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Abstract

Inflammatory bowel disease (IBD) is a group of immune-mediated autoinflammatory disor-
ders, primarily manifesting in the gastrointestinal tract. Affecting millions of people around
the world, IBD has a severe impact on patients’ quality of life. Several pharmacologic
treatments have been available since the 1950s. However, the majority of patients either do
not respond to a given therapy or lose response to a previously effective treatment and thus
require therapeutic escalation.

In the first research chapter of my thesis, I describe the results of the Personalised Anti-
TNF Therapy in Crohn’s disease study. Immunogenicity to anti-TNF therapy is a major
cause of loss of response, hypersensitivity reactions, and discontinuation of treatment in
patients. Currently, immunogenicity cannot be predicted prior to treatment. My analysis
has identified a strong dominant association in the HLA region on chromosome 6 (HLA-
DQA1*05, P=5.9x10−13; HR=1.90; 95% CI, 1.60 to 2.25). Around 40% of individuals of
European ancestry carry HLA-DQA1*05, and the data suggest that around 95% of these
would develop immunogenicity within the first year of infliximab monotherapy treatment (a
common anti-TNF treatment regime).

In the second research chapter of my thesis, I describe a genome-wide association study
of thiopurine-induced liver damage (TILI). Ultimately, the study was underpowered to detect



vi

any associations of moderate effect size and did not detect any associations of high effect
size amongst the common genetic variants. Interestingly, I was not able to replicate the
association in PTPN22, which was reported to be a risk factor for drug-induced liver damage
by Cirulli et al. [39] – suggesting that its effect might be heterogeneous depending on the
therapy.

Finally, the third research chapter describes the initial analysis of the IBD 15x dataset
– a whole-genome sequencing association study of around 7,000 IBD patients paired with
12,000 matching controls. I provide an overview of the sample quality control procedures
and describe some of the novel challenges that sequencing studies bring in comparison to
standard GWAS (e.g., sample cross-contamination due to index mismatching). Finally, I also
provide the results of the initial meta-analysis of the exome-sequencing dataset produced by
the Broad Institute. The results demonstrate that rare coding genetic variants play a role in
IBD pathogenesis.
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Chapter 1

Introduction

Parts of this chapter were previously published as a review article in Annual Review of

Genomics and Human Genetics [164]

1.1 Common and rare variant studies of complex traits

1.1.1 Genome-wide association studies

Complex diseases are disorders that are caused by a combination of genetic, environmental,
and lifestyle factors. For decades, the central motivation of human complex disease genetics
has been to robustly identify genetic variants associated with disease risk. After a number of
false starts, a series of technical and methodological advances have enabled rapid progress
toward this goal. First, the International HapMap Project [84] revealed a globally shared
common genetic variation of single-nucleotide variants (SNVs) and described the detailed
local correlation patterns in such variation (known as linkage disequilibrium [LD]). Next,
genotyping microarrays made it possible to cheaply genotype hundreds of thousands (or
indeed millions) of common variant positions in a high-throughput manner. Finally, large
sample sizes were collaboratively assembled across a wide range of diseases and traits. These
factors came together a decade ago [190] to mark the beginning of an era of genome-wide
association studies (GWAS).
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Through steady application of the basic GWAS approach and rapidly increasing sample
sizes, there are now around 13,000 common genetic variants robustly associated with a
wide range of traits and diseases [33]. Despite this constantly growing list of hits, there has
been a great deal of discussion about how much clinical or biological insight GWAS have
provided [70]. Indeed, it has become clear that most human diseases have a dramatically
more complex genetic architecture than previously suspected, with at least hundreds if not
thousands of distinct, and subtle, genetic risk factors [27]. While it may be disappointing
that this problem is not simpler, the biological reality must be confronted if progress is to be
made on better treatment for disease.

One fundamental principle of GWAS is that, by design, they concentrate on common
variation. Genotyping arrays benefit from the widespread LD among common variants and
thus capture nearly all of the information contained in the approximately 10 million common
variants by directly measuring only 5% of that total [14]. Statistical techniques, such as
genotype imputation, allow the prediction of a large number of variants not directly measured
by genotyping arrays, although their accuracy for rare variation remains imperfect [120].
Therefore, the genetics community has eagerly anticipated technological developments that
would allow the rapid and affordable measurement of rare variation, in order to assess how it
can complement the information on common variants gleaned from GWAS.

1.1.2 Next-generation sequencing

Following the completion of the multibillion-dollar Human Genome Project [85] in 2003,
a series of new technologies collectively referred to as next-generation sequencing have
brought the price of sequencing a complete human genome down to the sub-$1,000 level. In
sequencing by synthesis, currently the most popular approach, millions of short reads (∼150
base pairs) are synthesised from template DNA fragments roughly randomly scattered across
the genome. These reads are aligned to the reference genome, and apparent differences are
identified and classified as potential sites of genetic variation. Individual reads often contain
errors, and the random sampling from the genome means that many regions will not be
covered from a set of reads whose total length equals the length of the genome. Thus, enough
reads are generated to cover the genome several times in order to achieve redundancy at each
site, and the ratio of total read length to target genome length is known as the sequencing
depth.
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The crucial advantage of sequencing over genotyping is the ability to detect and measure
any variant in an individual’s genome, rather than just the pre-specified few hundred thousand
common variants on a genotyping array. While both the chemistry and informatics required
to analyse sequence data are more complex, the ability to study rare variation offers new
potential insights that are hidden from the GWAS approach. The rapidly decreasing cost of
sequencing has now begun to make it possible to deploy this technique at the scale necessary
to conduct well-powered studies of rare variation in complex disease.

This section of the Introduction focuses on the intersection of these two stories, which
have previously been largely separate. As we are increasingly able to study the full range of
genetic variation, from rare to common, how can we best jointly analyse different types of
data to understand the genetic and biological basis of complex traits and diseases in humans?

I begin by describing the current GWAS interpretation approaches and methods in the
absence of rare variation in order to better understand the outstanding challenges. Next, I
consider the technical and statistical issues affecting the generation and analysis of informa-
tive rare-variant data. I then describe a variety of special study designs that may be especially
informative during the transitional phase, where sequencing is still 1–2 orders of magnitude
more expensive than genotyping. Finally, I consider the future outlook for joint analysis of
rare and common variation.

1.2 Current approaches to resolving genome-wide associa-
tion study signals

1.2.1 Statistical fine-mapping

One of the biggest challenges facing GWAS result interpretation is distinguishing between
causal variants and other variants that are correlated with them. Correlated variants may
show a statistically significant association but provide no insight into the underlying biology
of the condition or trait. Statistical fine-mapping techniques determine likely causal variants
by estimating the probability that each variant in a correlated set is causal relative to the
others in the set [174]. A Bayesian approach [119] was introduced to handle the simplest
case of a single disease outcome and a single causal variant (that is, one variant has a true
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biological effect, and association signals at all other variants in the region are due solely to
their correlation with that causal variant). As it has become apparent that this simple case is
often not true, this framework has been expanded to allow simultaneous testing of multiple
diseases and multiple independent causal variants at the same locus (physical region on a
chromosome) [82].

The fine-mapping tools described above require sample-level genotype data, which
can reduce their utility. For example, for many of the largest meta-analyses of complex
traits and diseases, no one individual has access to the sample-level data for all the cohorts
[113]. For this reason, several methods have been developed more recently that require only
summary statistics as input (e.g., effect sizes and p-values for every single-nucleotide variant)
[21, 37]. For signals with only a single causal variant, these approaches should produce
identical results, but fine mapping multiple causal variants from summary statistics adds two
complexities. First, exhaustive conditional analysis with a set maximal number of presumed
causal signals is computationally expensive. Newer methods, like FINEMAP [21], perform a
stochastic search, dramatically reducing the search time and thus allowing one to test whether
a signal is driven by multiple causal variants (e.g., exhaustive search in a region with 8,612
variants takes 300 years, while a stochastic search is completed in less than 30 seconds).
Second, this pseudoconditional analysis requires a pairwise matrix of LD, either from the
original GWAS (rarely available in practice) or from a reference panel like the 1000 Genomes
Project [1]. It is important that this LD reference matches the population ancestry of the
GWAS cohort and that it is large enough to provide sufficient precision in the LD estimates.
Benner et al. [20] showed that an LD matrix derived from 1,000 individuals is adequate for a
cohort of up to 10,000 individuals but performs poorly for a GWAS of 50,000 individuals
(which achieves very good accuracy when the LD is calculated from 10,000 individuals).

Obtaining matching LD matrices for biobank-sized or less frequently studied populations
may be challenging. This problem is more acute for rare-variant fine mapping. In principle,
owing to the low LD with neighbouring variants, rare variants should be easier to fine map,
but these variants may not be captured in the reference population or the precision of the LD
estimation will be low. The absence of LD information for the specific rare variant will make
it impossible to fine map it. This problem motivates the need for researchers to share LD
information alongside the summary statistics of the association studies that they perform.
Benner et al. ([20]) proposed LDstore, a tool for ‘efficient estimation, storage, and seamless
sharing of LD information’ to simplify this process. Summary-statistics repositories, like
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the National Human Genome Research Institute–European Bioinformatics Institute GWAS
Catalog [34], should provide the ability to deposit cohort-specific LD data.

1.2.2 Trans-ethnic association studies

A typical GWAS controls for population structure by either concentrating on samples of
similar genetic ancestry or including genetic principal components as covariates. However,
as cohorts with more diverse ancestry were genotyped and sequenced, it became possible to
use this population structure to perform meta-analyses that boost statistical power and help
to fine map causal variation.

Trans-ancestry studies rely on the assumption that causal variants will be shared across
different populations, while the differences in the patterns of LD provide greater discrimina-
tion between causal and non-causal variants [124]. The design of early genotyping arrays was
largely biased toward common variation present in European populations, making genotyping
of other populations incomplete. This problem is largely resolved in modern large genotyping
arrays, although other issues, like the lack of high-quality non-European imputation reference
panels and less precise resources for population allele frequencies, remain.

Successful application of the trans-ethnic association approach depends on two factors.
First, the sample size in different ancestries must be sufficiently large. For example, a well-
mixed analysis of type 2 diabetes [118] both found more signals and resolved causal variants
more precisely (23,553 individuals of European ancestry, 23,536 Japanese, 16,325 Hispanic
Americans, 8,224 African Americans). Second, the methodology must be appropriate to the
underlying shared or distinct genetic architecture across populations. A recent analysis in
type 2 diabetes [117] showed that meta-regression accounting for ancestry provides improved
fine-mapping resolution.

Trans-ethnic association studies fundamentally depend on shared causal variants across
populations. This means they are best suited to common variants that arose early in human
history and are therefore shared throughout the world. For this reason, trans-ethnic studies
have not implicated many rare variants, which are more likely to be evolutionarily recent and
hence population specific. Wang and Teo [188] pointed out that rare causal variants are in
low LD with neighbouring markers and therefore do not require trans-ethnic fine mapping.
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1.2.3 Regulatory target analysis

Even if statistical fine mapping can identify causal variants, it is still challenging to connect
that variant to the gene (or genes) underlying the association [174]. This problem is, of course,
straightforward if the implicated variant alters the amino acid sequence of a protein-coding
gene, but it is estimated that fewer than 15% of GWAS signals are driven by such missense
changes [43]. This has motivated a variety of different ways of trying to discover the genes
regulated by GWAS variants, collectively referred to as regulatory target analysis.

Despite the complexities of translating associations at a genomic locus into biological
knowledge, the arrival of regulatory annotation resources such as the Encyclopedia of DNA
Elements (ENCODE) and the Genotype-Tissue Expression (GTEx) database has enabled in
silico analyses that prioritise specific genes. Broadly, these analyses fall into two categories:
those that directly measure the effect of genetic variation on gene expression and those that
use functional genomics to connect regulatory elements (e.g., enhancers) to the genes they
regulate.

Genetic variation and gene expression

Genetic variants that explain a portion of the variance in expression of a gene are known as
expression quantitative trait loci (eQTLs). Local eQTLs (or cis-eQTLs) are typically within 1
Mb of the gene’s transcription start site, while distant eQTLs (or trans-eQTLs) can be much
farther from the transcription start site, sometimes even on a different chromosome [132]
(Figure 1.1). After protein-coding changes, GWAS variants that are eQTLs have the most
straightforwardly interpreted mechanism.

Public eQTL resources like the GTEx database provide tissue-specific gene expression
levels and genotypes from hundreds of donors (e.g., the v7 GTEx release contains data from
more than 600 donors and gene expression from 48 tissues, with at least 70 samples per
tissue) [75]. These data can be combined with GWAS outputs using statistical methods such
as COLOC [67] to test whether the same underlying variant likely to be causal for with both
disease risk and gene expression. rather than two different variants in LD with each other,
one of which is associated with disease, the other with gene expression. This is important
because eQTL variants are ubiquitous, and mere physical proximity to a GWAS signal is not
strong evidence that the two are related [38].
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Figure 1.1 When a genetic variant affects the quantitative level of expression of a gene, it is

known as an expression quantitative trait locus (eQTL). The majority of known eQTL are

caused by variants very close to the affected gene (‘cis eQTL’), often in the promoter. In rarer

cases a variant can affect expression of a distant gene (‘trans eQTL’), even on a different

chromosome, either indirectly through modification of a local gene (top arrow) or through an

unknown mechanism (bottom arrow).

Computational methods like FUSION [76] and PrediXcan [64] leverage the data from
GTEx or study-specific expression data to perform transcriptome-wide association studies.
FUSION uses GWAS summary statistics to perform a gene-based association test of expres-
sion in a specific tissue. As with fine-mapping tools, transcriptome-wide association studies
require accurate LD reference data. The output of a transcriptome-wide association study
indicates whether the specific genes are predicted to be over- or underexpressed in affected
individuals. One of the limitations of FUSION and other summary-statistics methods is the
inability to make inferences based on rare-variant data owing to their poor capture by the
LD reference panels. PrediXcan works with individual-level genotype data and therefore in
principle is able to include rare variants in the estimates. However, Gamazon et al. [64] noted
that larger and denser training data sets will be necessary to achieve accurate prediction from
rare variants.

Functional genomics and regulatory connections

While using eQTLs is the most direct approach to proving that a specific variant regulates
a specific gene, there are drawbacks. Most importantly, using eQTLs for regulatory target
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analysis requires that there exists a sufficiently large eQTL data set in the population and
tissue or cell type where the variant is acting. When such a data set is not available, a
variety of functional genomics tools can be used to try to resolve the potential function of the
associated variant.

The relevant functional genomics assays can be broadly classified into two groups. First
are the chromatin conformation assays, which detect physical contacts between different
positions in the genome [74]. In the context of GWAS resolution, these data sets can be
used to demonstrate, for example, that a disease-associated variant outside of a gene body
physically interacts with a promoter (as would be expected if the variant is in an enhancer, for
example). Second are methods that use cell-specific measurements of chromatin openness
(e.g., via assay for transposase-accessible chromatin using sequencing (ATAC-seq) [32])
to prioritise variants that are more likely to be available to the regulatory machinery in
disease-relevant tissues and cells. A statistical method [146] has been proposed that builds
upon the Bayesian frameworks described above by adjusting prior probabilities for individual
variants based on such chromatin openness maps.

1.3 Using rare variants to resolve genome-wide association
studies

How are rare variants helpful in resolving the role of GWAS signals? If a disease decreases
reproductive fitness, like a neurodevelopmental disorder or an autoimmune disorder with
early onset, then any variant that strongly affects disease risk is kept at a low frequency by
negative selection. Rare variants also tend to have occurred more recently in human history
than common variants, which means that they have fewer other variants in LD with them.
Together, these two factors mean that rare variants are potentially more easily interpretable
than the common variants discovered by GWAS. The challenge arises in measuring and
statistically analysing them.
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1.3.1 Measuring rare variation

High-depth whole-genome sequencing is the most comprehensive approach for measuring
rare variation across the genome. However, at present, its application is limited by the costs
and various computational challenges, especially for large-scale cohorts. Techniques such as
genotype imputation, targeted sequencing, and whole-exome sequencing are cost-effective
alternatives, although each has drawbacks in terms of accuracy or scope.

Genotyping and genotype imputation

Modern genotyping arrays capture 200,000–2,000,000 variants across the genome. Owing
to the limited number of single-nucleotide variants that an array is able to genotype, the
absolute majority of these variants are common. This makes raw genotyping data poorly
suited for rare-variant studies. Perhaps the most straightforward means of measuring rarer
variants is to extend this existing GWAS paradigm.

Imputation is a statistical technique that allows one to infer variants that were not directly
genotyped. Imputation relies on reference panels that have been more completely sequenced,
with modern services that are able to impute tens of millions of sites across the entire genome
based on a much sparser GWAS backbone. For dense genotyping arrays, imputation is
able to predict nearly all missing common variation with high accuracy. As the variant
minor allele frequency (MAF) decreases, so does the accuracy of imputation. A common
practice is to exclude imputed variants with MAF < 1% (i.e., rare variants) from the GWAS
genotype dataset. The authors of the Haplotype Reference Consortium imputation panel
showed that the aggregate r2 for imputed sites is approximately 0.85 for MAF=1% and 0.5
for MAF=0.05% [120]. The accuracy of imputation for individuals of non-European ancestry
is lower owing to the current lack of large-scale ethnically diverse reference cohorts. While
future panels will be able to address this issue, researchers should be cautious about the
imputation quality of rare and low-frequency variants in non-European samples.

Genotype imputation is likely to remain a valuable tool, even as the cost of sequencing
decreases. The abundance of existing genotyping data (e.g., 500,000 genotyped individuals in
the UK Biobank) drives the demand, and the ever-improving reference panels will gradually
increase the accuracy. Nonetheless, the accuracy of imputation remains poor for truly rare
variants (below, say, 0.05%), meaning it cannot completely supplant direct sequencing.
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Targeted sequencing

The earliest forays into directly sequencing rare variants for disease association studies used
targeted sequencing to reduce costs. Instead of sequencing the whole exome or genome, a
small fraction of the genome could be prioritised based on prior knowledge. Targeted studies
of common variation in candidate genes were often criticised for poor replicability and were
largely surpassed by GWAS. However, the findings of GWAS themselves can be used as
much more plausible hypotheses for targeted sequencing studies of rare variants. Targeted
sequencing offers a cost-effective alternative to whole-genome and whole-exome sequencing,
as it provides a full-resolution view of the regions of interest, including the ability to study
rare variation, at a fraction of the price of WES.

There have been several successful applications of this approach, especially in the context
of immune disease. Nejentsev et al. [128] used a targeted approach to sequence 10 diabetes-
implicated genes, discovering four protective rare variants in IFIH1 – a gene previously
associated with type 1 diabetes via GWAS. Similarly, Rivas et al. [154] used targeted
sequencing of 759 protein-coding genes that carry common variants previously associated
with inflammatory bowel disease. Analysis of targeted sequences, alongside a whole-exome
sequencing cohort, identified three protein-truncating variants, one of which (rs36095412,
p.R179X), in RNF186, was significantly implicated in a follow-up analysis as protective
against ulcerative colitis. The variant was replicated in genotyping and whole-genome
sequencing data sets. The authors performed functional analysis and demonstrated that the
variant is associated with reduced expression and altered subcellular localisation. Protective
loss-of-function variants like p.R179X could be used as therapeutic targets, highlighting the
value of rare-variant studies.

Targeted sequencing can also be used to investigate noncoding rare variants. Zhao et al.
[197] used targeted sequencing to study 2-kb promoter regions in 410 healthy adults. The
authors measured transcript abundance from peripheral blood samples using gene expression
arrays. Using a burden test that evaluates the distribution of cumulative counts of rare variants
in bins of expression, they observed a significant increase in the number of low-frequency and
rare variants (MAF < 5%) at both high and low extremes of gene expression. They noted that
the average effect size of individual variants is modest and is comparable to that of common
disease-associated eQTLs. They also replicated the main findings using a smaller cohort of
75 individuals, for whom whole-genome sequencing and RNA sequencing was performed.
The results were partially validated by CRISPR/Cas9 knockdowns in K562 cells. DeBoever
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et al. [51] used whole-genome sequencing and RNA sequencing to study 215 human induced
pluripotent stem cell lines and similarly observed an enrichment of single-nucleotide variants
in promoter regions, with most single-nucleotide variants having a small negative effect on
gene expression.

Whole-exome and whole-genome sequencing

As the price of sequencing has fallen, the potential cost saving of targeted sequencing
has become outweighed by the benefits of hypothesis-free analyses of rare variation using
whole-exome or whole-genome sequencing. These very large data sets have necessitated
the development of efficient computational analyses to convert raw sequencing data into
high-quality variant calls. Variant calling is used to detect variation at each locus compared
with the reference genome and to determine the genotype of each individual (homozygous
reference, heterozygous, or homozygous alternate). Algorithms for calling single-nucleotide
variants, short insertions and deletions, and structural variants are implemented in a variety of
software suites, such as the Genome Analysis Toolkit (GATK) [121], SAMtools [107], and
Platypus [153]). Sets of called genotypes go through a variety of quality control filters, such
as GATK’s variant quality score recalibration (VQSR), to estimate the likelihood of a specific
variant being ‘true’ by comparing its statistical properties to cohort-specific properties of
known true sites (e.g., using variants found during the International HapMap Project as
a truth set). Variants with low VQSR scores are typically excluded from further analysis.
Alternative approaches based on random forests [116] and convolutional neural networks
[148] exist. The final clean variant set is ready for association analyses, although in practice
quality control is iterative: Elevated p-values on quantile–quantile plots and artifacts on
Manhattan plots should motivate researchers to perform additional quality control.

The major experimental factor in the overall quality of the variant call set is sequencing
depth. In practice, the cost of sequencing is almost linearly proportional to the sequencing
depth (the small cost of DNA library preparation is constant), which makes sequencing at
lower depth an appealing alternative. Lower depth leads to reduced sensitivity and higher
false positive rates. Through computational simulations, Rashkin et al. [152] showed that
on a per-sample basis the sensitivity to call single-nucleotide variants plateaus at 25x depth.
However, reduced depth may enable researchers to sequence a larger cohort, increasing
the overall statistical power to detect genetic associations. In their simulations, given a
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fixed budget for sequencing, the maximal power to detect rare single-nucleotide variants is
achieved at 15–20x depth, while maximising the size of the sequenced cohort.

Exon

Exon

IntronWhole-genome
sequencing Intergenic

region

~2%

Whole-exome
sequencing

BarrettFig02.pdf   1   5/2/18   1:38 PM

Figure 1.2 Whole genome sequencing captures all genetic variation, whereas exome se-

quencing targets the 2% that encodes proteins.

Gilly et al. [68] evaluated very-low-depth sequencing at 1x as an alternative to dense
array genotyping. They estimated the sequencing cost to be half of that for genotyping with
a modern dense genotyping microarray. After genotype refinement with a custom imputation
panel that included approximately 250 population-specific samples, low-depth sequencing
achieved 97% concordance with the array data. More importantly, after imputation, low-depth
whole-genome sequencing data had denser coverage of low-frequency and rare variation.
However, the authors pointed out that performing variant calling and imputation is more
computationally expensive in whole-genome sequencing than in genotyping, even at 1x
depth. Understanding the trade-off between sample size and depth is essential for designing a
rare-variant association study, and this trade-off should be considered when performing power
calculations. It is also important to remember the higher false positive rate of lower-depth
sequencing, which should motivate a thorough manual validation of discovered associations.

The two comprehensive sequencing approaches in widespread use are to sequence the
whole genome in a completely agnostic way and to target the approximately 2% of the
genome in exons that encode proteins, known as whole-exome sequencing. Whole-genome
sequencing is the gold standard for performing rare-variation association studies, but the cost
per sample remains much higher compared with genotyping and exome sequencing. Whole-
genome sequencing allows the investigation of rare and common variation in both coding and
noncoding regions of the genome (Figure 1.2). The main advantages of exome sequencing
are the reduced cost (approximately one-third the cost of whole-genome sequencing in 2019)
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and the reduced computational burden required to process the data. Additionally, the highest
effect-size associations are likely to be found within the exonic regions, justifying the use of
WES for studies with small sample size, underpowered to find modest effect-size associations.
The obvious drawback is the absence of variants in the noncoding regions, which may be
especially relevant in the context of GWAS.

One of the issues facing exome sequencing is that the targeting of exonic sequence is
imperfect. Mitigating this problem and ensuring good sensitivity and specificity for variant
detection requires higher sequencing depth compared with whole-genome sequencing. For
example, to sequence 85% of targeted bases at a depth of 20x or greater, the mean sequencing
depth must be approximately 60x [28]. In addition, various protocols target slightly different
parts of the genome, which needs to be controlled for when samples in a given analysis have
used different protocols; studies that use public data sets as controls in a case–control setting
should consider whether their protocol is sufficiently similar to the one used in controls.

Given these drawbacks, how useful is exome sequencing for understanding GWAS
regions? It is an appropriate study design choice for conditions that have a known contribution
of variants in coding regions (e.g., psychiatric and neurodevelopmental disorders) but may
be less suitable for traits where the absolute majority of known variation is in noncoding
regions (e.g., height). For example, Singh et al. [169] discovered that rare loss-of-function
variants in SETD1A are associated with schizophrenia and severe developmental disorders.
Subsequent analyses of those data showed that a more general burden of rare, damaging
variants in patients who suffer from schizophrenia is concentrated in genes that have also
been implicated in schizophrenia GWAS [170, 142]. By contrast, a large exome sequencing
study in type 2 diabetes found only a modest contribution of rare coding variants [63].

1.3.2 Testing for statistical association with rare variants

Rare-variant association studies pose a number of statistical challenges. While the GWAS
methodology can still be used, the smaller sample sizes and the intrinsic infrequency of rare
variants have motivated the development of methods for variant grouping.
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Figure 1.3 One-stage association study power calculations for single-variant tests using

the method described by Johnson et al. [88]. (a) Power to detect common (disease allele

frequency = 0.25), low frequency (0.025), and rare (0.0025) with genotype relative risk of

1.5 at 5×10−8 significance level. (b) Smaller-scale studies are should be well-powered to

uncover large-effect semi-Mendelian variants with 1% MAF, but hundreds of thousands of

samples will be required to implicate rare low-effect size variants (OR = 1.25), similar to

those often found through GWAS.

Single-variant tests

Standard GWAS statistical tests, such as linear or logistic regression, can be applied to
individual rare variants. The challenge, however, is that statistical power to detect association
is directly proportional to MAF. Implicating a particular rare variant therefore requires it to
either have a very large effect size or be tested in a very large number of samples. While
previous association studies have successfully associated single variants that are rarer than
typical GWAS variants with complex disease [116], detecting single-variant association with
truly rare variants will require enormous sample sizes (Figure 1.3).

Another important caveat to consider when performing single-variant association tests
for rare-variant studies is the genome-wide significance threshold. For common variant asso-
ciation studies, a threshold of 5×10−8 was adopted by the genetics community (Bonferroni
correction for the number of LD-independent common variants in the genome at α=0.05).



1.3 Using rare variants to resolve genome-wide association studies 15

When additionally testing low-frequency and rare variants, the threshold should be adjusted
to correct for the increased number of LD-independent variants. Through simulations, Pulit
et al. [150] estimated that sequencing studies with fewer than 2,000 samples should use
a genome-wide significance threshold of 5×10−9 for samples of European and East Asian
ancestry and 1×10−9 for samples of South Asian and African ancestry.

Burden tests

The primary approach used to date to overcome the lower power of single-rare-variant testing
has been to collapse multiple variants into a single test of the burden of that class of variants.
This both increases the effective frequency of the event being tested (and thus increases
power) and reduces the number of tests performed (and thus relaxes the multiple-testing
corrected significance threshold). A drawback of variant aggregation methods is the inability
to pinpoint the specific variants associated with the disease. There are several approaches for
aggregate testing of variants, broadly divided into methods for studying coding variation and
methods for studying noncoding variation.

The most biologically informed group of variants for variant aggregation is based on
the genes they belong to. In their simplest form, burden tests count the number of minor
alleles in rare variants present within the defined region. Within genes, variants may be
weighted by MAF (inversely proportional) or by the predicted function of the variants (e.g.,
missense, nonsense, and silent mutations). Often this takes the form of performing multiple
tests per gene, such as including all nonsynonymous variants, just nonsense variants, or each
group at different maximum MAF thresholds. For each set of gene-based tests, an accepted
genome-wide significance threshold is 2.5×10−6 (Bonferroni correction for approximately
20,000 genes).

The main drawback of classic burden tests is the assumption of a unidirectional effect
of individual variants collapsed into the same group. In cases where individual variants
are expected to have different directions of effect (i.e., some risk increasing and some
protective), adaptive burden tests like aSum can be used [78]. Variance-component tests
perform association by measuring the distribution of effects in a group of variants. Unlike
standard burden tests, variance-component tests like C-alpha [126] and the sequence kernel
association test (SKAT) [191] are not prone to loss of power owing to bidirectional effects of
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variants in the group. They are also less sensitive to the inclusion of noncausal variants into
the group, allowing relaxation of the MAF cutoff.

To maximise statistical power, burden tests should be utilised when the effects in the
group of variants are unidirectional and most of the variants in the group are thought to be
causal. In cases when these assumptions do not hold up, variance-component tests should be
used. When the genetic architecture of the trait is unknown, combined omnibus tests like
the adjusted optimal sequence kernel association test (SKAT-O) should be used. Adjusted
SKAT-O simultaneously performs both the burden test and the SKAT test and searches for an
optimal way to combine those two statistics.

While collectively testing rare nonsynonymous variation in a particular gene makes
biological sense and is especially attractive when leveraging the efficiency of the exome
design, the majority of common variants implicated in GWAS are noncoding. It is reasonable
to assume that functional noncoding rare variants will play a role in the same diseases, albeit
possibly with smaller effect sizes than rare coding variants. Currently, the largest existing
whole-exome and whole-genome association studies have tens of thousands of samples –
only sufficient for implicating individual rare variants of large effect size. This motivates the
development of collapsing tests for noncoding rare variation. Unfortunately, the lack of clear
functional groupings (i.e., genes) makes the process of grouping noncoding variants together
less straightforward.

Window-based techniques simply group adjacent variants for association testing. The
distinct window approach separates them into sequential nonoverlapping regions, while the
sliding window technique produces overlapping groups where each window starts with a
small offset from the beginning of the previous one (Figure 1.4). The sizes of the window
and the offset are typically a few kilobases. Deciding on the precise window size is nontrivial:
Very small windows are effectively equivalent to single-variant testing owing to the required
number of corrections, while large windows may be too noisy because they include too
many variants. In addition, considering the variability of the recombination rate and LD
across different regions of the genome, it is hard to tell whether fixed-sized windows are
‘biologically meaningful’ regions [18]. Several techniques for selecting the optimal window
size or varying the windows across the genome have been proposed. Browning’s [31]
variable-length Markov chain method accounts for the LD pattern between markers. Li et al.
[108] used haplotype diversity to estimate the maximum size of the window. Tang et al. [178]
proposed a technique based on principal component analysis, which does not require the
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Figure 1.5 Promoters and enhancers can be used to group non-coding variants, but with less

precision than genes.

input data to be phased. Beissinger et al. [18] created a spline-based method that determines
the boundaries and variable sizes for windows without requiring prior knowledge of the LD
structure.

Functional annotation databases, such as ENCODE [59], can be used to group noncoding
variants in an analogous way to genes (Figure 1.5). Natarajan et al. [125] used functional
annotations to determine noncoding regions marked as enhancers and promoters. The
same study used gene expression data from the Roadmap Epigenomics Project [22] and
a chromatin-state model to connect regions annotated as enhancers to the relevant genes.
The same approach could be extended to use all of the techniques discussed above for
regulatory target annotation in GWAS, demonstrating that methodological development in
common-variant association will be useful for understanding rare variation as well. These
approaches have not yet been successful at identifying noncoding rare-variant associations,
but as the functional annotation databases improve, more noncoding regions will be able to
be consistently grouped.

Currently, growing exome sequence data sets are likely to provide the most information
about decoding GWAS signals, even though many of the causal variants in GWAS themselves
are noncoding. This is because current exome sample numbers are larger than those for
whole genomes, and there are demonstrably successful approaches to grouping variants that
improve the power to test for association. Of course, this approach can work only where the
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same locus is influenced by both rare coding variants and common noncoding variants; it
is not known what fraction of all GWAS signals have this property. It will be important to
develop better databases of noncoding function and to increase the number of sequenced
whole genomes available for analysis.

1.3.3 Special study designs in the sequencing era

Most of this chapter has focused on genetic studies of unrelated individuals, either in a
case–control design or a quantitative trait design. While these approaches have been the
workhorse for the GWAS approach, the field of human genetics has a long history of more
creative study designs that are being revisited in the era of low-cost sequencing.

Families and population isolates

Studying extended families with multiple individuals with a shared phenotype led to the
discovery of genetic causes of hundreds of single-gene disorders, such as CFTR in cystic
fibrosis, and a small number of high-penetrance variants for more complex diseases, like
BRCA1 in breast cancer. Whereas these studies first identified where in the genome the rele-
vant gene is (via linkage analysis) and then sequenced only that portion, modern sequencing
approaches mean that the whole genome or exome can be studied in such families. One such
study in a very large inflammatory bowel disease pedigree [105] identified an associated
frameshift mutation in CSF2RB, as well as a more general burden of GWAS risk variants in
the family.

The founder effect in isolated populations provides an opportunity to uncover rare trait-
associated genetic variants, that have risen to higher allele frequencies due to drift, in modestly
sized cohorts. For example, Southam et al. [173] used whole-genome sequences of 250
individuals from two remote villages in Crete to build a population-specific reference panel.
The panel was used to refine imputed genotypes of a larger cohort of 3,200 individuals. They
were able to uncover two low-frequency cardiometabolic variants (effect allele frequencies
= 0.6% and 1.3%) that were much more frequent in the founder populations compared to
the rest of Italy. Tachmazidou et al. [177] uncovered an association between a variant in
APOC3 and several cardioprotective endophenotypes. The variant, R19X, is common in the
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studied remote Greek population (N=1,267, MAF≈2.3%) but rare in the overall European
population (MAF=0.035%).

Biobanks and risk prioritisation

Large, richly phenotyped cohorts, such as those in the UK Biobank, have enabled sweeping
association studies of thousands of traits for hundreds of thousands of genotyped individuals.
The power to detect rare variants in case–control and quantitative trait studies relies on
the availability of large cohorts. While the cost of genotyping and sequencing is rapidly
decreasing, it remains prohibitive in these types of large studies. At the same time, assembling
large cohorts is challenging and time consuming.

One way to use biobanks is via polygenic risk score (PRS), which is a sum of condition-
associated signals weighted by their effect size. PRS can be used to estimate the genetic
component of an individual’s disease risk. Jostins et al. [91] argued that individuals with
known disease status and low PRS should be prioritised for recruitment into new rare-variant
studies. A low PRS may be explained by previously undiscovered risk factors that drive the
disease. PRS calculation requires the availability of genotype data for considered samples.
The technique increases the power to uncover novel genetic variants compared with random
selection.

While previously separate, the worlds of GWAS and rare-variant sequencing studies are
now clearly intertwined. Some of the biggest challenges with GWAS interpretation, such
as the resolution of causal variants, can be partially resolved by the careful incorporation of
rare-variant data. Similarly, both methodological and biological discoveries in GWAS can
inform best practices in the growing field of rare-variant studies.

1.4 Inflammatory bowel disease

Inflammatory bowel disease (IBD) is a group of immune-mediated auto-inflammatory disor-
ders, primarily affecting the gastrointestinal (GI) tract. Crohn’s disease (CD) and ulcerative
colitis (UC) are the two most common types of IBD. Affecting millions of people around the
world, IBD has a severe impact on patients’ quality of life in the prime years of their lives.
Neither CD or UC are currently curable and both require life-long treatment to alleviate
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symptoms. While IBD-tailored pharmaceutical therapies have existed since the early 1950s,
the majority of patients eventually stop responding to a given treatment or never respond
to it in the first place, which requires further therapy escalation. Due to therapy failure,
around 70% of CD patients and 20% of UC patients eventually have to undergo life-changing
surgical intervention.

The pathogenesis of IBD is not fully understood. Epidemiological factors like smoking,
urban lifestyle, and westernised diet have long been associated with the risk of IBD. Physio-
logical phenomena like the ‘leaky gut’ (increased intestinal permeability) are thought to play
a role in the development of IBD. Despite the abundance of known risk factors and potential
mechanistic hypotheses, none have been proven to be the be-all and end-all explanations of
the condition.

1.4.1 Manifestation

Both CD and UC are characterised by chronic inflammation, which eventually results in
damage to the GI tract. The two conditions differ in the way the inflammation manifests
itself: CD can affect most of the GI tract, though usually is restricted to the small intestine;
UC affects the colon or the rectum (Figure 1.6). Crohn’s inflammation is ‘patchy’ with
inflamed regions neighbouring areas of unaffected tissue, while inflammation in UC is more
continuous. CD inflammation often spreads throughout several layers of the gastrointestinal
wall, while in UC the inflammation is restricted to the the topmost layer of the wall – the
colonic mucosa.

5–23% of IBD patients cannot be unambiguously diagnosed with either UC or CD, as
their macroscopic and histologic features can be attributed to either of the two conditions.
This condition is referred to as IBD-unclassified (IBD-U). While some of the patients are
eventually reclassified and diagnosed with one of the two classic IBD sub-types as the disease
progresses, 20–60% retain the IBD-U status years and decades after the initial diagnosis [99].

Despite the phenotypic differences, UC and CD are known to have similar genetic
architecture (genetic correlation, rG=0.68 [87]), with the majority of known significant
genetic associations having a similar effect in both conditions. Recently, genetic correlations
were used to demonstrate that IBD may be appropriate to reclassify as three distinct conditions
– ileal Crohn’s, colonic Crohn’s, and ulcerative colitis [40].
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Figure 1.6 Crohn’s disease and ulcerative colitis are two common types of inflammatory

bowel disease which differ in patterns and location of inflammation. License information:

Modified work, derivate of File:Patterns of Crohn’s Disease.svg by Samir, vectorized by

Fvasconcellos [CC BY-SA 3.0]

Very early onset IBD (VEO IBD) is another related condition that manifests very early in
the patient’s life. Due to its rarity (2.2–13.3 in 100,000), the pathogenesis and the genetic
architecture of VEO IBD is poorly understood. The disease is thought to be frequently mono-
genic, compared to the complex, polygenic paediatric and adult-onset IBD. When considering
the difference in disease architecture, progression and the common non-responsiveness of
VEO IBD patients to the typical IBD treatments, it is sometimes argued that VEO IBD is a
distinct disorder that should not be grouped together with other IBD sub-types [168].

While the IBD type classification is an active area of research, clinically either the binary
(UC/CD) or the ternary systems (UC/CD/IBD-U) are used to diagnose adult-onset patients.
Throughout this thesis, I will use the ternary system when discussing the IBD sub-types.

Excluding the VEO-IBD patients, the peak age of onset of IBD is around 15–29 years old
[89]. Some studies suggest that the age of onset is bi-modal with the second peak occurring
at the age of 50–70, though this is not observed in some comparable cohorts with stricter
inclusion criteria [52].
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In addition to chronic inflammation, UC and CD share a number of other symptoms:
severe abdominal pain, diarrhoea, weight loss, and chronic fatigue. These, along with some of
the treatment side effects (e.g., increased infection rates due to immunosuppressant therapy)
have a severe impact on most patients’ quality of life.

1.4.2 Epidemiology

Prevalence and incidence

IBD affects millions of people globally. The disease incidence is population-specific and is
thought to depend on environmental and genetic factors.

In Western countries, the rates of IBD have been steadily rising since around the 1850s.
Globally, the increase in prevalence has been associated with westernisation of diet and
lifestyle, starting in the 1950s [94].

A recent large-scale meta-analysis by Ng et al. (2017) [130] estimates that the prevalence
of inflammatory bowel disease exceeds 0.3% in North America, Oceania, and many countries
in Europe, though the global rates are thought to be lower. Looking at the historical data,
authors estimate that the incidence is stabilising or potentially getting lower in the West, yet
is still rising in the newly industrialised countries in Africa, Asia, and South America.

However, the recent work by Jones et al. (2019) [90] utilising data from the Lothian
IBD Registry (Edinburgh, Scotland, UK) estimates the current prevalence to be 0.78% and
predicts that it will increase up to 1% by 2028. Compared to the previous comprehensive
UK-wide estimate of 0.37% from Stone et al. (2003) [175], it appears that the prevalence of
IBD is still rising in some Western countries.

1.4.3 Disease aetiology

Environmental factors

The rise in IBD rates has been strongly associated with the industrialisation and urbanisation
in both the Western and the newly industrialised countries [94]. A population-based study
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of Canadian immigrants demonstrated that the age of immigration is negatively associated
with the risk of IBD (14% increased risk per earlier decade of life at immigration) [19]. A
meta-analysis of IBD incidence rates between rural and urban environments indicated that
urban residents have a higher risk of developing IBD (incidence rate ratio UC=1.17 and
CD=1.42) [171]. However, inclusion of rural cohorts from low-incidence regions might limit
the generalisability of the study [2].

Diet and lifestyle

Despite the evident role of Westernisation as a risk factor for IBD, the exact factors influencing
the pathogenesis are not well-understood.

Smoking is one of the most-studied lifestyle risk factors for IBD. Most epidemiological
studies have consistently associated smoking with an increased risk of Crohn’s disease [36].
Paradoxically, non-smokers and ex-smokers appear to have a higher risk of ulcerative colitis
[36], though the evidence for this is arguably weaker.

At the same time, while the rates of smoking have been reducing in the Western countries
since around the 1980s, the rates of Crohn’s disease have grown. Moreover, a comparison
of risk factors between Australia and eight newly-industrialised counties in Asia concluded
that smoking quadruples the risk of Crohn’s disease in Australia, yet was not a risk factor
amongst the newly industrialised countries [131, 93].

The ‘hygiene hypothesis’ links greater urbanisation with decreased exposure to microbes
in early life, resulting in abnormal bacterial recognition that leads to IBD. Kondrashova et
al. compared the prevalence of transglutaminase antibodies and coeliac disease amongst
children in Russian Karelia and Finland. The neighbouring locations largely share the same
population history, yet differ in socioeconomic environment [101]. The Finnish cohort had
a higher rate of antibodies and disease prevalence, consistent with the hygiene hypothesis.
However, while coeliac disease is also an immune-mediated disorder, it is not clear whether
the findings can be directly applied to IBD. In fact, a study by Ng et al. indicates that
the presence of a hot water tap and flush toilet in childhood were protective against UC
development [131].

Dietary preferences have been linked to a risk of inflammatory bowel disease. Anan-
thakrishnan et al. reported an association between higher intake of dietary fibre and lower
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risk of Crohn’s disease [6]. In [5], the authors report a tentative association between trans-
unsaturated fats and risk of ulcerative colitis.

As with the majority of epidemiological studies, establishing the causality between diet
and lifestyle, and the outcome (i.e., IBD) remains challenging. Many of the epidemiologic
risk factors tend to have contradicting effect (or absence of thereof) in different studies.
Techniques like Mendelian Randomisation (MR), which use genetic variants as natural
experiments, might be useful in verifying the causality of the factors. For example, Lund-
Nielsen et al. recently reported the absence of evidence for a causal effect between vitamin
D deficiency and development of IBD [115]. Projects like the UK IBD BioResource and
PREdiCCt, which aim to create large cohorts of IBD patients along with their genetic
information and lifestyle questionnaires, will be instrumental in enabling such studies.

1.4.4 Therapies and treatment options

The heterogeneity of IBD manifestation and progression makes treatment choices for IBD
nontrivial. A variety of IBD therapies exist, yet the choice of therapy is often made difficult
by the lack of sufficient head-to-head efficiency comparison studies. For the majority of the
treatments, there is a trade-off between drug efficacy and toxicity – more effective therapies
(e.g., anti-TNF) have more side effects and have a larger burden on the patients’ quality of
life. In addition, disagreement exists on the way the treatment should be escalated.

The ‘treatment pyramid’ (Figure 1.7) is often used to describe the most common thera-
peutic algorithm in the UK. At the bottom of the pyramid are the relatively safe treatment
choices (e.g., antibiotics and 5-aminosalicylic acid [5-ASA]) while at the top are the more
severe or toxic, yet effective, options (e.g., mono- or combination therapy with biologics).
Conventionally, the treatment would get escalated from the safer options to the more severe
ones after the patient stops responding to the current ‘level’ (step-up approach).

More recently, some practitioners have argued for the adoption of the top-down approach
– where the more aggressive, yet more effective treatments are prescribed soon after the
initial diagnosis. Early treatment with more radical treatments is thought to prevent the GI
damage that occurs when a patient’s current (milder) therapy stops preventing flareups.
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Figure 1.7 IBD treatment pyramid. Adapted from Aloi et al. [4]. Step-up approach starts

with milder, less toxic therapies. Top-down approach prioritises early aggressive treatment

(e.g., with biologics).

While there are some studies demonstrating that the top-down approach might be more
beneficial for patient outcomes (e.g., [53]), there is no definitive study demonstrating its
overall advantage.

In some cases, combination therapy of several types of drugs is prescribed to the patients.
For example, anti-TNF therapy (biologic) is frequently combined with immunomodulators
like the azathioprine to reduce the risk of anti-drug antibody development [96].

1.4.5 Genetic component of inflammatory bowel disease

Inflammatory bowel disease is known to have a strong genetic risk component: early twin
and family studies have demonstrated high heritability of the disease (>60%). Following
these, linkage studies uncovered the role of the NOD2 gene in the disease risk. Despite
the high effect size, the uncovered variants explained only a small fraction of the expected
total heritability, suggesting that the disease is not monogenic. The arrival of affordable
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genome-wide genotyping arrays around 10 years ago has enabled large-scale genome-wide
association studies (GWAS).

Arguably, IBD has become one of the most well-studied conditions, with more than 240
loci currently implicated as disease risk factors. One of the most interesting findings of the
GWAS era in IBD genetics is the unequivocal demonstration of the disease complexity –
the known risk loci are associated with a broad variety of biological functions ranging from
immune activation and defective barrier function to bacterial recognition and cell signalling.

Moreover, IBD has been shown to have non-negligible genetic correlation with a variety
of other immune-mediated conditions which do not manifest in the GI tract and are not similar
symptomatically (rheumatoid arthritis, primary sclerosing cholangitis). These observations
underscore the complexity and heterogeneity of IBD pathogenesis. The realisation that IBD
is not a single-cause and single-solution condition might be disheartening, but the unmet
clinical need and the complexity of the task should motivate further research into the causes,
progression and treatment of IBD.

While the largest association studies of IBD include tens of thousands of cases and
controls, one could make an argument that the field is far from reaching the saturation point.

Firstly, even larger cohorts are required to implicate genetic variants with modest effect,
which will be required for leveraging individual genetic profiles as a prognostic tool. Watan-
abe et al. [189] estimate that 0.06% of SNPs are causally associated with IBD, which would
require a cohort of ∼1 million subjects to detect 90% of them at a genome-wide significant
level.

Secondly, technological restrictions of genotyping arrays and available imputation panels
do not allow us to look for associations of low-frequency, potentially high-effect genetic
variants, which are thought to be more trivially translatable into drug targets. A common
criticism of GWAS is that the number of known associations far exceeds the number of
well-understood associations, as the post-GWAS followup (e.g., functional and model work)
tends to take substantial amounts of time. However, it is not clear whether the known
associations between the common variants and IBD provides us with a straightforward route
to drug-targets and, ultimately, novel therapies. Two decades after uncovering the association
between several variants in NOD2 and Crohn’s disease, there are no commercial therapies
targeting NOD2 [47]. The central role of NOD2 in several important pathways relating
to intestinal barrier integrity and immune homeostasis makes targeting it prone to adverse
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dysregulation. Recent work by O’Connor et al. [135] suggests that the extreme polygenicity
of the majority of common diseases might be an artefact of purifying selection. Their analysis
suggests that the genes and loci most critical to the disease pathogenesis may differ from
those with the strongest common-variant associations.

Lastly, the first ten years of IBD GWAS has primarily concentrated on finding genetic
associations of disease risk. While these findings are now actively used to develop the next
generation of therapeutics, there are ways to utilise genetics for improving the patient care
of today. Recently, the availability of phenotypic data from electronic health records and
clinical trials has enabled the use of the same association techniques for finding genetic
variants directly associated with disease progression and therapeutic response.

Clues from observational epidemiology

The partially heritable nature of IBD was recognised as early as 1909 due to the prevalence
of ulcerative colitis in several family members [3]. 5–23% of IBD patients are estimated to
have at least one first-degree relative affected by IBD [58]. These early insights have been
strong indicators of an existing genetic component of the disease pathogenicity.

Comparison of the disease amongst monozygotic and dizygotic twins observed a higher
disease status concordance in monozygotes, suggesting that familial IBD is not solely caused
by the shared environment. In addition, twin studies have estimated the overall heritability to
be 0.75 (CD) and 0.67 (UC) [72].

Epidemiological studies were also used to study the prevalence of the disease amongst
different ethnic groups. Rozen et al. (1979) reported higher incidence rates of CD amongst
the Ashkenazi versus the ‘non-Ashkenazi’ Jews living in Tel-Aviv [159], hypothesising that,
considering the largely shared environment, the higher predisposition might be linked to a
‘hereditary predisposition’.

Linkage studies

Genetic linkage analysis is a technique that allows the identification of large chromosomal
segments that cosegregate through a family with a certain phenotype. Analysis of families
with multiple members affected by Crohn’s disease allowed the identification of a locus on
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chromosome 16 associated with the condition (IBD1 locus). Later, other CD-associated loci
on chromosome 16 were discovered and replicated. The loci were mapped to the NOD2

gene which remains one of the canonical IBD genes. The NOD2 associations, uncovered via
linkage analysis, have a high odds ratio (∼1.5–2.5). Despite the strong effect size and high
frequency, NOD2 loci explain only a small fraction of the IBD heritability, suggesting the
polygenic nature of the condition. The lack of further associations uncovered via linkage
analysis was, perhaps, disappointing at the time but did indicate that the majority of other
IBD associations are either less frequent or have a smaller effect size.

Genome-wide association studies

The early success in uncovering the role of NOD2, was ultimately followed by a disappointing
lack of new, replicated results from further linkage and candidate gene studies.

The advancements in microarray genotyping and the understanding of the linkage disequi-
librium have led to the arrival of genome-wide association studies (see 1.1.1). The technique
was quickly applied to studying the genetic variants associated with IBD. Yamazaki et al.
[192] conducted the first genome-wide association for Crohn’s disease (2005), reporting a
locus in TNFSF15 to be associated with IBD in the Japanese population. Shortly thereafter, at
least eight other small-scale GWAS’ (500–2,000 cases) followed (2006 to 2008) [110]. The
early insights have contributed to our understanding of Crohn’s: associations in ATG16L1

and IRGM demonstrated the role of autophagy in CD pathogenesis. In addition, the studies
have highlighted that the majority of the uncovered common association had a modest effect
size (OR < 1.3).

The creation of the International IBD Genetics Consortium (IIBDGC) facilitated efforts
to meta-analyse the individual cohorts. In 2008, the first meta-analysis of Crohn’s disease
reported 30 novel and replicated genetic associations [15]. Shortly after that, GWAS of
ulcerative colitis [62] and joint analysis of IBD followed [92]. The most recent IIBDGC
analysis by de Lange (2017) [49] increased the total number of IBD-associated loci to 240.
The study identified three three loci which contain integrin genes, which have recently
become important therapeutic targets in IBD. Two monoclonal antibodies, vedolizumab and
etrolizumab, that target the α4β7 dimer (encoded by ITGA4 and ITGB7) have demonstrated
efficacy in IBD treatment, demonstrating relevance of GWAS to therapeutic target discovery.
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The IIBDGC has led other association studies that looked into specific aspects of IBD
pathogenesis and genetic architecture. Liu et al. [111] meta-analysed patients of European
(n=86,640) and East Asian, Indian or Iranian ancestries (n=9,846) highlighting the consis-
tency of direction and magnitude of effect of the genetic associations across individuals of
different ancestries. Goyette et al. [73] used the IIBDGC data to study the contribution of the
HLA alleles in IBD pathogenesis and reported a large-effect association between a common
HLA allele HLA-DRB1*01:03 and ulcerative colitis (OR=3.59).

Whole-genome and whole-exome sequencing association studies

Luo et al. [116] used low coverage whole-genome sequencing to study the contribution of
low-frequency and rare variants in IBD. The low sequencing depth (2x for the UC cases, 4x
for the CD cases, and 7x for controls) limited the sensitivity to detect the full range of genetic
variation present in the cohort (e.g., INDELs), but was sufficient for building a custom
imputation panel. After imputing the array genotyping data of around 27,000 individuals
with the custom panel, association to a low-frequency (0.7%) missense variant in ADCY7

was detected. The variant (p.Asp439Glu) doubles the risk of ulcerative colitis, consistent
with theoretical and empirical observations that rare, evolutionary recent variants may have a
higher effect size in complex disease traits. In addition, the authors used gene-based tests to
demonstrate a burden of rare, damaging mutations in known IBD genes.

Prediction of IBD via polygenic risk scores

One of the main objectives in of human disease genetics is the ability to predict whether
an individual will develop a disorder based on their genetic makeup. While this is possible
in rare cases of monogenic late-onset disease (e.g., Huntington’s disease), the uncovered
polygenicity of the majority of complex disease has made this a difficult task.

Polygenic risk scores are a family of methods that leverage the results from genome-wide
association studies in order to assign a score on a liability scale based on the individual’s
genetic makeup. In their simplest form, the odds ratios of independent genetic variants
passing a certain p-value threshold (e.g., < 5x10−8) are added up and then transformed
to assess the individual’s risk compared to the known cases. Recently, more advanced
approaches like LDPred have emerged. LDPred builds a score based on millions of variants
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across the genome, while adjusting the regression betas for linkage disequilibrium. Intuitively,
this is done in order to take into account the betas of genetic variants that are not passing
a strict p-value threshold, while expecting the false positive and false negative variants to
balance each other out contributing no false risk change.

Another recent methodological trend is to look at the ends of the liability score distribution
when evaluating the utility of the model. While a marginal increase (e.g., +10%) in disease
risk might not be meaningfully clinically actionable, the individuals at the end of the PRS
distribution appear to be at threefold or greater risk of the tested condition [97].

Khera et al. evaluated the utility of LDPred-derived PRS for coronary artery disease
(CAD), atrial fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer [97].
For coronary artery disease the authors identified 8% of individuals at threefold or greater
risk. They argue that such risk is comparable to that of familial forms of CAD for which
single-variant genetic tests are carried out in many healthcare systems, thus PRS should be
considered for inclusion in clinical practice. For IBD the percentage of ‘high risk‘ individuals
was more modest – 3.2%, potentially due to the smaller sample size of the GWAS that the
PRS was built upon.

Arguably, a nuanced approach is required when evaluating the inclusion of PRS into
healthcare practice. Firstly, CAD has a much higher prevalence in most Western countries
(∼5%) versus <1% for IBD. Therefore, even a threefold increase risk of the disease is quite
marginal for IBD. Secondly, compared to CAD where prophylactic therapy with statins
and PCSK9 inhibitors are known to reduce the LDL cholesterol, and ultimately reduce the
incidence rate and mortality), there are no known prophylactic measures for IBD. Generic
advise to stop smoking and ‘eat healthier’ could be made, but it is highly unlikely this
will have a meaningful effect on the risk. Perhaps, pre-onset screening of high IBD risk
individuals could be warranted, in order to rapidly diagnose the patient once the disease
develops, but it is important to remember that the screening (colonoscopy) itself is quite
invasive.

Undoubtedly, the accuracy of polygenic risk scores will continue to improve. Larger
GWAS’ and the inclusion of rare pathogenic variants will allow the identification of patients
with an extremely high risk of IBD. Clinical trials could be carried out to identify whether
any of the existing low-burden drugs can be used as a prophylactic therapy for high-risk
individuals. PRS for drug response could be developed in order to identify the therapy to



1.4 Inflammatory bowel disease 31

which the patient is most likely to respond. Some patience and hard work will be required to
achieve this goal.

Pharmacogenetic studies

Pharmacogenetic studies aim to bring us closer towards the ultimate goal of personalised
medicine: prescribing the safest and most effective drug for each patient. It is difficult to argue
that this goal has been achieved for any complex disorder, yet the pharmacogenetic association
studies have already uncovered a handful of common and rare variants that influence the
safety or efficiency of a given therapy for a particular patient. Several pharmacogenomic
association studies for drugs used in IBD have been carried out.

Around 20% of patients have to discontinue treatment with thiopurines due to adverse
drug reactions (ADRs). Thiopurine-induced myelosuppression is one of the more severe
ADRs. Variants in the thiopurine S-methyltransferase (TPMT) gene lead to a insufficient
TPMT activity and result in cytotoxic 6-thioguanine nucleotide (6-TGN) metabolite formation
[30].

While a pre-treatment enzyme activity test is currently more prevalent in most healthcare
systems, including the NHS, a genotyping-based test is thought to be more reliable. For
example, the genotyping test is not affected by recent blood transfusions and can be adminis-
tered after the start of the treatment [187]. Several public and commercial providers (e.g.,
FDA-approved test from 23andMe) routinely offer the genotyping-based test to the patients.

More recently, several genetic variants outside TPMT affecting the risk of myelosuppres-
sion were reported. Walker et al. [186] performed a genome-wide and exome sequencing
association study of 398 myelosuppression cases and 679 matched controls of European
ancestry. The study replicated the known association in TPMT and showed that three variants
in NUDT15 are strongly associated with thiopurine-induced myelosuppression (OR=27.3;
95% CI, 9.3 to 116.7). The association was previously reported amongst patients of East
Asian ancestry [194].

Several associations for anti-TNF response and immunogenicity were reported. They are
described in detail in Chapter 1.
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In this thesis, I will describe three projects that were carried out during my PhD. In
Chapter 2, I will describe the largest genome-wide association study for immunogenicity to
anti-TNF therapy to date. In chapter 3, I describe a genome-wide association analysis for
thiopurine-induced liver injury – an adverse side effect than occurs in approximately 10% of
patients who undergo thiopurine therapy. In Chapter 4, I describe the production, the quality
control, and the initial findings from IBD 15x – a whole-genome sequencing study, meant
to uncover the role of rare coding and non-coding variation in IBD. Finally, in Chapter 5 I
discuss the future work required to further improve our knowledge of inflammatory bowel
disease genetics.



Chapter 2

HLA-DQA1*05 is associated with
immunogenicity to anti-TNF therapy

Parts of this chapter were published in Gastroenterology [165]. This project is a collaboration

of more than 400 principal investigators, research nurses, technicians, and other professions

who have contributed to it. My contribution was to co-design and to run the majority of the

genetic analyses, with the exception of genotype imputation, HLA to amino-acid translation,

and HLA typed versus imputed concordance. I am grateful for the opportunity to be involved

in this study and would like to acknowledge the contributions of other co-authors.
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2.1 Introduction

Biological therapies, commonly known as biologics, are typically large and complex proteins
manufactured in, or derived from, living sources. Biologics have transformed the management
of immune-mediated diseases and are are starting to find their application in the treatment
of HIV and cancer. In 2017, biologics accounted for a global expenditure in excess of
$100 billion [25]. Compared to the traditional small molecule drugs, biologics offer greater
specificity, resulting in better effectiveness and less off-target effects during the treatment
[138].

Globally, one of the biggest challenges to the wider adoption of biologics is cost. Just in
2017/2018, the National Health Service (UK) spent £400 mil on a single biologic therapy –
adalimumab, which is was prescribed to 46,000 patients. Generally, for the immune-mediated
disorders, a course of treatment with biologics far exceeds the cost of an alternative treatment
with small-molecule therapies. The high costs are explained by several factors. Like with
most modern therapies, the cost of development for novel a drug ‘from lab bench to the
market’ can often be in the range of billions of dollars. Expectedly, the pharmaceutical
companies use the time during which the drug is protected by the patents to maximise the
profit in order to cover the development costs, subsidise the development of future therapies,
and to make a profit. Such a costing strategy is not unique to biologics, but it is exacerbated
by the cost and complexity of the development and production of the generic version of the
biologics – biosimilars.

Blackstone et al. [25] estimate that it costs $1 million to $4 million to bring a generic
for a small-molecule drug to the market. In contrast, it takes 7 to 8 years to develop a
biosimilar, at a cost of between $100 million and $250 million. Sadly, even the arrival of the
first competitive biosimilar does not always bring down the pricing of the treatment. Dave
et al. [46] estimate that, on average, the price of the first generic drug is 87% of that of
the brand-name drug and 60% once four generic manufacturers have entered the market.
As of March 2019, there are ten adalimumab biosimilars, produced by six manufacturers,
approved for use in the European Union. According to the NHS estimates, the arrival of the
adalimumab biosimilars will allow savings of ‘at least £150 million per year by 2021’. The
cost of the treatment must not limit the prescription of the biologic therapies to the patients
who will benefit from them, but there is a real urgency in understanding who exactly those
patients are.
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The high cost of treatment is not the the only issue facing the biologic treatments. The
current generation of biologics rely on invasive injections because of their poor bioavailability
via the oral route [8]. Some biologics, like infliximab, have to be delivered intravenously (IV)
every few weeks, putting an additional burden on the patients’ quality of life. Others, like
adalimumab, can be used via an autoinjector pen. Future biologics, currently in development,
might be delivered orally (e.g., OPRX-106 that has reached the phase 2 trial for UC).

Most importantly, just like the majority of other therapies, biologics are not always
effective. Considering that biologic therapies are often used for patients refractory to other
treatments, it is important to study the risk factors that influence this. In the chapter below,
I describe results from the PANTS study. Our work has uncovered the first robust genetic
association for development of antibodies against anti-TNF which are know to have a
substantial negative impact on treatment efficacy.

Anti-tumour necrosis factor (anti-TNF) therapies are the most widely used biologics for
treating immune-mediated diseases. Anti-tumour necrosis factor (anti-TNF) therapy has
been effective in the treatment of UC and CD, as well as a variety of other immune-mediated
complex traits, including rheumatoid arthritis and refractory asthma. Anti-TNF therapies
interferes with the action of TNF, a proinflammatory cytokine that is involved in the innate
immune response. In 2018, anti-TNF therapies accounted for a global expenditure in excess
of $23.5 billion [86].

For Crohn’s disease patients, anti-TNF therapy has been associated with mucosal healing,
improved quality of life, and reduced hospitalisation and surgery rates [17]. Despite the
general efficacy of the treatment, 10–30% of patients do not respond to anti-TNF and a
further 23–46% of patients lose response over time [156]. As with other biologic therapies,
repeated administration of anti-TNF often induces the formation of anti-drug antibodies
(immunogenicity) leading to treatment failure [96].

Immunogenicity is more common in patients treated with infliximab (a murine-human
chimeric monoclonal antibody) than adalimumab (a fully human monoclonal antibody)
and is a major cause of low anti-TNF drug level, infusion reactions, and non-remission in
patients with Crohn’s disease [96, 183]. Combination immunomodulator therapy reduces the
risk of immunogenicity to both adalimumab and infliximab, and for infliximab, improves
treatment outcomes [96, 41, 140]. Despite these benefits, many patients are still treated
with anti-TNF monotherapy because of concerns about the increased risk of adverse drug
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reactions, opportunistic infections, and malignancies associated with combination therapy
with immunomodulators [54, 109, 139].

The ability to identify patients at increased risk of immunogenicity would direct the
choice of anti-TNF treatment and the use of preventative strategies, including combination
therapy with immunomodulators. However, our understanding of the cellular and molecular
mechanisms underpinning immunogenicity to biologics is limited. Retrospective small-scale
studies have suggested variants in FCGR3A [158], CD96 [11] and HLA-DRB1 [23, 112]
increase susceptibility to immunogenicity to anti-TNF therapy. These associations either
did not achieve genome-wide significance [23, 112, 158] or are yet to be independently
replicated [158, 11]. Both studies reporting the HLA-DRB1 only looked at a small subset
of HLA alleles, which is problematic given the long-range linkage disequilibrium within
the human leukocyte antigen (HLA) region. The CD96 was uncovered in a small discovery
cohort (N=62, OR = 20.2, 95% CI, 5.57–73.27, P = 1.88×10−9), yet has a strikingly different
effect size in a larger self-replication cohort (N=88, OR = 1.16, 95% CI, 1.09–1.23, P =
0.044), violating the homogeneity of odds assumption for replication. Here, I report the first
genetic locus robustly associated with immunogenicity to anti-TNF therapies.

2.2 Methods

2.2.1 PANTS study: patient recruitment and phenotyping

The Personalising Anti-TNF Therapy in Crohn’s disease (PANTS) study is a UK-wide, multi-
centre, prospective observational cohort reporting the treatment failure rates of the anti-TNF
drugs infliximab (originator, Remicade [Merck Sharp & Dohme, UK] and biosimilar, CT-P13
[Celltrion, South Korea]), and adalimumab (Humira [Abbvie, USA]) in 1,610 anti-TNF-naive
patients with Crohn’s disease [96].

The South West Research Ethics committee approved the study (REC reference: 12 / SW
/ 0323) in January, 2013. Patients were included after providing informed, written consent.
The protocol is available online (www.ibdresearch.co.uk).

At inclusion, subjects were aged 6 years or over and had active luminal Crohn’s disease
involving the colon and/or small intestine. Choice of anti-TNF drug and use of concomitant

www.ibdresearch.co.uk
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immunomodulator therapy was at the discretion of the treating physician as part of usual
care. Patients were initially studied for 12 months or until drug withdrawal. In the first year,
study visits were scheduled at first dose, post-induction (weeks 12–14), weeks 30, 54, and at
treatment failure. For infliximab-treated patients, additional visits occurred at each infusion.
After 12 months, patients were invited to continue follow-up for a further two years. Drug
persistence was defined as the duration of time from initiation of anti-TNF therapy to exit
from the study due to treatment failure. Patients who exited the study for other reasons,
declined to participate in the two-year extension, or were lost to follow-up were censored at
the time of last drug dose or study visit.

At each visit, serum infliximab or adalimumab drug and anti-drug antibody levels were
analysed using total antibody enzyme linked immunosorbent assays [145]. The total anti-
body, unlike the more commonly reported free antibody assay, includes a drug-antibody
disassociation step that allows the assessment of anti-drug antibodies in the presence of drug.
In this study, immunogenicity was defined as an anti-drug antibody concentration of ≥10
AU/ml, irrespective of drug level, at one or more time points.

We assembled an independent cohort to replicate significant findings from the discovery
cohort. This comprised 107 Crohn’s disease, 64 ulcerative colitis, and 7 IBD type-unclassified
patients all with cross-sectional drug and antibody levels measured as part of routine clinical
practice. The samples were genotyped using either the Illumina CoreExome array (N=164)
[49] or the Affymetrix 500k array (N=14) [190]. Quality control and imputation methods
were the same as in the discovery cohort (see 2.2.3).

2.2.2 Measurement of drug and anti-drug antibody levels

Antibody and drug level measurements were carried out by our collaborators at the University
of Exeter.

Serum infliximab and adalimumab drug levels were analyzed on the Dynex (Chantilly
Virginia, USA) DS2 automated Enzyme-Linked ImmunoSorbent Assay (ELISA) platform,
using the Immundiagnostik (Immundiagnostik AG, Bensheim, Germany) IDKmonitor® drug
(K9655 infliximab drug level and K9657 adalimumab drug level) and total antibody ELISA
assays (K9654 infliximab total anti-drug antibody and K9651 adalimumab total anti-drug
antibody). These assays allow quantitative determination of free infliximab and adalimumab
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using a sandwich ELISA technique. The IDK monitor infliximab drug level assay has
a measuring range of 0.8–45 mg/L, with an intra-assay CV of <9.7% and an inter-assay
coefficient of variation (CV) of <11.0%. The IDK monitor adalimumab drug level assay has
a measuring range of 0.8–45 mg/L, with an intra-assay CV of <2.6% and an inter-assay CV
of <13.0%. Positive anti-drug antibody status was defined in line with the manufacturer’s
recommendations as a concentration ≥10 AU/mL, irrespective of drug level. All assays,
including drug and antibody levels, were tested for stability.

In independent experiments, our collaborators confirmed that this cut-off corresponds to
the 98th percentile of the anti-drug antibody titre distribution in more than 500 drug-naïve
controls.

2.2.3 Genotyping, quality control, and imputation

DNA was extracted from pre-treatment blood samples from 1,524 individuals in the PANTS
cohort and genotyping undertaken using the Illumina CoreExome microarray (522,049
markers), with genotype calls made using optiCall [167]. Pre-imputation quality control
(QC) of samples and single nucleotide polymorphisms (SNPs) was performed as previously
described [49]. SNP genotypes were imputed via the Sanger Imputation Service using the
Haplotype Reference Consortium (HRC) panel as a part of a larger GWAS study [120].

Following imputation, I ran additional variant and sample QC procedures. I calculated the
first 15 principal components (PC) for the 1,323 samples that passed the QC criteria (Figure
2.1a). The Tracy-Widom test showed that only the first principal component explained
a significant proportion of the variance. In addition, I confirmed the European ancestry
of our cohort by performing principal component analyses with 2,504 samples from the
1000 Genomes Project (1KGP) [1] (Figure 2.1). Following standard practices, I discarded
poorly imputed SNPs, defined as having an information score <0.4. I removed SNPs
significantly deviated from Hardy-Weinberg equilibrium (P<1×10−10), with a call-rate ≤0.95
or minor allele frequency ≤1%, leaving 7,578,947 variants. PCA and genotype filtering were
performed using the Hail framework (version 0.1).

I excluded individuals of non-European ancestry (identified using principal component
analysis), one individual from each related pair (defined as a pi-hat >0.1875, halfway between
the expected pi-hat for third- and second-degree relatives [7]), and those with an outlying
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(a) (b)

(c)

Figure 2.1 Principal component analysis (PCA) on imputed data from 1,323 individuals

in the PANTS study. (A) PCA on the PANTS cohort alone. Blue dots show individuals

who develop immunogenicity and orange dots show individuals who did not. PC1 was

not associated with immunogenicity status (P=0.99). (B, C) PCA analysis of the 1,323

individuals from the PANTS cohort together with the 2,504 individuals from the 1000

Genomes Project (1KGP) cohort. (B) PCA confirmed that PANTS samples clustered together

with the individuals of European ancestry from the 1KGP. (C) A detailed view of PANTS

samples plotted together with European samples from the 1KGP.

number of missing or heterozygous genotypes. 1,323 individuals remained in the study
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following quality control, of which 1,240 had drug and antibody level data available (Figure
2.2).

Figure 2.2 Flowchart describing the cohort used for the time to immunogenicity genetic anal-

ysis Abbreviations: UC = ulcerative colitis, IBDU: inflammatory bowel disease unclassified,

anti-TNF: anti-tumor necrosis factor, CRP: C-reactive protein, INFO: information content

metric

HLA imputation was carried out using the HIBAG package [198] in R, using pre-fit
classifiers trained specifically for the CoreExome genotyping microarray on individuals of
European ancestry. HLA types were imputed at 2-, and 4-digit resolution for the following
loci: HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQA1, HLA-DQB1, and HLA-DPB1. In
addition, my colleague obtained amino acid sequences for all the imputed HLA alleles, using
the IPD-IMGT/HLA database [155]. Following the recommended best practices for HIBAG,
HLA-allele and amino acid calls with posterior probability <0.5 were set to missing for the
given individual. To confirm our imputation and genetic association our collaborators carried
out long-read sequencing of the HLA (Histogenetics, New York, USA).
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Variable Level
infliximab

(n = 742)

adalimumab

(n = 498)
p

Sex (male) 353 (47.6%) 234 (47.0%) 0.862

Age (years) 31.3 (21.2 - 46.0) 37.6 (28.7 - 50.3) 1.1 × 10−11

Disease duration (years) 2.6 (0.7 - 9.8) 3.1 (0.8 - 11.5) 0.033

Age at diagnosis (years) 24.4 (16.4 - 35.9) 29.5 (21.8 - 41.8) 1.7 × 10−11

Montreal location

L1 207 (28.2%) 157 (32.0%)
0.334

L2 190 (25.9%) 108 (22.0%)

L3 332 (45.2%) 223 (45.4%)

L4 6 (0.8%) 3 (0.6%)

Montreal L4 78 (10.6%) 23 (4.7%) 1.8 × 10−4

Montreal behaviour

B1 455 (61.7%) 277 (56.3%)

1.9 × 10−5B2 196 (26.6%) 184 (37.4%)

B3 86 (11.7%) 31 (6.3%)

Perianal 104 (100.0%) 40 (100.0%)

Immunomodulator

azathioprine 339 (45.7%) 196 (39.4%)

0.009

mercaptopurine 57 (7.7%) 32 (6.4%)

methotrexate 50 (6.7%) 24 (4.8%)

tacrolimus 2 (0.3%) 0 (0.0%)

none 294 (39.6%) 246 (49.4%)

Steroids 220 (29.6%) 133 (26.7%) 0.275

Past resectional surgery 170 (22.9%) 122 (24.5%) 0.539

HBI 6.0 (3.0 - 9.0) 5.0 (3.0 - 8.0) 0.224

sPCDAI 25.0 (10.0 - 50.0)

BMI 23.1 (20.0 - 27.2) 24.6 (21.6 - 28.4) 6.5 × 10−7

Hemoglobin (g/L) 126.0 (115.8 - 136.0) 132.0 (122.0 - 141.0) 2.2 × 10−10

White cell count (×109/L) 8.0 (6.2 - 10.3) 7.9 (6.3 - 9.8) 0.324

Platelet count (×109/L) 343.0 (281.0 - 412.8) 312.0 (256.0 - 386.0) 3.4 × 10−6

Albumin (g/L) 39.0 (34.0 - 42.0) 39.0 (36.0 - 43.0) 0.051

CRP (mg/L) 8.0 (3.0 - 21.0) 6.0 (2.0 - 13.0) 5.1 × 10−5

Fecal calprotectin (µg/g) 402 (149 - 855) 292 (130 - 603) 1.4 × 10−4

Table 2.1 Baseline demographic and clinical characteristics of the 1240 individuals from the

PANTS cohort. P values were calculated using Fisher’s exact or Mann Whitney U tests.
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2.2.4 Statistical and genome-wide association analyses

Rates of immunogenicity were estimated using the Kaplan-Meier method. Clinical outcomes
and genetic association tests with time to anti-drug antibody development were performed
using multivariable Cox proportional hazards regression: sex, drug type (infliximab or
adalimumab), immunomodulator use, and the first within-sample principal component, were
included as covariates (Table 2.2). Patients who did not develop immunogenicity during
the study were censored at the point of last observation. Post-hoc sensitivity analyses were
undertaken to test our genetic findings with immunogenicity, firstly, at progressively higher
antibody thresholds; secondly, to simulate a free-antibody assay and thirdly, excluding
patients with a single anti-drug antibody level >10 AU/ml and subsequent negative anti-drug
antibodies <10 AU/ml.

Covariate HR 95% CIs P

Drug (0 – infliximab; 1 – adalimumab) 3.27 2.67 4.02 2.82×10−34

Immunomodulators (0 – yes; 1 – no) 2.41 2.02 2.87 1.84×10−22

HLA-DQA1*05 (dominant) 1.90 1.60 2.25 5.88×10−13

Sex (0 – female; 1 – male) 0.93 0.78 1.11 0.41

PC1 (continuous) 0.33 0.03 3.60 0.38

Table 2.2 Covariates used in the final model

The Akaike information criterion (AIC) was used to compare non-nested models to assess
if the mode of inheritance was dominant or additive, and to determine whether HLA allele
group, specific HLA alleles, or amino acid sequence best-explained the association. The fixed
effects Q statistic was used to perform tests of heterogeneity of effect; this test is an extension
of Cochran’s Q-test and examines whether the observed effect size variability is larger than
expected by chance. Interaction tests of the differential effects of drug type (infliximab versus
adalimumab and Remicade versus CT-P13) and combination therapy (immunomodulator vs
no immunomodulator) conditional on the genotype were performed. Mann-Whitney U tests
were used to compare serum levels of anti-drug antibodies at week 54 stratified by anti-TNF
drug and immunomodulator use.
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2.3 Results

Within the first 12 months, 44% of patients developed anti-drug antibodies (95% CI, 0.41 to
0.48), and 62% of patients did so within 36 months (95% CI, 0.57 to 0.67). After correcting
for immunomodulator use, the rate of immunogenicity was greater in patients treated with
infliximab (N=742) than adalimumab (N=498) (hazard ratio (HR), 3.21; 95% CI, 2.61 to 3.95;
P=1.18×10−28). In a model including drug-type as a covariate, rates of immunogenicity were
greater in patients treated with anti-TNF monotherapy (N=544) compared to combination
therapy with immunomodulators (N=696), (HR, 2.30; 95% CI, 1.94 to 2.75; P<6.10×10−21).

2.3.1 A locus within the HLA region is associated with time to immuno-
genicity

The time-to-event analysis identified a genome-wide significant association on chromosome
6 with time to development of immunogenicity, with the most associated SNP, rs2097432
(b38_pos: 6:32622994; HR, 1.70; 95% CI, 1.48 to 1.94; P=4.24×10−13), falling within the
major histocompatibility complex (MHC) region (Figures 2.5, 2.3, 2.4). I replicated this
association in our independent cohort of 178 patients with IBD (HR, 1.69; 95% CI, 1.26 to
2.28; P=8.80×10−4). A variant on chromosome 11, rs12721026 (b38_pos: 11:116835452;
HR, 0.46; 95% CI, 0.33 to 0.63; P=4.76×10−8) also reached genome-wide significance in
our discovery analysis, though the association was not replicated in our independent cohort
(HR, 0.85; 95% CI, 0.49 to 1.44; P=0.51).

2.3.2 Fine-mapping of the signal in the HLA region

At the HLA allele group level (2-digit resolution), only HLA-DQA1*05 achieved genome-
wide significance (HR, 1.90; 95% CI, 1.60 to 2.25; P=5.88×10−13) (Figure 2.6). At the
specific allele level (4-digit resolution), no single allele reached genome-wide significance.
The two most common HLA-DQA1*05 subtype alleles, HLA-DQA1*05:01 (HR, 1.57;
95% CI, 1.33 to 1.85; P=4.24×10−7) and HLA-DQA1*05:05 (HR, 1.48; 95% CI, 1.24 to
1.78; P=5.54×10−5), had similar effects on time to immunogenicity and a model contain-
ing these two 4-digit alleles was virtually indistinguishable from a model including only
HLA-DQA1*05 (AIC05=6659.07 versus AIC05:01&05:05=6659.50). I did not identify any
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Figure 2.3 Manhattan plot for Cox proportional hazards model analysis of time to immuno-

genicity

amino acids that better fit the data than HLA-DQA1*05. Our collaborators observed >99%
concordance between imputed and sequenced HLA genotypes at HLA-DQA1: amongst the
1,272 overlapping samples, only one sample was discordant between HIBAG (homozygous
HLA-DQA1*05) and sequenced HLA (no copies of HLA-DQA1*05).

To formally assess the inheritance pattern of HLA-DQA1*05 mediated immunogenicity,
I compared the fit of additive and dominant models and found that the dominant model
gave a better fit (AICDOM=6652.12 vs AICADD=6659.07), and stronger association signal for
HLA-DQA1*05 (HR, 1.90; 95% CI, 1.60 to 2.25; P=5.88×10−13) (Figure 2.7 and Table 2.3).
I also looked for non-additive effects across all other HLA alleles, but the model assuming
a dominant effect for HLA-DQA1*05 remained the best fit to the data, based on both the
AIC and BIC. The HLA-DQA1*05 association was confirmed in our replication cohort (HR,
2.00; 95% CI, 1.35 to 2.98; P=6.60×10−4), again with a better fit for the dominant model
(AICDOM=942.51 vs AICADD=944.81). After conditioning on HLA-DQA1*05 I did not
identify any secondary signals of association with time to immunogenicity within the MHC
region (Figure 2.8).

Sensitivity analyses showed that the effect size of HLA-DQA1*05 carriage on im-
munogenicity was similar across subgroups (Figures 2.9a and 2.9b): firstly, the association
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Genetic effect included in the model HR 95% CIs P AIC BIC

AA-107-ile (dominant) 1.9 1.6 2.26 4.00×10−13 6649.45 6675.04

AA-175-lys (dominant) 1.9 1.6 2.26 4.00×10−13 6649.45 6675.04

DQA1*05 (dominant) 1.9 1.6 2.25 5.88×10−13 6652.12 6677.73

AA-107-ile (additive) 1.59 1.4 1.8 1.50×10−11 6656.55 6682.14

AA-175-lys (additive) 1.59 1.4 1.8 1.50×10−11 6656.55 6682.14

DQA1*05 (additive) 1.58 1.39 1.8 1.94×10−11 6659.07 6684.67

DQA1*05:01 and DQA1*05:05 (additive) 1.61 1.36 1.9 1.19×10−7 6659.5 6690.2

DRB1*03 (additive) 1.58 1.34 1.85 2.43×10−7 6661.3 6686.89

DRB1*03 (dominant) 1.67 1.38 2.03 1.48×10−7 6662.46 6688.06

rs2097432 (additive) 1.69 1.48 1.94 4.24×10−13 6674.24 6699.85

rs2097432 (dominant) 1.92 1.61 2.28 4.55×10−13 6674.34 6699.95

DQA1*05:01 (additive) 1.57 1.33 1.85 4.24×10−7 6676.74 6702.33

DQA1*05:01 (dominant) 1.67 1.38 2.03 5.49×10−7 6677.26 6702.85

DQA1*05:05 (dominant) 1.67 1.27 1.9 3.39×10−5 6684.97 6710.56

DQA1*05:05 (additive) 1.48 1.24 1.78 5.54×10−5 6685.84 6711.43

“Null” model with no genotype parameter – – – – 6725.43 6745.92

Table 2.3 Comparison between different models for the observed effect in the MHC region.

Models are sorted by Akaike information criterion (AIC) score (column 6), which is a

measure of model fit to the data. All models included immunomodulator status, drug type,

sex and PC1 as covariates (see Table 2.2 for details). HRs, CIs and p-values are calculated

using SurvivalGWAS_SV and AIC is calculated using R surv package, as described in

Methods. The effect assumed for the main genetic effect (additive or dominant) is shown in

parentheses in the first column. Hazard ratios with 95% Confidence Intervals for the genetic

effect are shown in columns 2–4, and the respective p-values in column 5. The last column

contains the BIC score for each model. The ranking of the models is identical whether AIC

or BIC is used.
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Figure 2.4 Quantile-quantile plot for Cox proportional hazards model analysis of time to

immunogenicity. Using a regression model implemented in the GenABEL package in R, I

estimated the inflation factor λ to be 1.02 (SE=2×10−5), suggesting a good fit to the uniform

distribution. See 2.2 for the covariates used in this model.

remained significant even when the threshold for defining immunogenicity was increased
from >10AU/mL to >200 AU/mL. Secondly, when I simulated a drug-sensitive instead of a
drug-tolerant assay, where immunogenicity was defined as an anti-drug antibody titer ≥10
AU/ml without detectable drug (HR, 1.57; 95% CI, 1.23–2.01; P = 3.66 × 10−4). Thirdly,
when I removed patients with a one-off transient anti-drug antibody level ≥10 AU/ml (HR,
1.94; 95% CI, 1.62-2.32; P=8.46×10−13).
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Figure 2.5 Regional plot of the association results with the MHC region on chromosome

6. Midpoint positions of the HLA alleles across the MHC region are shown in red on the

x-axis. SNPs that passed the genome-wide significance threshold (P=5×10−8) are shown

above the red horizontal dashed line with the most significant SNP in red. SNPs correlated

with the lead SNP (r2>0.05) are colour-coded from purple to yellow. Pairwise genotype

correlation (r2) between SNPs was calculated using genotype data from the non-Finnish

European population of the 1000 Genomes Project.

2.3.3 The effect of HLA-DQA1*05 across drug and treatment regimes

While immunogenicity rates were lower with adalimumab-treated compared to infliximab-
treated patients, I did not detect a significant difference in the effect of HLA-DQA1*05 on the
immunogenicity rate for these two drugs (HR, 1.89; 95% CI, 1.32–2.70 in adalimumab-, HR,
1.92; 95% CI, 1.57–2.33 in infliximab-treated patients; Phet=0.91) (Fig. 2.10). I also found
no significant evidence for heterogeneity of effect of HLA-DQA1*05 on immunogenicity
between patients treated with the infliximab originator, Remicade, and its biosimilar CT-
P13 (Phet=0.23) (Figure 2.11). Likewise, I did not detect any significant heterogeneity
of effect of HLA-DQA1*05 carriage on immunogenicity for individuals on monotherapy
(HR, 1.75; 95% CI, 1.37–2.22) versus combination therapy (HR, 2.01; 95% CI, 1.57–
2.58) with immunomodulators (Phet=0.14). In addition, I did not identify any significant
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Figure 2.6 Effect sizes of the most strongly associated SNP, HLA alleles, and amino acids of

time to immunogenicity. Blue lines represent 95% CIs. Association test P-values are shown

in parentheses.

interactions between HLA-DQA1*05 and the clinical covariates (drug type: P=0.83; mono-
vs combination therapy: P=0.71; Remicade vs CT-P13: P=0.59).

The highest rates of immunogenicity, 92% at 1 year, were observed in patients treated
with infliximab monotherapy who carried HLA-DQA1*05 (Figure 2.13a). Conversely, the
lowest rates of immunogenicity, 10% at 1 year, were observed in patients treated with
adalimumab combination therapy who did not carry HLA-DQA1*05 (Figure 2.13b). Our
final model, which includes HLA-DQA1*05 status, sex, drug, and immunomodulator usage,
explained 18% of the variance in immunogenicity to anti-TNF in our cohort.

Having demonstrated that HLA-DQA1*05 was associated with time to immunogenicity
we sought associations with anti-drug antibody titers after 1 year of treatment and subsequent
non-persistence on drug. Carriage of HLA-DQA1*05 was associated with higher maximal
anti-drug antibody titers (Pinfliximab= 8×10−10; Padalimumab = 0.002). I observed lower drug
persistence rates to year 3 in patients treated with an anti-TNF drug without an immunomodu-
lator (Figure 2.13); the optimal model (AICinteraction = 5937.19 versus AICadditive = 5940.16)
here used the interaction between immunomodulator use and HLA-DQA1*05 (DQA1*05:
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Figure 2.7 Kaplan–Meier estimator showing the rate of anti-drug antibody development,

stratified by the number of HLA-DQA1*05 alleles carried. Orange, blue and red indicate 0,

1 and 2 copies of DQA1*05 allele, respectively. Carriers of one or two copies of the allele

have a similar rate of immunogenicity development, and a dominant model is a better fit for

the data than an additive model (AICDOM=6652.12 vs AICADD=6659.07). X-axis truncated

at 700 days, due to the low number of observations for longer time periods.
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Figure 2.8 Residual association signal in the MHC region, after conditioning on HLA-

DQA1*05. Midpoint positions of the HLA alleles across the MHC region are shown in red

on the x-axis. The SNP most strongly associated with time to immunogenicity (rs2097432)

during the initial analysis is marked with a red dot. No other SNPs passed the genome-

wide significance threshold (red dashed line), suggesting that HLA-DQA1*05 explains the

chromosome 6 signal (Figure 2.5).

HR, 1.40; 95% CI 1.08–1.80; P=0.011, immunomodulator use: HR, 0.74; 95% CI, 0.58–0.94,
P=0.014, interaction between DQA1*05 and immunomodulator use: HR, 0.65; 95% CI,
0.45-0.95; P=0.026).

2.4 Discussion

Immunogenicity to biologic therapies is a major concern for patients, regulatory authorities,
and the pharmaceutical industry. I report the first genome-wide significant association with
immunogenicity to anti-TNF therapy using the largest prospective cohort study of infliximab
and adalimumab in Crohn’s disease. I have demonstrated that carriage of one or more HLA-
DQA1*05 alleles confers an almost two-fold risk of immunogenicity to anti-TNF therapy,
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Figure 2.9 Sensitivity analysis of the (a) effect size and (b) significance of HLA-DQA1*05

association and time to immunogenicity. In the primary analyses, immunogenicity was de-

fined as an anti-drug antibody concentration ≥10 AU/mL, irrespective of drug concentration

(red dot). I repeated the time to immunogenicity analysis varying this definition from ≥5 to

≥200 AU/mL.
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Figure 2.10 HLA-DQA1*05 has a consistent effect on immunogenicity in different patient

subgroups. Blue lines represent 95% CIs. Association test P-values are shown in parentheses.

The proportional hazard association analysis was repeated, separating the full cohort into

subgroups by drug and therapy type. Estimated hazard ratios and standard errors between

the pairings were compared using a heterogeneity of effects test (P>0.05), suggesting that

the effect of HLA-DQA1*05 on immunogenicity is not affected by these clinical covariates.

irrespective of concomitant immunomodulator use or drug type (infliximab [Remicade or
CT-P13], or adalimumab). Fine-mapping and confirmatory sequencing of the HLA identified
that the specific alleles HLA-DQA1*05:01 and HLA-DQA1*05:05 mediated most of this
risk. Carriage of HLA-DQA1*05 was associated with higher anti-drug antibody levels and
lower drug persistence rates, although further studies are needed to more accurately quantify
the relationship between HLA-DQA1*05 and drug persistence. An overview of the further
genetic studies that can be carried out to better to elucidate the genetics of the anti-TNF
immunogenicity and response is provided in Section 5.3 of the Discussion.

Arguably, based on these data and those presented in the PANTS clinical paper [96], all
patients treated with an anti-TNF should ideally be prescribed an immunomodulator to lower
the risk of immunogenicity [96]. We hypothesise that for patients who carry HLA-DQA1*05
in whom immunomodulators are contraindicated or not tolerated, clinicians might advise
against the use of anti-TNF drugs, particularly infliximab. In contrast, patients who do
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Figure 2.11 HLA-DQA1*05 has a consistent effect on immunogenicity between patients

treated with the infliximab originator, Remicade, and its biosimilar CT-P13.

not carry HLA-DQA1*05 might be given the choice between adalimumab or infliximab
combination therapy. Patients without the risk allele and a history of adverse drug reactions to
thiopurines and/or methotrexate or who are at high risk of opportunistic infections might be
spared the additional risks of combination therapy and treated with adalimumab monotherapy.
A randomised controlled biomarker trial is required to explore these hypotheses and confirm
whether HLA-DQA1*05 testing may help direct treatment choices in order to improve
clinical outcomes.

The shared genetic association between HLA-DQA1*05 and immunogenicity to inflix-
imab and adalimumab may explain the widely reported diminishing returns of switching
between anti-TNF therapies at the time of loss of response [141, 161]. If the immunogenic
effect of HLA-DQA1*05 extends to other therapeutic antibodies, then subjects who carry the
variant may be candidates for non-antibody modality therapies such as small molecule drugs.

Allelic variation in the HLA-DQA1 gene has been linked to aberrant adaptive immune
responses. The HLA class II gene HLA-DQA1 is expressed by antigen presenting cells
and encodes the alpha chain of the HLA-DQ heterodimer that forms part of the antigen
binding site where epitopes are presented to T-helper cells. Relevant to immunogenicity,
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(b) Immunogenicity (adalimumab)
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Figure 2.12 Kaplan–Meier estimator showing the rate of anti-drug antibody development (A

and B), stratified by carriage of HLA-DQA1*05 alleles and treatment regime. Dotted lines

indicate patients undergoing anti-TNF monotherapy; solid lines indicate combination therapy

with immunomodulators. Red indicates carriers of the HLA-DQA1*05 allele (1 or 2 copies);

blue indicates non-carriers. For both drugs and treatment regimes, immunogenicity is higher

for HLA-DQA1*05 carriers. The X-axis was truncated at 700 days due to the low number of

observations.
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Figure 2.13 Kaplan–Meier estimator showing the rate of drug persistence (A and B), strat-

ified by carriage of HLA-DQA1*05 alleles and treatment regime. Dotted lines indicate

patients undergoing anti-TNF monotherapy; solid lines indicate combination therapy with

immunomodulators. Red indicates carriers of the HLA-DQA1*05 allele (1 or 2 copies);

blue indicates non-carriers. For both drugs and treatment regimes, drug persistence rates are

higher for HLA-DQA1*05 carriers. The X-axis was truncated at 700 days due to the low

number of observations.
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carriage of HLA-DQA1*05 has been associated with coeliac disease and type 1 diabetes
and protection against rheumatoid arthritis and pulmonary tuberculosis [122, 42, 182, 137].
Several hypotheses have been proposed, but exactly how specific HLA alleles contribute to
disease pathogenesis or, in this case, increased immunogenicity, remains unknown.

HLA-DQ1A*05 may serve as a useful biomarker of immunogenicity risk and may
impact how the next-generation of anti-TNF drugs are designed to minimise HLA-DQA1*05
mediated immunogenicity. Previous studies have shown that it is possible to map and
eliminate potential immunogenic T cell epitopes with the aim of producing safer and more
durable biologic drugs [48, 163]. However, caution needs to be exercised to ensure protein
sequence modifications designed to reduce the risk of immunogenicity to patients carrying
HLA-DQA1*05 do not put a different group of patients at risk.

Multiple assays are available to detect anti-drug antibodies and there is no universally
accepted, validated threshold to diagnose immunogenicity. Our collaborators deliberately
chose a total, or drug tolerant assay, that permits the measurement of anti-drug antibodies in
the presence of drug, in order to minimise the number of false negative patients assigned to
the control group. They then validated the manufacturer’s positivity threshold in independent
experiments in 500 drug-naïve controls and confirmed that the recommend cut-off of 10
AU/mL corresponds to the 99th percentile of the antidrug antibody titer distribution. In
support of this threshold, our collaborators have recently demonstrated that even modestly
elevated anti-drug antibodies levels (10–30 Au/ml) at weeks 14 and 54 of treatment are
associated with lower drug levels at these time points, and non-remission at week 54 [96].
In addition, sensitivity analyses confirmed that the association and effect size between
HLA-DQA1*05 and immunogenicity remained at progressively higher diagnostic thresholds
for immunogenicity, when we simulated a free-assay, and when we removed patients with
transient antibodies. Finally, HLA-DQA1*05 was associated with the quantitative trait of
maximal anti-drug antibody titer.

Two important limitations of this study should be acknowledged. Firstly, we may have
underestimated the contribution of HLA-DQA1*05 to immunogenicity because of the short
duration of follow-up in patients who did not continue in the study beyond the first year.
Secondly, because the study schedule was designed to minimise patients’ inconvenience,
there were fewer assessments for those treated with adalimumab than infliximab. As a
result, we might have underestimated rates of immunogenicity amongst adalimumab-treated
patients.
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The genome-wide association study was limited to patients with Crohn’s disease of
European descent. Given that HLA-DQA1*05 is not associated with IBD risk [73] the
percentage of carriers among our patients (39%) was similar to that reported in an independent
British population cohort (38%) [71]. As such, I hypothesise that HLA-DQA1*05 will make
a similar contribution to anti-TNF immunogenicity in other patient populations where the
allele is not associated to disease susceptibility (e.g. ankylosing spondylitis). Due to the wide
variation in the frequency of HLA-DQA1*05 across ethnic groups [71], further studies are
required to assess the contribution of HLA-DQA1*05 to immunogenicity across populations.
Whether HLA-DQA1*05 is also associated with immunogenicity to other biologic drugs
also needs to be determined.

In this chapter, I report the first genome-wide significant association with immunogenicity
to biologic drugs. Carriage of HLA-DQA1*05 almost doubles the rate of anti-TNF anti-
drug antibody development, independent of immunomodulator use, for both infliximab and
adalimumab. To minimise the risk of immunogenicity, pre-treatment genetic testing for
HLA-DQA1*05 may help personalise the choice of anti-TNF and the need for combination
therapy with an immunomodulator.





Chapter 3

Attempting to identify the genetic
determinants of thiopurine-induced liver
injury

3.1 Introduction

Thiopurines are a type of immunosuppressive drug that have found their application as
treatments for a variety of conditions, including immune-mediated disorders and acute
lymphoblastic leukaemia. They are also used as maintenance therapy for patients who have
received an organ transplant to suppress the immune reaction to the graft. More recently,
thiopurines have been used in conjunction with anti-TNF (‘combination therapy’) in order
to improve the treatment outcomes of the biologic therapy [41, 96] (see Sections 1.4.4 and
2.1). Several thiopurines are available on the market: azathioprine (AZA), mercaptopurine
(6-mercaptopurine or 6MP), and thioguanine (6-thioguanine or 6TG).

Despite the arrival of the biologic therapies, thiopurines are still used for remission
maintenance in both Crohn’s disease and ulcerative colitis [103]. In addition, a mounting
body of evidence suggests a significant advantage of prescribing thiopurines alongside anti-
TNF in order to reduce the immunogenicity risk and, ultimately, improve treatment outcomes
[41, 96]. There is also a growing interest in exploring the use of thiopurines alongside
vedolizumab, although the evidence of clinical benefit is sparse [79].
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Similar to other immunosuppressive treatment options for IBD, thiopurines have a burden
on the patients’ quality of life and may increase the risk of opportunistic infections (especially
viral), lymphomas, myeloid disorders, and skin cancers [13]. In addition, patients treated
with thiopurines have a high rate of adverse drug reactions of varying severity. In clinical
trials, 0–15% of patients discontinued the treatment due to adverse drug effects [144, 69].
Some of the adverse treatment effects are rather trivial and can be managed – rashes, fevers,
nausea. Others, like severe thiopurine-induced myelosuppression (TIM), can be potentially
lethal and require utmost caution. Thiopurine-induced myelosuppression has a strong genetic
component. Several risk-increasing variants in TPMT and NUDT15 have been identified and
are now being used for targeted clinical genotyping prior to treatment (see Section 1.4.5).

Another adverse effect causing major concern when prescribing thiopurine therapy is liver
injury. The reported rates of thiopurine-induced liver injury (TILI) vary greatly across studies,
with retrospective studies reporting a mean of 3% [69], while the only prospective study has
reported a rate of 10% [16]. Several sub-types of TILI exist. Hepatocellular injury is the
most common, most asymptomatic type of TILI that is associated with transaminase enzyme
elevation. The condition occurs within 12 weeks of treatment start or after dose escalation
[24, 185]. Hepatocellular TILI is usually resolved after thiopurine dosage reduction or
treatment withdrawal [65]. Cholestatic liver injury is observed in 1 in 1,000 thiopurine-
treated patients and is associated with jaundice, itching, and fatigue [80, 186]. Cholestatic
TILI occurs between 2 and 12 months after the start of the treatment. The condition can often
be mitigated by stopping the therapy, though it can continue after its cessation [80, 186].
Finally, TILI can present itself with both the symptoms and biomarkers of hepatocellular and
cholestatic injury (and so will be referred to as ‘mixed TILI’).

Several risk factors have been associated with TILI: use of corticosteroids was associated
with hepatocellular TILI; while concomitant anti-TNF appears to reduce the risk [16], nonal-
coholic fatty liver disease, a condition more frequent in IBD patients, has been associated
with a higher risk of hepatocellular TILI [166, 179].

As of September 2019, no genetic associations for thiopurine-induced liver damage
have been reported. However, several associations, all within the HLA region, for non-
thiopurine liver injury have been reported: HLA-B*57:01 for flucloxacillin (antibiotic)
[45], HLA-A*02:01 and HLA-DRB1*15:01 for amoxicillin-clavulanate (AC, antibiotic)
[114], HLA-B*35:02 for minocycline (antibiotic) [181], and HLA-A*33:01 for terbinafine
(antifungal) [133]. The associations are thought to be drug-specific.
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In a recent study, Cirulli et al. [39] performed a genome-wide association study of
idiosyncratic drug-induced liver injury (DILI). They assembled a cohort of 2,048 individuals
with DILI and 12,429 unmatched controls. The cohort was primarily of European ancestry
(1,806 cases and 10,397 controls), but included a small number of African American and
Hispanic cases with matched population controls. The authors also assembled a replication
cohort, consisting of 113 individuals and 239,304 controls of Icelandic ancestry. The cases
included subjects of cholestatic (26% amongst the primary European cohort), hepatocellular
(41%), mixed (26%), and unknown (7%) DILI. The study included DILI cases caused by a
variety of drugs, and herbal and dietary preparations.

The major finding of the study was the association in PTPN22 – rs2476601 (Ncases = 444;
OR=1.44; 95% CI, 1.28 to 1.62; P=1.2×10−9), which was replicated in the Icelandic cohort
(OR=1.48; 95% CI, 1.09 to 1.99; P=0.01). The association is primarily driven by amoxicillin-
clavulanic acid combination therapy, which is used as an antibiotic (OR=1.62; 95% CI,
1.32 to 1.98; P=4×10−6 amongst the patients of European Ancestry). The authors argue
that the association is not driven by any particular category of drugs, demonstrating that
association has a consistent direction of effect (OR>1) across 39 drugs. However, only seven
of these reach the nominal significance level of 0.05. Some therapies, like the antibiotic
flucloxacillin, do not demonstrate any evidence of association (Ncases = 195; OR=1.24,
P=0.18). The replication cohort was more homogeneous, consisting of individuals with DILI
due to amoxicillin-clavulanic acid and other antimicrobial drugs. As such, it is reasonable
to assume that the PTPN22 association is not a universal risk variant for drug-induced liver
injury, but it only causes an adverse reaction in a subset of treatments. The effect of the
association on thiopurine-induced liver injury remains uncertain, as the cohort only had 10
cases on mercaptopurine (OR=1.72; 95% CI, 0.5 to 5.97; P=0.39). This will be revisited in
the chapter below.

Thiopurines continue to be a widely used therapy for treating patients who suffer from
inflammatory bowel disease and a variety of other conditions. Severe drug reactions, like the
thiopurine-induced myelosuppression and liver injury, pose a serious challenge and require
a better understanding of the associated risk factors in order to enable better therapeutic
drug monitoring and personalised prescription. In this chapter, I describe the results from a
genome-wide association study of TILI subjects that were recruited as a part of the Predicting
Serious Drug Side Effects in Gastroenterology (PRED4) study.
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3.2 Methods

3.2.1 Genotyping, cohort assembly, and quality control

Assembling the dataset

Patients were recruited as a part of the Predicting Serious Drug Side Effects in Gastroenterol-
ogy (PRED4) study (REC number 11/SW/0222).

The final phenotype revision of the PRED4 TILI cohort included 859 individuals – 278
TILI cases (32%) and 581 controls (68%). Cases included 126 subjects with hepatocellular
TILI (45% of the cases), 41 with cholestatic (15%), 106 with mixed (38 %), and 5 with an
unknown type (2%).

Unfortunately, the genotyping of the entire cohort was not performed in one batch. 1,221
genotyped samples belonging to 786 phenotyped patients were identified (up to 4 genotyped
samples per patient). The samples were spread across five genotyping cohorts:

• Two cohorts (153 [broad1] and 485 [broad2] samples) genotyped at the Broad In-
stitute as a byproduct of the G4L WES pipeline (based on the Illumina Infinium
Genome-Wide Association Study array, contain ∼245,000 markers).

• One produced at the Sanger institute using the Illumina HumanCoreExome-12 – 245
samples previously included in the de Lange et al. study [49] (imputed to HRC, ∼11
million markers [gwas3]).

• Two cohorts produced at the Sanger Institute using the HumanCoreExome-24 array –
150 (imputed to HRC, underwent QC described in de Lange et al. [49], [newwave])
and newly genotyped 188 samples (522,049 markers [newgeno]).

The 1,221 samples were combined together, taking an overlapping set of variants across
all five cohorts (1,221 samples, 230,597 variants).

In order to verify to the correctness of the phenotype-to-genotype ID matching and to
remove related samples, the genetic kinship across samples was calculated. The assumption
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was that samples from different genotyping cohorts, tentatively assigned to the same ID,
should have a high PI_HAT score.

For calculating the relatedness, the full genotyping cohort was filtered to include only
accurately genotyped, common SNPs (MAF > 5%, call rate > 0.95, Phwe > 10−6, 216,278
variants post-filtering). Variants in linkage disequilibrium with each other were removed
via the LD-prune procedure (r2 = 0.2, window = 500,000 bp, 77,053 variants post-filtering).
In addition, five poorly genotyped samples were excluded (sample call rate < 0.8), as they
resulted in spurious low-level relatedness with tens of otherwise unrelated samples.

The filtered cohort was used to run kinship estimation (identity by descent, similar
to the method described in [151]). Pairwise relatedness was estimated for all individuals
in the cohort. Pairs with PI_HAT > 0.18 were retained (473 pairs; PI_HAT = 0.1875 is
halfway between the expected pi-hat for third- and second-degree relatives [7]; adjusted to
be marginally lower in order to account for genotyping heterogeneity). Amongst the pairs
of genotyped samples thought to belong to the same patient ID, the minimal PI_HAT was
0.96 (PI_HAT range is between 0 [unrelated] to 1 [duplicate samples or monozygotic twins]),
suggesting that the ID matching was done correctly. One sample from each related pair was
removed, prioritising samples with denser genotyping, to ensure that no two sample pair had
a PI_HAT > 0.18. Post filtering, the cohort retained 778 samples.

Sample quality control

Next, I have removed poor-quality samples. Minimal variant-level QC was applied (MAF
> 1%, missingness < 5%, Phwe in controls > 10−6) to avoid the sample-level metrics being
affected by low-quality variants. Samples with a minimal call rate of 99% and within three
standard deviations from the median of the heterozygosity ratio and the call rate were retained.
The filter was applied on both individual cohorts and on the overall dataset. 34 samples were
removed, retaining 744 samples.

The absolute majority of the individuals in the cohort were of self-reported European
ancestry. Weights from the 1000 Genomes project principal component analysis (PCA) were
obtained from [9], and projected on the TILI samples. Thirteen outliers (Figure 3.1), based
on the first four principal components were removed. The remaining 731 samples were
well-mixed, forming one cluster.
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Figure 3.1 Projection of weights derived from 1000 Genome Project principal component

analysis onto 778 samples from the PRED4 TILI cohort. The absolute majority of the

samples are clustered together (731, orange). Thirteen outliers (blue) were removed after

manually inspecting the first four principal components. Exclusion thresholds are shown

with dashed blue lines.
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Within-cohort Hardy-Weinberg-normalised PCA was conducted to identify outlier sam-
ples (Figure 3.2). 10 principal components were calculated using the LD-pruned variant
subset (described above). Regions of the genome with long-range LD were excluded, as
described in [149]. The eigenvalues were small, suggesting that there is no substantial vari-
ance across the genotyping batches (eigenvalPC1 = 1.42, eigenvalPC10 = 1.24). Thirty-three
outliers, based on the first four principal components were removed. The first five principal
components were used as covariates during the association tests.

The final sample set contained 698 samples – 207 TILI cases and 491 matched non-TILI
controls.

Variant QC

Rare and low-quality variants were removed prior to the association testing. The following
filters were applied to the dataset: MAF > 1%, missingness < 5%, Phwe in controls > 10−6.
The final dataset contained 226,337 SNPs. At this stage, I did not impute the dataset to any
of the reference panels. Primarily, this was due to the low density genotyping and the strong
exonic bias of the Broad G4L chip, and partially due to time constraints. A decision was
made to impute the dataset only if any significant associations were uncovered (the entire
GWAS signal ‘peak’ is unlikely to contain only imputed SNPs).

3.2.2 Statistical testing

For the case-control association tests, logistic regression was carried out using the Wald test.
Sex, disease type (CD versus UC), and the first five principal components were used as the
covariates.

After performing the draft case-control association analysis, I identified several spurious
associations (single variant with no variants in LD with similar p-values). Upon further
inspection, these associations were driven by samples from one of the cohorts. To correct for
these batch effects, I included a series of case-case and control-control tests (e.g., cases from
GWAS3 versus cases from other cohorts). The variant was only considered significant if the
p-value in neither of the batch-effect tests exceeded α=1×10−3.
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Figure 3.2 Principal component analysis of the PRED4 TILI cohort. Thirty-three outliers

(blue) were removed after manually inspecting the first four principal components. Exclusion

thresholds are shown with dashed blue lines.
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Sample and variant QC, PCA, and association testing was performed using the Hail 0.2
framework [77].

3.2.3 Power calculation

Using the methodology described by Johnson and Abecasis [88], power to detect single-
variant associations for TILI was calculated. The following parameters were used: signifi-
cance threshold α=5×10−8, trait prevalence 10% [16], additive model, 207 cases and 491
controls. Considering that the controls were screened for TILI, the genotype relative risk
ratios can be used as the odds ratio estimates. Scenarios where statistical power exceeded 0.8
were considered as ‘well powered’.

The power calculation (Figure 3.3) suggests that at the current sample size, I was poorly
powered to detect associations with relative risks below 2.5 for variants of all minor allele
frequencies. For rare variants (frequency of 1%), the risk would have to exceed 10. For
common variants with MAF = 10% and above, I only had power to detect variants with an
odds ratio of 3 and above. It should be noted that power calculations tend to overestimate the
power, as they do not take into account the genotyping errors, cryptic population structure,
and batch effects that have a negative impact on the ability to detect a true association.

3.3 Results

3.3.1 Case-control analysis

The genome-wide case-control analysis did not identify any robust associations for thiopurine-
induced liver injury. The QQ-plot did not indicate a major inflation of the p-values. The
genetic inflation factor was low (λ = 1.01). A single variant that passed the genome-wide
significance threshold – rs10935807 – appears to be significantly associated with TILI (OR
= 2.32; 95% CI 2.07 to 2.57; 6.61×10−11). In the GTEx dataset, the variant is significantly
associated with the expression of the EIF2A gene in 18 tissues (not including liver). No
formal colacolisation analysis was performed. Eukaryotic translation initiation factor 2-alpha
kinase 3 (EIF2AK3), often referred to as protein kinase R (PKR)-like endoplasmic reticulum
kinase (PERK), is known to be involved in phosphorylation of EIF2A [160]. Hopper et al.
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Figure 3.3 Power to detect single-variant associations for PRED4 TILI cohort. X axis –

relative risk of the variant. Y axis – variant frequency. Individual segments on the heatmap

– power to detect the association at the genome-wide significance level. Methodology as

described in [88]. Original code translated from JavaScript to Python in order to run power

calculations for larger sets of parameters simultaneously. Parameters used: significance

threshold α=5×10−8, trait prevalence 10% [16], additive model, 207 cases and 491 controls.
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Figure 3.4 Quantile-quantile plot for the case-control analysis of the PRED4 TILI cohort.

The inflation factor λ is 1.01, suggesting a good fit to the uniform distribution.

[81] have demonstrated that azathioprine induces autophagy, partially via stimulation of
the unfolded protein response (UPR) sensor PERK. However, despite the tentative biologic
explanation, I do not believe that the association is truly robust.

While I could not identify any obvious issues with the genotyping quality, there are
several properties that make me cautious about declaring this association to be true. Firstly,
as visible on the Manhattan plot, there are no other SNPs with a p-value close to rs10935807.
The SNP with the highest R2 with rs10935807 (out of those currently genotyped) – rs9883613
(R2 = 0.6352, D’ = 0.9728) demonstrates no evidence of association (P = 0.31). In addition,
amongst the two biggest case-containing batches, the variant has a substantially different
minor allele frequency (broad1 – 0.45, newgeno – 0.60). The frequency in the biggest
control batches closely matches that reported in gnomAD for individuals of the European
ancestry (∼0.35). As it currently stands, I am hesitant to claim that the variant is associated
with TILI. The variant could be potentially re-imputed. Unfortunately, the G4L chip does not
include any of the five variants that are in high LD (> 0.95) with the rs10935807, making
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Figure 3.5 Manhattan plot for case-control analysis of the PRED4 TILI cohort. Only one

variant (rs10935807) reached the genome-wide significance level (OR = 2.32; 95% CI 2.07

to 2.57; 6.61×10−11). The supporting text describes the arguments why it requires further

investigation before conclusive statements can be made with regard to its association with

TILI.
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high-quality imputation unlikely. Alternatively, the cases and controls genotyped exclusively
with the G4L chip can be re-genotyped on the CoreExome chip in order to match the rest of
the cohort. Potentially, one could try validating this tentative association via replication.

3.3.2 rs2476601 in PTPN22 does not appear to be associated with TILI

I have attempted to replicate the result reported by Cirulli et al. [39] (see the detailed
description in the introduction). They describe a finding that a missense variant in PTPN22 is
associated with idiosyncratic drug-induced liver injury. The association is largely driven by
liver injury caused by amoxicillin-clavulanic acid combination therapy, though a variety of
other therapies have an effect size in the same direction. The cohort included 10 TILI cases
caused by mercaptopurine which, when analysed alone, had a similar effect size to the overall
association but was not significant (OR=1.72; 95% CI, 0.5 to 5.97; P=0.39). Convincingly
replicating the DILI association in a TILI cohort would be of great interest and could be
considered the first robust genetic association for TILI.

The rs2476601 SNP was only genotyped in the CoreExome subset of the PRED4 TILI
cohort – 152 cases and 364 controls. The particular variant was well genotyped: 100% call
rate, Phwe=0.17, MAF=0.91 comparable to MAF=0.90 reported in gnomAD for Northwestern
Europeans. The case-control analysis was repeated on this subset containing rs2476601.

No evidence of replication was uncovered (OR=0.88; 95% CI, 0.41 to 1.35; P=0.60). It
should be noted, that I did not have the complete statistical power to replicate the association:
assuming α = 0.05 (replication-level significance) and OR=1.72 (the reported odds ratio for
mercaptopurine), the power was 0.76; assuming α = 0.05 and OR=1.44 (the pooled OR) it
was 0.44.

The work of Cirulli et al. is an important step towards understanding the genetic determi-
nants of drug-induced liver injury. It demonstrates consistent effect in DILI caused by several
drugs (namely, antibiotics and antifungals). However, at this stage there is no evidence that
rs2476601 is associated with liver injury caused by thiopurines.



72 Attempting to identify the genetic determinants of thiopurine-induced liver injury

3.4 Discussion

In this chapter, I have described the first genome-wide association study of thiopurine-induced
liver injury. Unfortunately, at this stage, it did not result in any robust associations. I believe
there are several potential reasons for this.

The success of GWAS as a technique for studying complex disease genetics comes down
to the consistent application of rigorous statistical approaches to ever-growing sample sizes.
The hypothesis-free nature of GWAS requires applying a stringent genome-wide significance
threshold for p-values, correcting for inevitable multiple testing (typically, α=5×10−8, see
Section 1.3.2 for a more extensive discussion). Therefore, GWAS study cohorts need to be
sufficiently big to detect truly associated variants. In this chapter, I have analysed a cohort of
207 cases and 491 controls – well below the sample size that is expected for modern complex
trait GWASs, which often exceed hundreds of thousands of cases and controls.

The small sample size is not unusual for pharmacogenetic studies. Cholestatic TILI
occurs in 1 in 1,000 thiopurine patients who are treated for IBD, a disease that occurs in
approximately 0.5–0.8% individuals in the UK. The rarity of the condition makes collecting
even a few hundred cases a challenging task. Past pharmacogenetic GWASs have yielded
results at modest sample sizes, due to the high odds ratios of the uncovered variants (e.g.,
the coding NUDT15 variant increasing the risk of thiopurine-induced myelosuppression
[OR=27.3] [186]).

An assumption often made when designing pharmacogenetic studies is that, in contrast to
the majority of complex diseases, adverse drug reactions might be associated with common
genetic variants (say, MAF>5%) and have a high effect size, as they have not gone through
the purifying selection due to the recency of the therapy’s arrival. This assumption, however,
is only partially correct: therapies with severe side effects that are strongly associated with
common genetic variants are not expected to pass stages II and III of clinical trials due to
safety concerns. I have performed a case-control power calculation (Figure 3.3), suggesting
that the study had 80% power to detect variants with relative risk of 2.5 and above for all
minor allele frequencies. It is entirely possible that thiopurine-induced liver damage is a
polygenic trait that is not associated with such high-effect size SNP variants.

Another limitation of the study is the heterogeneity of the genotyping arrays, resulting
in only around 226,000 markers being tested for associations (discussed in Methods). The
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number of tested markers can be potentially increased via imputation. However, as discussed
in the Methods section, the sparsity and the exonic bias of the G4L array is likely to be
detrimental to the overall imputation quality. We are considering including the TILI samples
into the ongoing IBD WES study in order to whole-exome sequence them at 60x depth.
Exome sequencing will allow us to search for low-frequency variation that may be associated
with TILI, but is poorly captured by the current genotyping arrays. Considering the small
cohort size, this would be sufficient only for finding associations of a high effect size and it
is likely that such variants are within the exonic regions of the genome. However, it is worth
noting that, based on the power calculation, a 1% MAF variant would need to have a relative
risk of 9 and above in order to be associated at least at an exome-wide significance level
(α=1×10−6).

Finally, I believe that the TILI study can be extended further. The NIHR IBD BioResource
project [143] is finalising the recruitment of its first 25,000 IBD patients, who will undergo
genotyping. The participants will be given questionnaires that include timings (treatment start
and discontinuation), therapy response, and information on adverse drug reactions. Assuming
that 75% of those 25,000 patients underwent thiopurine therapy and a 10% incidence of TILI,
one would expect 1,875 TILI cases amongst the BioResource patients. The difficulty is that
TILI cases might not be encoded as such.

One way to get around the scarcity of the TILI cohorts is to perform a discovery GWAS
for all-cause therapy thiopurine failure. The proxy-phenotype can be further improved
by including the information on when the patients have ceased the therapy, expecting the
hepatocellular TILI cases to stop the therapy within the first 12 weeks of treatment. This
approach is unlikely to work for patients with cholestatic TILI since the condition occurs
within the first 12 months of the treatment, which is hard to distinguish from discontinuation
due to treatment ineffectiveness. Besides, considering their 1 in 1,000 frequency, the number
of cholestatic patients in the entire BioResource will be very low. If the analysis results in
significant associations, these can be validated in the PRED4 cohort by confirming that a
variant is at least nominally significant in TILI and has a similar OR.

Ultimately, this chapter demonstrates that the search for pharmacogenetic associations
remains a challenging task, largely limited by the difficulty of assembling the cohorts. The
arrival of large biobanks and bioresource services could enable studies that leverage imperfect
proxy phenotypes in order to maximise the statistical power at the discovery stage. However,
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the presence of the clinically validated datasets, like the PRED4 TILI cohort, will remain
important for verifying such associations.



Chapter 4

Quality control and the initial analysis of
the IBD 15x cohort

4.1 Introduction

Genetic association studies of inflammatory bowel disease have uncovered the vast archi-
tectural complexity of the disorder [92, 49, 116]. While some, mostly coding, genetic
associations for IBD increase the risk of the disorder several-fold (e.g., variants in NOD2

for CD, HLA-DRB1*01:03 for both CD and UC), the majority of known associations are
noncoding and have a modest effect size (OR ∼ 1.2).

A common criticism of GWAS is whether the discovery of such low-risk associations
is relevant to our understanding of disease pathogenesis and, ultimately, whether such
discoveries could be translated into therapeutic targets for the next generation of IBD
therapies. To counter this, one could point out the long history of IBD GWAS uncovering
associations in genes and pathways that are targeted by existing and newly-developed IBD
therapies: IL23, implicated in the pathogenesis of CD back in 2006 [57], is targeted by
ustekinumab – a monoclonal antibody, approved for the treatment of CD in 2016; TAB2

and NFKB1 are within the TNF signalling pathway targeted by anti-TNF therapies; at least
three known associations within the integrin genes (2017 [49]), support the efficacy of
vedolizumab and etrolizumab which target the α4β7 dimer [49]. Neither of the of the
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integrin-related variants have a high effect size (OR = 1.10–1.12 [49]), emphasising the
inconclusive relationship between the disease risk effect size and the therapeutic relevance.

The success of IBD GWAS at identifying known drug targets is consistent with the
observation that drugs with genetically supported targets have double the success rate in
clinical development [129, 98]. It is not well understood whether drug targets that are
supported by evidence from high effect size variants are more therapeutically relevant.
King et al. [98] demonstrate that the drugs that target the manually curated gene-disease
associations, described in the Online Mendelian Inheritance in Man dataset (OMIM), have a
higher success rate compared to those that target ‘GWAS to gene to trait’. One explanation
for this is the difficulty in linking the noncoding GWAS variants to the causal gene, resulting
in the misidentification of drug targets (see the Introduction chapter). Alternatively, the
Mendelian focus of the OMIM dataset means that the majority of genetic variants that are
present in it have a very high effect size, suggesting a positive relationship between the effect
size and the drug target success.

The translation of GWAS association to genetic targets is nontrivial. Association studies
across numerous complex diseases indicate that the majority of the identified common
variants are located within the noncoding regions of the genome and cannot be always
mapped to a causal variant, yet alone gene [82]. The early-day approach of mapping the
noncoding variants to the nearest gene is now known to be error-prone [29] and has been
largely superseded. eQTL colocolisation techniques have become a powerful instrument
for linking known noncoding associations to their respective genes, but require careful
consideration of the tissue type, cell type or even cell stimulation type.

Coding associations provide an easier path from GWAS to target. However, the typically
stronger effect size of such variants is at odds with purifying selection: selective pressure
either keeps the large effect size risk variants rare, or rapidly pushes them down the allele
frequency spectrum. Uncovering further large effect genetic variants associated with IBD is
nontrivial. The most recent large-scale GWAS for IBD included more than 25,000 cases and
35,000 controls and was extremely well-powered to detect common, large effect associations.
Therefore, the field has likely reached a ‘saturation point’ when it comes to uncovering such
variants. Further discoveries will require a foray into the rare allele frequency spectrum,
which is poorly captured by genotyping techniques (see the Introduction chapter).



4.1 Introduction 77

The IBD 15x study was set up to understand the role of rare coding and noncoding
variation in IBD. It is a case-control cohort that includes around 19,000 subjects – 7,000
IBD patients and 12,000 controls, all whole-genome sequenced at 15x target depth. In
contrast to array genotyping, short read whole-genome sequencing provides an unbiased
way to study rare single nucleotide (SNP) and short insertion/deletion (INDEL) variation
across approximately 95–98% of the human genome. In addition, whole genome sequencing
(WGS) allows the study of structural variation [102] and accurate typing of alleles in complex
regions of the genome such as HLA [55] and KIR [157].

In the past few years, various complex disease consortia have published studies perform-
ing rare-variant association studies on WGS datasets, uncovering several novel rare-variant
associations for their respective traits (e.g., [63, 125]). However, these efforts are yet to result
in a ‘gold rush’ of new associations similar to the early days of GWAS.

IBD 15x follows a previous IBD WGS study by Luo et al. [116] (4,280 cases sequenced
at low-coverage and 3,652 controls) which uncovered a 0.6% frequency missense variant in
ADCY7 that doubles risk of ulcerative colitis. However, the IBD 15x builds upon the insights
gathered during the low-coverage sequencing project. Firstly, the cohort includes almost
exclusively Crohn’s disease patients, allowing us to get more power to detect variants that
have a differential effect between CD and UC (see Section 4.3.4). Secondly, it maintains an
important balance between the cohort sample size and sequencing depth in order to maximise
the statistical power, while not sacrificing too much sensitivity, to detect low frequency and
rare variant associations (see Section 4.3.1). Lastly, it contains noticeably more cases and
controls to perform the association tests. As discussed in the Introduction and in Section
4.3.1, for anything other than variants with semi-Mendelian effect sizes (OR > 10; have not
been previously identified for IBD) it is important to study rare variation in a dataset with at
least 15–20,000 samples.

In addition, 15x is planned to be analysed in conjunction with two exome-sequencing
datasets: the Broad WES cohort (early meta-analysis described in Section 4.3.4) and the
upcoming Sanger IBD WES cohort. Combined, these should exceed 35,000 cases and 75,000
controls, providing a great opportunity to study the contribution of rare coding variation
in IBD. In the following discussion, I describe the approaches that can be used to study
the noncoding variants – a challenging task at this sample size, but that could help us to
understand the genetic architecture of IBD even better.
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The analysis stage of the 15x cohort began just a few months ago, and the majority of
this time was spent on the sample quality control procedures that are described in the chapter
below.

In this chapter, I describe the IBD 15x association study. I describe the initial efforts at
variant and sample quality control, in order to enable a whole-genome association study of
IBD. In addition, I describe the first results from the IBD 15x study: namely, the replication
of several rare variant associations uncovered in the whole-exome cohort produced at the
Broad Institute.

4.2 Methods

4.2.1 Power modelling

Sequencing depth (coverage) is the mean number of sequence reads that align to reference
bases. For most of the use-cases, it is insufficient to perform sequencing at 1x depth:
individual sequence reads have a high error rate and there are likely to be substantial gaps in
the sequenced genome. Therefore, a higher sequencing depth is usually chosen – 10x–30x
for most association studies, >50x for applications like structural variation discovery and
tumour analysis. Variant calling tools, like GATK and DeepVariant, are able to use redundant
reads to correct for errors, thus increasing the genotyping quality.

The default coverage for the past two generations of short read sequencers (Illumina
HiSeq X, NovaSeq) is 30x, as are the majority of commercial sequencing offers (e.g., Broad
Institute Genomic Services, Dante Labs). The relationship between the sequencing cost and
depth is close to linear. Given a fixed budget, researchers setting up studies have to consider
whether it is more beneficial to sequence a larger cohort (increasing the statistical power) or
sequence a smaller cohort at a higher depth (increasing the sensitivity).

In order to increase the size of the cohort, the cases and controls for the IBD whole-
genome study were sequenced at 15x target depth. In practice, the median sequencing depth
in the final 15x dataset is around 18.5x due to some over-provisioning when libraries are
sequenced in multiplexed mode (Figure 4.1). Early in my project, I was involved in efforts to
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Figure 4.1 Histogram of mean per-sample coverage for samples in the combined 15x cohort.

Median depth in the 15x cohort: 18.56x. N=19,374.

evaluate how the lower sequencing depth of the 15x study would influence the the ability to
perform rare-variant association studies.

Variant calling sensitivity at different depths

Reduction in sequencing depth is expected to reduce the sensitivity to call variants. NA12878
is a whole-genome sample produced by the Genome in a Bottle project [44]: sequenced
with extremely-high ∼300x coverage, it is considered to be the current ‘gold standard’ of
short-read WGS data. Validated variants called at ∼300x are considered to be the truth set in
various variant calling benchmarks.

The sample was downscaled by randomly discarding paired-end reads, simulating se-
quencing at a lower depth. At simulated 30x coverage, 98% of SNPs and 79% on INDELs
from the truth set were called by the GATK 3.3 variant caller [147] (work done by Martin
Pollard).
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Figure 4.2 Influence of sequencing depth on the ability to detect SNPs and INDELs. Esti-

mates provided by Martin Pollard.

The sample was further downscaled to estimate the loss of sensitivity, compared to
sequencing at 30x depth (see Figure 4.2)1.

The fraction of the called truth set variants appears to plateau around 15–17x. At 15x
depth >97.5% sensitivity to discover SNPs at and >87% for INDELs is retained.

Computational model for estimating the statistical power of sequencing studies

I implemented a numeric simulation to calculate the power to detect single variant associations
in case-control and quantitative trait settings. The method takes into account sensitivity to
detect SNP variants at different depths. In the case-control setting, the variant is present
with a probability Pcase in cases and Pctrl in controls. The model is supplied with a pre-
calculated table of sensitivities to detect the variant at a depth S(d). For each of the cases and
controls, a random draw between 0 and 1 from a uniform distribution is made. If the draw is
≤ pcase ∗S(d) (or pctrl ∗S(d) for controls), the variant is considered observed. The Fisher

1Variant calling and comparison to the truth set was performed by Martin Pollard [147]
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exact test on 2 x 2 table of observations in cases and controls is used to calculate the p-value
and the odds ratio. If the p-value is less than or equal to the significance α , the simulation
run was successful. Nsim simulations are performed to calculate the fraction of successful
associations, which is used as a measurement of the statistical power.

4.2.2 Sample selection

Cases: IBD 15x

Samples were initially selected for sequencing from previous DNA collections available at
the Sanger Institute. In addition, new samples supplied by the IBD BioResource [143] and
other collaborator groups from across the UK were sequenced.

Throughout this chapter I will use the term ‘phase’ to denote large batches of samples
in both IBD 15x (cases) and INTERVAL 15x (population controls). IBD and INTERVAL
15x consisted of three phases each. Within each phase the sequencing protocol remained
consistent, while some protocol variability was allowed between the phases to improve the
sequencing results (see 4.2.3).

I enforced several criteria for the selected samples:

• Disease type: Crohn’s disease2

• Self-reported ethnicity: White – British, White – Irish or White – other

• DNA sample passing the QC criteria for PCR-free sequencing on Illumina HiSeq X

• Sample was not previously sequenced as a part of an earlier phase

At the later stages of the project, this was done by my colleagues, who followed a similar
protocol.

Considering the high cost of whole-genome sequencing, I attempted to minimise the
number of duplicate samples. Firstly, I checked the sample IDs for duplication (e.g., if centre

2Some of the patients in the IBD 15x Phase 1 and Phase 3 were diagnosed UC instead of Crohn’s. I am
finalising the list of the UC patients but it appears to be ∼300 cases.
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x sends the DNA sample y twice). Secondly, I tried to account for situations where the
DNA of the same individual is sent for sequencing twice with different IDs (e.g., first from a
collaborating centre and then from the IBD BioResource).

I implemented a pipeline that compares the genetic fingerprints (15–25 SNPs via Fluidigm
or Sequenom targeted genotyping platforms) that are produced as a byproduct of sample QC
by the Sanger DNA Pipelines. The fingerprints are primarily used to detect sex discordance
and to evaluate the DNA quality (higher fingerprint messiness typically indicates lower DNA
quality and therefore lower quality of sequencing). The pipeline converted the fingerprints
for each considered sample (previously sequenced and new candidates for sequencing) into a
joint VCF file. I then ran identity by descent calculation via AKT [9] (PLINK-like kinship
estimation method). Empirically, I determined that it was only possible to reliably detect
duplicates (or monozygotic twins) and not first degree relatives or lower.

Controls: INTERVAL 15x

INTERVAL is a large study of 45,000 healthy blood donors that was initially set up to study
the effect of blood donation frequency on subjects’ health. The cohort was then used to study
the effects of the genetic variation on a variety of blood cell traits [10]. All samples included
in the INTERVAL 15x were previously genotyped. Prioritisation for sequencing was based
on the availability of certain metabolic phenotype data (not covered in this thesis). Unrelated
subjects of European ancestry were selected for further whole-genome sequencing. Sample
selection was performed by the Soranzo Team members at the Sanger Institute.

4.2.3 Sequencing

The samples were sequenced at the Sanger Institute between 2016 and 2018. DNA, extracted
from whole blood, underwent short-read paired-end sequencing by synthesis using the
Illumina HiSeq X Ten machines. The target coverage depth was 15x. Considering the
time-scale of the project, there was some variability between individual batches:

PCR versus PCR-free sequencing: INTERVAL 15x Phase 1 (controls, n=5,093) was
the first batch of samples that underwent sequencing. During the DNA library preparation,
an additional PCR amplification step was added due to the specifications of the library prep
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kit. Libraries for the subsequent INTERVAL (Phases 2 and 3) and IBD (Phases 1–3) were
prepared using a PCR-free kit.

Single versus dual indexing: IBD 15x Phase 3 (cases, n=2,530) was the latest batch to
be sequenced as a part of the 15x project. Dual-indexing of the DNA fragments was applied
during the library prep to minimise index misassignment. Other batches were sequenced
using the standard single-indexing approach. I provide an overview of how single- and
dual-indexing influences the sequencing quality in Section 4.3.2.

4.2.4 Alignment and variant calling

BWA MEM [106] software was used to align the reads to the reference genome. Genome
Reference Consortium GRCh38 (with decoys) was used as a reference genome for all phases
of IBD and INTERVAL 15x.

Germline variant calling was performed using the GATK4 toolkit [121] following the
‘Best Practices’ pipeline. Briefly, intermediate sets of SNPs and INDELs were called for
each sample via local de-novo assembly of haplotypes using the HaplotypeCaller tool. All
intermediate calls from both IBD and INTERVAL 15x were then refined during the Joint
Genotyping stage.

Alignment was performed by the NPG group and variant calling was performed by the
HGI group at the Sanger Institute.

4.2.5 Computational analysis pipeline

One of the biggest difficulties with conducting this project was the scale of the dataset and
the computational challenges associated with analysing it. The combined size of the variant
call files in compressed VCF format for was approximately 15 terabytes in size (TB = 1024
gigabytes). This is approximately seven times larger than the imputed genotypes of the
500,000 individuals in the UK Biobank cohort [35] and 1,000 times larger than the PANTS
anti-TNF dataset described in Chapter 2.

The scale of the present-day association study cohorts has long passed the point at
which they can be analysed on a single powerful computer within a reasonable time-frame.
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This issue is addressed by distributed computing: analytical tasks are spread across several
computers or servers, each with multiple central processing unit (CPU, ‘processor’) cores.
A technique that is often used for performing distributed computation is called MapReduce
[50], whereby the tasks are separated into two stages: the map procedure independently
applies a particular function across individual parts of the dataset (e.g., counting the number
of INDELs present in each partition) and the reduce procedure collects the outputs from the
map stage and summarises them (e.g., adding up the outputs of map functions and getting the
total number of INDELs in the dataset). While it is possible to implement MapReduce-like
pipelines using traditional GWAS analytical tools like PLINK [151] (breaking up the dataset
into per-region .BED files, running the analytic pipeline, creating a custom reduce function),
the scale of the 15x makes the application of such an approach challenging: the majority of
these tools assume that the dataset can be trivially modified and a new version saved onto
disk (e.g., when a single individual is excluded during the QC). Writing an additional 15 TB
of data onto a disk can take tens of hours even when using a large computational cluster and
costs thousands of pounds a year to maintain. The second issue with such ad hoc distribution
is that as the complexity of the analytical pipeline increases (e.g., multiple filtering stages,
followed by logistic regression), so does the complexity of writing the reduce functions. In
theory, tasks can be scheduled efficiently so that the processing of individual parts of the
dataset can proceed independently until they need to access the outputs from other parts of
the dataset, but the creation of such tree- and graph-based schedulers is nontrivial and is an
active research area in computer science.

Early on in my project, I evaluated several tools that could enable the efficient and timely
analysis of the 15x dataset (and also wrote a simple scheduler of my own). Ultimately, I
decided to use the Hail [77] toolkit for the analysis. Hail is a ‘data analysis tool with additional
data types and methods for working with genomic data’. It was previously used for the
all-phenotype GWAS of the UK Biobank (4,200 traits across 360,00 genotyped individuals)
[127] and is currently used to produce releases of the gnomAD database (125,748 exomes
and 15,708 genomes) [95]. Hail uses Apache Spark, a distributed cluster manager that builds
upon the principles of MapReduce.

Unfortunately, the deployment of Hail on the internal cluster was a nontrivial task. While
the actual deployment was led by the Human Genome Informatics team, as one of the early
adopters (starting with the QC of the PANTS cohort) I was involved in identifying and trying
to fix numerous stability and performance issues. We are still experiencing hardware-related
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problems, which have limited some of the analyses (e.g., the full genome-wide logistic
regressed), but the current deployment has facilitated the analyses I describe below.

The majority of the analytic pipeline for IBD 15x was written in Python, using the Hail
0.2 framework and a variety of analytical packages (scikit-learn, statsmodels, pandas,
etc.). At different stages, it was executed across 200 to 1,350 CPU cores on the Sanger
Institute’s OpenStack cluster.

4.2.6 Dataset overview and pre-processing

Autosomal chromosomes (1–22) were converted into the MatrixTable format used by Hail
(19,371 samples, 205,889,702 variants). Multiallelic variants were split into separate records
(226,027,757 variants). Standard variant and sample quality control metrics were calculated
to facilitate further filtering.

The samples were sequenced across several batches. Batch-specific features are high-
lighted in bold.

• IBD Phase 1 (1,427 samples, cases, PCR-free sequencing)

• IBD Phase 2 (3,060 samples, cases, PCR-free sequencing)

• IBD Phase 3 (2,530 samples, cases, PCR-free sequencing with dual indexing)

• INTERVAL Phase 1 (5,093 samples, controls, PCR sequencing)

• INTERVAL Phase 2 (5,570 samples, controls, PCR-free sequencing)

• INTERVAL Phase 3 (1,691 samples, controls, PCR-free sequencing)

4.2.7 Sample quality control

Inclusion of low-quality and outlier samples may negatively influence the results of the
association study. The main goal of sample QC is to identify a set of samples that have
similar high quality metrics, belong to the same ancestry group, and are not strongly related
to each other.



86 Quality control and the initial analysis of the IBD 15x cohort

Each of these steps helps to prevent biases that can cause spurious associations or reduce
the power to detect the true ones: poorly genotyped samples are likely to contain systematic
bias across many sites; due to genetic drift, ancestry outliers differ in frequency of certain
common and rate variants; related samples will influence the significance of variants present
in the related individuals. Below, I describe a series the QC steps that were carried out for
the IBD 15x study.

Hard filters

A number of hard filters were applied to exclude low quality samples:

• Median FREEMIX across the read groups > 2% (143 samples)

• Mean depth < 12x (128 outliers)

• Call rate < 95% (9 outliers)

• Chimerism rate > 5% (38 outliers, estimated via Genome STRiP 2.0)

A total of 315 samples were excluded at this stage.

All filters were applied simultaneously, meaning that, for example, a sample with high
FREEMIX and low call rate will appear on the list twice. This also applies to the distribution-
based filters described in next section.

Overall, the QC metric filtering parameters and thresholds were inspired by the the
filtering done to create the gnomAD database [95]. Some of the thresholds were adapted
to reflect the data in our cohort (e.g., minimal depth lowered from 15x to 12x, as 15x was
our target sequencing depth). It should be noted that some of the filters may be refined in
the future: while gnomAD is currently the largest genetic variation database that includes
hundreds of thousands of WES and tens of thousands of WGS samples, it is not used as a
basis of case-control studies.
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Distribution-based filters

A two-stage approach was applied. Firstly, I removed samples that were outliers within
individual batches (e.g. IBD Phase 1, Interval Phase 3). In addition, it was observed that
distribution of several metrics (e.g., number of INDELs) were different for samples that were
sequenced using PCR (INTERVAL Phase 1) and PCR-free protocols (all other cohorts). I
have repeated the outlier removal protocol grouping the samples by sequencing protocol
(PCR versus PCR-free).

A sample was excluded if the value of the QC metric was four median absolute derivations
(MAD) higher or lower than the median in the batch or sequencing protocol. The metrics
used at this filtering stage were:

• Number of SNPs called

• Number of insertions called

• Number of deletions called

• Insertion-deletion ratio

• Transition-transversion ratio (Ti/Tv)

• Heterozygous-homozygous ratio (heterozygosity rate)

• Call rate

306 samples did not pass the distribution-based filters. The majority of outlier samples
were outside the acceptable range for several metrics (Figure 4.3), indicating that the selected
metrics and the applied thresholds were not needlessly excluding high-quality samples. A
total of 621 samples were excluded during both stages of sample filtering (hard filters and
distribution filters). The samples passing the QC criteria were brought forward for further
analysis.

Identifying batch effects via metric-based PCA

Sample QC metric-based principal component analysis was used to verify the absence of
hidden batch effects that may have been introduced during sequencing. The assumption was
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Figure 4.3 Set intersection of the samples failing different QC metric thresholds in the 15x

dataset. Left bars – number of samples failing individual categories. Dots – set overlaps. Top

bars – the number of samples overlapping between the sets. First seven columns (single dots)

– number of samples failing only one QC metric.

that any substantial difference in the sequencing protocol for a set of samples would lead to
separation of these samples on the PCs.

The sample QC metrics (mentioned in the previous two sections) were normalised and
used to calculate ten principal components. Principal component eigenvalues showed that
only the first 2–3 explained any substantial variance (PC1 – 5.80, PC2 – 3.06, PC3 – 1.00,
PC4 – 0.43).

PC1 clearly separated samples between PCR (INTERVAL Phase 1) and PCR-free batches
(all other). Inspecting the PC loadings (weights), the separation was almost equally driven by
all considered QC metrics. All other PCs did not reveal any substantial clustering, suggesting
that there were no major hidden batch effects that I was not aware of. PC2 was driven by
depth and the number of called variants (SNPs and INDELs). PC3 was driven almost entirely
by FREEMIX. PC4 was driven by depth and the number of called SNPs (Figure 4.4).

One of my concerns was that the PCA is performed on the same set of QC metrics that
are used for filtering (i.e., the analysis is circular). However, when the PCs were built on the
full set of the available QC metrics (e.g., adding the number of singletons and star alleles)
the results were virtually the same.

This analysis does not substitute the genotype-based PCA that will be discussed below.
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Figure 4.4 The first four principal components built based on the QC metrics of the samples

in the 15x cohort. Samples coloured by sequencing phase. PC1 clearly separates samples

sequenced with PCR and PCR-free library preparation protocols.
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Identifying genetic ancestry outliers via 1000G PCA loading projection

Cryptic population structure may inflate the results of association analyses, especially for
rare variants where the frequency of many genetic variants may vary drastically or even be
entirely exclusive to a certain population. Population structure can be partially accounted for
via statistical methods (e.g., PCA or generalised linear model-based methods). Alternatively,
it is possible to analyse each population separately, combining the results in a trans-ancestry
meta-analysis. However, these techniques require a semi-balanced distribution of each
population group between cases and controls.

The majority of subjects in the 15x cohort have self-identified to be of European de-
scent. However, self-reported ancestry is often discordant from the genomic ancestry and is
insufficient for identifying cryptic population structure [123]. The PCA weight projection
technique was used to estimate the genetic ancestry of the individuals in the 15x cohort.

The 1000G Project cohort includes samples from 2,504 individuals from 26 populations
around the world. Principal component analysis of the 1000G cohorts reveals the complexity
of the global population structure. Members of the same population or population group
(e.g., South East Asian, European) cluster closely together and diverge from other clusters on
the first few principal components.

The 15x dataset was filtered down to a subset of high-quality common variants that are in
low linkage disequilibrium and have pre-computed population-scale loadings from 1000G.
The variant set (N=17,535) was derived by the authors of the AKT package [9] and consists
of common genetic variants (>5% MAF in 1000G), and is limited to balletic SNPs that are
known to be present on several genotyping arrays and have been shown to be consistently
called by different variant calling pipelines.

In order to estimate the genetic ancestry of each individual in the IBD and INTERVAL
15x datasets, I projected the samples onto the 1000G data. I obtained the 1000G principal
component loadings for the AKT ‘high confidence’ variant set described above. The samples
were projected, accounting for the heterozygosity and the allele frequency in 1000G.

The first ten PC projections were then inspected manually (Figure 4.5). As expected,
considering the sample selection criteria, the absolute majority of the 15x samples clustered
together with the European population group in 1000G. A small number of the IBD samples
clustered closely with non-European population groups or were positioned between the major
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clusters, suggesting admixture. Given the lack of INTERVAL samples of a similar ancestry,
they had to be excluded. In addition, some samples were marginally outside the ‘edge’ of the
European ancestry cluster, suggesting presence of admixture.

In order to identify the non-European samples within the cohort, the following procedure
was followed. The 1000G cohort was subsetted to contain only individuals of European
ancestry (EUR population on Figure 4.5.) For each of the ten PCs, the median and the median
absolute deviation (MAD) of the 1000G European population’s (N=503) PC scores were
calculated. Next, the 15x samples with PC scores outside the three MAD from the median
were identified. A total of 434 15x outliers were identified.

All but seven outliers were removed due to being outside three MAD in the first four PCs
of 1000G (Figure 4.6). This is expected, as the PCs are ranked in terms of the explained
variance (i.e., earlier PCs explain more variance and separate more genetically divergent
populations).

Samples that passed the filter clustered together with the European population of 1000G
(Figure 4.7). In addition, comparison of PC distributions of IBD and INTERVAL PC scores
did not indicate any major shifts in the distributions, suggesting that cases and controls were
well-mixed (Figure 4.8). In total, 434 samples were excluded from subsequent analyses,
leaving 18,940 samples in the dataset.

Removal of duplicated and related samples

The kinship estimation technique was used to identify closely-related individuals and du-
plicated samples in the cohort. The kinship estimation was performed on the same 17,000
variant subset as the 1000G PCA projections. Inclusion of relatives and duplicates may bias
the results of the association tests. While techniques for correcting for familial structure exist
(typically based on linear mixed models, see [60]), the cohort did not have enough related
individuals to justify this increase in the analysis complexity. Using the Hail implementation
of the kinship estimation technique first devised for the PLINK software, 254 sample pairs
with PI-HAT > 0.1 were identified. This is lower than the 0.185 exclusion threshold often
used for GWAS (middle point between second- and third-degree relatives, 186 pairs), but the
enrichment of distantly related individuals might cause spurious rare variant associations. In
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Figure 4.5 The first four principal components of the 1000G cohort, alongside the 15x cohort

samples projected onto them. The absolute majority of the 15x cluster together with the

European population of 1000G. The majority of the outliers were IBD samples.
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Figure 4.7 The first four principal components of the European subset of the 1000G cohort,

alongside the 15x cohort samples projected onto them (zoomed in, discarding distant outliers).

Blue (IBD) and orange (INTERVAL) dots pass the MAD-based filter. Opaque X’s are too far

removed from the 1000G EUR median and fail the filter.
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Figure 4.8 Violin plot comparing the distributions of the projected 1000G PC scores for

IBD and INTERVAL samples that pass the ancestry filters. No major distribution differences

across the first ten principal components are present, suggesting a good ancestry mixture

between cases and controls in the 15x study.
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total, 113 cases and 129 controls were removed, keeping a total of 18,165 individuals in the
cohort.

Within-cohort principal component analysis

After removing the samples that failed the quality control procedures, related samples,
and those outside the European population cluster, a Hardy-Weinberg-normalised principal
component analysis was performed on the IBD and INTERVAL cohorts.

The 17,000 SNP subset was further filtered to include only high-quality common genetic
variants (call rate > 99%, PHWE > 1x10−10) and LD-pruned (r2 = 0.2). In addition, regions
with high LD and those harbouring known IBD associations (+/- 500 kb) were removed,
retaining a total of 14,617 variants.

Ten first principal components were calculated. Principal component eigenvalues demon-
strated that the first PC explained almost double the variance of PC2 (12.6 versus 6.31).
Principal components 3 to 10 all had similar eigenvalues between 5.37 and 5.72.

Manual inspection of the principal component plots indicated that the samples were
reasonably-well mixed between cases and controls (Figure 4.9 shows the first four PCs). A
few hundred outlier samples were visible on PC1, however they did not appear to cluster
with any specific sample QC metric, sequencing batch or a handful of variants that would be
driving the separation.

A median absolute deviation filter, similar to the one described in the 1000G PCA section
above, was applied. The MAD distance threshold was increased to four, the median and the
MAD were calculated from the within-cohort PC scores rather than 1KG EUR samples. A
total of 892 samples failed this filter, with the majority falling outside the MAD thresholds on
PC1 and PC2. The majority of failed samples did not overlap between different PCs (Figure
4.10).

It is not entirely clear whether such a substantial number of samples should be excluded
from further association studies. Firstly, the calculated principal component scores will be
used as covariates for the genome-wide logistic regressions, correcting for some of the cohort
heterogeneity. Secondly, I have identified that the variation on PC1 is almost entirely driven
by the Southern European ancestry of some of the individuals in the cohort, captured by PC6
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Figure 4.9 The first four principal components of 15x cohort samples. Orange dots – IBD

samples, blue dots – INTERVAL samples.
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Figure 4.11 PC1 scores correlate (0.7, Pearson) with the PC61000G scores from the 1000G

projection PCA. This suggests that the PC1 outliers are driven by Southern European genetic

ancestry.

of the 1000G analysis (Iberian and Tuscan cohorts) (Figure 4.11). Distribution of PC1 scores
matched closely for IBD and INTERVAL samples, suggesting a good mixture of cases and
controls (Figure 4.12). I could not identify the source of variance that drives the PC2 outliers,
but, once again, the distributions of the PC scores between IBD and INTERVAL samples
were very similar (Figure 4.12). PC2, overall, does not explain a lot of variance and can be
corrected via covariates. I did not observe any substantial decrease in the p-value inflation in
case-control association tests when the outlier samples were excluded, rather than corrected
for.

Unfortunately, I was unable to calculate the PCs for a larger set of variants and including
lower frequency variation (MAF > 1%, rather than 5%) due to some technical issues with
the cluster. It is curious that the PCR versus PCR-free separation present during the QC
score-based PCA was not observed here. It is possible that calculating the the PCs based on a
small and well-genotyped subset of SNPs masked the variation between the two sequencing
protocols. I am planning to repeat the within-cohort PCA analyses immediately once the
technical issues are resolved or a workaround is found.
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4.2.8 Variant and site quality control

In addition to the manual variant filtering (described in individual sections above), I have
used the VQSR method to identify poorly genotyped sites. When used in conjunction with
manual filtering, VQSR does not have much effect on the common variants (the absolute
majority of which pass this filter). However, the VQSR filter will be used in the future
genome-wide rare variant association tests.3

VQSLOD (variant quality score log-odds) scores were calculated for the final set of
genotype calls (separately, for SNPs and INDELs) via the VQSR method. VQSR is a
machine learning based method that uses Gaussian mixture models to estimate the likelihood
of a variant being true. It requires a set of variants that are considered to be ‘real’ (e.g., taken
from a high-quality population sequencing study, such as the 1000 Genomes). VQSR then
builds a model based on the distribution of the quality scores of these variants (e.g., depth at
site, mapping quality rank sum, strand odds ratio). The model is then used to score the full
set of variants, evaluating how close their quality scores are to the scores of the true variant
set.

The final stage requires selecting the VQSLOD score cutoff. This is done using the
tranche sensitivity (e.g., a VQSLOD score of 5.0 leads to the detection of 99.50% of true
positive variants, compared to the VQSLOD of 3.0 that allows the detection of 99.99%
of true variants4). For SNPs, one usually looks at how the chosen tranche influences the
transition-transversion ratio (Ti/Tv), which is expected to be ∼2.0–2.1 for whole-genome
datasets and ∼3.0–3.3 for whole-exome datasets (the latter will vary depending on the exome
capture kit used). A good practice is to choose the highest tranche where the Ti/Tv is close
to the target value, yet does not strongly differ from the Ti/Tv of the previous value (i.e., is
at the rightmost side of the distribution plateau). For INDELs, the threshold choice cannot
be motivated by the Ti/Tv ratio and is therefore done based on the number of novel variants
each extra tranche brings (e.g., if going from the 99.8% tranche to the 99.9% tranche brings
an increase of 80% percent of novel INDELs, one should be cautious about false-positives
and consider picking 99.8%).

3Parameters and the follow up analysis performed by me. Computation set up by Allan Daly due to the
availability of computing resources.

4VQSLOD to truth sensitivity scores mappings are provided as an example, real mappings will vary across
different datasets
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VQSR was performed with the parameters described in the Broad Institute’s ‘generic
germline short variant joint genotyping’ pipeline. Briefly, for SNPs I fitted 6 Gaussians and
used the following fields to train the model:

• QD – QUAL score normalised by allele depth

• MQRankSum – rank sum test for mapping qualities of reads supporting REF versus
reads supporting ALT

• ReadPosRankSum – rank sum test for position within reads supporting REF versus
position within reads supporting ALT

• FS – Fisher’s exact test for strand bias

• MQ – mapping quality

• SOR – symmetric odds ratio test

• DP – depth

For INDELs, I fitted 4 Gaussians (reduced from 6 due to a smaller set of variants
and the danger of overfitting) and used the following annotations: FS, ReadPosRankSum,
MQRankSum, QD, SOR, DP.

The following resource sets were used for training:

SNP True sites training resource: HapMap, Omni. Non-true sites training resource:
1000G. Known sites resource, not used in training: dbSNP.

INDEL True sites training resource: Mills. Non-true sites training resource: axiomPoly.
Known sites resource, not used in training: dbSNP.

All training and testing resources were obtained from the GATK Resource Bundle. The
outputs from the VQSR calibration are shown on Figure 4.13.
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Figure 4.13 VQSR calibration results for IBD & INTERVAL 15x cohorts. a) Target truth

sensitivity (x-axis) influences the number of novel SNP variants (blue curve and left y-axis)

and their transition/transversion ratio (red curve and right y-axis). 99.7% was selected as the

tranche for further filtering (i.e, in our filtered call set 99.7% of the overlapping sites present

in the truth set can be detected). The tranche was selected based on the point where the Ti/Tv

curve overlaps with the number of novel sites curve in order to maximise the true-positive

variant. I have also verified that the Ti/Tv ratio for the tranche (Ti/Tvnovel = 1.9) closely

matches the expected ∼2.0–2.1. b) Target truth sensitivity (y-axis) influences the number of

novel INDEL variants. 99.5% tranche was selected for further filtering.
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4.3 Results

4.3.1 Evaluating the sequencing depth and the statistical power trade-
off for WGS association studies

Optimal sequencing depth for case-control experiments

I simulated power to detect rare SNP variants present in 0.25% of cases and 0.05% (OR =
5) given two experimental scenarios: unlimited budget, fixed number of samples (25,000
cases and 25,000 controls); limited budget (sufficient for sequencing 50,000 samples at 30x,
1:1 case-control ratio) with an unlimited number of cases and controls to choose from. The
simulation takes into account the sensitivity of the variant calling presented in Figure 4.2 and
a realistic cost estimate (cost per ‘x’ * depth + fixed cost per sample)5. Reflecting the pricing
back in 2017, the cost per ‘x’ of depth (9Gbs) was set to 10.8; fixed cost per sample (e.g.,
library prep, labour) was set to 18.84.
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Figure 4.14 Power to discover rare SNP variants in a case-control experiment setup. Blue

line simulates the scenario with a limited budget and an unlimited number of available

samples, while the green line shows the unlimited budget/limited cohort scenario.

5Original simulation by Dr Jeff Barrett. Re-implementation and extension to support quantitative trait
simulations by the author. Updated sensitivity and cost values.
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In the fixed sample size scenario, the power plateaus around the 15x sequencing depth. In
the fixed cost scenario, the maximal power is achieved when sequencing the largest number
of samples at a minimal depth.

Realistically, the IBD 15x project was constrained by both the number of available
samples and the budget. For the fixed sample size scenario, the power plateaus around the
15x-17.5x mark, which is close to the median depth of the IBD 15x and the INTERVAL
datasets. Sequencing at an even lower depth (say, 10x) might have increased the power to
detect SNP associations, but would have led to a severe reduction in the INDEL sensitivity
and hindered future projects like structural variant calling.

Choice of sequencing depth for biobank-scale projects

I performed simulations for national biobank-scale studies (e.g. the UK Biobank, which has
enrolled 500,000 participants) to see whether 15x remains the optimal sequencing depth.
Statistical power to discover associations using burden tests, for a set of rare variants (Figure
4.15) at different biobank sizes (50,000 to 500,000) was estimated.

In 2018, plans to sequence the first 50,000 individuals from the UK Biobank cohort at
30x depth were announced [172] (the ‘Vanguard’ project). I used this model to evaluate the
power to discover rare variant associations in Vanguard versus the full UK Biobank (Figure
4.16). In September 2019, plans to whole-genome sequence the whole UK Biobank were
announced.

The power to detect rare variants is driven by sample size, rather than by sequencing
depth. For all study sizes, except n=500,000, the power plateaus around 15x. For a (realistic)
scenario, where the budget for sequencing is fixed (dotted blue line: budget sufficient for
sequencing 50,000 samples at 30x), sequencing more samples is preferable to sequencing at
a higher depth.

Overall, although in retrospect, I believe that sequencing at 15x depth was the right design
choice for the Crohn’s whole-genome sequencing association study. Considering the limited
budget and the limited number of available samples, it maximised the ability to detect rare
variants. For SNPs and INDELs, the sensitivity benefit of sequencing samples at a higher
depth is modest, while the cost would grow semi-linearly, thus reducing the cohort size and
the overall power for association studies.



106 Quality control and the initial analysis of the IBD 15x cohort

5 10 15 20 25 30
Depth

  1%

 10%

100%

P
ow

er

 50K

 75K

100K

150K

500K

Figure 4.15 Power to discover associations using burden tests for a set of rare variants with a

cumulative frequency of 5∗10−4 in a gene, assuming β = 0.5 s.d. and α = 1x10−6. The blue

dotted line shows the trade-off between depth, cost and power: sequencing 50,000 samples

at 30x would result in power around 1%, while sequencing 100,000 at around 14x would

provide 8% power (while keeping the cost the same, taking into account fixed costs and cost

per depth).
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Figure 4.16 Power to discover associations by aggregated rare variants in the UK Biobank (α

= 1x10−9). Pilot release (‘Vanguard’ project, left, n=50,000): near perfect power to discover

associations for variants with a cumulative β greater than 0.6 SD and frequency of 6 : 1,000.

Full UKBB WGS (right, n=500,000): near perfect power to discover associations for variants

with a cumulative β greater than 0.6 SD and frequency of 4 : 10,000. Simulation by me, plot

refined by Dr Klaudia Walter.
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However, this simulation has several drawbacks. Lower sequencing depth leads to a
higher error rate and requires much more stringent QC in order to avoid false associations
(e.g., [116]). The ability to detect INDELs and CNVs, which require higher sequencing depth
for accurate genotyping, should also be considered. For high-quality CNV genotyping, other
techniques like long-read PacBio or Nanopore sequencing may be more appropriate, and the
simulation is not currently suited for estimating the statistical power for those sequencing
types.

The conclusions of my simulations match those from the work of Rashkin et al. [152],
who conclude 15–20x to be the optimal depth for studies of rare variants in complex disease.

4.3.2 Index misassignment impacts multiplexed sequencing

Multiplexing allows simultaneous sequencing of several libraries during the same sequencing
run. This is achieved by adding unique index sequences (‘tags’, ‘barcodes’) to DNA frag-
ments during the library preparation stage. Multiplexing is routinely used in multi-sample
studies to increase the throughput, reduce the expenses on the reagents, and, in theory, to in-
crease the quality of the data via read group averaging. Multiplexing adds an additional level
of complexity to the sequencing process, as the individual reads have to be computationally
assigned to the correct target sample (demultiplexed). Reads for the same sample obtained
from a single sequencing run are called a read group.

In certain cases, indexes get misassigned to the wrong read or multiple conflicting indices
get attached to the same read (‘chimeric’ indices). The index misassignment is sometimes
referred to as ‘index hopping’. Reads with misassigned indexes ultimately result in low-level
cross-contamination of the samples and reduce the quality of the variant calling. The exact
rate of index hopping is hard to measure, as it depends on the experiment type, library
preparation protocol, multiplexing factor, and other variables. The manufacturer reports the
expected rates to be 1–2% [83], while some independent studies have claimed to observe
index hopping rates ∼10%. While some protocols are thought to reduce the index hopping
rate [83], it remains present in all current multiplexed studies.

I have attempted to quantify the index hopping rate in the IBD and INTERVAL 15x
cohorts. To quantify the index hopping rate and, ultimately, sample cross-contamination
the FREEMIX metric produced by the VerifyBamID tool [195] was used. Authors suggest
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interpreting samples with FREEMIX > 2–3% as potentially contaminated. The metric is
often used as a sample quality control metric to exclude samples with a high level of DNA
contamination, as it leads to poor genotyping quality. However, the exact threshold varies
across studies. The UK10K consortium excluded samples with FREEMIX > 3% [180]. The
gnomAD genome aggregation database excludes whole-genome and whole-exome samples
with FREEMIX > 5% from the variant callset during the sample quality control stage.

I was particularly interested in batch-specific variations in contamination, given that
INTERVAL Phase 1 was processed using a PCR library prep protocol (thought to lead to
lower index missassignment rates [83]) and IBD Phase 3 used dual indexing. Dual indexing
assigns a unique combination of indices at both ends of the read, therefore reducing the
chances of read missasignment during demultiplexing (reads get discarded if the indexes
mismatch). Dual indexing is planned to be used for a variety of future sequencing studies at
the Sanger Institute (e.g., the IBD WES project), therefore it was important to verify whether
it in fact leads to an increased misassignment rate.

I have calculated the FREEMIX (FM) per each read group (N=111,225) rather than per
sample, as the rate of missasignment varies between the sequencing runs (Figure 4.17). A
two-sample Kolmogorov-Smirnov test (KS) was used to evaluate whether the FM scores for
two 15x batches follow the same distribution. Overall, the median FM score across all read
groups was moderately low: 0.55%. 3.7% of read groups had a FM > 2% (0.36% read groups
above the critically high 5%). Two of the earliest sequencing batches had the highest mean
FM: INTERVAL Phase 1 = 0.96% (PCR) and IBD Phase 1 = 0.82% (PCR-free), suggesting
that, on its own, the PCR-free sequencing did not negatively impact the contamination rate
even at the early stages of the project (KS statistic = 0.08; p=4.59×10−41). IBD Phase 3,
which utilised dual indexing, had the lowest mean FM score across all batches – 0.07% and
was lower than the FM in INTERVAL Phase 3 – 0.48%, which was sequenced around the
same time, but utilising regular single indexing (KS statistic = -102.66; p<1.80×10−308).
Considering the mean FM for each sample, I have identified 61 samples with FM > 5%
(gnomAD threshold, used as a step in sample QC) (Figure 4.18).

I estimated the effects of index missasignment during multiplexed sequencing across
two library preparation protocols (PCR versus PCR-free) and two indexing techniques
(single versus dual indexing) using the FREEMIX metric. Overall, the findings suggest
that only a small fraction of read groups (3.7%) had a contamination level > 2%. I did
not find any evidence to the manufacturer’s claim that PCR-free library preparation leads
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Figure 4.17 FREEMIX scores of 111,225 read groups of samples from the IBD and INTER-

VAL 15x (median of 6 read groups per sample). Read groups are categorised by project

batch. The box plots show the median levels of contamination per batch. Scatter plots and

and density plots indicate the distribution of the scores. Orange dotted line the shows level

of FREEMIX (2%) that indicates potential contamination. Red dotted line shows level of

FREEMIX (5%) that indicates strong contamination.

to higher index hopping [83], though there was only one batch of samples processed with
PCR-including protocol. Dual-indexing appears to reduce the level of contamination by an
order of magnitude and should be considered to be used in future studies. I acknowledge
that FREEMIX might not be an ideal marker of index misassignment, as it will also capture
sample contamination (e.g., during handling). I also noticed that the distribution of FREEMIX
was not identical (although the shift was very small) between batches that followed the same
sequencing protocol (INTERVAL Phase 2 versus INTERVAL Phase 3 – KS statistic = 0.30;
p<1.80×10−308). My initial consultations with the pipelines team did not identify any cause
for this.
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Figure 4.18 Mean FREEMIX for each sample in the INTERVAL and IBD samples. The

absolute majority of the samples (96%) have a FREEMIX below the ‘potential contamination’

level of 2%.

4.3.3 Estimating the impact of the covariates on the power to detect
associations in a case-control setting

Next, I estimated the impact of including batch and principal component covariates on the
power to detect known Crohn’s disease associations. I derived a list of 105 independent
variants associated with CD in de Lange et al. [49]. While the variants pass the genome-wide
significance threshold in those two studies, in 15x, the majority will have a much higher
p-value due to the smaller number of both cases and controls. 253 known UC samples
were excluded, 17,912 samples were retained. Logistic regression using the Firth test was
performed to estimate the p-values. A variety of conditions were tested: not including
any covariates, including 10 principal components, including additional QC metric-based
principal components, explicitly correcting for sequencing batches.

The conditions were compared against the base-case – not including any covariates at
all. Amongst the tested conditions, the strongest p-values were obtained when controlling
for 10 within-cohort PCs, closely followed by the no-covariate setting. Inclusion of the
first QC metric-based PC, which effectively separates the PCR and PCR-free cohorts, had
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Figure 4.19 Influence of the inclusion of different covariate types on the power to identify

known Crohn’s associations in the IBD 15x cohort. X axis – p-values when replicating known

Crohn’s disease associations when performing logistic regression with no covariates. Y axis –

p-values when replicating known Crohn’s disease associations when using a particular set of

covariates.

a smaller detrimental impact on the power than explicitly controlling for PCR via a binary
covariate. Given that the PCR vs PCR-free sequencing seems to be the largest source of
sequencing heterogeneity in the cohort, one should consider including this PC in future
regression analyses. Overall, the batch-based covariates strongly reduced the power, as they
effectively regress out case-control status of the samples in that cohort. In addition, binary
covariates that are only positive in cases or controls require switching from the Wald or the
LRT test to use the more computationally ‘expensive’ Firth test (2x–3x greater execution
time), which should be considered when testing 200 million variants. The betas of known
CD associations from de Lange et al. were compared to the betas estimated in 15x. In all
covariate scenarios the betas were very strongly correlated (Peason r > 0.95). This suggests
the absolute majority of the cases in the IBD 15x were, in fact, Crohn’s disease patients
(Figure 4.20).

In addition, I performed a case-control analysis on the LD-pruned subset of variants, with
IBD-associated regions excluded. The variants were filtered quite stringently (MAF > 5%,
depth > 10, genotyping quality > 10, call rate > 99%). The genetic inflation factor λ was
calculated for each covariate-control scenario described above to estimate the presence of
cryptic population structure and batch effect. Overall, I identified the inflation factor to be
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Figure 4.20 Betas of the known Crohn’s disease associations estimated in the 15x cohort are

strongly concordant to the ones reported in de Lange et al. [49]: minimal Peason r=0.95 (no

covariates), maximal r=0.97 (10 PCs, 10 QC PCs).

between 1.13 (10 PCs, 10 QC PCs) and 1.19 (no covariates and 10 PCs, 1 QC PC). One
notable exception was the scenario where I controlled for the 10 principal components, two
IBD batches and the Interval Phase 1 batch – λ = 1.02. Interpretation of the absolute lambda
values is not entirely straightforward, given that any polygenic trait will have λ > 1.00 and
some published GWAS have λ = 1.42 (although, with many more samples) [193].

I believe there are several potential explanations for this: Perhaps the performed sample
QC was insufficient and the outlier samples or the unidentified batch effects could be
driving the moderate p-value inflation. This will require further investigation. Alternatively,
poorly-genotyped variants could be driving the inflation. However, the rather stringent
variant QC and lack of genome wide significant associations suggest that this is not the case.
Alternatively, while the regions around the known IBD hits were excluded, IBD is thought to
be a highly polygenic trait: Watanabe et al. [189] estimate that 0.06% of SNPs are causally
associated with IBD. Therefore, despite excluding the known IBD variants, the inflation
factor might be capturing some of the unknown causal variants.
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4.3.4 Meta-analysis with the Broad IBD WES results

Our collaborators at the Broad Institute are currently finalising the production of a large multi-
ethnic whole-exome sequencing cohort of IBD patients and matched population controls. The
current data freeze contains around 10,000 non-Finish European cases and 17,000 controls.
In addition, approximately 2,000 African American cases and a similar number of controls;
2,600 Ashkenazi Jewish cases paired with 4,000 controls; 1,500 American Hispanics with
1,000 controls (split into two groups due to admixture); 1,300 Finnish cases and 8000 controls
were exome sequenced as a part of the same project. A number of ‘promising’ rare variants
which reach a lenient significance threshold α=1×10−5 in an internal meta-analysis of all
population cohorts were identified. Several variants have reached genome-wide significance
level in past GWASs (bold in Table 4.1). The variants were annotated as ‘GWAS’ if they
were within close proximity to known IBD associations or ‘novel’ if they fell outside such
regions. Variant effect sizes and p-values calculated for the Crohn’s disease subset of the
Broad WES cohort were considered.

My goal was to meta-analyse the nominally-significant Broad WES results together with
the summary statistics from the 15x study, to verify the feasibility of a future exome-wide
meta-analysis and to evaluate the homogeneity of our results. Fixed effects meta-analysis was
performed to combine the results from the individual WES cohorts with 15x. In addition, the
I2 metric was calculated to evaluate the heterogeneity of effect sizes from the Sanger 15x and
the Broad non-Finnish European cohorts. I2 metric across all populations was also calculated.
As expected, it was marginally higher than the WES NFE vs 15x metric – both due to
additional power to estimate heterogeneity, and, potentially, due to the heterogeneous effect
across populations. Liu et al. demonstrated [111] that the effects of most IBD-associated
variants are not heterogeneous across different global populations. However, this assumption
will need to be revisited for rare-variant associations when the Broad WES dataset is finalised.

The 15x cohort was subsetted to 17,912 Crohn’s disease cases and controls that passed
the previously described sample QC. Logistic regression using the Firth test was performed,
controlling for 10 principal components. Variants that passed the exome-wide significance
threshold (α=4.3×10−7 [176] for coding variants) are listed in Tables 4.1 (GWAS-implicated
regions) and 4.2 (novel).

Amongst the variants within the known IBD regions (Table 4.1), the strongest association
was with the frameshift insertion in NOD2 – rs199883290 (b37_pos: 16:50763778:G:GC,
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OR meta = 3.04; 95% CI meta: 2.84 to 3.26; P meta = 7.25×10−220, I2 EUR = 0; MAF (NFE
gnomAD) = 2.6%; MAF (INTERVAL) = 1.8 %). The variant had p-values lower than 0.05
across all cohorts and had a consistent effect across all ancestry groups I2 = 0. The particular
variant appears to be 3020insC, described by Ogura et al. [136].

Interestingly, some large effect size variants are found in regions that were previously only
known to harbour low effect size variation. For example, a frameshift deletion in TNFRSF6B

– rs54058315 (b37_pos: 20:62328248:CAG:C; OR meta = 2.95; 95% CI meta: 2.03 to 4.28; P
meta = 1.54×10−8) is around 1 Mb away from an intronic variant rs6062496 that has an odds
ratio ∼1.13–1.15 in past GWAS (lead variant in a signal mapped to TNFRSF6B) [111, 49].
This indicates that rare large effect size variants are not limited to the regions with known
common large effect associations (e.g., NOD2).

Finally, four significant associations outside the known IBD regions were identified
(Table 4.2). One of the variants (8:144995964:G:A) was within PLEC – a gene that encodes
plectin, a cytolinker protein which is involved in maintaining cell and tissue integrity [26].
Another missense (14:81972441:T:C) variant was within SEL1L that is thought to be required
for the maintenance of intestinal homeostasis [61].

One of the significant variants is in PKD1 (16:2142083:C:G) – a gene previously impli-
cated in intestinal immune regulation. Administration of the PKRD1 protein is thought to
induce down-regulation of TNF-α expression in macrophages [134]. However, despite the
potential biological relevance, the variant appears to be entirely driven by the signal in the
WES NFE cohort (p = 4.11×10−10). The variant was not even nominally significant in the
15x cohort (p = 0.38) or any WES cohort (apart from NFE). It shows strong heterogeneity
effect between the Sanger 15x and WES NFE cohorts (I2 EUR = 89.11). Therefore, I believe
that the association is false. This underscores the importance of tests for heterogeneity of
effects when performing meta-analysis.

The associations outside of the known IBD regions, despite the smaller sample size
compared to the biggest IBD GWASs, are interesting in light of the recent work by O’Connor
et al. [135] who hypothesise and provide some evidence that the extreme polygenicity of
complex traits is a byproduct of purifying selection that purges high-effect variants from
‘critical’ genes and loci, leaving behind common-variant associations in critical regions of
the genome. However, further work is required to formally evaluate this.
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At this stage, I have only meta-analysed the variants that show some evidence of associa-
tion in the Broad WES cohort. Fifteen rare variant associations across twelve genes were
identified at the exome-wide significance level. Some of these were of extremely low fre-
quency – down to 4 in 10,000 (16:50750810:A:G in NOD2) and not passing the significance
threshold in any of the individual cohorts. This demonstrates the utility of meta-analysis
to increase the statistical power for identifying rare variant associations in IBD and other
complex diseases. Considering that the 15x sample size is comparable to that of the WES
NFE cohort (which drives the majority of associations), the next logical step is to run a
full-meta analysis of the two cohorts.

4.4 Discussion

In this chapter, I described the IBD 15x study – the largest IBD whole-genome sequencing
association study to date. The study will help understand what role rare and low-frequency
variation, largely missed during the GWAS era, plays in the pathogenesis of IBD. Ultimately,
I hope that the uncovered genetic associations will inform potential IBD drug targets, and
perhaps lead to the development of new IBD therapies. In addition, the study includes several
thousand richly-phenotyped individuals from the NIHR IBD BioResource – and will be used
to study the subphenotypes of IBD, and enable the extension of the pharmacogenetics studies
described in the first two research chapters.

The variant calling was completed in July 2019, which meant that the time I was able
to spend on analysing the final dataset was fairly limited. The scale of the WGS dataset,
complexity of the quality control procedures, and the difficulty of differentiating between
false and true positive associations made rapid progress quite difficult. Therefore, I have
decided to concentrate on the sample QC procedures – a step which will be crucial to ensure
the quality of the future association studies that use the 15x cohort.

Overall, post sample-QC, the dataset can be used to finalise the site and variant QC, and,
finally, start running the association studies. After removing the outlier samples, I was able to
replicate 91% of the known CD associations (96 out of 105) to the α = 0.05 significance level
and with variant betas closely matching those described in the largest Crohn’s disease GWAS
(r=0.97). Inevitably, given the iterative nature of the association studies and depending on
the results from the first genome-wide analyses, some of the sample QC thresholds may be
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V MAF Gene OR OR OR 95% CI I2 P P P

INT NFE 15x meta meta EUR NFE 15x meta

16:50763778:G:GC 0.018 NOD2 3.07 2.97 3.04 (2.84, 3.26) 0.00 2.85e-106 1.48e-70 7.25e-220

1:67705958:G:A 0.068 IL23R 0.44 0.43 0.43 (0.40, 0.46) 0.00 4.73e-43 5.44e-55 1.19e-121

16:50745926:C:T 0.047 NOD2 1.91 2.01 1.96 (1.85, 2.07) 0.00 8.23e-54 5.89e-55 1.67e-121

16:50756540:G:C 0.013 NOD2 2.45 2.42 2.42 (2.22, 2.63) 0.00 4.33e-37 1.63e-29 3.41e-89

16:50750842:A:G 0.0013 NOD2 2.76 2.75 2.94 (2.38, 3.62) 0.00 1.08e-04 8.71e-06 1.06e-23

19:10463118:G:C 0.051 TYK2 0.74 0.64 0.69 (0.64, 0.75) 60.19 1.14e-06 8.91e-15 1.18e-20

4:103188709:C:T 0.076 SLC39A8 1.26 1.26 1.24 (1.18, 1.30) 0.00 2.04e-08 3.41e-09 4.12e-17

16:50746086:C:T 0.0043 NOD2 2.08 1.82 2.10 (1.76, 2.49) 0.00 1.70e-09 3.59e-05 7.86e-17

9:139259592:C:G 0.006 CARD9 0.30 0.37 0.37 (0.29, 0.47) 0.00 8.29e-11 1.42e-07 1.15e-16

16:50827518:C:T 0.07 CYLD 1.21 1.16 1.21 (1.15, 1.27) 0.00 4.70e-06 4.66e-04 3.03e-14

19:10469975:A:C 0.095 TYK2 1.15 1.20 1.19 (1.14, 1.25) 0.00 3.08e-04 5.11e-07 6.90e-14

4:3449652:G:A 0.067 HGFAC 1.25 1.13 1.22 (1.15, 1.28) 63.19 2.69e-07 4.29e-03 1.86e-13

12:40740686:A:G 0.017 LRRK2 1.47 1.36 1.39 (1.27, 1.52) 0.00 1.10e-06 1.14e-04 4.17e-13

22:21998280:G:A 0.014 SDF2L1 1.52 1.33 1.46 (1.32, 1.62) 14.49 1.15e-06 1.49e-03 4.50e-13

1:67705900:G:A 0.015 IL23R 0.61 0.70 0.67 (0.59, 0.75) 0.00 2.56e-06 4.53e-04 7.32e-11

19:10464843:G:A 0.0077 TYK2 0.43 0.60 0.53 (0.43, 0.65) 57.24 2.04e-07 5.19e-04 1.62e-09

19:10600418:G:A 0.018 KEAP1 1.35 1.29 1.30 (1.19, 1.42) 0.00 5.72e-05 7.93e-04 2.87e-09

11:65425764:C:T 0.0043 RELA 2.00 1.51 1.74 (1.45, 2.08) 46.88 2.31e-07 6.77e-03 3.38e-09

16:50750810:A:G 0.00047 NOD2 3.34 2.73 2.15 (1.66, 2.78) 0.00 4.72e-03 8.74e-03 5.02e-09

9:139358899:C:T 0.029 SEC16A 0.77 0.78 0.75 (0.69, 0.83) 0.00 3.65e-04 3.03e-04 1.02e-08

20:62328248:CAG:C 0.00068 TNFRSF6B 2.73 2.60 2.95 (2.03, 4.28) 0.00 9.36e-04 3.55e-03 1.54e-08

2:234436069:C:T 0.049 USP40 0.82 0.81 0.82 (0.76, 0.88) 0.00 7.39e-04 1.22e-04 3.37e-08

16:50745929:C:T 0.0048 NOD2 1.54 1.69 1.63 (1.37, 1.95) 0.00 8.07e-04 1.81e-04 3.46e-08

22:21800049:G:A 0.0034 HIC2 1.94 1.43 1.52 (1.30, 1.78) 44.05 1.71e-05 3.52e-02 1.32e-07

1:161496178:G:A 0.097 HSPA6 1.13 1.08 1.13 (1.08, 1.18) 0.00 1.42e-03 4.23e-02 3.29e-07

Table 4.1 Summary statistics for the meta-analysed variants within the known IBD-associated

regions. Only variants that pass the exome-wide significance threshold are shown. Variants

previously reported in other GWAS are highlighted in bold.
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V MAF Gene OR OR OR 95% CI I2 P P P

NFE 15x meta meta EUR NFE 15x meta

1:117122269:GGTC:G 0.008 IGSF3 0.52 0.37 0.38 (0.29, 0.49) 21.60 7.34e-03 1.17e-09 2.91e-13

16:2142083:C:G 0.0015 PKD1 0.25 0.77 0.42 (0.31, 0.57) 89.11 4.11e-10 3.82e-01 3.46e-08

8:144995964:G:A 0.07 PLEC 1.14 1.14 1.15 (1.09, 1.21) 0.00 1.79e-03 1.43e-03 6.41e-08

14:81972441:T:C 0.014 SEL1L 1.42 1.32 1.36 (1.21, 1.53) 0.00 3.82e-05 1.93e-03 1.39e-07

Table 4.2 Summary statistics for the meta-analysed variants outside of the known IBD-

associated regions. Only variants that pass the exome-wide significance threshold are shown.

The variant in PKD1 is likely to be a false association, driven entirely by one of the meta-

analysed cohorts.

adjusted and some extra steps added. However, I believe the implemented QC pipeline works
robustly with WGS data and can be extended fairly easily.

In addition, I have described my earlier work on power modelling for sequencing associ-
ation studies. The modelling results suggest that sequencing more samples at around 15x
to 17x depth provides more statistical power to detect rare, single variant associations in
case-control and quantitative trait settings, compared to sequencing a smaller cohort at full
30x depth. The conclusions match those published by Rashkin et al. [152].

I have provided an overview of the index missassignment issue, widely reported to be
affecting the last two generations of Illumina short read sequencing machines. I confirmed
the presence of cross-sample index missassignment across all 15x batches. However the
results indicate that only a small fraction of read-groups are strongly affected (3.7%). In
addition, I confirmed that dual indexing greatly reduces the missassignment levels and should
be considered for all future WGS and WES studies.

Finally, I have provided early single-variant association results from the 15x cohort by spot
meta-analysing some ‘promising’ variants, found by our collaborators at the Broad Institute
in a large whole-exome sequencing cohort. The majority of the significantly associated rare
variants appear to be harboured in known IBD genes like NOD2, TYK2, and IL23R. Some of
these variants appear to have a much higher effect size than their previously-known common
variant counterparts (for example, rs540583157 in TNFRSF6B. In addition, the meta-analysis
indicates that variants in PLEC, SEL1L, and IGSF3 play a role in the pathogenesis of IBD,
and, to my knowledge, no previous IBD associations have reported variants linked to them.
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The spot meta-analysis will be followed by a full-scale joint association study that combines
more than 35,000 cases and 95,000 controls across several global populations.

Ultimately, while the spot meta-analysis has already provided some interesting results,
this is just the beginning of work on the IBD 15x association study.

Single-variant tests association tests should be performed genome-wide to estimate the
effects and the significance values of individual variants. Almost certainly, during the first
few iterations these results will contain plenty of artefacts – spurious false associations. QC
metric properties of such variants should be observed to refine the variant and site filters to
make them more stringent. In addition, the p-value inflation metric λ and QQ-plots should
be used to validate the absence of population structure, which often leads to an abundance
of marginally significant variants across the entire genome. It is important to get the single
variant association tests done to a good standard, as the spurious associations can negatively
influence the outcome of the gene and noncoding burden tests (described below), where it is
even harder to identify false results driven by false associations.

Separating true and spurious rare variant associations may be nontrivial. When conducting
traditional GWAS, a known heuristic approach is to create a locus zoom plot and observe
neighbouring associations which should have p-values close to the top SNP (due to the
LD). Unfortunately, for many rare variants such an approach is futile – there may be no
neighbouring variants in high LD. However, other techniques can be used to validate rare
variant associations. Firstly, one should verify that the variant is not present in only one of the
sequencing batches, or, ideally that the allele count per batch matches the expected one given
the batch sizes. Secondly, given the presence of the summary statistics from the Broad WES
cohort, an exome-wide meta-analysis could be conducted and used as a QC tool. QC metrics
of variants with high evidence of heterogeneity should be inspected, potentially informing
the filtering thresholds. Thirdly, large-scale frequency databases like gnomAD can be used
to verify that the frequency of the variant closely matches that reported in the database. At
the time of this thesis completion gnomAD was not available for genome build 38 data,
but should be updated for the next release. Lastly, all reported single-variant associations
should be verified by manually inspecting the track plots produced by tools like IGV – these
visualise the reads that went into the variant call, helping to understand whether a calling
error has occurred. Ideally, for the reported associations, targeted Sanger sequencing of a
few carriers should be performed.
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Once the QC is complete, I would expect the absolute majority of the novel rare associa-
tions to be coding. This is expected, as, at the current sample size, we are well-powered to
detect rare variant associations with an odds ratio of around 1.5 and above (∼80% power
to detect rare-variant associations of 1% frequency variants with relative risk of 1.5 and
above). In order to increase the number of novel rare-variant associations even further, the
summary statistics from the single-variant tests will be used to perform the joint coding
region meta-analysis with other cohorts: Broad WES and Sanger WES.

In the initial spot meta-analysis a fixed-effect model was used. Fixed-effect meta-analysis
assumes that the differences in the observed effects are due to sampling errors. This is justified
given the observation that the majority of known common IBD associations have a non-
heterogeneous effect across global populations (Cochran’s Q test for heterogeneity, p > 0.05)
[111]. In the current meta-analysis, some heterogeneity of effects was observed. Therefore,
analysis with a random-effects model should be considered. Mixed-effect models allow for
the true effect size to be different between the groups – accounting for potential ancestry-
specific effects, gene × environment interactions, and for heterogeneity of recruitment. It
is unclear whether one would expect the rare variant associations to have a similar effect
across different ancestry groups: isolate population studies have consistently uncovered
pathogenic variants which have similar effects in both the isolate and the global populations
(see Introduction chapter). However, the heterogeneity of rare variant associations has never
been been studied systematically and warrants further investigation. Additional meta-analysis
techniques, like the Bayesian MCMC-based methods, can be considered.

WGS and WES datasets provide an opportunity to study extremely rare, almost private
genetic variation. However, single variants tests are not sufficiently powered to robustly
associate these variants with the phenotype. To overcome this, techniques that group together
the effects of ultra-rare, typically deleterious, variants (LoFs) exist (see the Introduction
chapter). The variants are usually grouped together on the per-gene (gene-based tests) or a
per-exon level. The burden of the rare variants is compared between cases on controls. Since
less elements are tested, compared to the single-variant association tests, the multiple-testing
significance threshold is adjusted accordingly. Luo et al. [116] used gene-based tests to
detect a burden of very rare, damaging variants in known Crohn’s disease risk genes. It
would be interesting to see whether the burden tests performed on 15x and the WES cohorts
allow us to identify new IBD-associated genes not previously implicated via single variant
tests.
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Burden tests can be used in a more targeted, hypothesis-driven way. Instead of testing
the burden across all genes, one could evaluate groups of genes united by some biologic
function (pathways, groups of genes associated with a disorder, etc.). One of the less explored
questions in IBD genetics is the architecture of the neonatal (‘infantile-onset’) and very early
onset IBD. For neonatal IBD, 60 monogenic defects that cause IBD-like colitis have been
identified [168]. Very few of these overlap with genes implicated in common-variant GWAS.
It is not well-understood whether the phenotypic similarity of neonatal and adult-onset IBD
is underpinned by overlapping biologic mechanisms, though some of the monogenic variants
are in genes involved in epithelial barrier function (e.g., TTC7A [12]). The interest in the
architecture is not just driven by scientific curiosity, but by the fact that monogenic IBD
patients are often refractory to conventional therapies. It would be interesting to see if
the genes involved in neonatal IBD are enriched for a burden of rare, pathogenic variants
in the adult-onset 15x cohort. If this is the case, IBD and neonatal IBD are genetically
overlapping disorders, with some adult IBD patients carrying rare, pathogenic variants within
the neonatal IBD-implicated genes. A lack of burden might suggest that the neonatal IBD
patients are often refractory to conventional treatments, due to these treatments targeting
different biological processes.

Arguably, the most challenging task of the future analysis is uncovering rare associations
within the noncoding regions of the genome. Assuming low or moderate effect size of
such variants, the cohort is not big enough to find many of these during single-variant tests.
Noncoding variants can be grouped together and used for association tests. The significantly
associated groups can be the then examined to identify individual variants that are driving
the signal. A detailed overview of the grouping techniques is provided in the Introduction
chapter. The majority of these approaches either groups the variants in an unbiased way (e.g.,
sliding windows across the genome) or tries to link them to the target gene). Grouping the
noncoding variants to the gene is nontrivial. One of the approaches is to link the noncoding
variants within the enhancers and promoters of that gene. Gene expression data can be used
to refine these groupings. More recently, a variety of methods for in-silico prioritisation
of noncoding regulatory variants have emerged [104], yet their predictive value remains
imperfect [56].

Finally, the rare coding and noncoding variation can be used to improve the predictive
value of the polygenic risk scores (PRS) for IBD. Currently, the predictive value of PRS is
quite low (AUC = 0.633) [97]. The predictive value typically correlates with the percentage of
the explained variance (‘SNP-based heritability’) which is low even in the biggest IBD GWAS
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and does not match the traditional twin-based heritability. The same discrepancy is observed
for the absolute majority of complex traits (the ‘missing heritability’ problem). Recent
work by Wainschtein et al. [184] shows that by including the rare variation from 20,000
whole-genome sequenced individuals, it is possible to to ‘recover’ this missing heritabiliy
for BMI and height. Rare, especially coding, variants in low LD with neighbouring variants
were enriched for heritability. It is unknown whether the same effect holds true for complex
disease, but the IBD 15x cohort provides a great opportunity to study this. If rare variants
are enriched for IBD heritability, a WGS-based polygenic risk score can be derived and
evaluated.

The role of rare variation in IBD pathogenesis remains largely unknown. Uncovering
rare pathogenic variants in known and novel IBD regions will improve the ability to prioritise
drug targets. The 15x study and the adjoining whole-exome datasets will be instrumental in
this task.



Chapter 5

Discussion

This dissertation describes three projects that explore different aspects of IBD genetics and
pharmacogenetics of therapies used to treat IBD. In essence, all three were association
studies of array genotyping or sequencing data. However, each posed unique challenges.
The anti-TNF immunogenicity project, described in Chapter 2, required a non-standard
genome-wide proportional hazards analysis followed by a scrupulous examination of the
only significant association in order to understand which HLA allele it maps to and how it
influences immunogenicity across different treatment regimes. In Chapter 3, I attempted to
uncover the genetic variation associated with thiopurine-induced liver damage. While this
project did not result in any robust associations, it underscores the importance of considering
the quality of the dataset, data normalisation, and sample size when conducting GWAS.
Lastly, in Chapter 4, I discuss the sample quality control and the initial association analysis
of a large whole-genome sequencing dataset – IBD 15x. The scale of WGS datasets poses
new computational challenges, which had to be addressed to enable further analyses. In
addition, rare variant association studies require stringent quality control to avoid spurious
genetic associations.

More than ten years since the first genome-wide association study [192], the genetics of
IBD is far from being ‘solved’. Large scale GWAS have demonstrated the genetic complexity
of the disorder, underpinned by both the number of the associated loci and the complexity of
resolving them down to a single variant and gene. Shortly thereafter, the GWAS techniques,
and often the same datasets, were applied to study a variety of IBD-related traits, including
disease progression, phenotype heterogeneity, and drug response. Below, I provide an
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overview of several projects that use the techniques developed for identifying and elucidating
trait-associated variation in order to understand novel aspects of the genetics of IBD.

5.1 Longitudinal studies for drug response leveraging ex-
pression data

Longitudinal studies follow the participants over a prolonged period of time, recording events
of interest (e.g., treatment complication, remission, flareup). In addition, longitudinal studies
often include a perturbation event at the beginning of the observation period (e.g., start of
treatment). Such studies are widely used in epidemiological research and clinical trials, yet
remain quite novel in the field of complex disease genetics.

The association between HLA-DQA1*05 and immunogenicity was, in part, established
due to the longitudinal design of the PANTS study: in a purely case-control setting the
association just about passed the genome-wide significance threshold. However, when
performing a time to event analysis using the Cox proportional hazards regression, the
association became much more robust. Additional statistical power allowed me to investigate
the effects of the allele across different treatment regimes and to identify the non-additive
nature of the association. As I will discuss in Section 5.3, for pharmacogenetic GWAS this
approach is rarely used due to the difficulty of collecting longitudinal cohorts at scale.

However, smaller scale longitudinal studies (e.g., clinical trials) can leverage a combina-
tion of genotyping and gene expression or microbiome data to study the biological processes
behind drug response.

Gene expression analysis is used to quantify the level of gene product across all genes.
Gene expression was previously measured using microarrays, which have now largely been
superseded by RNA-seq and a plethora of new single cell sequencing methods. Gene expres-
sion is measured at various points in time, including before the treatment is administered for
the first time (base expression).

Once the outcome of the trial is known (e.g., responders versus non-responders, normal
versus adverse drug reaction), longitudinal gene expression data can be analysed to derive
response signatures that associate the expression at base level to the measured outcome. The
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composition of the expression signatures can be investigated to understand which individual
genes are up- and downregulated, providing additional insights into the biology of drug
response.

Furthermore, eQTL mapping can be utilised to understand the role of genetic variation
in drug response. Expression of individual genes is mapped to genetic variants in close
(cis-EQTLs) or distant proximity (trans-eQTLs) from the gene. When the study utilises a
longitudinal design, it is possible to map eQTLs at multiple time points; of particular interest
are the eQTLs that exhibit a differential magnitude of effect across time points as they point
out the likely mechanisms behind drug response.

RNA-seq at different time points was recently performed for around 400 individuals from
the PANTS study – 200 responders and 200 non-responders. My colleague will shortly start
analysing these data.

5.2 Host-microbiome interactions

IBD, being a disorder of the gastrointestinal tract, has long thought to be associated with
changes in the gut microbiome. However, these changes are not well characterised. For exam-
ple, dysbiosis (microbial imbalance) is frequently reported amongst IBD patients. However,
no single microorganism has been consistently reported as being the one that dominates this
imbalance [100]. Govers et al. describe the presence of dysbiosis amongst treatment-naive
CD patients, suggesting that it is not entirely driven by microbiome alternations caused by
therapies [66]. At the same time, it is unknown whether dysbiosis is caused by some of
the symptoms of IBD themselves (e.g., diarrhoea), or driven by genetic variation, or is in
fact itself a potential ‘trigger’ of the disease. Several approaches currently used in human
disease genetics can be used to elucidate the causal relationship between the the host genetic
variation, microbiome and IBD.

QTL mapping techniques can be used to identify genetic variants associated with the
abundance levels of specific microorganisms. This analysis should be followed by a colo-
calization comparison with known IBD loci. Colocalization of the known IBD risk variants
with the microbiome eQTLs would suggest that the bacterial makeup in the gut is partially
driven by host genetics. One of the advantages of this approach is that the eQTLs can be
mapped in the large-scale non-IBD microbiome datasets.
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Sanna et al. [162] have used the two-sample bidirectional Mendelian randomisation
technique to evaluate the causal relationship between host genetics, production of SCFA
butyrate and insulin response, establishing a causal link. Similar approaches can be applied
to IBD.

Recent work by Zimmermann et al. [199] indicates that microbiome-encoded enzymes
can influence the metabolism of a broad variety of drugs. Future IBD pharmacogenetic
studies can perhaps evaluate whether host genetics influence the microbiome composition,
thereby modifying the drug metabolism, leading to drug non-response and adverse drug
reactions.

5.3 Extending anti-TNF pharmacogenetic analysis

The association study of the PANTS cohort has resulted in the first known robust genetic
association for immunogenicity to anti-TNF. While this was not the first attempt to do this,
the previous studies were, arguably, subject to several methodological issues: small sample
size (N < 500); or a targeted approach (e.g. specific HLA alleles, TNF); or the lack of self-
or external replication.

The lessons learnt during the early stages of complex disease and trait GWAS still apply
to pharmacogenetics – ‘good enough’ phenotyping combined with a decent sample size and
adequate genotyping quality is more optimal than maximising either of the three components.

At the current stage of the field, pharmacogenetics appears to be limited largely by
phenotype availability. While the GWAS of many complex diseases are now exceeding
several hundreds of thousands of disease-affected subjects, genetic association studies of
drug response for these conditions rarely exceed a thousand samples. The analysis described
in the PANTS was based on a clinical trial that ran between 2013 and 2019 and was managed
by 400 principal investigators and nurses across 150 research centres. While it is possible
to meta-analyse these data with other anti-TNF trial cohorts in the future, it is evident
that increasing the sample size by an order of magnitude would require finding alternative
approaches for phenotype collection. One approach that could be worth exploring is to
leverage the retrospective data available in bioresources and biobanks.
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5.3.1 Analysing retrospective data from the NIHR IBD BioResource

The IBD BioResource project [143] has so far recruited 27,000 IBD patients. Based on
the medication questionnaire, ∼8,000 of them have undergone treatment with anti-TNF
and approximately an additional 800 have been treated with vedolizumab (a biologic drug
targeting integrin α4β7). The patients have consented to participate in research studies.

The BioResource participants are asked to fill out questionnaires on a variety of topics,
including diet, lifestyle, and drug response. The drug response questionnaire captures the
approximate dates (month and year) of when they have started and finished certain therapies
– such as thiopurines, anti-TNF, and vedolizumab – and whether these have worked. The
questionnaire responses can be used to reconstruct the approximate treatment timelines
that can be analysed with a survival model. In addition, a blood sample is taken upon
enrolment into BioResource. While this does not allow the measurement of antibodies
longitudinally (like in PANTS), the analysis of the PANTS data indicates that patients who
develop immunogenicity will maintain it for multiple observation time-points. The difference
between the immunogenicity time-point and the blood draw may reduce the power of the
time-to-even analyses. However, when I analysed the retrospective replication cohort used
in the PANTS project (using the delta between start date and sampling date as time to
event/censoring), the replication results were very consistent with the main prospective
cohort. Therefore, I believe that the BioResource dataset can be used to study both the
anti-TNF response and immunogenicity.

I prioritised the patients on anti-TNF for inclusion in our 15x and WES cohorts and
∼3,000 of them were already sequenced. In addition, efforts to genotype all 25,000 patients
are ongoing. These data can be used for future anti-TNF pharmacogenetic projects. Increasing
the sample size ∼7x (assuming all 8,000 anti-TNF patients get genotyped) will likely yield
additional associations between genetic variation and response to anti-TNF, further improving
our understanding of therapeutic response.

Some preliminary work was carried out to evaluate the feasibility of this project. I
trialled imputing HLA alleles from sequencing data via HLA-LA. Compared to the genotype-
based imputation techniques (like HIBAG), HLA-LA is a graph-based method that uses
sequence-level data (e.g., aligned BAMs or CRAMs) to achieve higher imputation resolution
and accuracy. This method imputes the HLA alleles at the G group-level resolution which
matches the resolution of clinical HLA typing (compared to the more crude 2- and 4-digit



128 Discussion

level imputation that I used in Chapter 2). Increased accuracy may enable the identification
of novel associations within the HLA, though it appears that the immunogenicity is fully
driven by the HLA-DQA1*05.

When examining an early release of the BioResource anti-TNF phenotype data, it became
apparent that the real-world treatment histories are much more heterogeneous than those of
the patients in the PANTS cohort: patients change the the types of biologic therapies, start and
stop immunomodulators, and have gaps in the treatment history. During the analysis of the
PANTS dataset, I used the right-censored Cox proportional-hazards regression to analyse time
to immunogenicity. The model used a number of covariates, including immunomodulator
usage, type of the anti-TNF drug (infliximab versus adalimumab), assuming they remain
constant throughout the enrolment. In order to use the BioResource data to perform time-
to-even analyses, one would need to control for changing covariates during the observation
period. Time-varying survival regression can be used to achieve this [196]. To the best of
my knowledge, no current GWAS survival analysis tools support it. In order to address this
issue, I have written a prototype software package that is able to perform the regular Cox
proportional-hazard and the time-varying regressions on the genotype data.

5.3.2 Prescription records from the UK Biobank

The UK Biobank (UKBB) is a population-scale cohort that has recruited 500,000 individuals
from all across the United Kingdom. The participants were genotyped, and are currently
being whole-exome (first 50,000 samples available) and whole-genome sequenced. Recently,
anonymised GP prescription records of 222,000 individuals were released. Although the GPs
are unlikely to prescribe anti-TNF therapy themselves, their records should contain records
of all drug prescriptions that the patient receives. The average age of the UKBB participants
was 57 years upon recruitment, meaning that the cohort is enriched for individuals suffering
from IBD, rheumatoid arthritis, and other conditions for treatment of which anti-TNF is used.

It would be interesting to analyse whether there are any genetic variants associated with
shorter prescription length of anti-TNF. A reasonable assumption can be made that the
patients that are prescribed anti-TNF for a couple of months did not respond to the treatment.
I acknowledge that this phenotype is quite heterogeneous and may result in spurious associa-
tions. If any associations for ‘short anti-TNF prescription time’ are uncovered, these should
be replicated in a well-phenotyped clinical trial cohort like PANTS.
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Similar to anti-TNF, the same approach can be adopted in the study of thiopurine-induced
myelosuppression and liver injury, where the typical time of the adverse reaction is known
(e.g., ten weeks for hepatocellular TILI).

Overall, I believe that future pharmacogenetic studies will have to leverage retrospective
data from both specialised bioresourses and population-scale datasets. Here, I have described
two of such datasets. In addition, one could leverage insurance records (especially, in the US)
and national drug prescription databases (such as the one that operates in Finland). Validation
of the results from such proxy phenotypes could be challenging, which means that clinical
trial datasets (like PANTS) will be required for validation.
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