Is subarctic forest advance able to keep pace with climate change?

Rees, Hofgaard et al.

Supplement S1: Characteristics of site data used in the analyses, including data source for each entry. Descriptions of data inclusion in each column is presented below the table. nd = no data.

Study site	Source	Latitude (N)	Longitude (E)	Elevation, m a.s.l.	Zone	Tree species	Parameters	Period	Context	Behaviour	Recorded change, m	Advance rate, m/year
Fennoscandia (nor	th of 64 °N) NO = Norway, SE = Sw	eden, FI = Fii	nland									
Ånderdalen, NO	Mathisen & Hofgaard, 2011; Mathisen, Hofgaard, & Söderström, 2013	69.208	17.349	118	F	Pinus sylvestris	age structure, diameter growth, height growth	1815-2005	altitude	stationary	nd	nd
Ånderdalen, NO	Mathisen & Hofgaard, 2011; Mathisen et al. 2013	69.212	17.355	256	TL	Pinus sylvestris	age structure, diameter growth, height growth	1895-2005	altitude	stationary	nd	nd
Ånderdalen, NO	Mathisen & Hofgaard, 2011; Mathisen et al. 2013	69.228	17.337	291	Т	Pinus sylvestris	age structure, diameter growth, height growth	1965-2000	altitude	stationary	nd	nd
Ånderdalen, NO	Aune, Hofgaard, & Söderström, 2011	69.198	17.331	310	TL, T	Betula pubescens	age structure	1890-2005	altitude	advance	nd	nd
Dividalen, NO	Mathisen & Hofgaard, 2011; Mathisen et al. 2013	68.859	19.604	366	F	Pinus sylvestris	age structure, diameter growth, height growth	1785-2000	altitude	stationary	nd	nd
Dividalen, NO	Mathisen & Hofgaard, 2011; Mathisen et al. 2013	68.863	19.614	552	TL	Pinus sylvestris	age structure, diameter growth, height growth	1935-2000	altitude	stationary	nd	nd
Dividalen, NO	Mathisen & Hofgaard, 2011; Mathisen et al. 2013	68.867	19.610	569	Т	Pinus sylvestris	age structure, diameter growth, height growth	1930-2000	altitude	stationary	nd	nd
Dividalen, NO	Aune et al., 2011	68.850	19.700	625	TL, T	Betula pubescens	age structure	1895-2005	altitude	stationary	nd	nd
Børselv, NO	Mathisen & Hofgaard, 2011; Mathisen et al. 2013	70.297	25.549	40	F	Pinus sylvestris	age structure, diameter growth, height growth	1840-2005	altitude	advance	nd	nd
Børselv, NO	Mathisen & Hofgaard, 2011; Mathisen et al. 2013	70.289	25.576	142	TL	Pinus sylvestris	age structure, diameter growth, height growth	1780-2005	altitude	stationary	nd	nd

Study site	Source	Latitude (N)	Longitude (E)	Elevation, m a.s.l.	Zone	Tree species	Parameters	Period	Context	Behaviour	Recorded change, m	Advance rate, m/year
Olderfjord, NO	Aune et al., 2011	70.450	24.783	310	TL, T	Betula pubescens	age structure	1925-2005	altitude	stationary	nd	nd
Porsangmoen, NO	Mathisen & Hofgaard, 2011; Mathisen et al. 2013	69.953	25.158	110	F	Pinus sylvestris	age structure, diameter growth, height growth	1815-2005	altitude	advance	nd	nd
Porsangmoen, NO	Mathisen & Hofgaard, 2011; Mathisen et al. 2013	69.961	25.146	217	TL	Pinus sylvestris	age structure, diameter growth, height growth	1955-2000	altitude	advance	nd	nd
Porsangmoen, NO	Mathisen & Hofgaard, 2011; Mathisen et al. 2013	69.967	25.147	266	Т	Pinus sylvestris	age structure, diameter growth, height growth	1950-1995	altitude	stationary	nd	nd
Porsangmoen, NO	Aune et al., 2011	69.926	25.228	350	TL, T	Betula pubescens	age structure	1925-2005	altitude	stationary	nd	nd
Jarfjord, NO	Mathisen & Hofgaard, 2011; Mathisen et al. 2013	69.658	30.250	76	TL	Pinus sylvestris	age structure, diameter growth, height growth	1930-2005	altitude	advance	nd	nd
Joatka, NO	Dalen & Hofgaard, 2005	69.743	23.883	450	TL	Betula pubescens	age structure; height growth	1940's- 1990's	altitude	retreat	nd	nd
NW Norway	Normark, 2012	68.558– 69.517	17.334– 21.012	450–480	FL	Betula pubescens	repeat photography	1913-2011	altitude	advance, infilling	26	0.3
NW Norway	Normark, 2012	68.558– 69.517	17.334– 21.012	435–510	TL	Betula pubescens	repeat photography	1913-2011	altitude	advance	74	0.7
Sørdalen, NO	Roush, 2005	68.663	18.241	600	FTE	Betula pubescens	repeat photography	1930s-2005	altitude	infilling	nd	nd
Finnmark, NO	Hofgaard, Tømmervik, Rees, & Hanssen, 2013	69.500– 71.250	21.200– 31.000	< 100	FL	Pinus sylvestris	mapped tree distribution	1914-2009	latitude	advance	6786	71
Finnmark, NO	Hofgaard et al., 2013	69.500– 71.250	21.200– 31.000	< 100	TL	Pinus sylvestris	mapped tree distribution	1925-2009	latitude	advance	806	10
Finnmark, NO	Hofgaard et al., 2013	69.500– 71.250	21.200– 31.000	< 100	FL	Betula pubecens	mapped tree distribution	1914-2009	latitude	advance	14815	156
Finnmark, NO	Hofgaard et al., 2013	69.500– 71.250	21.200– 31.000	< 100	TL	Betula pubecens	mapped tree distribution	1949-2009	latitude	advance	20398	340
Border region NO- SE	Hofgaard, Rees, Hanssen, & Tømmervik, (unpublished)	68.200– 69.250	17.900– 21.900	100–800	FL	Betula pubecens	mapped tree distribution	1909-2008	altitude	advance	75	0.7
Border region NO- SE	Hofgaard et al. (unpublished)	68.200– 69.250	17.900– 21.900	100–800	FL	Betula pubecens	mapped tree distribution	1980-2008	altitude	advance	61	2.2
Torneträsk region, SE	Emanuelsson, 1987	68.354	18.816	400–700	FTE	Betula pubescens	review of historical documents	1900-1980s	altitude	advance	nd	nd

Study site	Source	Latitude (N)	Longitude (E)	Elevation, m a.s.l.	Zone	Tree species	Parameters	Period	Context	Behaviour	Recorded change, m	Advance rate, m/year
Abisko, SE	Dalen & Hofgaard, 2005	68.311	18.883	750	TL	Betula pubescens	age structure, height growth	1960's- 1990's	altitude	stationary	nd	nd
Abisko, SE	Stöcklin & Körner, 1999	68.343	18.789	388	TL	Pinus sylvestris	age structure, size structure	1900s-1996	latitude	stationary, retreat	nd	nd
Torneträsk area, SE	van Bogaert et al., 2011	68.354	18.816	700	FL	Betula pubescens	repeat photography	1912-2009	altitude	advance	24	0.2
Mt. Vittangivaara, SE	Kullman & Engelmark, 1991	68.067	20.650	540	FL	Picea abies	age structure	1650-1980	altitude	stationary	nd	nd
Mt. Kuormakka, SE	Kullman, 1992	68.141	21.869	425–450	FL	Pinus sylvestris	age structure	1460-1990	latitude	infilling	nd	nd
Northern Sweden	Kullman & Engelmark, 1991; 1997	67.830– 68.330	20.330– 22.170	315–540	FL	Picea abies	age structure, location of individual trees	1655-1985	latitude	stationary, infilling	0	0
Kiruna, SE	Kullman, 1991	67.847	20.368	410	F	Picea abies	age structure, ring width	1750-1989	latitude	retreat, infilling	nd	nd
Northern Finland	Juntunen, Neuvonen, Norokorpi, & Tasanen, 2002	68.000– 69.000	25.000– 28.000	190–500	F	Picea abies, Pinus sylvestris	monitoring of stand structure	1983-1999	latitude	infilling	nd	nd
Kevo, Fl	Holtmeier, 2005	68.500	26.250	240	TL	Pinus sylvestris	repeat photography	1969-1998	altitude	infilling	0	0
Kevo, Fl	Holtmeier, 2005	68.500	26.250	350	TL	Betula pubescens	repeat photography	1976-1997	altitude	stationary	0	0
Pallastunturi, FI	Holtmeier, 2005	68.167	24.000	500	TL	Picea abies	repeat photography	1970-1997	altitude	stationary	0	0
Pallastunturi, FI	Holtmeier, Broll, Müterthies, & Anschlag, 2003	68.167	24.000	500–700	FTE	Picea abies, Pinus sylvestris, Betula pubescens	stand structure; vitality	1996-2002	altitude	stationary	nd	nd
Ailakkavaara, Fl	Holtmeier et al., 2003	69.000	20.928	600–700	FTE	Betula pubescens	stand structure; vitality	1996-2002	altitude	stationary	nd	nd
Northern Utsjoki, FI	Holtmeier et al., 2003	69.781	26.963	200–300	FTE	Pinus sylvestris, Betula pubescens	stand structure; vitality	1996-2002	altitude	stationary	nd	nd
Kola Peninsula, Rus	sia					-					_	
Knibiny-Yumechorr	Mathisen, Mikheeva, Tutubalina, Aune, & Hofgaard, 2014	67.707	33.246	428–445	IL, I	Pinus sylvestris	age structure; remote sensing	1958-2008	altitude	advance	27	0.54

Study site	Source	Latitude (N)	Longitude (E)	Elevation, m a.s.l.	Zone	Tree species	Parameters	Period	Context	Behaviour	Recorded change, m	Advance rate, m/year
Khibiny-Tuliok	Aune et al., 2011; Mathisen et al., 2014	67.705	33.783	495–575	TL, T	Betula pubescens	age structure; remote sensing	1958-2006	altitude	advance	29	0.6
Kanentiavr	Aune et al., 2011	68.844	34.743	245	TL, T	Betula pubescens	age structure	1875-2005	latitude	stationary, retreat	0	0
Kanentiavr	Kravtsova & Loshkareva, 2009; 2010	69.000	34.000	200–290	F, FTE, T	Betula pubescens	remote sensing	1961-1984	latitude	stationary	nd	nd
Kanentiavr	Kravtsova & Loshkareva, 2009; 2010	68.758	34.130	260–290	F	Betula pubescens	remote sensing	1984-2004	latitude	advance, infilling	nd	nd
Kanentiavr	Kravtsova & Loshkareva, 2009; 2010	68.721	34.401	220–280	FTE	Betula pubescens	remote sensing	1984-2004	latitude	advance, infilling	nd	nd
Kanentiavr	Kravtsova & Loshkareva, 2009; 2010	68.930	34.682	200	Т	Betula pubescens	remote sensing	1984-2004	latitude	advance, infilling	nd	nd
Kanentiavr	Kravtsova & Loshkareva, 2010	68.734	34.249	200–350	F, FTE, T	Betula pubescens	remote sensing, ground data	1986-2005	latitude	advance, infilling	nd	nd
North-Central Kola Peninsula	Gervais & MacDonald, 2000	68.413	35.283	150–300	FTE	Pinus sylvestris	age structure	20th century	latitude	infilling	nd	nd
Ural region (north of	f 64 °N), Russia		1							T		
Engayou- Kerdomanshor	Mazepa & Devi, 2007	66.817	65.533	310	TL	Larix sibirica	stand structure	20th century	altitude	infilling	nd	nd
Polar Ural	Shiyatov, 2003	66.000– 67.000	65.000– 66.000	280	TL	Larix sibirica	photographs	1910-2000, 1962-2002	altitude	advance	20–40	0.3
Kerdomanshor River	Shiyatov, Terent'ev, Fomin, & Zimmermann, 2007; Vaganov & Shiyatov, 2005	66.817	65.533	230	FTE	Larix sibirica	photographs	1910-2000, 1962-2004	altitude	advance	26	0.3
Rai-Iz massif, Mt. Tchernaya, Mt.Malaya Tchernaya	Shiyatov et al., 2007	66.817	65.533	230	FTE	Larix sibirica	mapping	1910-2000	latitude	advance	290	3.2
Rai-Iz massif, Mt. Tchernaya, Mt.Malaya Tchernaya, Mt. Slancevaya,	Shiyatov, Terent'ev, & Fomin, 2005; Shiyatov et al., 2007	66.767– 66.917	65.367– 65.817	270–560	FTE	Larix sibirica, Picea obovata	maps, morphology, age structure	1910-2000	altitude	advance	50	0.5
Polar Ural, Site 1	Wilmking et al., 2012	67.000	59.500	127	FTE	Picea obovata	age structure	1700-1990, 1982-2007	altitude	stationary	nd	nd
Polar Ural, Site 2	Wilmking et al., 2012	67.200	62.100	75	FTE	Picea obovata	age structure	1830-1990	altitude	stationary	nd	nd

Study site	Source	Latitude (N)	Longitude (E)	Elevation, m a.s.l.	Zone	Tree species	Parameters	Period	Context	Behaviour	Recorded change, m	Advance rate, m/year
Polar Ural, Site 3	Wilmking et al., 2012	67.100	62.100	73	FTE	Picea obovata	age structure	1650-1980	altitude	stationary	nd	nd
Polar Ural, Site 4	Wilmking et al., 2012	67.400	62.300	85	FTE	Picea obovata	age structure	1650-1980	altitude	stationary	nd	nd
More Ju	Esper & Schweingruber, 2004	67.820	60.020	25–50	TL	Picea obovata	recruitment pulses	20th century	latitude	advance	nd	nd
Adzva	Esper & Schweingruber, 2004	67.130	60.000	60–90	TL	Picea obovata	recruitment pulses	20th century	latitude	advance	nd	nd
Western Siberia (noi	rth of 64 °N), Russia											
Dudinka	Frost & Epstein, 2014	69.610	86.530	50	FTE	Larix sp.	remote sensing	1966-2009	latitude	infilling	nd	nd
Omon-Yuriakh	Budarina, Golubeva, & Silenchuk, 2011; Glukhova, Golubeva, & Kolupanov, 2011	69.407	91.040	230–530	FTE, F	Larix gmelinii	age structure	1992-2010	altitude	advance	nd	nd
Yamal Peninsula	Hantemirov, Surkov, & Gorlanova, 2008	67.417– 67.583	70.583– 70.833	30	FTE	Larix sibirica	age structure	1880-2004	latitude	infilling	nd	0
W Norilsk	Esper & Schweingruber, 2004	69.020	83.670	30	TL	Larix sp.	recruitment pulses	20th century	latitude	advance	nd	nd
Putorana	Esper & Schweingruber, 2004	70.520	92.950	350	TL	Larix sp.	recruitment pulses	20th century	altitude	advance	nd	nd
Bojarska	Esper & Schweingruber, 2004	69.950	97.620	590	TL	Larix sp.	recruitment pulses	20th century	altitude	advance	nd	nd
Putorana Mountains	Kirdyanov et al., 2012	70.250	92.750	390	TL	Larix gmillinii	age structure	20th century	altitude	advance	30–50	0.4
Eastern Siberia (nor	th of 64 °N), Russia											
Anabarskoe	Esper & Schweingruber, 2004	70.870	102.880	220	TL	Larix sp.	recruitment pulses	20th century	altitude	advance	nd	nd
Ary-Mas	Budarina et al., 2011; Glukhova et al., 2011	72.492	101.628	18–65	FTE, F	Larix gmelinii	age structure	1765-2010	latitude	advance	nd	nd
Ary-Mas	Tyukavina, 2011	72.500	101.800	18–50	FTE, F	Larix gmelinii	remote sensing	1973-2002	latitude	advance, infilling	nd	nd
Ary-Mas	Kharuk, Ranson, Im, & Naurzbaev, 2006	72.033– 72.667	101.250– 102.100	80	FTE	Larix gmelinii	remote sensing, radial growth	1973-2000	latitude	advance	nd	3–10
Hatanga	Frost & Epstein, 2014	72.160	102.680	15	FTE	Larix sp.	remote sensing	1966-2009	latitude	infilling	nd	nd
Lukunsky	Frost & Epstein, 2014	72.480	105.200	30	FTE	Larix sp.	remote sensing	1965-2009	latitude	infilling	nd	nd
Uyandi	Frost & Epstein, 2014	69.450	141.650	300	FTE	Larix sp.	remote sensing	1966-2010	latitude	infilling	nd	nd
Kolyma	Frost & Epstein, 2014	68.930	161.360	10	FTE	Larix sp.	remote sensing	1965-2010	latitude	retreat	nd	nd

Study site	Source	Latitude (N)	Longitude (E)	Elevation, m a.s.l.	Zone	Tree species	Parameters	Period	Context	Behaviour	Recorded change, m	Advance rate, m/year
Alaska (north of 60	N), US											
Seward Peninsula	Lloyd, Rupp, Fastie, & Starfield, 2002	64.717	-163.967	61–168	FTE	Picea glauca	age structure	1880-2000	latitude	advance	10000	83.3
Seward Peninsula (Fox River)	Lloyd, 2005; Lloyd et al., 2002	64.730	-163.880	100	FTE	Picea glauca	age structure	1880-2000	altitude	advance	122	1.0
Seward Peninsula (Bear Creek)	Lloyd, 2005; Lloyd et al., 2002	64.870	-163.750	45	FTE	Picea glauca	age structure	1740-2000	altitude	stationary	0	0
Noatak National Preserve	Suarez, Binkley, Kaye, & Stottlemyer, 1999	67.467	-162.233	100–170	FTE	Picea glauca	age structure	last two centuries	latitude	advance	80–100	0.4–0.5
Noatak National Preserve	Lloyd, 2005; Suarez et al., 1999	67.467	-162.233	160	FTE	Picea glauca	age structure	last two centuries	altitude	stationary	0	0
White Mountains (Eagle Summit, Nome Creek, Twelvemile Summit)	Lloyd, 2005; Lloyd & Fastie, 2003	65.400– 66.000	-148.800 – -145.400	880–945	FTE	Picea glauca	age structure	1880-2000	altitude	advance	30	0.25
Alaska Range (Canyon Creek)	Lloyd, 2005; Lloyd & Fastie, 2003	63.610	-148.680	875	FTE	Picea glauca	age structure	1880-2000	altitude	advance	20	0.17
Alaska Range (Monahan Flats)	Lloyd, 2005; Lloyd & Fastie, 2003	63.580	-149.190	885	FTE	Picea glauca	age structure	1880-2000	altitude	advance	29	0.24
Alaska Range (Wrangell View)	Lloyd, 2005; Lloyd & Fastie, 2003	63.630	-147.130	895	FTE	Picea glauca	age structure	1880-2000	altitude	advance	14	0.12
Kenai Peninsula	Dial, Berg, Timm, McMahon, & Geck, 2007	60.306– 60.520	-150 .457 – -150.078	321–1100	TL	Picea glauca	air photos & DEMs	1951-1996	altitude	advance	49	1.1
Kenai Peninsula	Dial et al., 2007	60.306– 60.520	-150 .457 – -150.078	321–1100	FL	Picea glauca	air photos & DEMs	1951-1996	altitude	advance	6	0.1
Alaska Range	Stueve, Isaacs, Tyrrell, & Densmore, 2011	63.500	-150.000	1100	FTE	Picea glauca, Picea mariana	remote sensing	1953-2005	altitude	advance, infilling	150	2.9
Western Canada (no	orth of 60oN)		1			1				1	,	
Inuvik	Walker, Henry, McLeod, & Hofgaard, 2012	68.285	-133.254	7	F	Picea mariana	recruitment	1990s-2008	latitude	stationary	0	0
Inuvik-Tuktoyaktuk	Walker et al., 2012	69.153	-131.446	8	FTE	Picea mariana	recruitment	1990s-2008	latitude	stationary	0	0
Tuktoyaktuk	Walker et al., 2012	69.380	-132.972	33	Т	Picea mariana	recruitment	1990s-2008	latitude	stationary	0	0

Study site	Source	Latitude (N)	Longitude (E)	Elevation, m a.s.l.	Zone	Tree species	Parameters	Period	Context	Behaviour	Recorded change, m	Advance rate, m/year
Kluane Range, South-facing 1	Danby & Hik, 2007	61.483	-139.447	1308	F	Picea glauca	age structure, stem density	1799-2000s	altitude	advance	65–85	0.7–0.9
Kluane Range, South-facing 1	Danby & Hik, 2007	61.483	-139.450	1383	FTE	Picea glauca	age structure, stem density	1895-2000s	altitude	advance	65–85	0.7–0.9
Kluane Range, South-facing 2	Danby & Hik, 2007	61.374	-139.340	1315	F	Picea glauca	age structure, stem density	1541-2000s	altitude	advance	65–85	0.7–0.9
Kluane Range, South-facing 2	Danby & Hik, 2007	61.377	-139.346	1404	FTE	Picea glauca	age structure, stem density	1747-2000s	altitude	advance	65–85	0.7–0.9
Kluane Range, South-facing 3	Danby & Hik, 2007	61.322	-139.241	1222	F	Picea glauca	age structure, stem density	1922-2000s	altitude	advance	65–85	0.7–0.9
Kluane Range, South-facing 3	Danby & Hik, 2007	61.325	-139.248	1256	FTE	Picea glauca	age structure, stem density	1854-2000s	altitude	advance	65–85	0.7–0.9
Kluane Range, North-facing 1	Danby & Hik, 2007	61.470	-139.446	1062	F	Picea glauca	age structure, stem density	1793-2000s	altitude	infilling	0	0
Kluane Range, North-facing 1	Danby & Hik, 2007	61.469	-139.445	1109	FTE	Picea glauca	age structure, stem density	1826-2000s	altitude	infilling	0	0
Kluane Range, North-facing 2	Danby & Hik, 2007	61.363	-139.361	1229	F	Picea glauca	age structure, stem density	1711-2000s	altitude	infilling	0	0
Kluane Range, North-facing 2	Danby & Hik, 2007	61.362	-139.357	1264	FTE	Picea glauca	age structure, stem density	1657-2000s	altitude	infilling	0	0
Kluane Range, North-facing 3	Danby & Hik, 2007	61.434	-139.511	1216	F	Picea glauca	age structure, stem density	1699-2000s	altitude	infilling	0	0
Kluane Range, North-facing 3	Danby & Hik, 2007	61.433	-139.510	1246	FTE	Picea glauca	age structure, stem density	1630-2000s	altitude	infilling	0	0
Mackenzie Mtns, WR1	Szeicz & MacDonald, 1995	64.980	-127.610	1010	FTE	Picea glauca	age structure, stem density	1785-1990	altitude	infilling	0	0
Mackenzie Mtns, WR2	Szeicz & MacDonald, 1995	64.979	-127.607	970	FTE	Picea glauca	age structure, stem density	1784-1990	altitude	infilling	0	0
Mackenzie Mtns, SB1	Szeicz & MacDonald, 1995	64.983	-127.564	880	FTE	Picea glauca, Larix laricina	age structure, stem density	1567-1990	altitude	infilling	0	0
Mackenzie Mtns, SB2	Szeicz & MacDonald, 1995	64.986	-127.558	955	FTE	Picea glauca	age structure, stem density	1655-1990	altitude	infilling	0	0
Mackenzie Mtns, SB3	Szeicz & MacDonald, 1995	64.983	-127.532	960	FTE	Picea glauca	age structure, stem density	1800-1990	altitude	infilling	0	0
Mackenzie Mtns, SB4	Szeicz & MacDonald, 1995	64.974	-127.523	825	FTE	Picea glauca	age structure, stem density	1642-1990	altitude	infilling	0	0

Study site	Source	Latitude (N)	Longitude (E)	Elevation, m a.s.l.	Zone	Tree species	Parameters	Period	Context	Behaviour	Recorded change, m	Advance rate, m/year
Mackenzie Mtns, SB5	Szeicz & MacDonald, 1995	64.985	-127.563	910	FTE	Picea glauca	age structure, stem density	1715-1990	altitude	infilling	0	0
Mackenzie Mtns, LH1	Szeicz & MacDonald, 1995	65.000	-127.544	980	FTE	Picea glauca	age structure, stem density	1789-1990	altitude	infilling	0	0
Mackenzie Mtns, LH2	Szeicz & MacDonald, 1995	64.996	-127.553	950	FTE	Picea glauca	age structure, stem density	1756-1990	altitude	infilling	0	0
Western Mackenzie Mtns, NWT	Mamet & Kershaw, 2012	63.200	-130.000	1347–1449	FTE	Abies Iasciocarpa, Picea glauca	age structure	1719-2009	altitude	stationary	0	0
Central Canada (nor	th of 50 °N)											
RID, Churchill	Mamet & Kershaw, 2012	58.720	-93.846	19	F	Picea glauca	age structure	1735-2008	latitude	advance	nd	nd
RID, Churchill	Mamet & Kershaw, 2012	58.720	-93.845	23	FTE	Picea glauca	age structure	1833-2008	latitude	advance	nd	nd
ROK, Churchill	Mamet & Kershaw, 2012	58.729	-93.821	16	F	Picea glauca	age structure	1578-2008	latitude	advance	nd	nd
ROK, Churchill	Mamet & Kershaw, 2012	58.728	-93.822	16	FTE	Picea glauca	age structure	1850-2008	latitude	advance	nd	nd
BLK, Churchill	Mamet & Kershaw, 2012	58.619	-93.808	34	F	Picea glauca, Picea mariana, Larix Iaricina	age structure	1856-2008	latitude	advance	nd	nd
BLK, Churchill	Mamet & Kershaw, 2012	58.621	-93.808	31	FTE	Picea glauca, Picea mariana, Larix Iaricina	age structure	1919-2008	latitude	advance	nd	nd
Kazan River	MacDonald, Szeicz, Claricoates, & Dale, 1998	62.120– 62.350	-99.350 – - 98.120	230–280	TL, FL	Picea glauca, P. mariana	maps, historical notes, growth pattern	1880-2000	latitude	stationary	0	0
Beech Bay; estuary of the Churchill River	Scott, Hansell, & Fayle, 1987	58.725	-94.133	10	FTE	Picea glauca	air photos, age structure	1785-1970s	latitude	advance, infilling	nd	nd
Great Slave Lake, NWT	Masek, 2001	62.000– 64.000	-113.000 – -108.000	200–400	FTE	Picea mariana	remote sensing - NDVI	1970s-1990s	latitude	stationary	0	0
Eastern Canada (noi	rth of 50 °N)											
Nunavik, Quebec	Dufour-Tremblay, Lévesque, & Boudreau, 2012	58.707	-65.991	65	TL	Larix laricina	age structure	1950s-2010	altitude	advance	nd	nd
Nunavik, Quebec	Dufour-Tremblay et al., 2012	58.707	-65.991	65	TL	Picea mariana	age structure	1950s-2010	altitude	stationary	0	0

Study site	Source	Latitude (N)	Longitude (E)	Elevation, m a.s.l.	Zone	Tree species	Parameters	Period	Context	Behaviour	Recorded change, m	Advance rate, m/year
N Quebec	Gamache & Payette, 2005	55.550	-76.510	325	TL	P.mariana	tree location and age	1962-1999	altitude	advance	1.7	0.05
N Quebec	Gamache & Payette, 2005	56.220	-75.440	292	TL	P.mariana	tree location and age	1916-1999	altitude	advance	6.9	0.1
N Quebec	Gamache & Payette, 2005	57.120	-75.580	232	TL	P.mariana	tree location and age	1927-1999	altitude	advance	5.2	0.08
N Quebec	Gamache & Payette, 2005	58.060	-75.490	210	TL	P.mariana	tree location and age	1984-1999	altitude	advance	0.2	0.02
Eastern Hudson Bay, Northern Quebec and Nunavut	Caccianiga & Payette, 2006	56.100– 56.530	-76.770 – - 76.520	5-74	TL	Picea glauca	tree location, growth and age	1860s-2000	latitude	advance	nd	nd
Eastern Hudson Bay, Northern Quebec and Nunavut	Caccianiga & Payette, 2006	56.230	-76.750	12	TL	Picea mariana	tree location, growth form, age structure	1860s-2000	latitude	stationary	nd	nd
Riviere Boniface, Québec	Lavoie & Payette, 1994	57.780	-76.300	120–145	FL	Picea mariana	tree location, growth form, age structure	1880-1990	latitude	advance	4000	36.4
Northern Labrador (site 1)	Payette, 2007	57.920	-62.630	175–300	FTE	Picea glauca	stand structure and age	1940s-1990s	altitude	advance	nd	nd
Northern Labrador (site 2)	Payette, 2007	57.370	-62.870	300	TL	Picea glauca	stand structure and age	1940s-1990s	altitude	advance	nd	nd
Northern Labrador (site 7)	Payette, 2007	58.200	-62.630	16	TL	Picea glauca	stand structure and age	1940s-1990s	altitude	advance	nd	nd
North-eastern Québec (site 3)	Payette, 2007	56.280	-63.550	500	TL	Picea mariana, Larix Iaricina	stand structure and age	1940s-1990s	altitude	stationary	nd	nd
North-eastern Québec (site 4)	Payette, 2007	56.350	-64.570	400	TL	Picea mariana, Larix Iaricina	stand structure and age	1940s-1990s	altitude	stationary	nd	nd
North-eastern Québec (site 5)	Payette, 2007	57.450	-65.200	365–380	TL	Picea mariana, Larix laricina	stand structure and age	1940s-1990s	altitude	stationary	nd	nd
North-eastern Québec (site 6)	Payette, 2007	57.850	-65.880	300	TL	Picea mariana, Larix Iaricina	stand structure and age	1940s-1990s	altitude	stationary	nd	nd
East coast of Hudson Bay	Payette & Filion, 1985	56.147	-76.567	10-60	TL	Picea glauca	location and age	1880-1980s	altitude	advance	10–30	0.1–0.3
East coast of Hudson Bay	Payette & Filion, 1985	56.306	-76.532	10-60	TL	Picea glauca	location and age	1880-1980s	latitude	stationary	0	0
Richmond Gulf, QC	Masek, 2001	55.000– 57.000	-78.000 – - 74.000	0–300	FTE	Picea glauca, P. mariana	remote sensing - NDVI	1970s-1990s	latitude	stationary	0	0

Study site	Source	Latitude (N)	Longitude (E)	Elevation, m a.s.l.	Zone	Tree species	Parameters	Period	Context	Behaviour	Recorded change, m	Advance rate, m/year
Mealy Mts	Simms & Ward, 2013	53.600	-58.830	ca. 800	FTE	Picea mariana, Picea glauca, Abies balsamea, Larix laricina	NDVI, imagery change detection	1983-2008	altitude	stationary	0	0
Additional sites clos	se to the Eurasian southern borde	erline	1				1					
Central Swedish Scandes	Kullman & Öberg, 2009	62.025– 63.429	11.821– 14.359	850–1000	TL	Betula pubescens	monitoring	1915-2007	altitude	advance	70–90	0.74
	Kullman & Öberg, 2009	62.025– 63.429	11.821– 14.359	850–1000	TL	Picea abies	monitoring	1915-2007	altitude	advance	70–90	0.98
	Kullman & Öberg, 2009	62.025– 63.429	11.821– 14.359	850–1000	TL	Pinus sylvestris	monitoring	1915-2007	altitude	advance	70–90	0.81
Tylaisko- Konzhakovsko-	Kapralov, Shiyatov, Moiseev, & Fomin, 2006	59.583	59.166	900–1000	FTE	Betula tortuosa	photographs, maps, stand structure data	1956-2005	altitude	advance, infilling	120	2.4
Serebryanskii Massif, Russia	Kapralov et al., 2006	59.583	59.166	900–1000	FTE	Pinus sibirica	photographs, maps, stand structure data	1956-2005	altitude	advance, stationary abundance	110	2.2
	Kapralov et al., 2006	59.583	59.166	900–1000	FTE	Picea obovata	photographs, maps, stand structure data	1956-2005	altitude	advance, decreased abundance	80	1.6
	Kapralov et al., 2006	59.583	59.166	900–1000	FTE	Larix sibirica	photographs, maps, stand structure data	1956-2005	altitude	advance, decreased abundance	110	2.2
N-Ural 1, Russia	Esper & Schweingruber, 2004	61.430	59.720	920–950	TL	Pinus sibirica	recruitment pulses	20th century	latitude	advance	nd	nd
N-Ural 2, Russia	Esper & Schweingruber, 2004	61.820	59.370	730–800	TL	Pinus sibirica	recruitment pulses	20th century	latitude	advance	nd	nd

Footnotes to Supplement S1. Descriptions of data inclusion in each column

<u>Study site</u>: site names as given in the publications.

Source: full bibliographic information is given in the reference list.

Latitude and longitude: coordinates as given in the publications or retrieved from map sources, and translated to a common format. Entries representing landscape sections are given as ranges of latitude and longitude. The datum format is decimal degrees, with east longitudes positive. The assumed datum is WGS84.

Elevation: as given in the publications or retrieved from map sources.

<u>Zone</u>: FTE = forest-tundra ecotone (i.e. transition between forest and the treeless tundra; the term is identical in meaning to the term treeline ecotone). F = open forest section of FTE; FL = forest line (i.e. marked by forest patches or treed areas with <30% tree cover); TL = treeline (i.e. marked by the most advanced >2m tree individuals); T = tundra zone of FTE (i.e. beyond the treeline; has no tree-sized individuals, but has krummholz and/or tree saplings/seedlings). Tree islands belong to either TL or T depending on the height of the stems.

<u>Tree species</u>: as given in the publications.

Parameters: parameter(s) used by the authors of entries in the estimation/calculation of trends and rates.

Period: time period over which the change was observed; or period covered by age structures (periods prior to 1900 were not used).

Behaviour: as given in the publications or deduced from descriptive data.

<u>Context</u>: environmental framing of the study given as altitudinal or latitudinal.

Recorded change: data from monitoring, remote sensing and/or repeat photographs given in the publications.

<u>Advance rate</u>: data given in the publications or calculated from the recorded change information given in the publications (see columns 'Period' and 'Recorded change'). For stationary sites 'nd' or '0' is given depending on the quality of the information. In principle all stationary sites could be shown as '0'; however, this is only used where there is a clear statement or description that can be used to justify it. If the statement is too vague, the rate is shown as 'nd' instead.

References for Supplement S1

- Aune, S., Hofgaard, A., & Söderström, L. (2011). Contrasting climate- and land-use-driven tree encroachment patterns of subarctic tundra in northern Norway and the Kola Peninsula. *Canadian Journal of Forest Research*, *41*(3), 437–449.
- Budarina, O., Golubeva, E.I., & Silenchuk, K. (2011). Age structure of seedlings and saplings in the Larix gmelinii forest-tundra ecotone in the Taimyr Peninsula and at the Putorana Plateau. In *Results and collaboration into the future: proceedings of the final workshop of Norway-Russia cooperation project BENEFITS*. Moscow, Russian Federation.
- Caccianiga, M., & Payette, S. (2006). Recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Québec, Canada). *Journal of Biogeography*, *33*(12), 2120–2135.
- Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. Arctic, Antarctic and Alpine Research, 37, 284–296.

Danby, R.K., & Hik, D.S. (2007). Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. Journal of Ecology, 95(2), 352–363.

Dial, R.J., Berg, E.E., Timm, K., McMahon, A., & Geck, J. (2007). Changes in the alpine forest-tundra ecotone commensurate with recent warming in southcentral Alaska: Evidence from orthophotos and field plots. *Journal of Geophysical Research: Biogeosciences*, *112*(G4), G04015

- Dufour-Tremblay, G., Lévesque, E., & Boudreau, S. (2012). Dynamics at the treeline: differential responses of Picea mariana and Larix laricina to climate change in eastern subarctic Québec. *Environmental Research Letters*, 7(4), 044038.
- Emanuelsson, U. (1987). Human influence on vegetation in the Torneträsk area during the last three centuries. *Ecological Bulletins*, 38, 95–111.
- Esper, J., & Schweingruber, F.H. (2004). Large-scale treeline changes recorded in Siberia. Geophysical Research Letters, 31(6), L06202.
- Frost, G.V., & Epstein, H.E. (2014). Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. *Global Change Biology*, 20(4), 1264–1277.
- Gamache, I., & Payette, S. (2005). Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. *Journal of Biogeography*, 32(5), 849–862.
- Gervais, B.R., & MacDonald, G.M. (2000). A 403-Year Record of July Temperatures and Treeline Dynamics of Pinus sylvestris from the Kola Peninsula, Northwest Russia. *Arctic, Antarctic, and Alpine Research*, 32(3), 295–302.
- Glukhova, E., Golubeva, E.I., & Kolupanov, N. (2011). Morphology and age structure of Larix gmelinii tree stands in the forest-tundra ecotone of Taimyr Peninsula and the Putorana plateau. In *Results and collaboration into the future: proceedings of the final workshop of Norway-Russia cooperation project BENEFITS*. Moscow, Russian Federation.
- Hantemirov, R.M., Surkov, A.Yu., & Gorlanova, L.A. (2008). Climate changes and overstory recruitment of larch at the northern timberline in the Yamal Peninsula. *Russian Journal of Ecology*, *39*(5), 305–309.
- Hofgaard, A., Rees, G., Hanssen, F., & Tømmervik, H. (unpublished). Unpublished data from Troms, Norway, and northwestern Sweden.
- Hofgaard, A., Tømmervik, H., Rees, G., & Hanssen, F. (2013). Latitudinal forest advance in northernmost Norway since the early 20th century. *Journal of Biogeography*, 40, 938–949.
- Holtmeier, F.-K. (2005). *Change in the timberline ecotone in northern Finnish Lapland during the last thirty years* (Reports from the Kevo Subarctic Research Station, pp. 97–113). Kevo, Finland: Kevo Subarctic Research Station.
- Holtmeier, F.-K., Broll, G., Müterthies, A., & Anschlag, K. (2003). Regeneration of trees in the treeline ecotone: northern Finnish Lapland. *Fennia International Journal of Geography*, *181*(2), 103–128.
- Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in Northern Finland, as revealed by monitoring during 1983-99. Arctic, 55, 348–361.
- Kapralov, D.S., Shiyatov, S.G., Moiseev, P.A., & Fomin, V.V. (2006). Changes in the composition, structure, and altitudinal distribution of low forests at the upper limit of their growth in the Northern Ural Mountains. *Russian Journal of Ecology*, *37*(6), 367–372.
- Kharuk, V., Ranson, K., Im, S., & Naurzbaev, M. (2006). Forest-tundra larch forests and climatic trends. Russian Journal of Ecology, 37(5), 291–298.
- Kirdyanov, A.V., Hagedorn, F., Knorre, A.A., Fedotova, E.V., Vaganov, E.A., Naurzbaev, M.M., ... Rigling, A. (2012). 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. *Boreas*, 41(1), 56–67.
- Kravtsova, V.I., & Loshkareva, A.R. (2009). Dynamics of forest-tundra vegetation in the northern part of Kola Peninsula in the context with climatic changes: investigation by multitemporal aerospace images. In *Proceedings of the 15th INTERCARTO-INTERGIS Conference* (Vol. 1, pp. 297–307). Perm, Russian Federation.
- Kravtsova, V.I., & Loshkareva, A.R. (2010). Changes of forest-tundra vegetation distribution in Kola Peninsula (Kanentiavr key site) (Abstract #822). Presented at the Oslo Science Conference, Oslo, Norway.
- Kullman, L. (1991). Ground Frost Restriction of Subarctic Picea Abies Forest in Northern Sweden. A Dendroecological Analysis. *Geografiska Annaler: Series A, Physical Geography*, 73(3–4), 167–178.

- Kullman, L. (1992). Climatically induced regeneration patterns of marginal populations of Pinus sylvestris in northern Sweden. *Oecologia Montana*, *1*(1), 5–10.
- Kullman, L., & Engelmark, O. (1991). Historical biogeography of Picea Abies (L.) Karst. at its subarctic limit in northern Sweden. *Journal of Biogeography*, 18, 63–70.
- Kullman, L., & Engelmark, O. (1997). Neoglacial Climate Control of Subarctic Picea abies Stand Dynamics and Range Limit in Northern Sweden. *Arctic and Alpine Research*, 29(3), 315–326.
- Kullman, L, & Öberg, L. (2009). Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. *Journal of Ecology*, *97*(3), 415–429.
- Lavoie, C., & Payette, S. (1994). Recent fluctuations of the lichen-spruce forest limit in Subarctic Quebec. Journal of Ecology, 82(4), 725-734.
- Lloyd, A.H. (2005). Ecological histories from Alaskan tree lines provide insight into future change. *Ecology*, 86(7), 1687–1695.
- Lloyd, A.H., & Fastie, C.L. (2003). Recent changes in treeline forest distribution and structure in interior Alaska. Écoscience, 10(2), 176-185.
- Lloyd, A.H., Rupp, T.S., Fastie, C.L., & Starfield, A.M. (2002). Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska. *Journal of Geophysical Research: Atmospheres*, 107(D2), ALT 2-1 ALT 2-15.
- MacDonald, G.M., Szeicz, J.M., Claricoates, J., & Dale, K.A. (1998). Response of the Central Canadian Treeline to Recent Climatic Changes. *Annals of the Association of American Geographers*, 88(2), 183–208.
- Mamet, S.D., & Kershaw, G.P. (2012). Subarctic and alpine tree line dynamics during the last 400 years in north-western and central Canada. *Journal of Biogeography*, *39*(5), 855–868.
- Masek, J.G. (2001). Stability of boreal forest stands during recent climate change: evidence from Landsat satellite imagery. *Journal of Biogeography*, 28(8), 967–976.
- Mathisen, I.E., & Hofgaard, A. (2011). Recent climate-tree growth relations at high latitudes and potential response to changed climate conditions. *Plant Ecology and Diversity*, *4*, 1–11.
- Mathisen, I.E., Hofgaard, A., & Söderström, L. (2013). Advancing and stationary Scots Pine populations, forced by different environmental gradients of the forest-tundra ecotone. In *Structure, dynamics and regeneration capacity of the sub-arctic forest-tundra ecotone* (Supplement III). Trondheim, Norway: PhD Thesis, NTNU.
- Mathisen, I.E., Mikheeva, A., Tutubalina, O.V., Aune, S., & Hofgaard, A. (2014). Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. *Applied Vegetation Science*, *17*(1), 6–16.
- Mazepa, V.S., & Devi, N.M. (2007). Development of multistemmed life forms of Siberian larch as an indicator of climate change in the timberline ecotone of the Polar Urals. *Russian Journal of Ecology*, *38*(6), 440–443.
- Normark, K. (2012). *The shift in forest and tree limits in Troms County with a main focus on temperature and herbivores.* (Diploma). Swedish University of Agricultural Sciences, Uppsala.
- Payette, S. (2007). Contrasted dynamics of Northern Labrador tree lines caused by climate change and migrational lag. *Ecology*, 88(3), 770–780.
- Payette, S., & Filion, L. (1985). White spruce expansion at the tree line and recent climatic change. Canadian Journal of Forest Research, 15(1), 241–251.
- Roush, W. (2005). Repeat photography interpretation, Sørdalen, Troms, Norway (Diploma). (unpublished).
- Scott, P.A., Hansell, R.I.C., & Fayle, D.C.F. (1987). Establishment of White Spruce Populations and Responses to Climatic Change at the Treeline, Churchill, Manitoba, Canada. *Arctic and Alpine Research*, *19*(1), 45–51.

Shiyatov, S.G. (2003, April). Rates of change in the upper treeline ecotone in the Polar Ural Mountains. *PAGES News*, pp. 8–10.

- Shiyatov, S.G., Terent'ev, M.M., & Fomin, V.V. (2005). Spatiotemporal dynamics of forest-tundra communities in the polar Urals. *Russian Journal of Ecology*, *36*(2), 69–75.
- Shiyatov, S.G., Terent'ev, M.M., Fomin, V.V., & Zimmermann, N.E. (2007). Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the polar Urals in the 20th century. *Russian Journal of Ecology*, *38*(4), 223–227.
- Simms, L.É., & Ward, H. (2013). Multisensor NDVI-Based Monitoring of the Tundra-Taiga Interface (Mealy Mountains, Labrador, Canada). *Remote Sensing*, 5(3), 1066-1090.
- Stöcklin, J., & Körner, C. (1999). Recruitment and mortality of Pinus sylvestris near the nordic treeline: the role of climatic change and herbivory. *Ecological Bulletins*, 47, 168–177.
- Stueve, K.M., Isaacs, R.E., Tyrrell, L.E., & Densmore, R.V. (2011). Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska Range. *Ecology*, *92*(2), 496–506.
- Suarez, F., Binkley, D., Kaye, M. W., & Stottlemyer, R. (1999). Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska. *Ecoscience*, 6(3), 465–470.
- Szeicz, J.M., & MacDonald, G.M. (1995). Recent white spruce dynamics at the subarctic alpine treeline of north-wetsren Canada. *Journal of Ecology*, *83*, 873–885.

Timoney, K., & Downing, D. (n.d.). Unpublished data from Central Canada.

- Tyukavina, A.Y. (2011). Development of image interpretation methods for research of tundra-taiga ecotone in Taimyr on the basis of satellite imagery of different resolution. (Diploma in Cartography). M.V. Lomonosov Moscow State University, Moscow, Russian Federation.
- Vaganov, E.A., & Shiyatov, S.G. (2005). Dendroclimatic and dendroecological studies in northern Eurasia. Lesovedenie, 2005(4), 18-27.
- van Bogaert, R., Haneca, K., Hoogesteger, J., Jonasson, C., De Papper, M., & Callaghan, T.V. (2011). A century of treeline changes in sub-arctic Sweden shows local and regional variability and only minor influence of 20th century climate warming. *Journal of Biogeography*, *38*, 907–921.
- Walker, X., Henry, G. H. R., McLeod, K., & Hofgaard, A. (2012). Reproduction and seedling establishment of Picea glauca across the northernmost foresttundra region in Canada. *Global Change Biology*, *18*(10), 3202–3211.
- Wilmking, M., Sanders, T.G.M., Zhang, Y., Kenter, S., Holzkämper, S., & Crittenden, P.D. (2012). Effects of Climate, Site Conditions, and Seed Quality on Recent Treeline Dynamics in NW Russia: Permafrost and Lack of Reproductive Success Hamper Treeline Advance? *Ecosystems*, 15(7), 1053–1064.