. 
 

Keywords: Australia port throughput, forecasting, big data, machine learning. 
 

1. Introduction 
 

Seaports are the main gateways for the flow of freight traded between countries. Reliable 

forecasts of port activity are highly desirable both at a strategic and operational level. 

Governments, planning agencies, regulators and port authorities use forecasts to develop 

efficient future strategies (national port policies, pursue free trade agreements, etc.), increase 

attractiveness of ports, outperform competition and decide on future investment plans. 

Terminal operators, transport companies (shipping, trucking, rail) and numerous port
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stakeholders (freight forwarders etc.) are also in need of reliable forecasts to guide future 

investments, and design and deploy strategies to increase their market share and 

profitability. 

 

Forecasting is a complex process aimed at predicting future behaviour through modelling 

past data. Naturally, the success of forecasting is highly dependent on: a) the characteristics 

of the specific system, b) the available data, and c) the models used. A variety of techniques 

have been applied to forecast port throughput and we briefly review these techniques in 

Section 2. In general terms, the majority of existing forecasting applications in port 

throughput employ univariate or multi-variate forecasting methods. 

 

In terms of data, univariate forecasting uses mainly port throughput data while multivariate 

models are usually enhanced with economic indicators (with gross domestic product being 

the dominant type of indicators used). In general, data availability is a major constraint of 

port throughput forecasting models since port activity data are considered commercial and 

kept confidential or simply not kept at all. However, this will change in the near future due 

to the overall trend towards “open data”, the expansion of the Internet of Things and the 

overall contemporary trend of capturing and storing every possible data available. 

 

We suggest that selection of appropriate data and models in forecasting ports throughput 

deserves great attention especially since relevant studies are quite limited. We challenge the 

logic “the more data the better” and aim to develop a framework enabling forecasters to 

make better decisions about what models to use. We shed light on the following questions: 

a) How many data points and how many time series or indicators are necessary to make 

good predictions? b) Is more information always better? More information comes at a cost 

since potentially more parameters encapsulating the interactions between multiple time 

series have to be estimated. We note however that merely the number of time points is not 

an adequate measure and the amount of data required to adequately learn a model is very 

model-, problem- and data-specific. 

 

We compare a suite of techniques to forecast Australian imports using openly available and 

commercial data. We investigate if more complex models incorporating commonly used 

socio-economic indicators such as gross domestic product (GDP) produce more accurate 

forecasts of Australian port imports. 

 

First, we suggest a computational framework and methodology to guide port throughput 

forecasting exercises. Second, we make recommendations on how to determine the best



 
performing forecasting methodology based on the amount of available data. Our results 

provide a guide to forecasters and challenge the logic “the more data the better the 

outcome”. 

 

The remainder of the paper proceeds as follows: Section 2 reviews the literature on 

forecasting port throughput. Section 3 describes the data and the applied methodology. 

Section 4 presents the results of the different forecasting models for Australian port imports 

and discusses the amount of data required by these methods. Finally Section 5 provides 

concluding remarks. 

 

2. Related Work 
 

Port throughput projection is an emerging discipline in maritime studies. A variety of 

methodologies and techniques are employed in an effort to increase the predictive power of 

the forecasting analysis (Pallis et al., 2011). The majority of port throughput forecasting 

studies found in the relevant literature employ: 1) univariate methods, and 2) multivariate 

methods. 

 
2.1. Univariate Methods 

In univariate time series forecasting, the past values of the quantity of interest, or “target 

variable” are used to predict future values with dependence on trends, seasonal cycles and 

irregularities. The techniques that have been applied are statistical autoregressive methods 

such as Auto-Regressive Integrated Moving Average (ARIMA) (Kim et al., 2011), moving 

averages, seasonal decomposition and exponential smoothing models (Abraham and 

Ledolter, 2009; McCarthy et al., 2006). On a regional level, Maloni and Jackson (2005) 

forecast container flows in North America using the exponential smoothing methodology. 

On a port level, scholars have also applied Seasonal Auto-Regressive Integrated Moving 

Average (SARIMA) to examine trans-shipment flows (Schulze and Prinze, 2009). 

 
2.2. Multivariate Methods 

More complex multivariate models encapsulate information about the target variable and its 

interaction with other predictors or “indicator variables”. Recent studies have used 

Multivariable Adaptive Regression Splines (MARS), Dynamic Factor Models (DFM) and 

Auto-Regressive Integrated Moving Average with eXogenous variables (ARIMAX) with 

DFM to forecast macroeconomic and seaport data (Geng et al., 2015; Angelopoulos and 

Chlomoudis, 2015, Intihar et al., 2015). 

 

Vector Auto-Regressive Moving Average (VARMA) have been used to forecast commodity 

(steel) volumes (Gooijer and Klein, 1989) and chaotic models have been used to predict



 
future container flows (Goulielmos and Kaselimi, 2011). To forecast port throughput 

scholars also use Grey models (Guo et al., 2005) and neural network models (Mostafa 2004; 

Li et al., 2008; Chen and Chen, 2010). 

 

Multivariate cause-and-effect methods model the relationship between the forecasted 

variable and other variables (Anderson, et al., 2009). Techniques falling within this category 

are multivariate regression analysis, econometric modeling and input-output models (Hanke 

et al, 2001; Abraham and Ledolter, 2005). Cause-and-effect models aim to interpret the 

relationship between port throughput and certain economic determinants before proceeding 

to future projections. Port throughput is considered to be influenced by: a) fundamental 

macro-economic determinants of the country the port is located in such as economic activity, 

international and maritime trade, and b) micro-economic variables like generalized costs of 

the logistic chain and cost of fuel (Meersman, 2009). Generally on a macro level, GDP and 

trade by value are systematically used as the main driving factors of port throughput (on both 

country and port levels). 
 

Recent studies also suggest that additional macroeconomic variables such as industrial 

production and financial determinants have the potential to lead to better forecasting (Chou 

et al., 2008; Gosasang et al., 2011; Paflioti et al., 2015). On a micro level, qualitative and 

quantitative characteristics of ports such as port tariffs (Fung, 2002), generalized costs (De 

Langen et al., 2012), number of berths (Hui et al., 2004) or even expenditure on building and 

construction (Seabrook et al., 2003) are taken into account for throughput forecasting. The 

majority of the causal and effect studies employ Ordinary Least Squares (OLS) (Seabrook et 

al., 2003; Lehto et al., 2006), or Error Correction Model (Fung, 2002; Hui et al., 2004, etc.), 

to reveal the causal relations between the target and the indicator variables. Finally, Van 

Dorsser et al., (2012) and De Langen et al., (2012) apply a combination of System Dynamic 

Modeling, judgment, causal relations, commodity specific research and freight transport 

modeling to estimate ports throughput in the La Havre-Hamburg range. 

 

3. Methodology 
 

In this section we outline the different datasets we use and our computational methodology. 

We combine both commercial (Australian imports) and openly available data (GDPs of 

different countries). We separate the data into a training set to fit our models and a testing 

set to determine forecasting accuracy. After subjecting the data to various transformations 

we fit models of varying degrees of complexity and select the best performing models.



 
3.1. Data 

The data used for this study is based on detailed imports information for Australian seaports. 

The data are from the Australian Bureau of Statistics derived from Trade Data International 

Ltd. and are aggregated over each quarter from 1995:Q1 - 2014:Q3. The total value of the 

goods has been aggregated over all ports and commodities (imports by sea), resulting in the 

single time-series shown in Figure 1. 

 

To help model and forecast this data, supporting economic indicators are also obtained. This 

is in the form of the GDP of Australia and its five largest trading partners in terms of 

imports. We aggregated the value of all imports to Australia from each country over the 

period 1995 to 2014. It was found that the top 5 countries consisted of China, United States, 

Japan, Singapore and Germany; these countries’ GDPs were chosen for the subsequent 

analysis. GDP data was acquired from the World Bank (World Bank GDP Data, 2016) for 

the period 1995-2014. The data was sampled at a yearly frequency, and adjusted for 

purchasing power parity in constant 2011 international dollars (which has the same 

purchasing power over GDP as the U.S. dollar has in the United States). 

 

We combine the data on port imports and GDP of countries into a multivariate time series. 
 

 

 

Figure 1. Total Free-On-Board value of Australian imports by sea through all ports.



 
3.1.1. Separation into training and testing set 

We separate the multivariate time series data into a training set (from Q1 1995 till Q4 2007) 

and testing set (from Q1 2008 till Q3 2014). The training data is used to fit forecasting 

models. Each of the fitted models is then used to generate a forecast over the testing period 

(Q1 2008 till Q3 2014). The accuracy of the model forecast is then evaluated by comparing 

the model predicted values to the actual values by accuracy metrics such as out-of-sample 

root mean squared error (RMSE) on the test set. 
 

3.2. Modeling Approach 

 
3.2.1. Summary of Computational Framework 

Our modelling framework involves the following steps: 
 

1)   Exploring a range of transformations to pre-process the data (Section 3.2.2). 

2)   Fitting models of varying degrees of complexity and number of predictors, and 

performing model selection (Section 3.2.4). 

3)   Using synthetic datasets to assess whether there is sufficient data to learn these 

models (Section 3.2.6). 
 

 
3.2.2. Data Preprocessing 

The statistical forecasting models employed in this work (detailed in the next subsection), 

assume that the system generating the data is stationary, and the noise component of the 

time series is white noise. To ensure these assumptions hold and to ensure the positivity of 

quantities, pre-transforming the data is usually necessary (Chatfield, 2013). The main 

transforms considered in this work are: 
●    Log transform: This transform is typically used in econometrics to ensure positive 

values, and allow larger variations when the value is higher (an aspect that is present 
in the throughput data displayed in Figure 1). 

● Interpolation: Increases the temporal resolution of the GDP data by linearly 
interpolating from yearly data to a quarterly period. 

● Temporal differencing: Converts the data into increments per time unit, used to 
remove non-stationarity. 

● Standardizing (z-scoring): This shifts and scales the data to produce data that has 
zero mean and unit standard deviation. 

 

In this paper three different options for pre-transforming the data are considered: (i) no 

transformations are applied at all, (ii) interpolation is applied first, followed by temporal 

differencing, followed by standardization (iii) log transform is applied first, followed by the 

sequence (ii) of transforms. 
 

 
3.2.3. Model Definitions 

We consider two general classes of models, described below.



 
Seasonal autoregressive integrated moving average (SARIMA) model: 

This is a univariate model, which models and forecasts the Australian port throughput using 

only its own past (lagged) values. This model is a generalisation of a standard auto- 

regressive moving average model. For a given maximum autoregressive lag p and moving 

average lag q, an ARMA model is defined by the equation: 
 

 

 

Here, yt  denotes the port throughput at time t and C, 𝜙!  and 𝜃!  are the coefficient 

parameters of the model. The stochastic residual or error terms 𝜖!  are assumed to be a zero 

mean white noise sequence, with a constant variance denoted by the parameter 𝛴. The 

coefficients C,  𝜙!, 𝜃!  and variance 𝛴 parameters must be estimated from the historic 

training data, further details are given in the next section. The addition of an integrated (I) 

component introduces an additional temporal differencing stage to the data. The order of this 

differencing is denoted by d. Furthermore, the Seasonal ARIMA model has an additional 

seasonal model component of length m which includes separate AR, MA and I components, 

each with lags denoted by P, Q and D respectively. The full model structure is denoted by 

SARIMA(p,d,q)(P,D,Q)m. Full details of the model can be found in Asteriou and Hall 

(2011). 
 

 

Vector Auto-Regressive (VAR) model: 

This is a multivariate model, which is capable of modelling the joint dependencies between 

the throughput and the supporting GDP data, and uses these dependencies to forecast the 

imports along with the GDP in the future. 

A p-th order VAR(p) is represented by the following equation: 

 

The variables (port throughput and GDP of all countries) are subsumed in the vector 𝑦!, and 

𝑦!!!  is the ith lag of 𝑦!. The coefficient matrices 𝐴!  are time-invariant and represent a set of 

model parameters, 𝜖 is a vector of error terms with mean 0 and covariance 𝛴, and c is a 

vector of constant intercept terms. Fitting the VAR model involves estimating the matrix of 

interactions Ai, vector c and the covariance matrix 𝛴using the training data. 

In this work, two different types of VAR model classes are considered: a two dimensional 

class which incorporates the imports time series, and the GDP of Australia only; and a seven 

dimensional model class that in addition to the port throughput data and Australian GDP



 
also includes the GDPs of Australia’s five largest trading partners in terms of value of 

imports. These models will be referred to as VAR2 and VAR7 respectively. 
 

 
3.2.4. Parameter Estimation and Model Selection 

Here we outline the sequence of steps in estimating the parameters of the models and 

selecting the best performing models from a set of model classes and model structures. We 

consider three model classes: SARIMA, VAR2 and VAR7. For each model class, a 

candidate model structure can be considered that specifies p for VAR and p, d, q, P, D, Q, m 

for SARIMA. The performance of a candidate model structure is quantified on the training 

data by: 

 

1)   Determining the best-fit model parameters (coefficients and noise variance) by 

solving a maximum likelihood optimisation problem based on the training data. 

2)   Checking that the residual errors of the model fit to data are normal using a 

Portmanteau Ljung-Box test (Ljung and Box, 1978). Model structures that fail 

normality tests are rejected. 

3)   Quantifying the performance of the model on the training data using the Akaike 

Information Criterion (AIC). This balances model complexity with the ability of the 

model to fit the data (Brockwell and Davis, 1996). 

 

This procedure has been used to determine the best model structure for each of the three 

model classes. It is noted that the use of the AIC also allows a comparison between the best 

performing model structure of each of the three model classes and an overall best 

performing model determined. 

 

It is noted that the rejection step in 2) is required as we observed that some VAR model 

structures with low AIC scores had residuals which differed significantly from a normal 

distribution (these models also had very high lags). 

 
3.2.5. Forecasting 

After the models were fit to the historical data, forecasts were generated by rolling the 

models forward in time. To enable the effects of the unknown future disturbances (error 

terms) to be explicitly included, the mean and covariance of the forecast’s probability 

distribution was generated. This was performed using the estimated covariance matrix of the 

model error terms. Lastly, the effects of any data transforms applied in the pre-processing 

stage were reversed. As these transforms are in general nonlinear, this was performed by 

first extracting the median forecast and the upper and lower 5 and 20 percentiles of the 

distribution. Each of these forecast time series was then untransformed separately.



 
3.2.6. Synthetic Data Generation 

We generated synthetic time series data from a data-generating model. The synthetic data- 

generating model was the VAR7 model with 6 additional predictors (GDPs of Australia and 

of top-5 importers to Australia) fit to the actual training data of port throughput. This 

synthetic data was split into a training set and a held-out test set. Then we trained three 

forecasting models - a univariate ARIMA model, a multivariate 2-dimensional VAR2 

model, and a multivariate 7-dimensional VAR7 model on training subsets of different 

lengths. These trained models were then used to forecast the target variable over the held-out 

test set. 

 
3.3. Software 

All our computational procedures were implemented in the R programming language 

(version 3.2.2) (R Core Team, 2015). For SARIMA model selection, parameter estimation 

and forecasting, we used the functions “auto.arima”, “Arima” and “forecast” from the 

“forecast” R package. For VAR model selection and fitting, we used the functions 

“VARSelect” and “VAR” from the “vars” R package, and for forecasting with VAR models 

we used the “forecast” function from the “forecast” package. Finally, we implemented our 

own synthetic data generator by VAR models, and a function that generates the learning 

curves shown in Figure 5. 

 

4. Results and Discussion 
 

4.1. Forecasts 

We compared the forecasts of three models: 1) a univariate SARIMA model that only relies 

on lagged values of the quantity of interest (Imports) for forecasting, and two multivariate 

models: 2) the 2-dimensional VAR2 model that incorporates the GDP of Australia as an 

additional predictor, and 3) the 7-dimensional VAR7 model that incorporates GDPs of 

Australia and the top-5 importers to Australia as additional predictors. 

 

The forecasts of Australian imports for the test set, made by each of these three models over 

the period Q1 2008 to Q3 2014, using the information available from the training data, are 

shown in the plots below in Figures 2-4. (The training data has been pre-transformed using 

interpolation of the yearly GDPs to quarterly GDPs, followed by temporal differencing and 

standardization of all the variables.) We observe that the trajectory of the actual imports 

values (test set) lies well within the estimated uncertainty ranges (the 80% and 95% 

confidence intervals) of the forecasts, for all three models, i.e., the estimated uncertainties of 

the forecasts appear adequate.



 

 

 

Figure 2. Forecast of port throughput (imports) by best fitting Seasonal 

ARIMA (SARIMA) model. In-sample (training set) AIC=37.66, out-of-sample 

(test set) Root Mean Squared Error RMSE=10190. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Forecast of port throughput by best fitting 2D VAR model (using 

GDP of Australia as an additional predictor of imports). In-sample (training 

set) AIC=141.95, out-of-sample (test set) Root Mean Squared Error 

RMSE=3057.



 

 

 

Figure 4. Forecast of port throughput by best fitting 7D VAR model (using 

GDPs of Australia and of top-5 importers as additional predictors of imports). 

In- sample (training set) AIC=37.73, out-of-sample (test set) Root Mean 

Squared Error RMSE=3343. 
 

 
 

4.2 Effect of including additional predictors 

Comparing the out-of-sample (test set) RMSE of the three forecasts, we see that adding 

Australian GDP as a predictor of imports greatly improves the forecast accuracy (compare 

Figure 2 and Figure 3); this improvement is in favor of the “more data the better” intuition. 

However, counter-intuitively, adding even more additional predictors (GDPs of top-5 

importers to Australia in this particular case) does not necessarily lead to further 

improvement of the forecasting model, and in fact may even have an adverse effect, as seen 

from Figures 3-4 and from Table 1. We discuss possible reasons for this in Section 4.4.



 
Table 1. Metrics of model quality (in-sample Akaike Information Criterion) and 

of forecast accuracy (out-of-sample RMSE) for different forecasting models with 

and without data pre-processing transformations. Highlighted are cells 

corresponding to 

best models out of three, according to AIC or 
RMSE.

 

in-sample 

AIC, out-of-

sample RMSE 

 

No 

transformations 

applied to data 

 

Transformations 

Interpolation → 

temporal differencing 

(lag 1) → z- score 

 

Transformations 

Log10 → interpolation → 

temporal differencing (lag 1) 

→ z-score

 

AIC                   RMSE                   AIC                     RMSE                    AIC                     RMSE 
 

 

SARIMA                         768.3                   5271                   37.66                   10190                   70.09                   19223 

 

VAR2                             2921.0                  8358                  141.95                   3057                   172.95                   4486 

 

VAR7                            14094.5                12561                  37.73                    3343                    133.3                    7090 

 
 

 
4.3 Effect of data transformations 

We observe that performing pre-processing transformations on the data also affects the 

accuracy of the forecasts, as seen by comparing RMSE values in the three columns of Table 

1. From the nine combinations of data transforms and model classes shown in Table 1, the 

best forecast (in terms of out-of-sample RMSE) is produced by a 2-dimensional VAR2(4) 

model that uses GDP of Australia as an additional predictor of imports. This model was 

trained on pre-processed time series data with interpolation from yearly to quarterly GDP 

applied, followed by time differencing with lag 1 of both imports value and GDP, and 

finally by standardizing the data. Applying the log transform to ensure positivity of the 

forecasted quantities has an adverse effect on the accuracy (RMSE of 4486 compared to 

RMSE of 3057 if no log transform is applied). 

 

Thus we see that the choice of transforms applied to data during pre-processing, as well as 

the choice of the class and structure of the forecasting model, all have a significant effect on 

the quality (out-of-sample accuracy) of the resulting forecasts. 

 
4.4. Is more data always better? 

We have seen that including additional indicator variables (GDPs of top-5 importers in our 

case) can have an adverse effect on forecast accuracy, contrary to the “big data” intuition of 

“the more data (predictors) we use for forecasting, the better the forecast will be”. To explore 

why simpler models (with fewer additional predictors) can perform better than more



complex models (with more additional predictors), we performed a series of additional 

experiments on synthetic data. 

 

We generated a long synthetic time series data from a fixed 7-dimensional multivariate 

model (VAR7) with 6 additional predictors (GDPs of Australia and of top-5 importers to 

Australia) of port throughput. The synthetic data-generating model was the VAR7 model fit 

to the actual training data; hence the resulting synthetic data has similar statistical properties 

to the actual data (but the synthetic data is much longer in duration). This synthetic 

multivariate time series was split into a training set and a held-out test set. The training set 

was then divided into smaller training subsets of different lengths, all subsets having the 

same endpoint in time. Then we trained three forecasting models - a univariate ARIMA 

model, a multivariate 2-dimensional VAR2 model, and a multivariate 7-dimensional VAR7 

model (the last model is of the same class and structure as the model used to generate the 

synthetic data) - on these training subsets of different lengths. We then used these trained 

models to generate forecasts of the target (imports) over the time range of the held-out test 

set. Using the held-out test set, we evaluated out-of-sample RMSE accuracies of those 

forecasts, and plotted them against the training subset length in Figure 5. Thus Figure 5 

demonstrates the effect of the amount of time-series data available for model training on 

forecasting accuracy, for models of different complexity (simple univariate model with no 

additional predictors compared to more complex multivariate models with one and with six 

additional predictors).



 

 

 

Figure 5. Forecast accuracy (out-of-sample forecast RMSE accuracies measured on 

the held-out synthetic test set) for a univariate model (ARIMA), a 2-dimensional 

multivariate VAR2 model, and a 7-dimensional multivariate VAR7 model, all models 

trained on synthetic data of varying lengths. 
 

 

It is seen from Figure 5 that, despite the fact that the VAR7 model has the structure of the 

“true” data-generating model, in data-poor cases it performs worse at forecasting than 

simpler models (univariate ARIMA and 2-dimensional VAR2) whose structure does not 

properly capture the “true” data-generating process. The reason is that more complex models 

have more parameters to estimate from the training data, and thus require more data to 

estimate them accurately. In data-poor situations (when the length of time series available 

for model training is limited), there may not be enough data for more complex models to 

learn properly, unlike for simpler models. As a result the forecasts generated by more 

complex models can turn out to be less accurate than the forecasts generated by simpler 

models. 

 

If sufficient training data is available, more complex models should eventually be able to 

learn their parameters well enough to be able to realize their potential to produce more 

accurate forecasts than simpler models. In data-poor situations (for small training set



 
lengths) the simple univariate ARIMA model and the slightly more complex bivariate 

VAR2 model both yield more accurate forecasts than the complex multivariate VAR7 

model, despite the latter model having the exact structure of the data generating process 

(Figure 5). However in data-rich situations, the more complex multivariate model 

outperforms the simple models, as its structure better reflects the true structure of the 

underlying data-generating process. Figure 5 illustrates the fact that there is a crossover 

between data-poor to data-rich situations. We note that the location of this crossover 

depends on the statistical properties of the data generating process and quantity of data, i.e., 

it is problem- and data-dependent. 

 
4.5. Discussion 

Our analysis highlights the difficulties in forecasting even in the age of big data. Complex 

models with additional information like socio-economic indicators require more training 

data. In the absence of enough data, complex models can be outperformed by much simpler 

models. Time series prediction poses significant challenges even in the era of big data since 

the amount of data of a target variable (like imports) or a predictor (like GDP) cannot be 

increased other than by the passage of time. 

 

Additionally, our models implicitly encapsulate a very complex and dynamical socio- 

economic system with many components like the economies of Australia and other 

countries. Our results point to the difficulty of fitting models of a dynamical system 

composed of multiple interconnected components. 

 

The pitfalls of making predictions from big data have also been highlighted in another 

context: predicting cases of influenza using Google Flu Trends (Lazer et al., 2014). 

Google Flu Trends predicted twice as many influenza cases as happened in reality. 

Paradoxically simple models using just 2 week lagged data from the Center for Disease 

Control have better prediction accuracy than Google Flu Trends which used 50 million 

search terms to fit 1152 data points. This is not to say that big data coupled with 

complex models is always bad practice. However we advocate a more nuanced 

approach that takes a critical look at the data, problem domain and algorithms. Simple 

models may sometimes be better suited to some problems than complex multivariate 

models. 

 

Another difficulty in forecasting a complex socio-economic system is that some of the 

underlying components of the system may also have been perturbed during the global 

financial crisis (GFC) of 2008. Such a perturbation may cause a shift in the covariate 

structure encapsulating relationships between different economies (which are assumed to be



 
time-invariant in models we examined). We expect significant practical difficulties in 

estimating parameters from a model if the training set has a major event like a global 

financial crisis which could cause a covariate shift or completely change the underlying 

system and network connections (Tsay, 1988). Hence methods to automatically detect 

covariate shifts and change points can be useful in guiding proper choice of forecasting 

algorithms (Shimodaira 2000, Davis 2006, Cho and Fryzlewicz, 2015). 

 

Performance of the predictive models could be sensitive to whether the training set 

includes the period during and after the GFC. To explore this, we built and 

compared two models of the same class (VAR7): Model 1 is trained on 13.5 years 

of pre-GFC data from Q1 1995 to Q2 2008, and is tested on a 3-year post-GFC data 

from Q3 2008 to Q2 2011, while Model 2 is trained on 13.5 years of both pre- and 

post-GFC data from Q1 1998 to Q2 2011, and is tested on a 3-year post-GFC data 

from Q3 2011 to Q2 2014. As shown in Figs. 6-7, Model 1 fails to predict the 

oncoming drop in the imports that occurs at the start of 2009. Predictions generated 

by Model 2 that has captured 3 post-GFC years, agree with the future test imports 

data much better. Note that the high volatility in the imports during and immediately 

after the GFC is captured and reflected in larger estimated uncertainty interval 

around the prediction generated by Model 2.



 

 

 
 

Figure 6. Forecast of port throughput by Model 1 (7D VAR model using GDPs 

of Australia and of top-5 importers as additional predictors of imports) trained 

on pre-GFC data from Q1 1995 to Q2 2008. Out-of-sample (test set from Q3 

2008 to Q2 2011) Root Mean Squared Error RMSE=10685.



 

 

 
 

Figure 7. Forecast of port throughput by Model 2 (7D VAR model using GDPs 

of Australia and of top-5 importers as additional predictors of imports) trained 

on pre- and post-GFC data from Q1 1998 to Q2 2011. Out-of-sample (test set 

from Q3 2011 to Q2 2014) Root Mean Squared Error RMSE=2594. 
 

 

Model 2 that has seen only 3 years’ worth of post-GFC data on top of what Model 1 has 

seen, yet its performance on predicting post-GFC imports is surprisingly good. This might 

indicate that the perturbation that the GFC introduced into the Australian trade relation with 

its major trading partners was localized in time, and did not introduce a permanent covariate 

shift into the underlying structure of the system. In other words, the system’s underlying 

structure (at least the part describing the trading relationships of Australia) reverted back to 

its pre-GFC state shortly after the GFC passed. This conjecture, however, would require 

further analysis to confirm, which is beyond the scope of this paper. 

 

5. Concluding Remarks 
 

This paper challenges the general rule of thumb: “the more data we use for forecasting, the 

better the forecast will be”. Our analysis suggests that the forecasting process is very 

problem and data specific. Using additional information like socio-economic indicators can 

have either a beneficial or adverse effect on the model forecasting accuracy. We also



 
observed that the choice of data transformations affects the accuracy of the forecasts (Table 

1 and Section 4.2). This makes forecasting a complex subjective process, in which the 

forecaster is faced with a multitude of choices that depend on the peculiarities of the problem 

and data, and each of these choices affects the result. Therefore, a methodology that would 

make the forecast-building process more objective is required. We suggest the following 

methodology as a first step towards a more objective forecasting process: 

1)   Exploring a range of transformations to pre-process the data, 

2)   Fitting models of varying degrees of complexity and number of predictors, and 

performing model selection based on in-sample and out-of-sample model 

performance (e.g., in-sample AIC, and out-of-sample RMSE). 

3)   Assessing whether there is enough data to learn these models by assessing 

performance on synthetic datasets. 

More complex models require more training data to estimate their parameters, and in data- 

poor cases may yield worse forecasts than simpler models (univariate models or multivariate 

models with fewer predictors). As such, amount of data available for training the forecasting 

model is a critical factor in the choice of models used for forecasting. 

 

Our approach should be of interest to practitioners and policy makers in deciding which 

techniques to apply to their problems. 

 

In summary we caution that more information may not always be better, and it is advisable 

for analysts to weigh the cost of adding more data; the ultimate decision depends on the 

problem, amount and quality of data and the kind of models being used. We hope that our 

work will start a discussion around picking the right models for forecasting and change the 

prevalent perception that complex models with more information are always better. 
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