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Abstract. We consider the compressible three dimensional Navier Stokes and
Euler equations. In a suitable regime of barotropic laws, we construct a set of
finite energy smooth initial data for which the corresponding solutions to both
equations implode (with infinite density) at a later time at a point, and com-
pletely describe the associated formation of singularity. Two essential steps of the
analysis are the existence of C∞ smooth self-similar solutions to the compressible
Euler equations for quantized values of the speed and the derivation of spectral
gap estimates for the associated linearized flow which are addressed in the com-
panion papers [32, 33]. All blow up dynamics obtained for the Navier-Stokes
problem are of type II (non self-similar).

1. Introduction

1.1. Setting of the problem. We consider the three dimensional barotropic com-
pressible Navier-Stokes equation:

(Navier− Stokes)

∣∣∣∣∣∣∣∣
∂tρ+∇ · (ρu) = 0
ρ∂tu−∆u+ ρu · ∇u+∇π = 0

π = γ−1
γ ργ

(ρ|t=0, u|t=0) = (ρ0(x), u0(x)) ∈ R∗+ × R3

(1.1)

for γ > 1, as well as the compressible Euler equations:

(Euler)

∣∣∣∣∣∣∣∣
∂tρ+∇ · (ρu) = 0
ρ∂tu+ ρu · ∇u+∇π = 0

π = γ−1
γ ργ

(ρ|t=0, u|t=0) = (ρ0(x), u0(x)) ∈ R∗+ × R3

(1.2)

with non-vanishing density ρ > 0, but possibly decaying at +∞
lim

|x|→+∞
ρ(t, x) = 0. (1.3)

The problem of understanding global dynamics of classical solutions of compressible
fluid dynamics is notoriously difficult, as was already observed in the 1-dimensional
inviscid case by Challis, [7]. It becomes even more complicated in higher dimensions,
including a physically relevant 3-dimensional problem, and in the viscous case due
to the lack of access to the method of characteristics.

1.2. Breakdown of solutions for compressible fluids. For non-vanishing den-
sities, smooth initial data satisfying appropriate fall-off conditions at infinity yield
unique local in time strong solutions, [40, 26, 27, 8, 15]. However, for the Euler
equations, it has been known since the pioneering work of Sideris [45], that well
chosen initial data (with density which is constant outside of a large ball) cannot
be continued for all times as strong solutions. The result applies to both large and
“small” data and holds for all γ > 1. Similarly, for the Navier-Stokes equations,
there are regimes in which strong solutions to (1.1) can not be continued, however
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such results require vanishing conditions on the data. It was first shown in [47]
for all compactly supported data and then in [42] for non-vanishing (density) but
decaying at infinity data for γ > 6

5 . In both Euler and Navier-Stokes cases the un-
derlying convexity arguments give no insight into the nature of the singularity and
while for the compressible Euler equations subsequent work (see below) produced
complete description of singularity (shock) formation (at least in the small data near
constant density regime), the questions about quantitative singularity formation in
Navier-Stokes and in other Euler regimes remained open.

In this paper we address the classical problem of singularity formation in com-
pressible fluids arising from smooth well localized initial data with non-vanishing
density. We study both the three dimensional Navier-Stokes equations and its invis-
cid Euler limit. For a suitable range of equations of state, we exhibit a class (finite
co-dimension manifold in the moduli space) of smooth, well localized (without vac-
uum) initial data for which the corresponding solutions blow up in finite time at a
point and completely describe the associated formation of singularity. The results
also extend to the two dimensional Euler equations. These solutions describe self-
implosion of a fluid/gas in which smooth well localized (in particular finite energy)
distribution of matter collapses upon itself (with infinite density) in finite time while
remaining smooth (in particular, free of shocks) until then. At the collapse time,
remaining matter assumes a certain universal form.

With the focus on both the Navier-Stokes and the Euler equations we examine the
question of failure of classical solutions to be continued globally in time. Specifically,
we study the first time singularity problem, identifying the first time that solutions
stop being classical and the singular set on which it happens. In the Navier-Stokes
case such results are completely new. For the Euler equations in two and three
dimensions such results are connected with the more general singularity formation
in quasilinear hyperbolic equations and originate in the works of John [20] and
Alinhac [1, 2]. In the Euler case, due to the hyperbolic nature of the equations, one
can also study a richer problem of shock formation which in particular addresses
the structure of the full singular set of the solutions.

1.3. Quantitative theory of singularity formation for the compressible Eu-
ler. We (mostly) limit our discussion to the three dimensional case and completely
bypass the rich and storied narrative of the one dimensional case, see e.g. [16].
Shock formation for the three dimensional Euler equations was shown in the work
of Christodoulou [9] in both the relativistic and non-relativistic cases (see also [11].)
The work covered a small data regime of near constant density and small velocities,
with the shock forming in the irrotational part of the fluid, and provided a complete
geometric description at the shock. One of the key features of the work and the
reason why the result may be called “shock formation" is that it constructed and
showed a particular structure of the maximal Cauchy development of solutions. Such
a maximal Cauchy development possesses a boundary ∂H ∪H ∪ C, part of which
– a smooth null 3-d hypersuface H and 2-d sphere ∂H – is the singular set of the
solution. The past endpoints H are precisely the set ∂H – the first singularity of the
solution. It is also that aspect of the construction that later allowed Christodoulou
to study the (restricted) shock development problem, [10].
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While shock formation and shock development problems require studying the
maximal Cauchy development and the associated first singularity, one could, es-
pecially in the non-relativistic setting where the time variable t is well defined,
investigate the problem of the first time singularity. That problem amounts to
understanding a singular set of the solution at the first time T when it becomes sin-
gular. In the setting described above, this would be the set T ∩ ∂H∪H ⊂ ∂H∪H
which a priori may not coincide with the first singularity set ∂H (or even have the
same dimension). On the other hand, just the knowledge of the first time singular
set provides no information about the maximal Cauchy development, the full sin-
gular set or shock formation. In fact, in principle, it may be completely consistent
with the full singular set being a 3-d space-like hypersurface, rather than the null
H ∪ ∂H, and thus be incompatible with the shock development picture. (For the
multi-dimensional semilinear wave equations examples of singular sets have been
considered and analyzed in e.g. [6, 22, 37, 39].)

Having drawn a distinction between the first singularity (shock formation) and
first time singularity formation, we should recall again that the latter problem for
multi-dimensional compressible Euler equations had been studied in the works of
Alinhac (with a precursor in John, [20]) in two and three dimensions for a more gen-
eral (quasilinear hyperbolic) class of equations, including Euler, [1, 2], in the small
data regime and was tied to the failure of Klainerman’s null condition, [23], and
to a 1-dimensional Burgers mechanism of singularity formation. Recently, this has
been extended in [46]; open set of data leading to solutions of the Euler equations
with non-trivial vorticity at the first time singularity have been constructed in [25]
and later, in different regimes in [4, 5]. The 1-dimensional Burgers phenomenon has
been lifted to higher dimensions also recently in [13] for the Burgers equation with
transverse viscosity.

1.4. Results. We now contextualize our results. Once again we limit our discussion
to the three dimensional case. There are three critical issues.

First, since in this paper we study the Navier-Stokes and Euler problems simulta-
neously, we can not even define maximal Cauchy development, which is associated
with hyperbolic PDE’s, and thus properly speak about shock formation. Ours is a
first time singularity result.

Secondly, shock formation and development for the three dimensional compress-
ible Euler equations has been shown only in the small data, near constant density,
regime. For such data Navier-Stokes solutions remain global, [28]. Our solutions
to both Navier-Stokes and Euler belong to a very different, large data regime. For
Navier-Stokes, in this regime the density decays at infinity. For Euler, in view of
the domain of dependence principle, behavior at infinity in itself is not important.
See also comment 5. after the statement of the main theorem.

Lastly, the first time singularities constructed in this paper occur at one point.
We do not speculate about the structure of the full singular set. However, we
emphasize two important issues. One is that at a singular point all directions are
singular, unlike the picture established in [9] where each point of the singular set ∂H
possesses 3 regular tangential direction (alongH). The other one is perhaps the most
important point: in formation of shock type singularities one expects to maintain
boundedness of both density and velocity (with their first derivatives blowing up).
In solutions constructed in this paper both density and velocity blow up at the
singularity. This is a new phenomenon of formation of strong singularities. It relies
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on the existence of appropriate self-similar solutions to the Euler equations and
makes no connection to the link between the Euler equation and explicit solutions
of the Burgers equation.

1.5. Statement of the result. We recall that γ is the parameter describing the
equation of state and define the following additional parameters:∣∣∣∣∣∣∣∣∣∣∣

` = 2
γ−1

r∗(d, `) = d+`
`+
√
d
,

r+(d, `) = 1 + d−1
(1+
√
`)2

ro(d, `) =

∣∣∣∣ r∗(d, `) for ` < d
r+(d, `) for ` > d.

(1.4)

Theorem 1.1 (Implosion for a three dimensional compressible fluid). There exists
a (possibility empty) exceptional countable sequence (`n)n∈N whose accumulation
points can only be at {0, 3,+∞} such that the following holds. Let ` be related to γ
according to (1.4), and assume∣∣∣∣∣∣

` 6= 3

` >
√

3 for (Navier− Stokes)
` > 0 for (Euler)

(1.5)

and ` avoids the countable values:

` /∈ {`n, n ∈ N}. (1.6)

Then for each such admissible `, there exists a discrete sequence of blow up speeds
(rk)k≥1 with

1 < rk < ro(3, `), lim
k→+∞

rk = ro(3, `)

such that for each k ≥ 1, there exists a finite co-dimensional manifold (in the moduli
space) of smooth spherically symmetric initial data (ρ0, u0) ∈ ∩m≥0H

m(R3,R∗+×R3)
such that the corresponding solutions to both (1.1) and (1.2) in their respective
regimes (1.5) blow up in finite time 0 < T < +∞ at the center of symmetry with

‖u(t, ·)‖L∞ =
cu0(1 + ot→T (1))

(T − t)
rk−1

rk

‖ρ(t, ·)‖L∞ =
cρ0(1 + ot→T (1))

(T − t)
`(rk−1)

rk

(1.7)

for some constants cρ0 , cu0 > 0.

Remark 1.2. A corresponding statement holds for Euler in dimension 2 in the
range ` > 0, ` 6= 2, see the third comment of section 1.6.

1.6. Comments on the result. We begin our discussion by emphasizing the point
that for the Navier-Stokes equations the results of Theorem 1.1 do not describe a
self-similar (type I) singularity formation. The blow up profile dominating the be-
havior on the approach to singularity is a front for the Navier-Stokes equations and
obeys (one of) the Euler scalings1 rather than the Navier-Stokes one. The scaling
is super-critical for the Navier-Stokes problem: the scale invariant Sobolev norm2

1The Euler equations possess a 2-parameter family of scaling transformations containing a 1-
parameter family of Navier-Stokes as a subfamily. The parameter r – what we call here speed —
labels a particular choice of a 1-parameter subfamily of the scaling transformations of the Euler
equations.

2The Navier-Stokes scaling preserves the ‖ρ(t, ·)‖ḢsNS with sNS = 1 + 1
2γ
, while the Euler

scaling used for the profile preserves the Sobolev norm with the exponent sc = 1
2

+ 1
r
. The

condition (2.9) e > 0 which dictates the compatibility of Eulerian regimes with Navier-Stokes is
precisely sc < sNS , which means that the scale invariant Navier-Stokes Sobolev norm blows up.
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blows up at the singular time. Blow up is therefore of type II similar to our previous
work [31].

1. The inviscid limit. The results of Theorem 1.1 are uniform relative to the viscos-
ity parameter of the Navier-Stokes equations. The described singularity formation
in Navier-Stokes survives in the inviscid limit. In particular, under the conditions of
the theorem, the solutions to both the Navier-Stokes and the Euler equations blow
up for the same initial data. As a consequence, singularity formation in the Euler
equations in this paper falls into two categories: in the Navier-Stokes regime ` >

√
3

singular solutions of the Euler equations also correspond to (and arise as limits of)
singular solutions of Navier-Stokes; in the remaining allowed range ` <

√
3 singu-

lar solutions of the Euler equations do not have their viscous analogs. We should
however stress that both in the Navier-Stokes regime and the “pure” Euler regimes
blow up occurs via a self-similar Euler profile.

2. The range (1.5). The value ` = 3 or γ = 5
3 , which corresponds to the law

for a monoatomic ideal gas, is exceptional and signals a phase transition from the
blow up rate r∗(3, `) for ` < 3 to r+(3, `) for ` > 3. The nature of the phase
portrait underlying the existence of suitable blow up profiles for Euler degenerates
dramatically for ` = 3 with the formation of a critical triple point, [32]. In the
general dimension d this phenomenon happens at ` = d. The lower bound restriction
` >
√

3 for the Navier-Stokes problem is also essential and sharp and measures the
compatibility of the Euler-like blow up with the dissipation term in the Navier-
Stokes equations. Viewing dimension d as a parameter, this compatibility can be
sharply measured by the condition, see (2.9):
` < d:

r∗(d, `) =
d+ `

`+
√
d
>

2 + `

1 + `
⇔ ` > `0(d) =

2
√
d− d

d− 1−
√
d

(1.8)

which always holds for d ≥ 4 (all terms ≥ 0), never holds for d = 2 (all terms < 0),
and for d = 3 demands ` >

√
3, this is the lower bound (1.5).

` > d:

r+(d, `) = 1 +
d− 1

(1 +
√
`)2

>
2 + `

1 + `

also never holds for d = 2 but always holds for d = 3, ` > 3.
This shows the fundamental influence of both the dimension and the blow up speed,
attached to the Eulerian regime, on the strength of dissipation for fluid singularities.

3. The Euler case. Our theorem also holds for the two dimensional Euler equations
in the range γ > 1 and γ 6= 2. Both the inviscid limit statement and the validity of
the “pure” Eulerian regimes (d = 3, ` <

√
3), (d = 2, ` > 0), arise from the proof of

the theorem. Let us note that in the case of Euler, a direct analysis of the dynamical
system governing the self similar dynamics [21, 32] easily produces a continuum of
self-similar solutions, which can be localized using the finite speed of propagation,
to produce finite energy self similar blow up solutions. These solutions however
arise from the data of limited regularity, see section 1.8.1. This procedure cannot
be applied in the Navier-Stokes case, and, more generally, our understanding of the
finite co-dimensional stability of these self similar solutions is directly linked to the
C∞ regularity.
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4. The sequence `n. The discrete sequence `n of possibly non admissible equations
of state is related to the existence of C∞ self similar solutions to the compressible
Euler. We proved in [32] that for all d ≥ 2, such profiles exist for discrete values
of the blow up speed in the vicinity of the limiting speed ro(d, `) provided a cer-
tain non vanishing condition S∞(d, `) 6= 0 holds. The function S∞(d, `) is given
by an explicit series and is holomorphic in ` (in a small complex neighborhood of
each interval (0, d) and (d,∞)). We do not know how to check the non vanishing
condition analytically, but we can prove that the possible zeroes of S∞(d, ·) are
isolated and possibly accumulate only at ` ∈ {0, d}. For small `, this condition can
easily be checked numerically, but the series becomes exceedingly small as ` → d
and hence the numerical check of a given value becomes problematic, see [32]. We
do not know whether the condition S∞(d, `) 6= 0 is necessary for the existence of
C∞ self-similar profiles, understanding this would require revisiting the asymptotic
analysis r ↑ ro(d, `) performed in [32] in the degenerate case.

5. Behavior at infinity (1.3) and other domains. In this paper our results apply to
the solutions (ρ, u) which decay at infinity. As such, the solutions have finite energy.
However, from that point of view it is unnecessary for both ρ and u to decay. A
particularly interesting case is when ρ approaches a constant at infinity and u van-
ishes appropriately. For Navier-Stokes such solutions are specifically excluded even
from qualitative arguments in [47, 42]. Our analysis begins with a construction of

self-similar Euler profiles which decay rather slowly. In particular, ρ ∼ |x|−2
rk−1

γ−1 .
For |x| > 5 we then reconnect our profiles to rapidly decaying functions and consider
similarly rapidly decaying perturbations. The reconnection procedure is not subtle
and its main goal is to create solutions of finite energy. One could, in principle, be
able to reconnect the profile to one with constant density for large x and rapidly
decaying velocity, instead. This should lead to a singularity formation result for
Navier-Stokes for solutions with constant density at infinity. Even more generally,
the analysis should be amenable to other boundary conditions and domains, e.g.
Navier-Stokes and Euler equations on a torus. An example of such adaptation in
the context of a nonlinear heat equation and a domain with Dirichlet boundary
condition is provided by [12].

6. Spherical symmetry assumption. Theorem 1.1 is proved for spherically symmetric
initial data. The symmetry is used in a very soft way, and we expect that the blow
up of Theorem 1.1 is stable modulo finitely many instabilities for non symmetric
perturbations, including in particular solutions with non trivial vorticity.

7. Blow up profile. The proof of Theorem 1.1 involves a much more precise descrip-
tion of the blow up (1.7). In particular, we prove that, after renormalization, the
blow up profile is given by a suitable self-similar solution to the compressible Euler
flow, and that singularity occurs at the origin only, with a universal blow up profile
away from the singularity, as is also the case in some examples of blow up for the
Schrödinger equations, see e.g. [30]. The proof of our main result also implies the
existence of the limits for the density ρ(t, x) and velocity u(t, x) as t converges to
the blow up time T and |x| > 0. One can show that for any x: 0 < |x| < 5,

lim
t↑T

ρ(t, x) =
ρ∗

|x|2
rk−1

γ−1

+O(1), lim
t↑T

u(t, x) =
u∗

|x|(rk−1)
+O(1). (1.9)
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for some (universal) constants ρ∗ > and u∗. Note that the limiting profile
( ρ∗

|x|2
rk−1
γ−1

, u∗
|x|(rk−1) ) is not a solution of the Euler equations. We should emphasize,

that in contrast to the previously studied (in mathematical literature) singularity
and shock formation for the two and three dimensional Euler equations where so-
lutions remain bounded up to and including the first singularity, both the density
and velocity of our solutions blow up at the first singularity.

8. The stability problem. The results of Theorem 1.1 hold for a ball in the moduli
space of initial data around the self similar profile modulo a finite number of un-
stable directions, possibly none. The proof comes with a complete understanding
of the associated linear spectral problem. Providing a precise count for (non real
valued) eigenvalues analytically does not seem obvious, but clearly this problem can
be addressed numerically since the radial nature of the self-similar profile allows one
to reduce the problem to standard ode’s. This remains to be done.

9. Weak solutions. Solutions to the compressible Navier-Stokes equations con-
structed in this paper coexist, in principle, with the theory of weak global solutions
of P.-L. Lions [24] and its extension in [19]. Existence of weak global solutions
is asserted under finite energy assumptions and in the range γ > 3/2 (originally,
γ ≥ 9/5) in dimension three. These solutions, in particular, have the property that
for any T < ∞, ρ ∈ L∞([0, T ];Lγ(R3)). On the other hand, from (1.9), we see
that solutions considered in this paper failed to obey a uniform bound in the space

L
3(γ−1)
2(rk−1) (R3) on the approach to the singular time T :

ρ 6∈ L∞([0, T ];L
3(γ−1)
2(rk−1) (R3))

with rk chosen to be close to the value ro(d, `) from (1.8).

1.7. Connection to the blow up for the semilinear Schrödinger equation.
Somewhat surprisingly, the mechanism of singularity formation in compressible flu-
ids exhibited in this paper turns out to be connected with the singularity formation
in defocusing super-critical Schrödinger equations. In the companion paper [33], we
obtain the fist result on the existence of blow up solutions emerging from smooth
well localized data for the energy super-critical defocusing model

(NLS) i∂tu+ ∆u− u|u|p−1 = 0, x ∈ Rd (1.10)

in a suitable energy super-critical range p > p(d) and d ≥ 5. Neither soliton
solutions nor self-similar solutions are known for (1.10), but we rely on a third blow
up scenario, well known for the focusing non-linear heat equation, see e.g. [3, 36]
and in more recent [34, 14]: the front scenario. After passing to the hydrodynamical
variables, which for (NLS) are the phase and modulus, the front renormalization
maps (1.10) to leading order onto the compressible Euler flow (1.2) with the behavior
at infinity given by (1.3). The analysis then follows three canonical steps. These
steps run in parallel to the treatment of the Navier-Stokes equations in this paper,
which is also approximated by the Euler dynamics. The description below applies
to both.
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1.8. Strategy of the proof.

1.8.1. Self-similar Euler profiles. We first derive the leading order blow up profile
which corresponds here to self-similar solutions of (1.2). Continuums of such solu-
tions have been known since the pioneering works of Guderley [21] and Sedov [44].
However, the rich amount of literature produced since then is concerned with non-
smooth self-similar solutions. This is partly due to the physical motivations, e.g.
interests in solutions modeling implosion or detonation waves, where self-similar
rarefaction or compression is followed by a shock wave (these are self-similar solu-
tions which contain shock discontinuities already present in the data), and, partly
due to the fact that, as it turns out, global solutions with the desired behavior at
infinity and at the center of symmetry are generically not C∞. This appears to be
a fundamental feature of the self-similar Euler dynamics and, in the language of
underlying acoustic geometry, means that generically such solutions are not smooth
across the backward light (acoustic) cone with the vertex at the singularity.

The key of our analysis is the construction of those non-generic C∞ solutions
and the discovery that regularity is an essential element in controlling suitable
repulsivity properties of the associated linearized operator. This is at the heart of
the control of the full blow up. In our companion paper [32] we construct a family of
C∞ spherically symmetric self-similar solutions to the compressible Euler equations
with suitable behavior at infinity and at the center of symmetry for discrete values
of the blow up speed parameter r in the vicinity of the limiting blow up speed rro(d, `)
given by (1.4).

1.8.2. Linearized stability. The second step is to understand how C∞ regularity of
the blow up profile is essential to control the associated linearized operator for the
Euler problem (1.2) in renormalized variables. Here the problem is treated as a
quasilinear wave equation and we rely on spectral and energy methods to derive the
local linearized asymptotic stability of the blow up profile. The local aspect of the
analysis is manifest in the fact that it is only carried out in the region which includes,
but only barely, the interior of the backward acoustic cone (associated with the
profile) emanating from the singular point. The statement of linear stability holds
for a finite co-dimension subspace of initial data. This is ultimately responsible for
the assertion that results of Theorem 1.1 hold for a finite co-dimensional manifold
of the moduli space of initial data. Full details of this analysis are given in [33].

1.8.3. Nonlinear stability. The final step of our analysis is the proof of global non-
linear stability. Here, the details of the treatment of (NLS) and (NS) are differ-
ent. However, one unifying feature is the dominance of the Eulerian regime. For
Navier-Stokes it means that, in a suitable regime of parameters, the dissipative term
involving the Laplace operator ∆ is treated perturbatively all the way to the blow
up time. The reason for this is that the renormalized equations take the form (cf.
(2.7))∣∣∣∣ ∂τρT = −ρTdiv uT − `(r−1)

2 ρT − (2uT + Z) · ∇ρT
ρ2
T∂τuT = b2∆uT − [2uT · ∇uT + (r − 2 + d)uT + Z · ∇uT ] ρ2

T +∇π.
(1.11)

Here, ρT corresponds to the square root of the density. The blow up time cor-
responds to τ → ∞ and the point is that the renormalized viscosity is given by
b2 ∼ e−2eτ with the parameter

e =
(1 + γ)r − 2γ

2(γ − 1)
=

1

2
[`(r − 1) + r − 2]. (1.12)
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The positivity of e for r close enough to reye, which makes the dissipative term decay
as τ →∞, is precisely the restriction on the upper bound for γ: γ < (2 +

√
3)/
√

3.
For the Schrödinger equations, similar but more subtle (not all the terms involving

the original ∆ disappear) considerations lead to the restrictions on the range of the
power p.

The key to our claim that the results hold uniformly in viscosity and apply di-
rectly to the Euler equations is that all of our estimates hold uniformly in viscosity.
In fact, we exploit the dissipative term exactly once, in Lemma 5.2, but it is then
used to control only the dissipative term itself.

We should finally mention that the methods used in both this paper and [33] are
deeply connected with the analysis developed in our earlier work, in particular in
[31].

We will give the proof of Theorem 1.1 explicitly in the case of (NS) only. The
Euler case follows verbatim the same path, is strictly simpler, and the condition
` >
√

3 will not appear there as it measures only the compatibility of (NS) with
(Euler). We will introduce a dimension parameter d. This is not to concern ourselves
here with the higher dimensional Navier-Stokes (even though a certain range of γ
is available) but rather to facilitate considerations of the two dimensional Euler
problem. As will be clear from the proof, the parameter d enters meaningfully only
in the treatment of the dissipative term.

1.9. Organization. In section 2, we introduce the front renormalization and re-
call the main results of [32] concerning the existence of C∞ self-similar profiles to
the compressible Euler equations. In section 3, we recall the main decay estimates
for the associated linearized operator. Their detailed proofs are contained in [33].
In section 4, we describe our set of initial data and detail the bootstrap bounds
needed for our analysis. In section 5, we derive some non-renormalized estimates
which are used to control the exterior region |x| ≥ 1. In section 6, we derive a
general quasilinear energy estimate at the highest level of regularity. In section 7,
we use its unweighted version to close the bounds for the highest derivative in the
d = 3, ` >

√
3 case. In section 8, we repeat the argument but this time with a

combination of cut-off functions, to close the bounds for the highest derivative in
the remaining Euler cases d = 2 and d = 3, ` <

√
3. In section 9, we derive and

close weighted energy bounds for all sufficiently high derivatives. Sections 5-9 will
allow us to close the pointwise bounds on the solution. In section 11 we upgrade the
linear estimates of section 3 to nonlinear ones and propagate them to any compact
set in the renormalized variable Z relative to which the acoustic cone terminating
in a singular point corresponds to the equation Z = Z2.Theorem 1.1 then follows
from a now standard Brouwer like topological argument.

Constants and notations. Below we list constants, relations and conventions
used throughout the text.
– Parameters p and γ from the equation of state π = γ−1

γ ργ

p− 1 = 2(γ − 1). (1.13)

– Parameter `

` =
2

γ − 1
=

4

p− 1
. (1.14)
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– Front speed parameter r which is assumed to be strictly less but arbitrarily close
to one of the limiting values

ro(d, `) =

∣∣∣∣∣ r
∗(d, `) = d+`

`+
√
d

for ` < d

r+(d, `) = 1 + d−1
(1+
√
`)2

for ` > d.
(1.15)

with d – general dimension parameter. In particular, we will always use that

r > 1;

– Parameter e measuring compatibility between the Euler and Navier-Stokes

e =
(1 + γ)r − 2γ

2(γ − 1)
=

1

2
[`(r − 1) + r − 2]. (1.16)

The requirement e > 0 will be imposed in the Navier-Stokes case to ensure the
dominance of the Eulerian regime. It forces the restriction

` > `0(d) =
2
√
d− d

d− 1−
√
d
. (1.17)

– Original variables (t, x) – Renormalized variables (τ, Z)

(T − t) = 2e−rτ , Z = eτx.

– Original unknowns (ρ(t, x), u(t, x)) and the potential Ψ = ∇u.

– First renormalization

ρ̂(t, x) =
(

2
1

γ−1 ρ(2t, x)
) 1

2
, û(t, x) = u(2t, x).

– Second renormalization

ρT (τ, Z) = e−
`
2

(r−1)τ ρ̂(t, x), uT (τ, Z) = e−(r−1)τ û(t, x).

– Renormalized viscosity parameter b2

b2 = e−2eτ (1.18)

– Profile in renormalized variables (ρP (Z),ΨP (Z)) and the corresponding pair
(ρ̂P (t, x), Ψ̂P (t, x)).

– Dampened profile in renormalized variables (ρD(τ, Z),ΨD(τ, Z)) and the corre-
sponding pair (ρ̂D(t, x), Ψ̂D(t, x)).

– Linearization variables

ρ̃(τ, Z) = ρT (τ, Z)− ρD(τ, Z), Ψ̃(τ, Z) = ΨT (τ, Z)−ΨD(τ, Z),

and velocity ũ = ∇Ψ̃.

– Depending on context, ∇ may denote either derivatives in x or Z. ∇α with

α = (α1, . . . , αd) ∈ Nd, |α| = α1 + · · ·+ αd = k

will denote a generic ∂α1
1 ....∂αdd - derivative of order k. Sometimes we will abuse the

notation and write ∇k.

– ∂k will denote the vector (∂k1 , ..., ∂
k
d ) of k-th order derivatives.

– By abuse of notation we will identify Z with |Z| and denote by ∂Z the radial
derivative.
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2. Front renormalization

We compute the front renormalization which allows one to treat (1.1) as a per-
turbation of (1.2) in a suitable regime of parameters. We then recall the main facts
concerning the existence of C∞ smooth decaying at infinity self similar solutions to
(1.2) for quantized values of the blow up speed obtained in [32].

2.1. Equivalent flow for non vanishing data. Let us consider the flow (1.1) for
non vanishing density solutions:∣∣∣∣∣∣

∂tρ+∇ · (ρu) = 0
ρ∂tu−∆u+ ρu · ∇u+∇π = 0

π = γ−1
γ ργ

, x ∈ Rd.

We change variables: ∣∣∣∣∣ ρ(t, x) = 1

2
1

γ−1
ρ̂2
(
t
2 , x
)

u(t, x) = û
(
t
2 , x
)

= ∇Ψ̂
(
t
2 , x
) (2.1)

The first equation is logarithmic in density:
∂tρ

ρ
+∇ · u+

∇ρ
ρ
· ∇u = 0⇔ ∂tρ̂

ρ̂
+∇ · û+

2∇ρ̂
ρ̂
· û = 0

⇔ ∂tρ̂+ ρ̂∇ · û+ 2∇ρ̂ · û = 0⇔ ∂tρ̂+ ρ̂∆Ψ̂ + 2∇Ψ̂ · ∇ρ̂ = 0.

The second equation becomes:
1

2
∂tû−

1
ρ̂2

2
1

γ−1

∆û+ û · ∇û+ (γ − 1)ργ−1∇ρ
ρ

= 0

⇔ 1

2
∂tû−

2
1

γ−1

ρ̂2
∆û+ û · ∇û+

γ − 1

2
ρ̂2(γ−1) 2∇ρ̂

ρ̂
= 0

⇔ 1

2
∂tû−

2
1

γ−1

ρ̂2
∆û+ û · ∇û+

p− 1

2
ρ̂p−1∇ρ̂

ρ̂
= 0

and hence the equivalent formulation:∣∣∣∣∣∣∣∣
∂tρ̂+ ρ̂∇ · û+ 2∇ρ̂ · û = 0
∂tû− α

ρ̂2 ∆û+ 2û · ∇û+∇p̂ = 0

π̂ = ρ̂p−1

α = 2
γ
γ−1

(2.2)

and hence for spherically symmetric solutions:
1

2
∂t∂rΨ̂−

∆û
1

2
1

γ−1
ρ̂2

+
1

2
∂r(|û|2) + ∂r(ρ

γ−1)

⇔ 1

2
∂r

[
∂tΨ̂−F(û, ρ̂) + |∂rΨ̂|2 + ρ̂2(γ−1)

]
= 0

⇔ ∂tΨ̂−F(û, ρ̂) + |∂rΨ̂|2 + ρ̂2(γ−1) = B(t)
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where B(t) is the Bernoulli function and

F(u, ρ) = 2
γ
γ−1

∫ r

0

∆u(r′)

ρ̂2(r′)
dr′. (2.3)

By changing Ψ 7→ Ψ + a(t) with

ȧ = B, a(t) =

∫ t

0
B(τ)dτ

which does not change velocity, we have the equivalent flow∣∣∣∣ ∂tρ̂+ ρ̂∆Ψ̂ + 2∂rΨ̂∂rρ̂ = 0

∂tΨ̂−F(û, ρ̂) + |∂rΨ̂|2 + ρ̂2(γ−1) = 0
(2.4)

2.2. Front renormalization. Let us recall that compressible Euler has the two
parameter symmetry transformation group∣∣∣∣∣

(
λ
ν

) 2
γ−1 ρ(s, Z), λ

νu(s, Z)

Z = x
λ ,

ds
dt = 1

ν

which becomes for (2.4): ∣∣∣∣∣
(
λ
ν

) 1
γ−1 ρ̂(s, Z), λ2

ν Ψ̂(s, Z)

Z = x
λ ,

ds
dt = 1

ν .

Lemma 2.1 (Renormalization). Let r be the front speed, recall (1.16), and let

λ(τ) = e−τ , ν(τ) = e−rτ , b(τ) = e−eτ (2.5)

then the renormalization∣∣∣∣∣∣∣∣∣
ρ̂(t, x) =

(
λ
ν

) 1
γ−1 ρT (τ, Z)

Ψ̂(t, x) = λ2

ν (ΨT + a(τ))(s, Z), uT = ∂ZΨT

a(τ) = e−(r−2)τ

Z = x
λ ,

dτ
dt = 1

ν

(2.6)

transforms (2.4) into:∣∣∣∣∣ ∂τρT = −ρT∆ΨT − `(r−1)
2 ρT − (2∂ZΨT + Z)∂ZρT

∂τΨT = b2F(uT , ρT )−
[
(∂ZΨT )2 + (r − 2)ΨT + Z∂ZΨT + ρp−1

T

] (2.7)

with

F(uT , ρT ) = 2
γ
γ−1

∫ r

0

∆uT (r′)

ρ2
T (r′)

dr′. (2.8)

Proof of Lemma 2.1. We renormalize the first equation and obtain

∂τρT +
r − 1

γ − 1
ρT + ΛρT + 2∂ZΨT∂ZρT = 0

⇔ ∂τρT = −ρT∆ΨT −
`(r − 1)

2
ρT − (2∂ZΨT + Z)∂ZρT .

For the second equation:

∂τ (ΨT + a(τ)) + (r − 2)(Ψ + a) + ΛΨT +

(
ν1+γ

λ2γ

) 1
γ−1

F(uT , ρT ) + |∂ZΨT |2 + ρ
2(γ−1)
T = 0

⇔ ∂τΨT = b2F(uT , ρT )−
[
(∂ZΨT )2 + (r − 2)ΨT + Z∂ZΨT + ρp−1

T

]
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with aτ + (r − 2)a = 0 and

b2 =

(
ν1+γ

λ2γ

) 1
γ−1

=
(
e−[(1+γ)r−2γ]τ

) 1
γ−1

= e−2eτ ,

this is (2.7). �

We now observe from (1.16)

e > 0⇔ r >
2 + `

1 + `
. (2.9)

and compute for d = 3:
for ` < d,

r∗(d, `) =
d+ `

`+
√
d
>

2 + `

1 + `
⇔ (d+ `)(1 + `) > (2 + `)(`+

√
d)

⇔ d+ d`+ `+ `2 > 2`+ 2
√
d+ `2 + `

√
d

⇔ `(d− 1−
√
d) > 2

√
d− d⇔ ` > `0(d) =

2
√
d− d

d− 1−
√
d
,

which for d = 3 is

` > `0(3) =
2
√

3− 3

2−
√

3
=
√

3;

for ` > d,

r+(d, `) = 1 +
d− 1

(1 +
√
`)2

>
2 + `

1 + `
⇔ 1 +

2

(1 +
√
`)2

>
2 + `

1 + `
⇔ (1−

√
`)2 > 0

and thus always holds for ` > d = 3.

Remark 2.2. The requirement that e > 0 is equivalent to the decay (as τ → ∞)
of the parameter b2. This is precisely the value of renormalized viscosity in (2.7)
and its decay signifies the dominance of the Euler dynamics on the approach to
singularity. We therefore assume from now on and for the rest of this paper that
the parameter ` is in the range (1.5).

The function r∗(d, `) is a decreasing function of `. In particular, for ` > 0

r∗(d, `) <
√
d (2.10)

2.3. Blow up profile and Emden transform. A stationary solution to (2.7) for
b = 0 satisfies the self similar equation∣∣∣∣∣ (∂ZΨP )2 + ρp−1

P + (r − 2)ΨP + ΛΨP = 0

∆ΨP + `(r−1)
2 + (2∂ZΨP + Z)∂ZρPρP

= 0
(2.11)

which can be complemented by the boundary conditions

ΨP (0) = − 1

r − 2
, Ψ′P (0) = 0, ρP (0) = 1. (2.12)

Following [21], [44], the Emden transform∣∣∣∣∣∣∣
φ = 1

2

√
`, p− 1 = 4

`

Q = ρp−1
P = 1

M2 ,
1
M = φZσ

Ψ′P
Z = −1

2w

, y = logZ (2.13)

maps (2.11) into ∣∣∣∣ (w − 1)w′ + `σσ′ + (w2 − rw + `σ2) = 0
σ
`w
′ + (w − 1)σ′ + σ

[
w
(
d
` + 1

)
− r
]

= 0
(2.14)
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or equivalently ∣∣∣∣ a1w
′ + b1σ

′ + d1 = 0
a2w

′ + b2σ
′ + d2 = 0

with ∣∣∣∣ a1 = w − 1, b1 = `σ, d1 = w2 − rw + `σ2

a2 = σ
` , b2 = w − 1, d2 = σ

[(
1 + d

`

)
w − r

]
.

(2.15)

Let

we =
`(r − 1)

d
(2.16)

and the determinants∣∣∣∣∣∣
∆ = a1b2 − b1a2 = (w − 1)2 − σ2

∆1 = −b1d2 + b2d1 = w(w − 1)(w − r)− d(w − we)σ2

∆2 = d2a1 − d1a2 = σ
`

[
(`+ d− 1)w2 − w(`+ d+ `r − r) + `r − `σ2

]
.

(2.17)

then

w′ = −∆1

∆
, σ′ = −∆2

∆
,
dw

dσ
=

∆1

∆2
.

A solution w = w(σ) of the above system can be found from the analysis of the
phase portrait in the (σ,w) plane, see Figure 1 and Figure 2. The shape of the phase
portrait relies in an essential way on the polynomials ∆,∆1,∆2 and the range of
parameters (r, d, `). In particular, it is easily seen that there is a unique solution
which satisfies (2.12) and is C∞ at Z = 0. The key question is the behavior of this
unique solution as x→ +∞. In particular, this solution needs to pass through the
point P2, determined by the conditions

∆(P2) = ∆1(P2) = ∆2(P2). (2.18)

At P2, generically (i.e., among all solutions passing through P2,) solutions will
experience an unavoidable discontinuity of higher derivatives. Nonetheless, for a
discrete set values of the speed r, our unique solution curve passes through P2 in a
C∞ fashion. The following structural proposition on the blow up profile is proved
in the companion paper [32].

Theorem 2.3 (Existence and asymptotics of a C∞ profile, [32]). Let d ∈ {2, 3}.
There exists a (possibility empty) countable sequence 0 < `n which accumulation
points can only be at {0, d,+∞} such that the following holds. Let

ro(d, `) =

∣∣∣∣∣ r
∗(d, `) = d+`

`+
√
d

for ` < d

r+(d, `) = 1 + d−1
(1+
√
`)2

for ` > d

be the limiting blow up speed. Then there exists a sequence (rk)k≥1 with

lim
k→∞

rk = ro(d, `), rk < ro(d, `) (2.19)

such that for all k ≥ 1, the following holds:
1. Existence of a smooth profile at the origin: the unique spherically symmetric
solution to (2.11) with Cauchy data at the origin (2.12) reaches in finite time Z2

the point P2.
2. Passing through P2: the solution passes through P2 with C∞ regularity.
3. Large Z asymptotic: the solution connects to the P6 point with the asymptotics
as Z → +∞: ∣∣∣∣ w(Z) = cw

Zr

(
1 +O

(
1
Zr

))
σ(Z) = cσ

Zr

(
1 +O

(
1
Zr

)) (2.20)
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or equivalently ∣∣∣∣∣ Q(Z) = ρp−1
P (Z) =

cp−1
P

Z2(r−1)

(
1 +O

(
1
Zr

))
,

Z∂ZΨP (Z) = cΨ
Zr−2

(
1 +O

(
1
Zr

)) (2.21)

for some non zero constants cw, cσ, cP , cΨ, and similarly for all higher order deriva-
tives.
4. Non vanishing: there holds

∀Z ≥ 0, ρP > 0.

5. Repulsivity inside the light cone: let

F = σP + ΛσP , (2.22)

then there exists c = c(d, `, r) > 0 such that

∀0 ≤ Z ≤ Z2,

∣∣∣∣ (1− w − Λw)2 − F 2 > c

1− w − Λw − (1−w)F
σ ≥ c

(2.23)

The property (2.23) will be fundamental for the dissipativity (in renormalized
variables) of the linearized flow inside the light cone3 Z < Z2. This is however
insufficient. Dissipative term in the Navier-Stokes equations requires control of
global Sobolev norms which, in turn, demands (2.23) to hold globally in space.

Lemma 2.4 (Repulsivity outside the light cone, [32]). Let d = 3 and

`0(3) =
√

3 < `,

then

(P ) ∃c = cd,p,r > 0, ∀Z ≥ Z2,

∣∣∣∣ (1− w − Λw)2 − F 2 > c
1− w − Λw > c

(2.24)

From now on and for the rest of this paper, we assume∣∣∣∣ d = 3
`0(3) < `

(Navier − Stokes)∣∣∣∣ d = 2, 3
0 < `

(Euler)

and pick once and for all a blow up speed r = rk close enough to ro(d, `) so that
(P ) holds and e > 0.

2.4. Linearization of the renormalized flow. We aim at building a global in
self-similar time τ ∈ [τ0,+∞) solution to (2.7) with non vanishing density ρT > 0.
We define ∣∣∣∣∣ H2 = 1 + 2

Ψ′P
Z = 1− w

H1 = −
(

∆ΨP + `(r−1)
2

)
= H2

ΛρP
ρP

= `
2(1− w)

[
1 + Λσ

σ

] (2.25)

We linearize
ρT = ρP + ρ, ΨT = ΨP + Ψ. (2.26)

We compute, using the profile equation (2.11), for the first equation:

∂τρ = −(ρP + ρ)∆(ΨP + Ψ)− `(r − 1)

2
(ρP + ρ)− (2∂ZΨP + Z + 2∂ZΨ)(∂ZρP + ∂Zρ)

= −ρT∆Ψ− 2∇ρT · ∇Ψ +H1ρ−H2Λρ

3We should explain here that the cylinder (τ, Z = Z2) corresponds to the light (null) cone of the
acoustical metric associated to the solution (ρP ,ΨP ) of the Euler equations. In original variables,
this is the backward light cone (t, |x| = (T − t)

1
r ) from the singular point (T, 0).



16 F. MERLE, P. RAPHAËL, I. RODNIANSKI, AND J. SZEFTEL
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Figure 1. Phase portrait in the range 1 < r < r∗(d, `). Dashed
curve is the trajectory of the solution constructed in Theorem 2.3.
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Figure 2. Phase portrait in the range r∗(d, `) < r < r+(d, `), ` >
d. Dashed curve is the trajectory of the solution constructed in
Theorem 2.3.
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and for the second one:

∂τΨ = b2F(uT , ρT )−
{
|∇ΨP |2 + 2∇ΨP · ∇Ψ + |∇Ψ|2

+ (r − 2)ΨP + (r − 2)Ψ + (ΛΨP + ΛΨ) + (ρP + ρ)p−1
}

= b2F(uT , ρT )−
{

2∇ΨP · ∇Ψ + ΛΨ + (r − 2)Ψ + |∇Ψ|2 + (ρP + ρ)p−1 − ρp−1
P

}
= b2F(uT , ρT )−

{
H2ΛΨ + (r − 2)Ψ + |∇Ψ|2 + (p− 1)ρp−2

P ρ+ NL(ρ)
}

with
NL(ρ) = (ρP + ρ)p−1 − ρp−1

P − (p− 1)ρp−2
P ρ.

Hence the exact linearized flow∣∣∣∣∣ ∂τρ = H1ρ−H2Λρ− ρT∆Ψ− 2∇ρT · ∇Ψ

∂τΨ = b2F(uT , ρT )−
{
H2ΛΨ + (r − 2)Ψ + |∇Ψ|2 + (p− 1)ρp−2

P ρ+ NL(ρ)
}

(2.27)
Theorem 1.1 is therefore equivalent to constructing a finite co-dimensional mani-
fold of smooth well localized initial data leading to global in renormalized τ -time
solutions to (2.27).

3. Linear theory slightly beyond the light cone

Our aim in this section is to study the linearized problem (2.27) for the exact Euler
problem b = 0. We in particular aim at setting up the suitable functional framework
in order to apply classical propagator estimates which will yield exponential decay
on compact sets in Z, modulo the control of a finite number of unstable directions.
We mainly collect here the results which were proved in detail in [33] and apply
verbatim.

3.1. Linearized equations. Recall the exact linearized flow (2.27) which we rewrite:∣∣∣∣∣ ∂τρ = H1ρ−H2Λρ− ρP∆Ψ− 2∇ρP · ∇Ψ− ρ∆Ψ− 2∇ρ · ∇Ψ

∂τΨ = b2F(uT , ρT )−
{
H2ΛΨ + (r − 2)Ψ + (p− 1)ρp−2

P ρ+ |∇Ψ|2 + NL(ρ)
}

We introduce the new unknown
Φ = ρPΨ (3.1)

and obtain equivalently, using (2.25):∣∣∣∣ ∂τρ = H1ρ−H2Λρ−∆Φ +H3Φ +Gρ
∂τΦ = −(p− 1)Qρ−H2ΛΦ + (H1 − (r − 2))Φ +GΦ

(3.2)

with
Q = ρp−1

P , H3 =
∆ρP
ρP

and the nonlinear terms:∣∣∣∣ Gρ = −ρ∆Ψ− 2∇ρ · ∇Ψ
GΦ = −ρP (|∇Ψ|2 + NL(ρ)) + b2ρPF(uT , ρT )

(3.3)

We transform (3.2) into a wave equation for Φ:

∂2
τΦ = (p− 1)Q∆Φ−H2

2 Λ2Φ− 2H2Λ∂τΦ +A1ΛΦ +A2∂τΦ +A3Φ

+ ∂τGΦ −
(
H1 +H2

ΛQ

Q

)
GΦ +H2ΛGΦ − (p− 1)QGρ
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with∣∣∣∣∣∣∣
A1 = H2H1 −H2ΛH2 +H2(H1 − (r − 2)) +H2

2
ΛQ
Q

A2 = 2H1 − (r − 2) +H2
ΛQ
Q

A3 = −(H1 − (r − 2))H1 +H2ΛH1 −H2(H1 − (r − 2))ΛQ
Q − (p− 1)QH3

Remark 3.1 (Null coordinates and red shift). We note that the principal symbol
of the above wave equation is given by the second order operator

�Q := ∂2
τ − ((p− 1)Q−H2

2Z
2)∂2

Z + 2H2Z∂Z∂τ .

This operator governs propagation of sound waves associated to the background
solution (ρP ,ΨP ) of the Euler equations.

In the variables of Emden transform (τ, y = logZ), �Q can be written equivalently
as

�Q = ∂2
τ −

[
σ2 − (1− w)2

]
∂2
y + 2(1− w)∂y∂τ

The two principal null direction associated with the above equation are

L = ∂τ + [(1− w)− σ] ∂y, L = ∂τ + [(1− w) + σ] ∂y,

so that
�Q = LL

We observe that at P2, we have L = ∂τ and the surface Z = Z2 is a null cone.
Moreover, the associated acoustical metric4 is

gQ = ∆dτ2 − 2(1− w)dτdy + dy2, ∆ = (1− w)2 − σ2

for which ∂τ is a Killing field (generator of translation symmetry). Therefore, Z =
Z2 is a Killing horizon (generated by a null Killing field.) We can make it even more
precise by transforming the metric gQ into a slightly different form by defining the
coordinate s:

s = τ − f(y), f ′ =
1− w

∆
,

so that

gQ = ∆(ds)2 − σ2

∆
dy2

and then the coordinate y∗:

y∗ =

∫
σ

∆
dy,

so that
gQ = ∆ d(s+ y∗) d(s− y∗)

and y + x∗ and y − x∗ are the null coordinates of gQ. The Killing horizon Z = Z2

corresponds to y∗ = −∞ and ∆ ∼ eCy∗ for some positive constant C. In this form,
near Z2 the metric gQ resembles the 1 + 1-quotient Schwarzschild metric near the
black hole horizon.

The associated surface gravity κ which can be computed according to

κ =
∂y∗∆

2∆
|P2 =

∂y∆

2σ
|P2 =

−w′(1− w)− σ′σ)

σ
|P2

= (−w′ − σ′)|P2 = 1− w − Λw − (1− w)F

σ
|P2 > 0

This is precisely the repulsive condition (2.23) (at P2). The positivity of surface
gravity implies the presence of the red shift effect along Z = Z2 both as an optical

4This is the metric on the 1 + 1-dimensional quotient manifold obtained after removing the
action of the rotation group.
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phenomenon for the acoustical metric gQ and also as an indicator of local monotonic-
ity estimates for solutions of the wave equation �Qϕ = 0, [17]. The complication
in the analysis below is the presence of lower order terms in the wave equation as
well as the need for global in space estimates.

We focus now on deriving decay estimates for (3.2).

3.2. The linearized operator with a shifted measure. Pick a small enough
parameter

0 < a� 1

and consider the new variable

Θ = ∂τΦ + aH2ΛΦ, (3.4)

we compute the (Θ,Φ) equation

∂τX = MX +G, X =

∣∣∣∣ Φ
Θ

, G =

∣∣∣∣ 0
GΘ

(3.5)

with

M =

(
−aH2Λ 1

(p− 1)Q∆− (1− a)2H2
2 Λ2 + Ã2Λ +A3 −(2− a)H2Λ +A2

)
(3.6)

where

GΘ = ∂τGΦ −
(
H1 +H2

ΛQ

Q

)
GΦ +H2ΛGΦ − (p− 1)QGρ (3.7)

and
Ã2 = A1 + (2a− a2)H2ΛH2 − aA2H2.

The fine structure of the operator (3.6) involves the understanding of the associated
shifted light cone.

Lemma 3.2 (Shifted measure, [33]). Let

Da = (1− a)2(w − 1)2 − σ2 (3.8)

then for 0 < a < a∗ small enough, there exists a C1 map a 7→ Za with

Za=0 = Z2,
∂Za
∂a

> 0

such that ∣∣∣∣∣∣
Da(Za) = 0
−Da(Z) > 0 on 0 ≤ Z < Za
limZ→0 Z

2(−Da) > 0.
(3.9)

3.3. Commuting with derivatives. We define

Θk = ∆kΘ, Φk = ∆kΦ

and commute the linearized flow with derivatives.

Lemma 3.3 (Commuting with derivatives, [33]). Let k ∈ N. There exists a smooth
measure g defined for Z ∈ [0, Za] such that the following holds. Let

LgΦk =
1

gZd−1
∂Z

(
Zd−1Z2g(−Da)∂ZΦk

)
,

then there holds

∆k(MX) = Mk

∣∣∣∣ Φk

Θk
+ M̃kX (3.10)
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with

Mk

∣∣∣∣ Φk

Θk
=

∣∣∣∣ −aH2ΛΦk − 2ak(H2 + ΛH2)Φk + Θk

LgΦk − (2− a)H2ΛΘk − 2k(2− a)(H2 + ΛH2)Θk +A2Θk

where M̃k satisfies the following pointwise bound

|M̃kX| .k

∣∣∣∣∣∣∣∣∣∣∣

2k−1∑
j=0

|∂jZΦ|,

2k∑
j=0

|∂jZΦ|+
2k−1∑
j=0

|∂jZΘ|.
(3.11)

Moreover, g > 0 in [0, Za) and admits the asymptotics:∣∣∣∣ g(Z) = 1 +O(Z2) as Z → 0
g(Z) = ca,d,r,`(Za − Z)cg [1 +O(Z − Za)] as Z ↑ Za, .

(3.12)

with
cg > 0 (3.13)

for all k ≥ k1 large enough and 0 < a < a∗ small enough.

3.4. Maximal accretivity and spectral gap. The linear theory we use relies on
the spectral structure of compact perturbations of maximal accretive operators.

Hilbert space. We define the space of test functions

D0 = DΦ × C∞radial([0, Za],C),

and let H2k be the completion of D0 for the scalar product:

〈X, X̃〉 = 〈〈Φ,Φ〉〉+ (Θk, Θ̃k)g +

∫
χΘΘ̃Zd−1dZ (3.14)

where

〈〈Φ, Φ̃〉〉 = −(LgΦk, Φ̃k)g +

∫
χΦΦ̃gZd−1dZ, (3.15)

(Θk, Θ̃k)g =

∫
ΘkΘ̃kgZ

d−1dZ,

χ be a smooth cut off function supported on the set |Z| < Z2 such that

g ≥ 1

2
on Suppχ.

Unbounded operator. Following (3.6) we define the operator

M =

(
−aH2Λ 1

(p− 1)Q∆− (1− a)2H2
2 Λ2 + Ã2Λ +A3 −(2− a)H2Λ+A2

)
with domain

D(M) = {X ∈ H2k, MX ∈ H2k} (3.16)
equipped with the domain norm. We then pick suitable directions (Xi)1≤i≤N ∈ H2k

and consider the finite rank projection operator

A =

N∑
i=1

〈·, Xi〉Xi.

The following fundamental accretivity property is proved in [33].
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Proposition 3.4 (Maximal accretivity/dissipativity, [33]). There exist k[ � 1 and
0 < c∗, a∗ � 1 such that for all k ≥ k[, ∀0 < a < a∗ small enough, there exist
N = N(k, a) directions (Xi)1≤i≤N ∈ H2k such that the modified unbounded operator

M̃ := M−A
is dissipative

∀X ∈ D(M), <〈(−M̃X,X〉 ≥ c∗ak〈X,X〉 (3.17)
and maximal:

∀R > 0, ∀F ∈ H2k, ∃X ∈ D(M) such that (−M̃ +R)X = F. (3.18)

Exponential decay in time locally in space will now follow from the following
classical statement, see [18, 33] for a detailed proof.

Lemma 3.5 (Exponential decay modulo finitely many instabilities). Let δg > 0
and let T0 be the strongly continuous semigroup generated by a maximal dissipative
operator M̃ + δg, and T be the strongly continuous semi group generated by M =

M̃ +A where A is a compact operator on H. Then the following holds:
(i) the set Λδg(M) = σ(A) ∩ {λ ∈ C, <(λ) > − δg

2 } is finite, each eigenvalue
λ ∈ Λδg(M) has finite algebraic multiplicity kλ. In particular, the subspace Vδg(M)
is finite dimensional;
(ii) We have Λδg(M) = Λδg(M

∗) and dimVδg(M∗) = dimVδg(M). The direct sum
decomposition

H = Vδg(M)
⊕

V ⊥δg (M∗) (3.19)

is preserved by T (t) and there holds:

∀X ∈ V ⊥δg (M∗), ‖T (t)X‖ ≤Mδge
− δg

2
t‖X‖. (3.20)

(iii) The restriction of A to Vδg(M) is given by a direct sum of (mλ ×mλ)λ∈Λδg (M)

matrices each of which is the Jordan block associated to the eigenvalue λ and the
number of Jordan blocks corresponding to λ is equal to the geometric multiplicity of
λ – mg

λ = dimker(M − λI). In particular, ma
λ ≤ mg

λkλ. Each block corresponds
to an invariant subspace Jλ and the semigroup T restricted to Jλ is given by the
nilpotent matrix

T (t)|Jλ =


eλt teλt ... tmλ−1eλt

0 eλt ... tmλ−2eλt

...
0 0 ... eλt


Our final result in this section is a Brouwer type argument for the evolution of

unstable modes.

Lemma 3.6 (Brouwer argument, [33]). Let A, δg as in Lemma 3.5 with the decom-
position

H = U
⊕

V

into stable and unstable subspaces Fix sufficiently large t0 > 0 (dependent on A).
Let F (t) such that, ∀t ≥ t0, F (t) ∈ V and

‖F (t)‖ ≤ e−
2δg
3
t

be given. Let X(t) denote the solution to the ode∣∣∣∣ dX
dt = AX + F (t)
X(t0) = x ∈ V.
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Then, for any x in the ball
‖x‖ ≤ e−

3δg
5
t0 ,

we have
‖X(t)‖ ≤ e−

δg
2
t, t0 ≤ t ≤ t0 + Γ (3.21)

for some large constant Γ (which only depends on A and t0.) Moreover, there exists
x∗ ∈ V in the same ball as a above such that ∀t ≥ t0,

‖X(t)‖ ≤ e−
3δg
5
t

4. Setting up the bootstrap

In this section we detail the set of smooth well localized initial data which lead
to the conclusions of Theorem 1.1.

4.1. Cauchy theory and renormalization. We use local Cauchy theory for
strong solutions for Navier-Stokes from [15].

Theorem 4.1 (Local Cauchy theory NS, [15]). Assume∣∣∣∣∣∣∣
ρ0 ∈ H1 ∩W 1,6

u0 ∈ Ḣ1 ∩ Ḣ2

−∆u0+∇p0√
ρ0

∈ L2
(4.1)

then there exists a unique local strong solution (ρ, u) ∈ L∞([0, T ) ∩ H1 ∩W 1,6) ×
L∞([0, T ), Ḣ1 ∩ Ḣ2) to (1.1). Moreover, the maximal time of existence T is char-
acterized by the condition ∫ T

0
‖∇u‖L∞(R3) =∞ (4.2)

In the Euler case we can use the results from [27] and [8]

Theorem 4.2 (Local Cauchy theory, Euler, [27, 8]). Assume

ρ
γ−1

2
0 , u0 ∈ Hs (4.3)

for some s > 1 + d
2 , then there exists a unique local strong solution (ρ

γ−1
2 , u) ∈

C0([0, T )∩Hs) to (1.2). Moreover, the maximal time of existence T is characterized
by the condition ∫ T

0
‖∇u‖L∞(Rd) =∞ (4.4)

On an interval [0, T ∗], T ∗ ≤ T , where ρ(t, x) does not vanish, we equivalently
work with (2.4) and proceed to the decomposition of Lemma 2.1∣∣∣∣∣ ρ̂(t, x) =

(
λ
ν

) 1
γ−1 ρT (τ, Z)

û(t, x) = λ
νuT (s, Z), uT = ∂ZΨT

with the renormalization:∣∣∣∣∣∣
Z = y

√
b = Z∗x, Z∗ = 1

λ = eτ

λ(τ) = e−τ , ν(τ) = e−rτ , b(τ) = e−eτ

τ = −log(T−t)
r , τ0 = −logT

r .

(4.5)

Our claim is that given

τ0 =
−logT

r



23

large enough, we can construct a finite co-dimensional manifold of smooth well lo-
calized initial data (ρ̂0, û0) such that the corresponding solution to the renormalized
flow (2.7) is global τ ∈ [τ0,+∞), bounded in a suitable topology and non vanishing.
Going back to the original variables yields a solution to (1.1) which blows up at T
in the regime described by Theorem 1.1.

4.2. Regularity and dampening of the profile outside the singularity. The
profile solution (ρP ,ΨP ) has an intrinsic slow decay as Z → +∞ forced by the self
similar equation

ρP (Z) =
cP

〈Z〉
2(r−1)
p−1

(
1 +O

(
1

〈Z〉r

))
which need be regularized in order to produce finite energy non vanishing initial
data.

1. Regularity of the profile. Recall the asymptotics (2.21) and the choice of param-
eters (2.5) which show that in the original variables (t, x) both the density and the
velocity profiles are regular away from the singular point x = 0:

ρP (t, x) =

(
λ

ν

) 1
γ−1

ρP

(x
λ

)
=
cρe

(r−1)
γ−1

τ

Z
2(r−1)
p−1

[
1 +O

(
1

〈Z〉r

)]
=

cρ

|x|
2(r−1)
p−1

[
1 +O

(
1

〈Z〉r

)]
(4.6)

and

uP (t, x) =
λ

ν
∂ZΨP

(x
λ

)
= e(r−1)τ cΨ

Zr−1

[
1 +O

(
1

〈Z〉r

)]
=

cΨ

xr−1

[
1 +O

(
1

〈Z〉r

)]
(4.7)

2. Dampening of the tail. The above regularity allows us to turn our profile into
a finite energy (and better) solution. We dampen the tail outside the singularity
x ≥ 1, i.e., Z ≥ Z∗ as follows. Let

Kρ(x) =

∣∣∣∣∣ 0 for |x| ≤ 5

nP − 2(r−1)
p−1 for |x| ≥ 10

, (4.8)

for some large enough universal constant

nP = nP (d)� 1.

We then define the dampened tail profile ρD: in the original variables

ρD(t, x) = ρP (t, x)e−
∫ x
0

Kρ(x′)
x′ dx′ =

∣∣∣∣ ρ̂P (t, x) for |x| ≤ 5
cn,δ
|x|nP [1 +O (e−rτ ))] for |x| ≥ 10

, (4.9)

and in the renormalized variables:

ρD(τ, Z) =
(ν
λ

) 2
p−1

ρ̂D(t, x), x =
Z

Z∗
. (4.10)

Let
ζ(x) = e−

∫ x
0

Kρ(x′)
x′ dx′ ,

we have the equivalent representation:

ρD(Z) = (λ
√
b)

2
p−1 ρ̂D(τ, x) = (λ

√
b)

2
p−1 ρ̂P (t, x)ζ(x) = ζ(λZ)ρP (Z) (4.11)
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Note that by construction for j ∈ N∗:

−
Zj∂jZρD
ρD

=

∣∣∣∣∣∣ (−1)j−1
(

2(r−1)
p−1

)j
+O

(
1
〈Z〉r

)
for Z ≤ 5Z∗

(−1)j−1njP +O
(

1
〈Z〉r

)
for Z ≥ 10Z∗

(4.12)

and ∣∣∣∣〈Z〉j∂jρDρD

∣∣∣∣
L∞
. cj . (4.13)

We proceed similarly for the velocity profile which can be even made compactly
supported. Let

ζu(x) =

∣∣∣∣ 1 for |x| ≤ 5
0 for |x| ≥ 10

,

and define

uD(t, x) = ûP (t, x)ζu(x) =

∣∣∣∣ ûP (t, x) for |x| ≤ 5
0 for |x| ≥ 10

, (4.14)

and thus in renormalized variables:

uD(τ, Z) =
ν

λ
ûD(t, x) = ζu(λZ)uP (Z), x =

Z

Z∗
. (4.15)

We then let

ΨD(τ, Z) = − 1

r − 2
+

∫ Z

0
uD(τ, z)dz

so that by construction ΨD = ΨP for Z ≤ 5Z∗.

4.3. Initial data. We now describe explicitly open set of initial data which are
perturbations of the profile (ρD,ΨD) in a suitable topology. The conclusions of
Theorem 1.1 will hold for a finite co-dimension set of such data. Our first restric-
tion is that the initial data (ρ0, u0) in the original, non-renormalized variables satisfy
the assumptions (4.1) and (4.3) for the validity of the local Cauchy theory.

We now pick universal constants 0 < a� 1, Z0 � 1 which will be adjusted along
the proof and depend only on (d, `). We define two levels of regularity

d

2
� k[ � k]

where k] denotes the maximum level of regularity required for the solution and k[
is the level of regularity required for linear spectral theory on a compact set.

0. Variables and notations for derivatives. We define the variables∣∣∣∣∣∣∣∣
ρT = ρD + ρ̃

ΨT = ΨD + Ψ̃

uD = ∇ΨD, ũ = ∇Ψ̃
Φ = ρPΨ

(4.16)

and specify the data in the (ρ̃, Ψ̃) variables. We will use the following notations for
derivatives. Given k ∈ N, we note

∂k = (∂k1 , ..., ∂
k
d ), f (k) := ∂kf

the vector of k-th derivatives in each direction. The notation ∂kZf is the k-th radial
derivative. We let

ρ̃k = ∆kρ̃, Ψ̃k = ∆kΨ.
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Given a multiindex α = (α1, . . . , αd) ∈ Nd, we note

∇α = ∂α1
1 . . . ∂αdd , |α| = α1 + · · ·+ αd.

Sometimes, we will use the notation ∇k to denote a ∇α derivatives of order k = |α|.
1. Initializing the Brouwer argument. We define the variables adapted to the spec-
tral analysis according to (3.1), (3.4):∣∣∣∣ Φ = ρPΨ

T = ∂τΦ + aH2ΛΦ
, X =

∣∣∣∣ Φ
Θ

(4.17)

and recall the scalar product (3.14). For 0 < cg, a � 1 small enough, we choose
k[ � 1 such that Proposition 3.4 applies in the Hilbert space H2k[ with the spectral
gap

∀X ∈ D(M), <〈(−M + A)X,X〉 ≥ cg〈X,X〉. (4.18)
Hence

M = (M −A + cg)− cg + A

and we may apply Lemma 3.5:

Λ0 = {λ ∈ C, <(λ) ≥ 0} ∩ {λ is an eigenvalue of M} = (λi)1≤i≤N (4.19)

is a finite set corresponding to unstable eigenvalues, V is an associated (unstable)
finite dimensional invariant set, U is the complementary (stable) invariant set

H2k[ = U
⊕

V (4.20)

and P is the associated projection on V . We denote by N the nilpotent part of the
matrix representing M on V:

M|V = N + diag (4.21)

Then there exist C, δg > 0 such that (3.20) holds:

∀X ∈ U, ‖eτMX‖H2k[
≤ Ce−

δg
2
τ‖X‖H2k[

, ∀τ ≥ τ0.

We now choose the data at τ0 such that

‖(I − P )X(τ0)‖H2k[
≤ e−

δg
2
τ0 , ‖PX(τ0)‖H2k[

≤ e−
3δg
5
τ0 .

2. Bounds on local low Sobolev norms. Let 0 ≤ m ≤ 2k[ and

ν0 = −2(r − 1)

p− 1
+
δg
2
, (4.22)

let the weight function

ξν0,m =
1

〈Z〉d−2(r−1)+2(ν0−m)
ζ

(
Z

Z∗

)
, ζ(Z) =

∣∣∣∣ 1 for Z ≤ 2
0 for Z ≥ 3.

(4.23)

Then:
2k[∑
m=0

∫
ξν0,m

(
(p− 1)ρp−1

P (∇mρ(τ0))2 + |∇∇mΦ(τ0)|2
)
≤ e−δgτ0 . (4.24)

3. Pointwise assumptions. We assume the following interior pointwise bounds

∀0 ≤ k ≤ 2k],

∥∥∥∥〈Z〉k∂kZ ρ̃(τ0)

ρD

∥∥∥∥
L∞(Z≤Z∗0 )

+ ‖〈Z〉r−1〈Z〉k∂kZ ũ(τ0)‖L∞(Z≤Z∗0 ) ≤ λc00

(4.25)
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for some small enough universal constant c0, and the exterior bounds:

∀0 ≤ k ≤ 2k],

∥∥∥∥Zk+1∂kZ ρ̃(τ0)

ρD

∥∥∥∥
L∞(Z≥Z∗0 )

+
‖Zk+1∂kZ ũ(τ0)‖L∞(Z≥Z∗0 )

λr−1
0

≤ λC0
0 (4.26)

for some large enough universal C0(d, r, `). Note in particular that (4.25), (4.26)
ensure that for all 0 < λ0 small enough:∥∥∥∥ ρ̃(τ0)

ρD

∥∥∥∥
L∞
≤ d0 � 1 (4.27)

and hence the data does not vanish.

4. Global bounds for high energy norms. We pick a large enough constant k](d, r, `)
and consider the global energy norm

‖ρ̃, Ψ̃‖2k] :=
k]∑
j=0

∑
|α|=j

∫
(p− 1)ρp−2

D ρT (∇αρ̃)2 + ρ2
T |∇∇αΨ|2

〈Z〉2(k]−j) , (4.28)

then we require:
‖ρ̃(τ0), Ψ̃(τ0)‖k] ≤ d0 (4.29)

We now define the weight functions

χk = 〈Z〉2k−2σ−d+
2(r−1)(p+1)

p−1

〈
Z

Z∗

〉2nP+2σ− 2(r−1)(p+1)
p−1

and the associated weighted energy norms

‖ρ̃, Ψ̃‖2m,σ =

m∑
j=0

∑
|α|=j

∫
χj

[
(p− 1)ρp−2

D ρT |∇αρ̃|2 + ρ2
T |∇∇αΨ̃|2

]
We fix 0 < σ(k])� δg and require that, for σ = σ(k]),

‖ρ̃(τ0), Ψ̃(τ0)‖k],σ ≤ d0e
−στ0 (4.30)

Remark 4.3. d0 will denote any small constant dependent on the smallness of
initial data and τ−1

0 .

Remark 4.4. We note that a straightforward integration by parts and induction
argument implies that the norms ‖ρ̃, Ψ̃‖m,σ and ‖ρ̃, Ψ̃‖k] are equivalent to the ones
with ∇αρ̃ and ∇αΨ̃ replaced by

∂j ρ̃ = {∂j1, ..., ∂
j
dρ̃}, ∂jΨ̃ = {∂j1, ..., ∂

j
dΨ̃}

as well as ∆j ρ̃,∆jΨ̃ with j varying from 0 to m
2 and k]

2 respectively (if m and k]
are even.) In what follows, we will use this equivalence continually and without
mentioning. In fact, in what follows we will specifically work with the norms

‖ρ̃, Ψ̃‖2k] :=

k]

2∑
j=0

∫
(p− 1)ρp−2

D ρT (∆j ρ̃)2 + ρ2
T |∇∆jΨ|2

〈Z〉2(k]−2j)

and

‖ρ̃, Ψ̃‖2m,σ =
m∑
j=0

∫
χj

[
(p− 1)ρp−2

D ρT |∂j ρ̃|2 + ρ2
T |∇∂jΨ̃|2

]
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4.4. Bootstrap bounds. Since the initial data satisfy (4.1) we have a local in time
solution which can be decomposed and renormalized according to (4.5) and (4.16).
We now consider the time interval [τ0, τ

∗) such that the following bounds hold on
[τ0, τ

∗):

1. Control of the unstable modes: Assume (see (4.21)) that

‖etNPX(τ)‖H2k[
≤ e−

19δg
30

τ (4.31)

2. Local decay of low Sobolev norms: for any 0 ≤ k ≤ 2k[, any large Ẑ ≤ Z∗ and
universal constant C = C(k[):

‖(ρ̃, Ψ̃)‖Hk(Z≤Ẑ) ≤ Ẑ
Ce−

3δg
8
τ (4.32)

3. Global weighted energy bound. We fix 0 < σ(k])� δg. For σ = σ(k]), we assume
the bound:

‖ρ̃, Ψ̃‖2k],σ ≤ e
−2στ . (4.33)

4. Pointwise bounds:∣∣∣∣∣∣∣
0 ≤ k ≤ k] − 2,

∥∥∥ 〈Z〉kρ̃kρD

∥∥∥
L∞

+ ‖〈Z〉k〈Z〉r−1ũk‖L∞(Z≤Z∗) ≤ d

0 ≤ k ≤ k] − 1,
∥∥∥〈Z〉k〈Z〉r−1

〈
Z
Z∗

〉−(r−1)
ũk

∥∥∥
L∞(1≤Z)

≤ d
(4.34)

for some small enough universal constant 0 < d� 1.
The heart of the proof of Theorem 1.1 is the following:

Proposition 4.5 (Bootstrap). Assume that (4.31), (4.32), (4.33), (4.34) hold on
[τ0, τ

∗] with d−1, τ0 large enough. Then the following holds:
1. Exit criterion. The bounds (4.32), (4.33), (4.34) can be strictly improved on
[τ0, τ

∗). Equivalently, τ∗ < +∞ implies

‖etNPX(τ∗)‖H2k[
e

19δg
30

τ∗ = 1. (4.35)

2. Linear evolution. The right hand side G of the equation for X(τ)

∂τX = MX +G

satisfies

‖G(τ)‖H2k[
≤ e−

2δg
3
τ , ∀τ ∈ [τ0, τ

∗] (4.36)

Remark 4.6. We note that the assumption (4.31) implies that

‖PX(τ)‖H2k[
≤ e−

δg
2
τ , ∀τ ∈ [τ0, τ

∗) (4.37)

We will prove the bootstrap proposition 4.5 under the weaker assumption (4.37).
Specifically, we will define [τ0, τ

∗] to be the maximal time interval on which (4.37)
holds and will show that both the bounds (4.32), (4.33), (4.34) can be improved
and that G satisfies (4.36).

An elementary application of the Brouwer topological theorem will ensure that
there must exist a data such that τ∗ = +∞, and these are the blow up waves of
Theorem 1.1.

We now focus on the proof of Proposition 4.5 and work on a time interval [τ0, τ
∗],

τ0 < τ∗ ≤ +∞ on which (4.32), (4.33), (4.34) hold.
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5. Global non-renormalized estimate

Recall the original (NS) equations (2.2) (written for the square root of the den-
sity): ∣∣∣∣∣∣

∂tρ̂+ ρ̂∇ · û+ 2∇ρ̂ · û = 0
ρ̂2∂tû− α∆û+ 2ρ̂2û · ∇û+ (p− 1)ρ̂p∇ρ̂ = 0
p̂ = ρ̂p−1

(5.1)

The standard energy estimate for the above equation takes the form
d

dt

∫ (
1

p+ 1
ρ̂p+1 +

1

2
ρ̂2|û|2

)
+ α

∫
|∇û|2 = 0.

In view of the assumptions on initial data, consistent with rapid vanishing of the
dampened profile density ρ̂D ∼ x−nP , this estimate and its higher derivative versions
provide very weak control of solutions for large x. To gain such control we use an
auxiliary estimate, similar to the strategy used in [15] for the local well-posedness
theory for data with vanishing density.

Lemma 5.1 (Velocity dissipation). There following inequality holds for any t ∈
(0, T ) ∫

|∇u(t, ·)|2 +

∫ t

0

∫ [
ρ̂2(∂tû)2 +

(∆û)2

ρ̂2

]
.

∫ t

0

∫ [
ρ̂2|û|2|∇û|2 + ρ̂2(p−1)|∇ρ̂|2

]
+

∫
|∇u(0, ·)|2. (5.2)

The main feature of the above estimate is the second term on the left hand side
generated by the dissipative term in the Navier-Stokes equations. With the density
in the denominator, it provides very strong control on velocity at infinity.

Proof of Lemma 5.1. Recall (2.2): Multiplying the second equation in (5.1) by ût
we compute:∫

ρ̂2(ût)
2 +

α

2

d

dt

∫
|∇û|2 = −2

∫
ρ̂2û · ∇ûût −

∫
(p− 1)ρ̂p∇ρ̂ · ût

.

(∫
ρ̂2(ût)

2

) 1
2
[∫

ρ̂2|û|2|∇û|2 +

∫
ρ̂2(p−1)|∇ρ̂|2

] 1
2

We now observe that

α2

∫
(∆û)2

ρ̂2
=

∫
1

ρ̂2

(
ρ̂2∂tû+ 2ρ̂2û · ∇û+ (p− 1)ρ̂p∇ρ̂

)2
.

∫
ρ̂2(∂tû)2 +

∫
ρ̂2|û|2|∇û|2 + ρ2(p−1)|∇ρ̂|2

which concludes the proof of (5.2).
�

We now reinterpret this estimate in the renormalized variables and show the
boundedness of the right hand side. Recall that∣∣∣∣∣ ρ̂(t, x) =

(
λ
ν

) 2
p−1 ρT (τ, Z)

û(t, x) = λ
νuT (τ, Z), uT = ∂ZΨT

and ∣∣∣∣ νt = ντ
ν = −r, ν = (T − t) = e−rτ

λ(τ) = e−τ = (T − t)
1
r , Z∗ = eτ , b2 = (Z∗)−`(r−1)−r+2.
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Then∫ T

0

∫
(∆û)2

ρ̂2
=

∫ ∞
τ0

∫
(Z∗)−d−r+4+2(r−1)−`(r−1) (∆uT )2

ρ2
T

=

∫ ∞
τ0

b2(Z∗)−d+2r

∫
(∆uT )2

ρ2
T

and ∫ T

0

∫ (
ρ̂2|û|2|∇û|2 + ρ̂2(p−1)|∇ρ̂|2

)
=

∫ ∞
τ0

∫
(Z∗)−d−r+2+4(r−1)+`(r−1)

(
ρ2
T |uT |2|∇uT |2 + ρ

2(p−1)
T |∇ρT |2

)
.

We now use the pointwise bootstrap estimates (4.34), which hold for both ρ̃, ũ and
ρT , uT to estimate∫ T

0

∫ (
ρ̂2|û|2|∇û|2 + ρ̂2(p−1)|∇ρ̂|2

)
.
∫ ∞
τ0

∫
(Z∗)−d−r+2+4(r−1)+`(r−1)

〈Z〉2+4(r−1)+`(r−1)−d+1〈 ZZ∗ 〉2nP−`(r−1)−4(r−1)
dZ

.
∫ ∞
τ0

(Z∗)−d−r+2+4(r−1)+`(r−1) +

∫ ∞
τ0

(Z∗)−r−1

∫
Z≥Z∗

〈
Z

Z∗

〉−2nP−3+d

dZ . 1.

In the penultimate inequality we used that, since `(r− 1) + r− 2 > 0 and r∗(d, `) =
`+d
`+
√
d
, we have

2 + 4(r − 1) + `(r − 1)− d+ 1 > 3r − d+ 1 > 1

for r close5 to r∗(d, `), where the last inequality holds since

3
`+ d

`+
√
d
− d =

(3− d)`+ d(3−
√
d)

`+
√
d

> 0

for d = 3. This means that the integral converges on Z ≤ Z∗. On the other hand,
the condition

−d− r + 2 + 4(r − 1) + `(r − 1) < 0

is equivalent to

r <
d+ 2 + `

3 + `
.

Thus, we need

r+ = 1 +
d− 1

(1 +
√
`)2

<
d+ 2 + `

3 + `
.

3 + ` < 1 + 2
√
`+ `

` > 1,

which is satisfied in view of the condition ` >
√

3.
Furthermore, for the initial data, since û at t = T0 is assumed to be in Ḣ1,∫

|∇û|2 . 1

Using Hardy inequality we then arrive at the following global dissipative estimate
in renormalized variables:

Lemma 5.2. ∫ ∞
τ0

b2(Z∗)−d+2r

∫
u2
T + (Z2∆uT )2

〈Z〉4ρ2
T

≤ D, (5.3)

where D is a constant dependent only on the (full, i.e., including the profile) initial
data.

5Since r+ > r∗, the estimate also holds for r close to r+.
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Remark 5.3. The inequality (5.3) is used in the treatment of the Navier-Stokes
case only. As a result, the same applies to the dimensional calculations appearing
in its proof.

We also use the opportunity to translate our bootstrap assumptions back to the
original variables. Below we will include estimates which apply to the full solution
û, ρ̂ rather than the full solution minus the profile and only in the exterior region
|x| ≥ 10.
1. Exterior weighted Sobolev bounds. (4.33) translates into the following bounds for
the velocity û: ∀0 ≤ k ≤ k] ∫

|x|≥10
〈x〉−d+2k|∇kû|2 . 1 (5.4)

and the density ρ̂: ∀0 ≤ k ≤ k]∫
10≤|x|≤12

|∇kρ̂|2 . 1. (5.5)

2. Exterior pointwise bounds. (4.34) translates into the following bounds û: ∀0 ≤
k ≤ k]

2 ∥∥∥∥〈x〉k∇kρ̂ρ̂D

∥∥∥∥
L∞(|x|≥10)

+ ‖〈x〉k∇kû‖L∞(|x|≥10) . 1 (5.6)

We now derive improved, relative to the bootstrap assumptions, exterior weighted
Sobolev and pointwise bounds for the density ρ̃. We let

ρI(x) =
cn,δ
|x|nP

denote the t-independent leading order term in ρD, so that according to (4.9)

∣∣∣∣ρI − ρDρD

∣∣∣∣ . e−rτ , |x| ≥ 10,

with the similar inequalities also holding for derivatives. In particular, (5.6) holds
with ρI in place of ρD.

Let ζ(x) be a smooth function vanishing for |x| ≤ 10 such that

ζ(x) . 〈x〉|∇ζ(x)| . ζ(x) + 110≤|x|≤12 (5.7)

and ∇α denote a generic x-derivative of order |α| ≤ k] − 1. Applying ∇α to the
first equation of (5.1)

∂t∇αρ̂ = −
∑

β+γ=α

∇β ρ̂∇∇γ û− 2∇∇β ρ̂∇γ û, (5.8)
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multiplying by ζ2(x)〈x〉2|α| ∇
αρ̂
ρ̂2
I

and integrating we easily derive

d

dt

∫
ζ2〈x〉2|α|

∣∣∣∣∇αρ̂ρ̂I
∣∣∣∣2 ≤

(∫
ζ2〈x〉2|α|−1

∣∣∣∣∇αρ̂ρ̂I
∣∣∣∣2
) 1

2 ∑
|β|+|γ|=|α|+1,|β|≤ k]

2

∥∥∥∥〈x〉|β|∇β ρ̂ρ̂I
∥∥∥∥
L∞(|x|≥10)

×
(∫

ζ2〈x〉2|γ|−1|∇γ û|2
) 1

2

+

(∫
ζ2〈x〉2|α|−1(x)

∣∣∣∣∇αρ̂ρ̂I
∣∣∣∣2
) 1

2

×
∑

|β|+|γ|=|α|+1,1≤|γ|≤ k]
2

(∫
ζ2〈x〉2|β|−1

∣∣∣∣∇β ρ̂ρ̂I
∣∣∣∣2
) 1

2 ∥∥∥〈x〉|γ|∇γ û∥∥∥
L∞(|x|≥10)

+

(∫
ζ2〈x〉2|α|−1(x)

∣∣∣∣∇αρ̂ρ̂I
∣∣∣∣2
)
‖û‖L∞(|x|≥10)

+

(∫
ζ2〈x〉2|α|−1(x)

∣∣∣∣∇αρ̂ρ̂I
∣∣∣∣2
) 1

2
(∫

(∇ζ)2〈x〉2|α|+1

∣∣∣∣∇αρ̂ρ̂I
∣∣∣∣2
) 1

2

‖û‖L∞(|x|≥10) (5.9)

where the last two terms on the right hand side come from the integration by parts
of ∇αρ̂∇∇αρ̂, and where while integrating by parts we used the bound

〈x〉 |∇ρ̂I |
ρ̂I

. 1.

We now examine our pointwise and integrated bootstrap assumptions (5.4), (5.5),
(5.6) to see that we can choose ζ to be a smooth function supported in |x| ≥ 10 and
for large x behaving like

ζ2(x) ∼ 〈x〉−d+2(r−1),

but with this choice, after time integration, the initial data would be an infinite
integral. Therefore, we first integrate the above differential inequality with

ζ2(x) ∼ 〈x〉−d−2σ

for large x and for some σ > 0 to obtain that

∫
|x|≥12

〈x〉−d−2σ+2|α|
∣∣∣∣∇αρ̂ρ̂I

∣∣∣∣2 (t) ≤ D

with a constantD depending on the full profile. We now rewrite (5.8) by subtracting
∇αρ̂I , and by noticing that ∂tρ̂I = 0,

∂t(∇α(ρ̂− ρ̂I)) = −
∑

β+γ=α

∇β ρ̂∇∇γ û− 2∇∇β ρ̂∇γ û,
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multiply by ζ2(x)〈x〉2|α| ∇
α(ρ̂−ρ̂I)
ρ̂2
I

and derive the energy identity, similar to the above:

d

dt

∫
ζ2〈x〉2|α|

∣∣∣∣∇α(ρ̂− ρ̂I)
ρ̂I

∣∣∣∣2 ≤
(∫

ζ2〈x〉2|α|−1

∣∣∣∣∇α(ρ̂− ρ̂I)
ρ̂I

∣∣∣∣2
) 1

2

×
∑

|β|+|γ|=|α|+1,|β|≤ k]
2

∥∥∥∥〈x〉|β|∇β ρ̂ρ̂I
∥∥∥∥
L∞(|x|≥10)

(∫
ζ2〈x〉2|γ|−1|∇γ û|2

) 1
2

+

(∫
ζ2〈x〉2|α|−1(x)

∣∣∣∣∇α(ρ̂− ρ̂I)
ρ̂I

∣∣∣∣2
) 1

2

×
∑

|β|+|γ|=|α|+1,1≤|γ|≤ k]
2

(∫
ζ2〈x〉2|β|−1

∣∣∣∣∇β ρ̂ρ̂I
∣∣∣∣2
) 1

2 ∥∥∥〈x〉|γ|∇γ û∥∥∥
L∞(|x|≥10)

+

(∫
ζ2〈x〉2|α|−1(x)

∣∣∣∣∇α(ρ̂− ρ̂I)
ρ̂I

∣∣∣∣2
)
‖û‖L∞(|x|≥10)

+

(∫
ζ2〈x〉2|α|−1(x)

∣∣∣∣∇α(ρ̂− ρ̂I)
ρ̂I

∣∣∣∣2
) 1

2
(∫

(∇ζ)2〈x〉2|α|+1

∣∣∣∣∇α(ρ̂− ρ̂I)
ρ̂I

∣∣∣∣2
) 1

2

‖û‖L∞(|x|≥10)

+

(∫
ζ2〈x〉2|α|−1(x)

∣∣∣∣∇α(ρ̂− ρ̂I)
ρ̂I

∣∣∣∣2
) 1

2
(∫

ζ2〈x〉2|α|+1

∣∣∣∣∇∇αρ̂Iρ̂I

∣∣∣∣2
) 1

2

‖û‖L∞(|x|≥10) (5.10)

We integrate this differential inequality with

ζ2(x) ∼ 〈x〉−d−2σ+µ,

where
µ = min{1, 2(r − 1)} > 0.

All the norms involving ρ̂ and ρ̂ − ρ̂I (note that we can either control the latter
by absorbing them to the left hand side or split them into ρ̂ and ρ̂I and use the
previous step to control ρ̂ and the integrability of the function ζ2〈x〉−1 to control
ρ̂I) on the right hand side will be finite by the previous step, the norms involving
û will be finite by the bootstrap assumptions and the choice of µ, the initial data
will be small in view of the assumptions on ρ̂− ρ̂I and so will be the time interval
[T0, T ]. We obtain ∫

|x|≥12
〈x〉−d−2σ+µ+2k

∣∣∣∣∇k(ρ̂− ρ̂I)ρ̂I

∣∣∣∣2 ≤ d0 (5.11)

for any 0 ≤ k ≤ k] − 1. This estimate immediately implies the pointwise bound∥∥∥∥∥〈x〉k+µ
2
−σ∇k(ρ̂− ρ̂D)

ρ̂D

∥∥∥∥∥
L∞(|x|≥12)

≤ d0 (5.12)

for any 0 ≤ k ≤ k]−2. We can translate the above bounds to renormalized variables
to obtain ∫

Z≥12Z∗
〈Z〉−d+2k

〈
Z

Z∗

〉µ−2σ ∣∣∣∣∇kρ̃ρD

∣∣∣∣2 ≤ d0 (5.13)
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for any 0 ≤ k ≤ k] − 1 and∥∥∥∥∥
〈
Z

Z∗

〉µ
2
−σ 〈Z〉k∇kρ̃

ρD

∥∥∥∥∥
L∞(Z≥12Z∗)

≤ d0 (5.14)

for any 0 ≤ k ≤ k] − 2.

6. Quasilinear energy identity

6.1. Linearized flow and control of the potentials. We derive the equations
taking into account the localization of the profile.

step 1 Equation for ρ̃, Ψ̃. Recall (2.7):∣∣∣∣∣ ∂τρT = −ρT∆ΨT − `(r−1)
2 ρT − (2∂ZΨT + Z) ∂ZρT

∂τΨT = b2F −
[
|∇ΨT |2 + (r − 2)ΨT + ΛΨT + ρp−1

T

]
We define ∣∣∣∣∣∣ ∂τΨD +

[
|∇ΨD|2 + ρp−1

D + (r − 2)ΨD + ΛΨD

]
= ẼP,Ψ

∂τρD + ρD

[
∆ΨD + `(r−1)

2 + (2∂ZΨD + Z) ∂ZρDρD

]
= ẼP,ρ

(6.1)

with ẼP,ρ, ẼP,Ψ supported in Z ≥ 3Z∗. We introduce the modified potentials

H̃2 = 1 + 2
Ψ′D
Z
, H̃1 = −

(
∆ΨD +

`(r − 1)

2

)
. (6.2)

Their leading order asymptotic behavior for large Z is the same as H1, H2. It is not
affected by dampening of the profile. We now compute the linearized flow in the
variables (4.16):∣∣∣∣∣ ∂τ ρ̃ = −ρT∆Ψ̃− 2∇ρT · ∇Ψ̃ + H̃1ρ̃− H̃2Λρ̃− ẼP,ρ

∂τ Ψ̃ = b2F −
[
H̃2ΛΨ̃ + (r − 2)Ψ̃ + |∇Ψ̃|2 + (p− 1)ρp−2

D ρ̃+ NL(ρ̃)
]
− ẼP,Ψ

(6.3)
with the nonlinear term

NL(ρ̃) = (ρD + ρ̃)p−1 − ρp−1
D − (p− 1)ρp−2

D ρ̃. (6.4)

Our main task is now to produce an energy identity for (6.3) which respects the
quasilinear nature of (6.3) and does not loose derivatives. Observe that the as-
ymptotic bounds for Z large (11.16), (6.5) of the potentials are still valid after
localization. They will be systematically used in the sequel.

step 2 Estimate of the potential. We recall the Emden transform formulas (2.25):∣∣∣∣∣∣
H2 = (1− w)

H1 = `
2(1− w)

[
1 + Λσ

σ

]
H3 = ∆ρP

ρP

which, using (2.20), (2.21), yield the bounds:∣∣∣∣∣∣∣∣∣∣∣

H2 = 1 +O
(

1
〈Z〉r

)
, H1 = −2(r−1)

p−1 +O
(

1
〈Z〉r

)
|〈Z〉j∂jZH1|+ ||〈Z〉j∂jZH2| . 1

〈Z〉r , j ≥ 1

|〈Z〉j∂jZH3| . 1
〈Z〉2

1
〈Z〉2(r−1)

[
1 +O

(
1
〈Z〉r

)]
.j |〈Z〉j∂jZQ| .j

1
〈Z〉2(r−1)
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and the commutator bounds∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|[∂mi , H1]ρ| .
∑m−1

j=0
|∂jZρ|

〈Z〉r+m−j

|∇ ([∂mi , H1]ρ) | .
∑m

j=0
|∂jZρ|

〈Z〉m−j+r+1

|∂mi (Qρ)−Qρm| . Q
∑m−1

j=0
|∂jZρ|
〈Z〉m−j

|[∂mi , H2]Λρ| .
∑m

j=1
|∂jZρ|

〈Z〉r+m−j

|∇ ([∂mi , H2]ΛΦ) | .
∑m+1

j=1
|∂jZΦ|

〈Z〉r+1+m−j .

(6.5)

The same bounds hold for the modified potentials H̃1, H̃2 from (6.2).

6.2. Equations. We have∣∣∣∣∣ ∂τ ρ̃ = −ρT∆Ψ̃− 2∇ρT · ∇Ψ̃ + H̃1ρ̃− H̃2Λρ̃− ẼP,ρ

∂τ Ψ̃ = b2F −
[
H̃2ΛΨ̃ + (r − 2)Ψ̃ + |∇Ψ̃|2 + (p− 1)ρp−2

D ρ̃+ NL(ρ̃)
]
− ẼP,Ψ.

We let
ρ̃(k]) = ∆K ρ̃, Ψ̃(k]) = ∆KΨ, ũ(k]) = ∇Ψ̃(k])

We use
[∆K ,Λ] = k]∆K

and (recall (B.1)):

[∆k, V ]Φ− 2k∇V · ∇∆k−1Φ =
∑

|α|+|β|=2k,|β|≤2k−2

ck,α,β∇αV∇βΦ

which gives:

∆K(H̃2Λρ̃) = k](H̃2 + ΛH̃2)ρ(k]) + H̃2Λρ(k]) + Ak](ρ̃)

with from (11.16): ∣∣∣∣∣∣
|Ak](ρ̃)| . ck

∑k]−1
j=1

|∇j ρ̃|
〈Z〉k]+r−j

|∇Ak](ρ̃)| . ck
∑k]

j=1
|∇j ρ̃|

〈Z〉k]+r+1−j

(6.6)

where ∇j = ∂α1
1 . . . ∂αdd , j = α1 + · · · + αd denotes a generic derivative of order j.

Using (B.1) again:

∂τ ρ̃(k]) =
[
H̃1 − k](H̃2 + ΛH̃2)

]
ρ̃(k]) − H̃2Λρ̃(k]) − (∆KρT )∆Ψ̃− k]∇ρT · ∇Ψ̃(k]) − ρT∆Ψ̃(k])

− 2∇(∆KρT ) · ∇Ψ̃− 2∇ρT · ∇Ψ̃(k]) + F1 (6.7)

with

F1 = −∆K ẼP,ρ + [∆K , H̃1]ρ̃−Ak](ρ̃) (6.8)

−
∑

∣∣∣∣∣ j1 + j2 = k]

j1 ≥ 2, j2 ≥ 1

cj1,j2∇j1ρT∂j2∆Ψ̃−
∑

∣∣∣∣∣ j1 + j2 = k]

j1, j2 ≥ 1

cj1,j2∇j1∇ρT · ∇j2∇Ψ̃.

For the second equation, we have similarly:

∂τ Ψ̃(k]) (6.9)

= −k](H̃2 + ΛH̃2)Ψ̃(k]) − H̃2ΛΨ̃(k]) − (r − 2)Ψ̃(k]) − 2∇Ψ̃ · ∇Ψ̃(k])

−
[
(p− 1)ρp−2

P ρ̃(k]) + k](p− 1)(p− 2)ρp−3
D ∇ρD · ∇∆K−1ρ̃

]
+ F2
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with

F2 = b2∆KF −∆K ẼP,Ψ −Ak](Ψ̃)− (p− 1)
(

[∆K , ρp−2
D ]ρ̃− k](p− 2)ρp−3

D ∇ρD · ∇∆K−1ρ̃
)

−
∑

j1+j2=k],j1,j2≥1

∇j1∇Ψ̃ · ∇j2∇Ψ̃−∆KNL(ρ̃). (6.10)

step 1 Algebraic energy identity.
Let χ be a smooth function χ = χ(τ, Z) and compute the quasilinear energy

identity:

1

2

d

dτ

{
(p− 1)

∫
χρp−2

D ρT ρ̃
2
(k]) +

∫
χρ2

T |∇Ψ̃(k])|2
}

=
1

2

{
(p− 1)

∫
∂τχρ

p−2
D ρT ρ̃

2
(k]) +

∫
∂τχρ

2
T |∇Ψ̃(k])|2

}
+

p− 1

2

∫
χ(p− 2)∂τρDρ

p−3
D ρT ρ̃

2
(k]) +

∫
χ∂τρT

[
p− 1

2
ρp−2
D ρ̃2

(k]) + ρT |∇Ψ̃(k])|2
]

+

∫
∂τ ρ̃(k])

[
(p− 1)χρp−2

D ρT ρ̃(k])

]
−

∫
∂τ Ψ̃(k])

[
2χρT∇ρT · ∇Ψ̃(k]) + χρ2

T∆Ψ̃(k]) + ρ2
T∇χ · ∇Ψ̃(k])

]
.

We inject the equation:∫
∂τ ρ̃(k])

[
(p− 1)χρp−2

D ρT ρ̃(k])

]
=

∫
F1

[
(p− 1)χρp−2

D ρT ρ̃(k])

]
+

∫ [
(H̃1 − k](H̃2 + ΛH̃2))ρ̃(k]) − H̃2Λρ̃(k]) − (∆KρT )∆Ψ̃− 2∇(∆KρT ) · ∇Ψ̃

]
×

[
(p− 1)χρp−2

D ρT ρ̃(k])

]
−

∫
k]∇ρT · ∇Ψ̃(k])

[
(p− 1)χρp−2

D ρT ρ̃(k])

]
−

∫
(ρT∆Ψ̃(k]) + 2∇ρT · ∇Ψ̃(k]))

[
(p− 1)χρp−2

D ρT ρ̃(k])

]
and

−
∫
∂τ Ψ̃(k])

[
2χρT∇ρT · ∇Ψ̃(k]) + χρ2

T∆Ψ̃(k]) + ρ2
T∇χ · ∇Ψ̃(k])

]
= −

∫
F2∇ · (χρ2

T∇Ψ̃(k]))

−
∫ {

− k](H̃2 + ΛH̃2)Ψ̃(k]) − H̃2ΛΨ̃(k]) − (r − 2)Ψ̃(k]) − 2∇Ψ̃ · ∇Ψ̃(k])

−
[
(p− 1)ρp−2

P ρ̃(k]) + k](p− 1)(p− 2)ρp−3
D ∇ρD · ∇∆K−1ρ̃

]}
×

[
2χρT∇ρT · ∇Ψ̃(k]) + χρ2

T∆Ψ̃(k]) + ρ2
T∇χ · ∇Ψ̃(k])

]
=

∫
χρ2

T∇Ψ̃(k]) · ∇F2

−
∫ [
−k](H̃2 + ΛH̃2)Ψ̃(k]) − H̃2ΛΨ̃(k]) − (r − 2)Ψ̃(k]) − 2∇Ψ̃ · ∇Ψ̃(k])

]
∇ · (χρ2

T∇Ψ̃(k]))

+

∫
(p− 1)ρp−2

P ρ̃(k])

[
2χρT∇ρT · ∇Ψ̃(k]) + χρ2

T∆Ψ̃(k]) + ρ2
T∇χ · ∇Ψ̃(k])

]
+

∫
k](p− 1)(p− 2)ρp−3

D ∇ρD · ∇∆K−1ρ̃∇ · (χρ2
T∇Ψ̃(k]))
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Adding both identities yields the quasilinear energy identity:

1

2

d

dτ

{
(p− 1)

∫
χρp−2

D ρT ρ̃
2
(k]) +

∫
χρ2

T |∇Ψ̃(k])|2
}

=
1

2

∫ (
∂τχ

χ
+
∂τρT
ρT

+ (p− 2)
∂τρD
ρD

)
(p− 1)χρp−2

D ρT ρ̃
2
(k]) +

1

2

∫ (
∂τχ

χ
+ 2

∂τρT
ρT

)
ρ̃2
T |∇Ψ(k])|2

+

∫
F1χ(p− 1)ρp−2

D ρT ρ̃(k]) +

∫
χρ2

T∇F2 · ∇Ψ̃(k])

+

∫ [
(H̃1 − k](H̃2 + ΛH̃2))ρ̃(k]) − H̃2Λρ̃(k]) − (∆KρT )∆Ψ̃− 2∇(∆KρT ) · ∇Ψ̃

]
× (p− 1)χρp−2

D ρT ρ̃(k])

−
∫ [
−k](H̃2 + ΛH̃2)Ψ̃(k]) − H̃2ΛΨ̃(k]) − (r − 2)Ψ̃(k]) − 2∇Ψ̃ · ∇Ψ̃(k])

]
∇ · (χρ2

T∇Ψ(k]))

−
∫
k]∇ρT · ∇Ψ̃(k])

[
(p− 1)χρp−2

D ρT ρ̃(k])

]
+

∫
k](p− 1)(p− 2)ρp−3

D ∇ρD · ∇∆K−1ρ̃∇ · (χρ2
T∇Ψ̃(k]))

+

∫
(p− 1)ρp−2

D ρ̃(k])

[
ρ2
T∇χ · ∇Ψ̃(k])

]
. (6.11)

step 2 Reexpressing the quadratic terms. We integrate by parts:

−
∫
H̃2Λρ̃(k])(p− 1)χρp−2

D ρT ρ̃(k]) =
p− 1

2

∫
χH̃2ρTρ

p−2
D ρ̃2

(k])

(
d+

ΛH̃2

H̃2

+
(p− 2)ΛρD

ρD
+

Λχ

χ

)
.

Then

k]
∫

(H̃2 + ΛH̃2)Ψ̃(k])∇ · (χρ2
T∇Ψ(k]))

= −k]
∫
χρ2

T (H̃2 + ΛH̃2)|∇Ψ̃(k])|2 − k]
∫
χρ2

T Ψ̃(k])∇Ψ̃(k]) · ∇(H̃2 + ΛH̃2)

and using spherical symmetry:∫
H̃2ΛΨ̃(k])∇ · (χρ2

T∇Ψ(k])) = −
∫
χρ2

T∇Ψ(k]) · ∇(H̃2ΛΨ̃(k]))

= −
∫
χΛH̃2ρ

2
T |∇Ψ̃(k])|2 −

∫
H̃2χρ

2
T∂ZΨ̃(k])∂Z(ΛΨ̃(k]))

= −
∫
χρ2

TΛH̃2ρ
2
T |∇Ψ̃(k])|2 +

1

2

∫
χρ2

T H̃2|∇Ψ̃(k])|2
[
d− 2 +

ΛH̃2

H̃2

+
Λχ

χ
+

2ΛρT
ρT

]

=

∫
χH̃2ρ

2
T |∇Ψ̃(k])|2

[
d− 2

2
− 1

2

ΛH̃2

H̃2

+
1

2

Λχ

χ
+

ΛρT
ρT

]

and

(r − 2)

∫
Ψ̃(k])∇ · (χρ2

T∇Ψ(k])) = −(r − 2)

∫
χρ2

T |∇Ψ̃(k])|2
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and integrating by parts and using radiality:∫
k](p− 1)(p− 2)ρp−3

D ∇ρD · ∇∆K−1ρ̃∇ · (χρ2
T∇Ψ̃(k]))

= −k](p− 1)(p− 2)

∫
χρ2

T∇Ψ(k]) · ∇
[
ρp−3
D ∇ρD · ∇∆K−1ρ̃

]
= −k](p− 1)(p− 2)

∫
χρ2

Tρ
p−3
D ∂ZρDρ̃(k])∂ZΨ̃(k])

− k](p− 1)(p− 2)

∫
χρ2

T∂ZΨ̃(k])

[
∂Z

(
ρp−3
D ∂ZρD∂Z∆K−1ρ̃

)
− ρp−3

D ∂ZρDρ̃(k])

]
We therefore arrive to the quasilinear energy identity:

1

2

d

dτ

{
(p− 1)

∫
χρp−2

D ρT ρ̃
2
(k]) +

∫
χρ2

T |∇Ψ̃(k])|2
}

(6.12)

=
1

2

∫ (
∂τχ

χ
+
∂τρT
ρT

+ (p− 2)
∂τρD
ρD

)
(p− 1)χρp−2

D ρT ρ̃
2
(k]) +

1

2

∫ (
∂τχ

χ
+ 2

∂τρT
ρT

)
ρ̃2
T |∇Ψ(k])|2

−
∫

(p− 1)χρp−2
D ρT ρ̃

2
(k])

[
−H̃1 + k](H̃2 + ΛH̃2)− d

2
H̃2 −

1

2
ΛH̃2 −

p− 2

2
H̃2

ΛρD
ρD
− H̃2

2

Λχ

χ

]

−
∫
χρ2

T |∇Ψ̃(k])|2
[
k](H̃2 + ΛH̃2) + r − 2− d− 2

2
H̃2 +

1

2
ΛH̃2 −

H̃2

2

Λχ

χ
− H̃2

ΛρT
ρT

]

+

∫
ρ̃(k])∂ZΨ̃(k])

[
−k](p− 1)χρp−2

D ρT∂ZρT

− k](p− 1)(p− 2)χρ2
Tρ

p−3
D ∂ZρD + (p− 1)ρp−2

D ρ2
T∂Zχ

]
+

∫
F1χ(p− 1)ρp−2

D ρT ρ̃(k]) +

∫
χρ2

T∇F2 · ∇Ψ̃(k])

+

∫ [
−(∆KρT )∆Ψ̃− 2∇(∆KρT ) · ∇Ψ̃

]
(p− 1)χρp−2

D ρT ρ̃(k])

− k](p− 1)(p− 2)

∫
χρ2

T∂ZΨ(k])

[
∂Z

(
ρp−3
D ∂ZρD∂Z∆K−1ρ̃

)
− ρp−3

D ∂ZρDρ̃(k])

]
+ 2

∫
∇Ψ̃ · ∇Ψ̃(k])∇ · (χρ2

T∇Ψ̃(k]))− k]
∫
χρ2

T Ψ̃(k])∇Ψ̃(k]) · ∇(H̃2 + ΛH̃2).

6.3. Quadratic forms. We study the (χ,Λχ) quadratic forms appearing in (6.12).

step 1 Leading order χ quadratic form. We recall from (2.23), (2.24):

H2 + ΛH2 = (1− w − Λw) ≥ cd,p,r > 0. (6.13)

We assume that k] � 1, so that the terms with k] dominate:

−H̃1+k](H̃2+ΛH̃2)−d
2
H̃2−

1

2
ΛH̃2−

p− 2

2
H̃2

ΛρD
ρD

= k]
(

1 +O

(
1

k]

))
(H̃2+ΛH̃2)

k](H̃2 +ΛH̃2)+r−2− d− 2

2
H̃2 +

1

2
ΛH̃2−H̃2

ΛρT
ρT

= k]
(

1 +O

(
1

k]

))
(H̃2 +ΛH̃2)
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and claim the pointwise coercivity of the quadratic form: ∃cd,p,r > 0 such that
uniformly ∀Z ≥ 0,

k](H̃2 + ΛH̃2)
[
(p− 1)ρp−2

D ρT ρ̃
2
(k]) + ρ2

T |∇Ψ̃(k])|2
]

+ k](p− 1)ρD∂Z(ρp−1
D )ρ̃(k])∂ZΨ̃(k])

≥ cd,p,rk
]
[
(p− 1)ρp−2

D ρT ρ̃
2
(k]) + ρ2

T |∇Ψ̃(k])|2
]

(6.14)

The cross term is lower order for Z large:

|(p−1)ρD∂Z(ρp−1
D )ρ̃(k])∂ZΨ̃(k])| .

ρp−1
T

〈Z〉
ρ̃(k])ρT∂ZΨ(k]) ≤ d

[
(p− 1)ρp−2

D ρT ρ̃
2
(k]) + ρ2

T |∇Ψ̃(k])|2
]

for Z > Z(d) large enough. For Z ≤ Z(d), using the smallness (4.34), (6.14) is
implied by:

(H2 + ΛH2)
[
(p− 1)Qρ̃2

(k]) + ρ2
P |∇Ψ̃(k])|2

]
+ (p− 1)ρP∂ZQρ̃(k])∂ZΨ̃(k])

≥ cd,p,r

[
(p− 1)Qρ̃2

(k]) + ρ2
P |∇Ψ̃(k])|2

]
(6.15)

We compute the discriminant:

Discr = (p− 1)2ρ2
P (∂ZQ)2 − 4(p− 1)ρ2

PQ(H2 + ΛH2)2

= (p− 1)ρ2
PQ

[
(p− 1)

(∂ZQ)2

Q
− 4(1− w − Λw)2

]
We compute from (2.13) recalling (2.22):

(p− 1)
(∂ZQ)2

Q
= (p− 1)

(
2∂Z

√
Q
)2

= (p− 1)

(
1− e

2

√
`∂Z(σPZ)

)2

= (1− e)2(∂Z(ZσP ))2

=
4

r2
(∂Z(ZσP ))2 = 4F 2

and hence from (2.23), (2.24) the lower bound:

−D = 4(p− 1)ρ2
PQ

[
(1− w − Λw)2 − F 2

]
≥ cd,p,r(p− 1)ρ2

PQ, cd,p,r > 0

which together with (6.13) concludes the proof of (6.14).

step 2 Leading order Λχ quadratic form. The quadratic form containing Λχ:∫
−Λχ

{
H2

2

[
(p− 1)Qρ̃2

(k]) + ρ2
P |∇Ψ̃(k])|2

]
− 1

Z
(p− 1)ρPQρ̃(k])∂ZΨ̃(k])

}
Its discriminant is

Discr =

(
(p− 1)QρP

Z

)2

− (p− 1)Qρ2
PH

2
2 = (p− 1)Qρ2

P

[
σ2 − (1− w)2

]
< 0

for Z > Z2.

We note that (6.14) holds for all Z only under the condition (2.24) which hold in
d = 3 and ` >

√
3. On the other hand, for d = 2 or d = 3 and ` ≤

√
3, (6.14) still

holds for Z ≤ Z2 and Z sufficiently large Z ≥ Z(d). In those cases, choosing

χ =

∣∣∣∣ 1 Z ≤ Z2

e−j
](Z−Z2) Z > Z2

(6.16)
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with j] � k] ensures that the full (χ,Λχ) quadratic form is positive definite:

k]χ(H̃2 + ΛH̃2)
[
(p− 1)ρp−2

D ρT ρ̃
2
(k]) + ρ2

T |∇Ψ̃(k])|2
]

+ (p− 1)χρD∂Z(ρp−1
D )ρ̃(k])∂ZΨ̃(k])

− Λχ

{
H2

2

[
(p− 1)Qρ̃2

(k]) + ρ2
P |∇Ψ̃(k])|2

]
− 1

Z
(p− 1)ρPQρ̃(k])∂ZΨ̃(k])

}
≥ cd,p,rk

]χ
[
(p− 1)ρp−2

D ρT ρ̃
2
(k]) + ρ2

T |∇Ψ̃(k])|2
]

(6.17)

7. The highest unweighted energy norm

In this section we establish control of the highest energy norm. This is an es-
sential step to control the b dependence of the flow. It will be achieved through
an unweighted energy estimate for the highest order derivatives. Below we will
systematically exploit the gains achieved through faster decay in Z of various tail
terms, see e.g. (11.16). Typical improvements will be usually of order r or (r− 1)6.
Sometimes, we will replace them by a generic constant δ > 0.

7.1. Controlling the highest energy norm. We now prove the highest order en-
ergy estimate without weight. Coercivity of a quadratic form arising in the estimate
will follow thanks to the global lower bound (2.24) and (6.14). We let

k] = 2K, K ∈ N

and denote in this section

ρ̃(k]) = ∆K ρ̃, Ψ̃(k]) = ∆KΨ, ũ(k]) = ∇Ψ̃(k]).

Lemma 7.1 (Control of the highest unweighted energy norm). For some universal
constant ck] (0 < ck] � δg),

(p− 1)

∫
ρp−2
D ρT ρ̃

2
(k]) +

∫
ρ2
T |∇Ψ̃(k])|2 ≤ e−ck]τ (7.1)

Proof of Lemma 7.1. step 1 Control of lower order terms. We interpolate the rough
bound inherited from (4.33):

(p− 1)

∫
ρp−2
D ρT ρ̃

2
(k]) +

∫
ρ2
T |∇Ψ̃(k])|2 ≤ 1

with the low Sobolev bound (4.32) for Z ≤ (Z∗)c, with 0 < c = c(k], δg) � 1, and
use (4.33) for Z > (Z∗)c to estimate:

k]−1∑
j=0

d∑
i=1

(p− 1)

∫
ρp−2
D ρT

(∂ji ρ̃)2

〈Z〉2(k]−j) +

∫
ρ2
T

|∇∂ji Ψ̃|2

〈Z〉2(k]−j) ≤ e
−c

k]
τ (7.2)

where ck] = c(k], δg) > 0. The estimate (7.2) will be used repeatedly in the sequel.

6Recall that in the range of considered r, close to the limiting values ro(d, `), we have r+(d, `) >
r∗(d, `) = d+`√

d+`
> 1.
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step 2 Energy identity. We use the identity derived in (6.11) with χ ≡ 1:
1

2

d

dτ

{
(p− 1)

∫
ρp−2
D ρT ρ̃

2
(k]) +

∫
ρ2
T |∇Ψ̃(k])|2

}
(7.3)

=
1

2

∫ (
∂τρT
ρT

+ (p− 2)
∂τρD
ρD

)
(p− 1)ρp−2

D ρT ρ̃
2
(k]) +

1

2

∫ (
2
∂τρT
ρT

)
ρ̃2
T |∇Ψ(k])|2

+

∫
F1(p− 1)ρp−2

D ρT ρ̃(k]) +

∫
ρ2
T∇F2 · ∇Ψ̃(k])

+

∫ [
(H̃1 − k](H̃2 + ΛH̃2))ρ̃(k]) − H̃2Λρ̃(k]) − (∆KρT )∆Ψ̃− 2∇(∆KρT ) · ∇Ψ̃

]
(p− 1)ρp−2

D ρT ρ̃(k])

−
∫ [
−k](H̃2 + ΛH̃2)Ψ̃(k]) − H̃2ΛΨ̃(k]) − (r − 2)Ψ̃(k]) − 2∇Ψ̃ · ∇Ψ̃(k])

]
∇ · (ρ2

T∇Ψ(k]))

− k]
∫
∇ρT · ∇Ψ̃(k])

[
(p− 1)ρp−2

D ρT ρ̃(k])

]
+

∫
k](p− 1)(p− 2)ρp−3

D ∇ρD · ∇∆K−1ρ̃∇ · (ρ2
T∇Ψ(k])).

We now estimate all terms in (7.3). We track exactly the quadratic terms which arise
at the highest level of derivatives and which will be shown to be coercive provided
k] > k]

∗
(d, r, p)� 1 has been chosen large enough.

We denote
Ik] = (p− 1)

∫
ρp−2
D ρT ρ̃

2
k] +

∫
ρ2
T |∇Ψ̃k] |2.

step 3 Leading order terms.

Cross term. We use
|ρ̃|
ρT

+
|Λρ̃|
ρT
. d (7.4)

to compute the first coupling term:

k](p− 1)

∫
∇ρT · ∇Ψ̃(k])ρ

p−2
D ρT ρ̃(k]) = −k]

∫
ρD∇ρp−1

D · ∇Ψ̃(k])ρ̃(k])

+O

(
d

∫ |∇Ψ̃(k])|ρ
p−1
D ρT |ρ̃(k])|

〈Z〉
1
2

)

= −k]
∫
ρD∇ρp−1

D · ∇Ψ̃(k])ρ̃(k]) +O (dIk])

The second coupling term is computed after an integration by parts using (7.4), the
control of lower order terms (7.2) and the radial assumption:

k](p− 1)(p− 2)

∫
∇ · (ρ2

T∇Ψ(k]))ρ
p−3
D ∇ρD · ∇∆K−1ρ̃

= −k](p− 1)(p− 2)

∫
ρ2
T∇Ψ(k]) · ∇

(
ρp−3
D ∇ρD · ∇∆K−1ρ̃

)
= −k](p− 1)(p− 2)

∫
ρ2
T∂ZΨ(k])∂Z

(
ρp−3
D ∂ZρD∂Z∆K−1ρ̃

)
= −k](p− 1)(p− 2)

∫
ρp−3
D ∂ZρDρ

2
T∂ZΨ(k])∂

2
Z∆K−1ρ̃+O

(∫
c(k])ρT |∇Ψ(k])|ρ

p−1
T

|∂k]−1ρ̃|
〈Z〉

)

= −
∫
k](p− 2)ρD∂Z(ρp−1

D )∂ZΨ̃(k])ρ̃(k]) +O

(
dIk] +

∫
c(k])ρT |∇Ψ(k])|ρ

p−1
T

|∂k]−1ρ̃|
〈Z〉

)

= −k](p− 2)

∫
ρD∇ρp−1

D · ∇Ψ̃(k])ρ̃(k]) +O(e−ck]τ + dIk]).
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ρ(k]) terms. We compute:∫
(H̃1−k](H̃2+ΛH̃2)ρ̃(k]))(p−1)ρp−2

D ρT ρ̃(k]) =

∫
(H̃1−k](H̃2+ΛH̃2))(p−1)ρp−2

D ρT ρ̃
2
(k]).

We now use the global lower bound

H2 + ΛH2 = (1− w − w′) ≥ cp,d,r, cp,d,r > 0

to conclude that the same bound holds for H̃2, see (6.2), and to estimate using
(11.16), (7.2): ∫

(H̃1 − k](H̃2 + ΛH̃2))(p− 1)ρp−2
D ρT ρ̃

2
(k])

≤ −k]
∫ [

1 +Ok]→+∞

(
1

k]

)]
(H̃2 + ΛH̃2)(p− 1)ρp−2

D ρT ρ̃
2
(k])

Next, ∣∣∣∣∫ [(∆KρD)∆Ψ̃− 2∇(∆KρD) · ∇Ψ̃
]

(p− 1)ρp−2
D ρT ρ̃(k])

∣∣∣∣
≤ d

∫
ρp−2
D ρT ρ̃

2
(k]) +

C

d

∫
ρp−2
T ρ2

T

[
|∂2Ψ̃|2

〈Z〉2k]
+

|∂Ψ̃|2

〈Z〉2(k]+1)

]
≤ dIk] + e−ck]τ

and for the nonlinear term after an integration by parts:∣∣∣∣∫ [ρ̃(k])∆Ψ̃− 2∇ρ̃(k]) · ∇Ψ̃
]

(p− 1)ρp−2
D ρT ρ̃(k])

∣∣∣∣ . d

∫
ρp−2
D ρT ρ̃

2
(k]).

Integrating by parts and using (11.16), (7.5):

−
∫
H̃2Λρ̃(k])

[
(p− 1)ρp−2

D ρT ρ̃(k])

]
+
p− 1

2

∫
(p− 2)∂τρDρ

p−3
D ρT ρ̃

2
(k]) +

p− 1

2

∫
∂τρTρ

p−2
D ρ̃2

(k])

=
p− 1

2

∫
ρ̃2

(k])

[
∇ · (ZH̃2ρ

p−2
D ρT ) + ∂τ (ρp−2

D )ρT + ∂τ (ρT )ρp−2
D

]
= O

(∫
ρp−2
D ρT ρ̃

2
(k])

)
Ψ(k]) terms. We estimate:

(r − 2)

∫
ρT Ψ̃(k])

[
2∇ρT · ∇Ψ̃(k]) + ρT∆Ψ̃(k])

]
= −(r − 2)

∫
Ψ̃2

(k])∇ · (ρT∇ρT )− (r − 2)

∫
∇Ψ̃(k]) · ∇(ρ2

T Ψ̃(k]))

= −(r − 2)

∫
ρ2
T |∇Ψ̃(k])|2

and similarly, using (11.16), (7.2):

k]
∫
ρT (H̃2 + ΛH̃2)Ψ̃(k])

[
2∇ρT · ∇Ψ̃(k]) + ρT∆Ψ̃(k])

]
= k]

∫
(H̃2 + ΛH̃2)Ψ(k])∇ · (ρ̃2

T∇Ψ(k]))

= −k]
[∫
|∇Ψ̃(k])|2(H̃2 + ΛH̃2)ρ2

T |∇Ψ̃(k])|2 +

∫
ρ2
T Ψ̃2

(k])

(
∇ · (ρ2

T∇(H̃2 + ΛH̃2))

2ρ2
T

)]

= −k]
∫ [

1 +O

(
1

k]

)]
(H̃2 + ΛH̃2)ρ2

T |∇Ψ̃(k])|2 + e−ck]τ
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Then from (4.34):∣∣∣∣∫ 2ρT∇Ψ̃ · ∇Ψ̃(k])(2∇ρT · ∇Ψ̃(k]))

∣∣∣∣ . ∫ ρ2
T |∇Ψ̃(k])|2

and using (11.17):∣∣∣∣∫ 2ρT∇Ψ̃ · ∇Ψ̃(k])(ρT∆Ψ̃(k]))

∣∣∣∣ . ∫ |∇Ψ̃(k])|2|∂(ρ2
T∇Ψ̃)| .

∫
ρ2
T |∇Ψ̃(k])|2.

Arguing verbatim like in the proof of (9.15):∣∣∣∣∫ ρTH2ΛΨ̃(k])

(
2∇ρT · ∇Ψ̃(k]) + ρT∆Ψ̃(k])

)∣∣∣∣ . ∫ ρ2
T |∇Ψ(k])|2.

Remaining terms. We claim the following exact identities:

∂τρD + ΛρD
ρD

= −2(r − 1)

p− 1
+O

(
1

〈Z〉δ

)
(7.5)

and
∂τρT + ΛρT

ρT
= −2(r − 1)

p− 1
+O

(
1

〈Z〉δ

)
(7.6)

which imply the rough bound∣∣∣∣12
∫ (

∂τρT
ρT

+ (p− 2)
∂τρD
ρD

)
(p− 1)ρp−2

D ρT ρ̃
2
(k]) +

1

2

∫ (
2
∂τρT
ρT

)
ρ̃2
T |∇Ψ(k])|2

∣∣∣∣ . Ik] .
Proof of (7.5), (7.6). From (4.11) and since λ = e−τ :

∂τρD + ΛρD = −Λζ(λZ)ρP (Z) + Λζ(λZ)ρP (Z) + ζ(λZ)ΛρP = ζ(λZ)ΛρP

∂τρD + ΛρD
ρD

=
ΛρP
ρP

= −2(r − 1)

p− 1
+O

(
1

〈Z〉δ

)
and (7.5) is proved. We then recall (2.7):

∂τρT = −ρT∆ΨT −
`(r − 1)

2
ρT − (2∂ZΨT + Z) ∂ZρT

which yields: ∣∣∣∣∂τρT + ΛρT
ρT

+
`(r − 1)

2

∣∣∣∣ =

∣∣∣∣−∆ΨT − 2
∂ZΨT∂ZρT

ρT

∣∣∣∣
and (7.6) follows from (4.34).

step 4 F1 terms. We claim the bound:∫
ρp−1
D F 2

1 . dIk] + e−ck]τ . (7.7)

Source term induced by localization. Recall (6.1)

ẼP,ρ = ∂τρD + ρD

[
∆ΨD +

`(r − 1)

2
+ (2∂ZΨD + Z)

∂ZρD
ρD

]
= ∂τρD + ΛρD +

`(r − 1)

2
ρD + ρD∆ΨD + 2∂ZΨD∂ZρD

which together with the cancellation (7.5) which holds with similar proof for higher
derivative, and the space localization of ẼP,ρ ensures:

|∇k] ẼP,ρ| . ck]
ρD

〈Z〉k]+δ
1Z≥Z∗ (7.8)
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for some δ > 0. This implies that for k] large enough:∫
ρp−2
D ρT |∆K ẼP,ρ|2 ≤ e−ck]τ .

[∆K , H1] term. We use (7.2), (6.5) to estimate

(p− 1)

∫
ρp−1
D ([∆K , H1]ρ̃)2 .

k]−1∑
j=0

∫
ρp−1
D

|∇j ρ̃|2

〈Z〉2(r+k−j) ≤ e
−c

k]
τ .

Ak](ρ̃) term. From (6.6), (7.2):

(p− 1)

∫
ρp−1
D (Ak](ρ̃))2 .

k]−1∑
j=1

∫
ρp−1
D

|∇j ρ̃|2

〈Z〉2(r+k]−j) ≤ e
−c

k]
τ

and (7.7) is proved for this term.

Nonlinear term. Changing indices, we need to estimate

Nj1,j2 = ∇j1ρT∇j2∇Ψ̃, j1 + j2 = k] + 1,

∣∣∣∣ j1 ≤ k]j2 ≤ k] − 1

For j1 ≤ k] − 1, we may use the pointwise bound (4.34) to estimate:

|∂j1ρT∂j2∇Ψ̃| . ρD
|∇j2∇Ψ̃|
〈Z〉j1

= ρD
|∇j2∇Ψ̃|
〈Z〉k]+1−j2

.

Then, after recalling (7.2),∫
(p− 1)N2

j1,j2ρ
p−2
D ρT .

∫
ρ2
T |∇j2∇Ψ̃|2

〈Z〉2(k]+1−j2)+2(r−1)
≤ e−ck]τ

since j2 ≤ k] − 1. For j1 = k], j2 = 1 and hence using (4.34):∫
(p− 1)N2

j1,j2ρ
p−2
D ρT .

∫
ρ2
T |∇j2∇Ψ̃|2

〈Z〉2(k]+1−j2)+2(r−1)
+

∫
ρp−1
D |∇k] ρ̃|2|∇2Ψ̃|2 ≤ e−ck]τ + dIk]

with d smallness coming form the bound on ∇2Ψ̃. This concludes the proof of (7.7).
step 5 Dissipation term. We treat the dissipative term in F2:

Diss =

∫
ρ2
T∇(b2∆KF) · ∇Ψ̃(k]) = b2

∫
ρ2
T∆K

(
∆uT
ρ2
T

)
· ũ(k]).

The term with most derivatives falling on uT is

b2
∫
ρ2
T

∆K+1uT
ρ2
T

·ũ(k]) = b2
∫ [

∆K+1(uD) + ∆ũ(k])

]
·ũ(k]) ≤ −

b2

2

∫
|∇ũ(k])|2+e−ck]τ .

By Leibniz, we then need to estimate a generic term with k1 + k2 = k], k2 ≥ 1

Ik1,k2 = b2
∫
ρ2
T∇k1+2uT∇k2

(
1

ρ2
T

)
· ũ(k]).

Pointwise bound. We claim:

∣∣∣∣∇j2 ( 1

ρT

)∣∣∣∣ .
∣∣∣∣∣∣∣∣∣

1
ρT 〈Z〉j2

for j2 ≤ k] − 2

1
ρT 〈Z〉j2

+ |∇k]−1ρT |
ρ2
T

for j2 = k] − 1

1
ρT 〈Z〉j2

+ |∇k]−1ρT |
〈Z〉ρ2

T
+ |∇k]ρT |

ρ2
T

for j2 = k]

(7.9)
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We estimate from the Faa di Bruno formula, using the pointwise bound (4.34) for
j2 ≤ k] − 2:∣∣∣∣∇j2 ( 1

ρT

)∣∣∣∣ . 1

ρj2+1
T

∑
m1+2m2+···+j2mj2=j2

Πj2
i=0|(∇

iρT )mi | (7.10)

.
1

ρj2+1
D

Πj2
i=0

(
ρD
〈Z〉i

)mi
.

ρj2D
ρj2+1
D 〈Z〉j2

.
1

ρD〈Z〉j2

where m0 +m1 + · · ·+mj2 = 1.
For j2 = k] − 1, mj2 6= 0 implies mj2 = 1, m1 = · · · = mj2−1 = 0, m0 = j2 − 1

and therefore, ∣∣∣∣∇k]−1

(
1

ρT

)∣∣∣∣ . 1

ρD〈Z〉k]−1
+
|∇k]−1ρT |

ρ2
T

.

Similarly, if j2 = k], mj2 6= 0 implies mj2 = 1, m1 = · · · = mj2−1 = 0, m0 = j2 − 1.
Also, if mj2 = 0 and mj2−1 6= 0 then mj2−1 = 1, m1 = 1 and m2 = · · · = mj2−2 = 0.
Hence ∣∣∣∣∇k] ( 1

ρT

)∣∣∣∣ . 1

ρD〈Z〉k]
+
|∇k]−1ρT |
〈Z〉ρ2

T

+
|∇k]ρT |
ρ2
T

and (7.9) is proved.

We now estimate Ik1,k2 .
case k1 = k] − 1. By Leibniz and (7.9) for j ≤ k] − 2:∣∣∣∣∇j ( 1

ρ2
T

)∣∣∣∣ . 1

ρ2
D〈Z〉j

. (7.11)

This yields:

|Ik]−1,1| . b2
∫
ρ2
T

|∇k]+1uT |
〈Z〉ρ2

T

|ũ(k])| ≤
b2

10

∫
|∇ũ(k])|2 + Cb2

∫ |ũ(k])|2

〈Z〉2

≤ b2

10

∫
|∇ũ(k])|2 + e−ck]τ (7.12)

where in the last step we used that∫ |ũ(k])|2

〈Z〉2
≤
∫
〈Z〉−2k]+d+2σ−`(r−1)χk]ρ

2
T

|ũ(k])|2

〈Z〉2
≤ ‖ρ̃, Ψ̃‖2

k],σ+k]+1− d
2

+ `
2

(r−1)−σ ≤ e
−c

k]
τ ,

since k] is a large parameter � d
2 and σ is fixed and small.

case k1 ≤ k] − 2. Since k2 ≥ 1, we integrate by parts and use (4.33), (4.34) to
estimate in the case when k2 ≤ k] − 1:

b2
∣∣∣∣∫ ρ2

T∇k1+2uT∇k2

(
1

ρ2
T

)
· ũ(k])

∣∣∣∣ . b2 ∫ ∣∣∣∣∇k2−1

(
1

ρ2
T

)∣∣∣∣[
|∇ρ2

T ||∇k1+2uT ||ũ(k])|+ ρ2
T |∇k1+3uT ||ũ(k])|+ ρ2

T |∇k1+2uT ||∇ũ(k])|
]

. b2
∫

1

〈Z〉k2−1

[
|∇k1+2uT ||ũ(k])|

〈Z〉
+ |∇k1+3uT ||ũ(k])|+ |∇k1+2uT ||∇ũ(k])|

]

≤ b2

10

∫
|∇ũ(k])|2 + e−ck]τ
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It leaves us with the case k] = k2 and k1 = 0. We will take the highest order term
in (7.9)

b2
∣∣∣∣∫ ρ2

T∇2uT∇k
]

(
1

ρ2
T

)
· ũ(k])

∣∣∣∣ . b2 ∫
∣∣∣∣∣∇2uT

∇k]ρT
ρT

· ũ(k])

∣∣∣∣∣
+b2

∫ ∣∣∣∣∣∇2uT
∇k]−1ρT
〈Z〉ρT

· ũ(k])

∣∣∣∣∣+ b2
∫ ∣∣∣∣∇2uT

1

〈Z〉k]
· ũ(k])

∣∣∣∣
The last term is easily controlled:

b2
∫ ∣∣∣∣∇2uT

1

〈Z〉k]
· ũ(k])

∣∣∣∣ ≤ b2 ∫ |ũ(k])|2

〈Z〉2k]+4−2d
+ b2 ≤ e−ck]τ ,

where in the last step we used that k] is large and the line of argument similar to
(7.12). The most difficult term is

b2
∫ ∣∣∣∣∣∇2uT

∇k]ρT
ρT

· ũ(k])

∣∣∣∣∣ ≤ b2
∫
|∇k]−1ρT |

ρT

[
|∇3uT ||ũ(k])|+ |∇2uT ||∇ũ(k])|+ |∇2uT ||ũ(k])|

|∇ρT |
ρT

]
We can estimate

b2
∫
|∇k]−1ρT |

ρT
|∇2uT ||∇ũ(k])| ≤

b2

10

∫
|∇ũ(k])|2 + Cb2

∫
|∇k]−1ρT |2

〈Z〉4ρ2
T

To control the last term we first see that

b2
∫
|∇k]−1ρD|2

〈Z〉4ρ2
T

. b2
∫

1

〈Z〉4+2(k]−1)
≤ b2

and for the remaining ρ̃ contribution could again use the bootstrap assumptions on
the ‖ρ̃, Ψ̃‖ norm

b2
∫
|∇k]−1ρ̃|2

〈Z〉4ρ2
T

. b2
∫

1

ρp+1
D χk]

ρp−1
D χk]

|∇k]−1ρ̃|2

〈Z〉4
≤ e−ck]τ

using that in the expression
1

ρp+1
D χk]

the dominant factor is 〈Z〉−2k] since k] is chosen to be large. Since ρ−1
D contains a

factor of 〈Z〉nP , this would however require imposing the condition that k] � nP
which is acceptable but not necessary. We can take a slightly different route and
use the estimate (5.13) instead:∫

Z≥12Z∗
〈Z〉−d+2m

〈
Z

Z∗

〉µ−2σ ∣∣∣∣∇mρ̃ρD

∣∣∣∣2 ≤ d

which holds with µ = min{1, 2(r − 1)} for any m ≤ k] − 1 and σ > 0. Then

b2
∫
Z≥12Z∗

|∇k]−1ρ̃|2

〈Z〉4ρ2
T

. b2

just under the condition that k] � d
2 . On the other hand,

b2
∫
Z≤12Z∗

|∇k]−1ρ̃|2

〈Z〉4ρ2
T

. b2
∫
〈Z〉−2k]+d−`(r−1)−2(r−1)+2(r−1) p+1

p−1χk]ρ
p−1
D

|∇k]−1ρ̃|2

〈Z〉2

. b2
∫
〈Z〉−2k]+dχk]ρ

p−1
D

|∇k]−1ρ̃|2

〈Z〉2
≤ e−ck]τ .
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The remaining lower order terms can be treated similarly.
step 5 F2 terms. We claim:∫

ρ2
T |∇(F2 − b2∆KF + ∆KNL(ρ̃))|2 ≤ CIk] + e−ck]τ (7.13)

for some universal constant C independent of k]. The nonlinear term ∆KNL(ρ̃) will
be treated in the next step.
Source term induced by localization. Recall (6.1):

ẼP,Ψ = ∂τΨD +
[
|∇ΨD|2 + ρp−1

D + (r − 2)ΨD + ΛΨD

]
which yields

∂Z ẼP,Ψ = ∂τuD +
[
2uD∂ZuD + (p− 1)ρp−1

D ∂ZρD + (r − 1)uD + ΛuD

]
.

In view of the exact profile equation for uP and the fact that uP coincides with uD
for Z ≤ Z∗, ∂Z ẼP,Ψ is supported in Z ≥ Z∗. Furthermore, from (4.10):

uD(τ, Z) = ζ(λZ)uP (Z)

and hence

∂τuD + ΛuD + (r − 1)uD = −Λζ(x)uP (Z) + Λζ(x)uP (Z) + ζ(x)ΛuP (Z) + (r − 1)ζ(x)uP (Z)

= ζ(x) [(r − 1)uP + ΛuP ] (Z) = O

(
1Z≤10Z∗

〈Z〉r−1+δ

)
.

Using that |uD|+ ρ
p−1

2
D . 〈Z〉−(r−1), with the inequality becoming ∼ in the region

Z∗ ≤ Z ≤ 10Z∗ and that uD vanishes for Z ≥ 10Z∗, we infer

|∂Z ẼP,Ψ| .
1Z≥Z∗

〈Z〉r−1+δ

with a similar statement holding for higher derivatives

|∇∇k] ẼP,Ψ| .
1Z≥Z∗

〈Z〉k]+r−1+δ

Then, ∫
ρ2
T |∇∇k

]
ẼP,Ψ|2 .

∫
Z≥Z∗

Zd−1 ρ2
T

〈Z〉2k]+2(r−1)+2δ
dZ ≤ e−ck]τ

if k] � d
2 is large enough.

Ak](Ψ)t term. From (6.6)

|∇Ak](Ψ̃)| .
k]∑
j=1

|∇jΨ̃|
〈Z〉r+k]−j+1

and hence from (7.2) :∫
ρ2
T |∇Ak](Ψ̃)|2 .

k]−1∑
j=0

∫
ρ̃2
T

|∇∂jΨ̃|2

〈Z〉2(r+k]−j)+2
≤ e−ck]τ .

[∆K , ρp−2
D ] term. We first claim the bound: let α ∈ R and β ∈ Nd with |β| = m.

Then for any m

∇β(ραD) = Oα,m

(
ραD
〈Z〉m

)
(7.14)
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This is proved below. We conclude from (B.1):∣∣∣[∆K , ρp−2
D ]ρ̃− k](p− 2)ρp−3

D ∇ρD · ∇∆K−1ρ̃
∣∣∣ . k]−2∑

j=0

|∇j ρ̃|
〈Z〉k]−j

ρp−2
D

and similarly, taking a derivative and using (7.2),∫
ρ2
T

∣∣∣∇ [[∆K , ρp−2
D ]ρ̃− k](p− 2)ρp−3

D ∇ρD · ∇∆K−1ρ̃
]∣∣∣2

.
k]−1∑
j=0

∫
ρ

2(p−2)+2
D

|∇j ρ̃|2

〈Z〉2(k]−j)+2
=

k]−1∑
j=0

∫
ρ

2(p−1)
D

|∇j ρ̃|2

〈Z〉2(k]−j)+2
≤ e−ck]τ .

Proof of (7.14). Let g = ραD, then
∇g
g

= α
∇ρD
ρD

and (4.13) yields:

|∇g| . |g|
〈Z〉
.

ραD
〈Z〉

.

We now prove by induction on m ≥ 1:

|∇mg| .
ραD
〈Z〉m

. (7.15)

We assume m and prove m+ 1. Indeed,

|∇m+1g| =
∣∣∣∣α∇m [g∂ρDρD

]∣∣∣∣ . ∑
j1+j2+j3=m

|∇j1g|
∣∣∣∣∇j2 ( 1

ρD

)∣∣∣∣ |∇j3+1ρD|.

From (7.10) with ρD in place of ρT :∣∣∣∣∇j2 ( 1

ρD

)∣∣∣∣ . 1

ρD〈Z〉j2
and hence using the induction claim:

|∂m+1g| .
∑

j1+j2+j3=m

ραD
〈Z〉j1

1

ρD〈Z〉j2
ρD

〈Z〉j3+1
.

ραD
〈Z〉m+1

and (7.15) is proved. This concludes the proof of (7.14).

Nonlinear Ψ term. Let

∂Nj1,j2 = ∇j1∇Ψ∇j2∇Ψ, j1 + j2 = k] + 1, j1 ≤ j2, j1, j2 ≥ 1.

We have j1 ≤ k]

2 and hence the L∞ smallness (4.34) yields:∫
ρ2
T |∇j1∇Ψ∇j2∇Ψ|2 ≤ d

∫
ρ2
T

|∇j2∇Ψ|2

〈Z〉2(k]−j2)
≤ e−ck]τ + dIk] .

step 6 Pointwise bound on the nonlinear term. From (6.4):

NL(ρ̃) = (ρD+ρ̃)p−1−ρp−1
D −(p−1)ρp−2

D ρ̃ = ρp−1
D F

(
ρ̃

ρD

)
, F (v) = (1+v)p−1−1−(p−1)v

which satisfies for |v| ≤ 1
2 :

|F (m)(v)| .m

∣∣∣∣∣∣
v2 for m = 0
|v| for m = 1
1 for m ≥ 2.
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We claim with v = ρ̃
ρD

:

∇∆KNL(ρ̃) = F ′(v)ρp−1
D

∇ρ̃(k])

ρD
+O

 d

ρD
ρp−1
D

k]∑
j=0

|∇j ρ̃|
〈Z〉k]+1−j

 . (7.16)

Indeed, we expand:

∇∆KNL(ρ̃) = ∇∆K
[
ρp−1
D F (v)

]
= ρp−1

D ∇∆KF (v) +
∑

j1+j2=k]+1,j2≤k]
cj1,j2∇j1(ρp−1

D )∇j2F (v)

and claim:

ρp−1
D ∇∆KF (v) = ρp−1

D F ′
∇ρ̃(k])

ρD
+O

 d

ρD
ρp−1
D

k]∑
j=0

|∇j ρ̃|
〈Z〉k]+1−j

 (7.17)

and ∣∣∣∣∣∣
∑

j1+j2=k]+1,j2≤k]
cj1,j2∇j1(ρp−1

D )∇j2F (v)

∣∣∣∣∣∣ ≤ d

ρD
ρp−1
D

k]∑
j=0

|∇j ρ̃|
〈Z〉k]+1−j (7.18)

which yield (7.16).

Proof of (7.17). We recall the general Faa di Bruno formula

∇jF (G(x)) =
∑

m1+2m2+···+jmj=j
cm1,...,mjF

(m1+···+mj)(x)Πj
i=1(∇iG(x))mi .

For j = k] + 1 the highest order derivative is mk]+1 = 1, m1 = · · · = mk] = 0 and
hence:

∇∆KF (G(x)) = F ′(G(x))∇∆KG(x)

+
∑

m1+2m2+···+k]m
k]

=k]+1

cm1,...,mk]
F (m1+···+m

k]
)(x)Πk]

j=1(∇jG)mj . (7.19)

From Leibniz with G = ρ̃
ρD

:

|∇jG| .
∑

j1+j2=j

|∇j1 ρ̃|
ρD〈Z〉j2

.
1

ρD

j∑
j1=0

|∇j1 ρ̃|
〈Z〉j−j1

.

First term. We compute:

F ′(G(x))∇∆KG(x) = F ′(G(x))

∇ρ̃(k])

ρD
+O

 1

ρD

k]∑
j=0

|∇j ρ̃|
〈Z〉k]+1−j


= F ′(G(x))

∇ρ̃(k])

ρD
+O

 d

ρD

k]∑
j=0

|∇j ρ̃|
〈Z〉k]+1−j


with d-smallness coming from |F ′| ≤ ρ̃

ρD
≤ d.
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Faa di Bruno term (7.19). We distinguish cases.
If mk] = 1, then m1 = 1 and m2 = · · · = mk]−1 = 0 and therefore

|F (m1+···+m
k]

)(v)Πk]

j=1(∇jG)mj | = |F ′′(v)|∇k]G||∇G| ≤ d

k]∑
j=0

|∇j ρ̃|
〈Z〉ρD〈Z〉k]−j

≤ d

ρD

k]∑
j=0

|∇j ρ̃|
〈Z〉k]+1−j

with d-smallness coming from the bound for ∇G.
If mk] = 0, then all j-derivatives are of order ≤ k] − 1. If j ≤ k] − 2 then

|∇jG| . 1

ρD

j∑
j1=0

|∇j1 ρ̃|
〈Z〉j−j1

.
d

〈Z〉j
.

Now, either there exist i0 < j0 with mi0 ≥ 1,mj0 ≥ 1, or there exist i0 < k] − 2
with mi0 ≥ 2. In the either case:

|Πk]−1
j=1 (∇jG)mj | . 1

〈Z〉k]+1
Πk]

j=1(〈Z〉j∂jG)mj ≤ d

〈Z〉k]+1

k]−1∑
j=0

〈Z〉j |∇j ρ̃|

The collection of above bounds concludes the proof of (7.17).

Proof of (7.18). First∣∣∣∣∣∣
∑

j1+j2=k]+1,j2≤k]
cj1,j2∇j1(ρp−1

D )∇j2F (v)

∣∣∣∣∣∣ . ρp−1
D

∣∣∣∣∣∣
k]∑
j=0

|∇jF (v)|
〈Z〉k]+1−j

∣∣∣∣∣∣ .
Let n ≤ k], then

|∇nF (v)| .
∑

m1+2m2+···+nmn=n

|F (m1+···+mn)(v)|Πn
j=1|∇jG(x)|mj

.
1

〈Z〉n
∑

m1+2m2+···+nmn=n

|F (m1+···+mn)(v)|Πn
j=1|〈Z〉j∇jG(x)|mj .

Either mn = 1 in which case m1 = · · · = mn−1 = 0 and hence

|F (m1+···+mn)(v)|Πn
j=1|〈Z〉j∇jG(x)|mj ≤ d

ρD

|∇nρ̃|
〈Z〉n−j

or mn = 0 and there at least two terms as above:

|F (m1+···+mn)(v)|Πn
j=1|〈Z〉j∇jG(x)|mj ≤ d

ρD

n∑
j=0

|∇j ρ̃|
〈Z〉n−j

.

Hence, by Leibniz:∣∣∣∣∣∣
∑

j1+j2=k]+1,j2≤k]
cj1,j2∇j1(ρp−1

D )∇j2F (v)

∣∣∣∣∣∣ .
∑

j1+j2=k]+1

ρp−1
D

〈Z〉j1
d

ρD

j2∑
j=0

|∇j ρ̃|
〈Z〉j2−j

.
d

ρD
ρp−1
D

k]∑
j=0

|∇j ρ̃|
〈Z〉k]+1−j

and (7.18) is proved.
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step 7 NL(ρ̃) term. We claim

J ≡
∫
ρ2
T∇∆KNL(ρ̃) · ∇Ψ̃(k]) =

d

dτ
{O(dIk])}+O

(
e−ck]τ + dIk]

)
. (7.20)

Indeed, we inject (7.16) and estimate:∫
ρ2
T

d

ρD
ρp−1
D

k]∑
j=0

|∇j ρ̃|
〈Z〉k]+1−j |∇Ψ̃(k])| ≤ e−ck]τ + dIk]

Hence

J =

∫
ρ2
TF
′
(
ρ̃

ρD

)
ρp−1
D

∇ρ̃(k])

ρD
· ∇Ψ̃(k]) +O

(
e−ck]τ + dIk]

)
.

We now integrate by parts:∫
ρ2
TF
′
(
ρ̃

ρD

)
ρp−1
D

∇ρ̃(k])

ρD
· ∇Ψ̃(k]) = −

∫
ρ̃(k])∇ ·

(
F ′
(
ρ̃

ρD

)
ρp−2
D ρ2

T∇Ψ̃(k])

)
= −

∫
ρ̃(k])

[
F ′
(
ρ̃

ρD

)
ρp−2
D ∇ · (ρ2

T∇Ψ̃(k])) + ρ2
T∇Ψ̃(k]) · ∇

(
F ′
(
ρ̃

ρD

)
ρp−2
D

)]
.

We estimate ∣∣∣∣∇(F ′( ρ̃

ρD

)
ρp−2
D

)∣∣∣∣ . dρp−2
D

〈Z〉
and hence∣∣∣∣∫ ρ̃(k])ρ

2
T∇Ψ̃(k]) · ∇

(
F ′
(
ρ̃

ρD

)
ρp−2
D

)∣∣∣∣ . d

∫
ρ̃(k])|∇Ψ̃(k])|ρ

p−1
D ρD

〈Z〉
≤ dIk] .

We now insert (6.7)

−
∫
ρ̃(k])F

′
(
ρ̃

ρD

)
ρp−2
D ∇ · (ρ2

T∇Ψ̃(k])) (7.21)

=

∫
ρ̃(k])F

′
(
ρ̃

ρD

)
ρp−2
D ρT

[
∂τ ρ̃(k]) − (H̃1 − k](H̃2 + ΛH̃2))ρ̃(k]) + H̃2Λρ̃(k])

+ (∆KρT )∆Ψ̃ + k]∇ρT · ∇Ψ̃(k]) + 2∇(∆KρT ) · ∇Ψ̃− F1

]
and treat all terms in the above identity. The ∂τ ρ̃(k]) is integrated by parts in time:∫

ρ̃(k])F
′
(
ρ̃

ρD

)
ρp−2
D ρT∂τ ρ̃(k]) =

1

2

d

dτ

{∫
F ′
(
ρ̃

ρD

)
ρp−2
D ρTρ

2
(k])

}
− 1

2

∫
ρ2

(k])∂τ

(
F ′
(
ρ̃

ρD

)
ρp−2
D ρT

)
.

We estimate the boundary term in time∣∣∣∣∫ F ′
(
ρ̃

ρD

)
ρp−2
D ρTρ

2
(k])

∣∣∣∣ ≤ d

∫
ρp−1
D ρ̃2

(k]).

Then from (7.6): ∣∣∣∣F ′( ρ̃

ρD

)
∂τ (ρp−2

D ρT )

∣∣∣∣ ≤ dρp−1
T

and using (6.3), (4.34):∣∣∣∣∂τ [F ′( ρ̃

ρD

)]∣∣∣∣ . |∂τ ρ̃|ρD
+

ρ̃

ρD

|∂τρD|
ρD

≤ d
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with d-smallness coming from the pointwise estimates for ρ̃ and F ′, which ensures∣∣∣∣∫ ρ2
(k])∂τ

(
F ′
(
ρ̃

ρD

)
ρp−2
D ρT

)∣∣∣∣ ≤ dIk] .

The remaining terms in (7.21) are estimated by brute force. First∣∣∣∣∫ ρ̃(k])F
′
(
ρ̃

ρD

)
ρp−2
D ρT

[
−(H̃1 − k](H̃2 + ΛH̃2))ρ̃(k])

]∣∣∣∣ ≤ dIk]

with d-smallness coming from F ′. Integrating by parts,∣∣∣∣∫ ρ̃(k])F
′
(
ρ̃

ρD

)
ρp−2
D ρT

[
H2Λρ̃(k])

]∣∣∣∣
=

∣∣∣∣12
∫
ρ̃2

(k])

[
d

(
F ′
(
ρ̃

ρD

)
ρp−2
D ρT

)
+ Λ

(
F ′
(
ρ̃

ρD

)
ρp−2
D ρT

)]∣∣∣∣
≤ dIk]

with d-smallness coming from either F ′ or the pointwise estimates for ρ̃. Then using
(7.2): ∣∣∣∣∫ ρ̃(k])F

′
(
ρ̃

ρD

)
ρp−2
D ρT∆KρT∆Ψ̃

∣∣∣∣ ≤ d

∫
ρ̃(k])ρ

p−1
T

[
ρT |∆Ψ̃|
〈Z〉k]

+ |ρ̃(k])|

]

≤ d

[∫
ρp−1
T ρ̃2

(k]) +

∫
ρ2
T

|∆Ψ̃|2

〈Z〉2k]

]
≤ dIk] + e−ck]τ .

We finally estimate∣∣∣∣∫ ρ̃kF
′
(
ρ̃

ρD

)
ρp−2
D ρTk∇ρT · ∇Ψ̃k

∣∣∣∣ ≤ d

∫
ρp−1
T ρ̃k

ρT
〈Z〉
|∇Ψ̃k| ≤ dIk]

and from (7.7): ∣∣∣∣∫ ρ̃kF
′
(
ρ̃

ρD

)
ρp−2
D ρTF1

∣∣∣∣ ≤ e−ck]τ + dIk] .

The collection of above bounds concludes the proof of (7.20).

step 7 Conclusion for k] ≥ k](d, r) large enough. The collection of above bounds
yields, using also (7.5), (7.6), the differential inequality

1

2

d

dτ
{Ik](1 +O(d))}

≤ −k]
[
1 +O

(
1

k]

)]∫
(H̃2 + ΛH̃2)

[
(p− 1)ρp−2

D ρT ρ̃
2
(k]) + ρ2

T |∇Ψ̃(k])|2
]

− k]
∫

(p− 1)ρD∂Z(ρp−1
D )ρ̃(k])∂ZΨ̃(k]) + dIk] + e−ck]τ .

We now recall (6.14): ∃cd,p,r > 0 such that uniformly ∀Z ≥ 0,

(H̃2 + ΛH̃2)
[
(p− 1)ρp−2

D ρT ρ̃
2
(k]) + ρ2

T |∇Ψ̃(k])|2
]

+ (p− 1)ρD∂Z(ρp−1
D )ρ̃(k])∂ZΨ̃(k])

≥ cd,p,r

[
(p− 1)ρp−2

D ρT ρ̃
2
(k]) + ρ2

T |∇Ψ̃(k])|2
]

(7.22)

which taking k] > k∗(d, p) yields the pointwise differential inequality:
1

2

d

dτ
{Ik](1 +O(d))}+

√
k]Ik] ≤ e−ck]τ . (7.23)

Integrating in time, we obtain (7.1). �
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8. The highest energy norm: the Euler case

The Euler case in d = 2 and d = 3 for ` ≤
√

3 requires special consideration. In
those cases, property (P) of (2.24), which ensures coercivity of the corresponding
quadratic form in (6.14), does not hold for Z > Z2. On the other hand, (2.23)
still gives us the required coercivity for Z < Z2. To address this we use the energy
indentity (6.12)

1

2

d

dτ

{
(p− 1)

∫
χρp−2

D ρT ρ̃
2
(k]) +

∫
χρ2

T |∇Ψ̃(k])|2
}

(8.1)

=
1

2

∫ (
∂τχ

χ
+
∂τρT
ρT

+ (p− 2)
∂τρD
ρD

)
(p− 1)χρp−2

D ρT ρ̃
2
(k]) +

1

2

∫ (
∂τχ

χ
+ 2

∂τρT
ρT

)
ρ̃2
T |∇Ψ(k])|2

−
∫

(p− 1)χρp−2
D ρT ρ̃

2
(k])

[
−H̃1 + k](H̃2 + ΛH̃2)− d

2
H̃2 −

1

2
ΛH̃2 −

p− 2

2
H̃2

ΛρD
ρD
− H̃2

2

Λχ

χ

]

−
∫
χρ̃2

T |∇Ψ̃(k])|2
[
k](H̃2 + ΛH̃2) + r − 2− d− 2

2
H̃2 +

1

2
ΛH̃2 −

H̃2

2

Λχ

χ
− H̃2

ΛρT
ρT

]

+

∫
ρ̃(k])∂ZΨ̃(k])

[
−k](p− 1)χρp−2

D ρT∂ZρT

− k](p− 1)(p− 2)χρ2
Tρ

p−3
D ∂ZρD + (p− 1)ρp−2

D ρ2
T∂Zχ

]
+

∫
F1χ(p− 1)ρp−2

D ρT ρ̃(k]) +

∫
χρ2

T∇F2 · ∇Ψ̃(k])

+

∫ [
−(∆KρT )∆Ψ̃− 2∇(∆KρT ) · ∇Ψ̃

]
(p− 1)χρp−2

D ρT ρ̃(k])

− k](p− 1)(p− 2)

∫
χρ2

T∂ZΨ(k])

[
∂Z

(
ρp−3
D ∂ZρD∂Z∆K−1ρ̃

)
− ρp−3

D ∂ZρDρ̃(k])

]
+ 2

∫
∇Ψ̃ · ∇Ψ̃(k])∇ · (χρ2

T∇Ψ̃(k]))− k]
∫
χρ2

T Ψ̃(k])∇Ψ̃(k]) · ∇(H̃2 + ΛH̃2).

In the previous section we used this energy inequality with χ ≡ 1. This time we
first choose

χ =

∣∣∣∣ 1 Z ≤ Z2

e−j
](Z−Z2) Z > Z2, .

(8.2)

with j] � k]. This guarantees the coercitivity of the quadratic form (6.17):

k]χ(H̃2 + ΛH̃2)
[
(p− 1)ρp−2

D ρT ρ̃
2
(k]) + ρ2

T |∇Ψ̃(k])|2
]

+ (p− 1)ρD∂Z(ρp−1
D )ρ̃(k])∂ZΨ̃(k])

− Λχ

χ

{
H2

2

[
(p− 1)Qρ̃2

(k]) + ρ2
P |∇Ψ̃(k])|2

]
− 1

Z
(p− 1)ρPQρ̃(k])∂ZΨ̃(k])

}
≥ cd,p,rk

]χ
[
(p− 1)ρp−2

D ρT ρ̃
2
(k]) + ρ2

T |∇Ψ̃(k])|2
]

(8.3)

We then add (8.1) wirh χ = 1, multiplied by δ > 0, recalling that the analog of
(6.14) holds for Z ≤ Z2 and for Z ≥ Z(d) for Z(d) large enough. The error term
estimates are identical to the ones carried out in the proof of Lemma 7.1, and we
obtain the following analog of (7.23)

1

2

d

dτ

{(
Ik],χ + δIk],χ=1

)
(1 +O(d))

}
+
√
k]
(
Ik],χ + δIk],χ=1

)
≤ e−ck]τ + δk]Ik],χ(Z2,Z(d)),
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where χ(Z2, Z(d)) denotes the characteristic function of the set Z2 < Z < Z(d).
We now choose δ such that

δ � 1√
k]
e−j

](Z(d)−Z2)

which implies

1

2

d

dτ

{(
Ik],χ + δIk],χ=1

)
(1 +O(d))

}
+
√
k]
(
Ik],χ + δIk],χ=1

)
≤ e−ck]τ .

This yields the following lemma.

Lemma 8.1 (Control of the highest unweighted energy norm). For some universal
constant ck] (ck] � δg),

(p− 1)

∫
ρp−2
D ρT ρ̃

2
(k]) +

∫
ρ2
T |∇Ψ̃(k])|2 ≤ e−ck]τ (8.4)

9. Weighted energy estimates

We now rerun the energy estimates with suitable growing weights. This will allow
us to close the bound (4.33). Given σ ∈ R, we recall the notation

‖ρ̃, Ψ̃‖2m,σ =
m∑
k=0

∫
〈Z〉2k−2σ−d+

2(r−1)(p+1)
p−1

〈
Z

Z∗

〉2nP− 2(r−1)(p+1)
p−1

+2σ [
(p− 1)ρp−2

D ρT ρ̃
2
k + ρ2

T |∇Ψ̃k|2
]

We let

Im,σ =

∫
〈Z〉2k−2σ−d+

2(r−1)(p+1)
p−1

〈
Z

Z∗

〉2nP− 2(r−1)(p+1)
p−1

+2σ [
(p− 1)ρp−2

D ρT ρ̃
2
m + ρ2

T |∇Ψ̃m|2
]

(9.1)
and claim:

Lemma 9.1 (Weighted energy bounds). There exists 0 < σ(k])� δg such that for
σ = σ(k]), and τ0 ≥ τ0(k]) � 1, for all 1 ≤ m ≤ k], Im,σ given by (9.1) satisfies
the bound for all τ ≥ τ0

Im,σ(τ) ≤ d0e
−2στ (9.2)

where d0 is a smallness constant dependent on the data and τ0.

Proof of Lemma 9.1. The proof is parallel to the one of Lemma 7.1 with one main
difference: exponential decay on the compact set Z ≤ (Z∗)c for 0 < c � 1 is pro-
vided by Lemma 7.1, and we use optimal weight in (9.1) to propagate the sharp ex-
ponential decay. This will be essential to close the scale invariant pointwise bounds
(4.34).

step 1 Equation for derivatives. In this section we use

∂k = (∂k1 , ..., ∂
k
d )

and
ρ̃k = ∂kρ̃, Ψ̃k = ∂kΨ̃.

We use
[∂k,Λ] = k∂k
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to compute from (6.3):

∂τ ρ̃k = (H̃1 − kH̃2)ρ̃k − H̃2Λρ̃k − (∂kρT )∆Ψ̃− k∂ρT∂k−1∆Ψ̃− ρT∆Ψ̃k

− 2∇(∂kρT ) · ∇Ψ̃− 2∇ρT · ∇Ψ̃k

+ F1 (9.3)

with

F1 = −∂kẼP,ρ + [∂k, H̃1]ρ̃− [∂k, H̃2]Λρ̃ (9.4)

−
∑

∣∣∣∣∣ j1 + j2 = k
j1 ≥ 2, j2 ≥ 1

cj1,j2∂
j1ρT∂

j2∆Ψ̃−
∑

∣∣∣∣∣ j1 + j2 = k
j1, j2 ≥ 1

cj1,j2∂
j1∇ρT · ∂j2∇Ψ̃.

For the second equation:

∂τ Ψ̃k = −kH̃2Ψ̃k − H̃2ΛΨ̃k − (r − 2)Ψ̃k − 2∇Ψ̃ · ∇Ψ̃k

−
[
(p− 1)ρp−2

D ρ̃k + k(p− 1)(p− 2)ρp−3
D ∂ρD∂

k−1ρ̃
]

+ F2 (9.5)

with

F2 = b2∂kF − ∂kẼP,Ψ − [∂k, H̃2]ΛΨ̃− (p− 1)
(

[∂k, ρp−2
D ]ρ̃− k(p− 2)ρp−3

D ∂ρD∂
k−1ρ̃

)
−

∑
j1+j2=k,j1,j2≥1

∂j1∇Ψ̃ · ∂j2∇Ψ̃− ∂kNL(ρ̃). (9.6)

step 2 Algebraic energy identity. Let χ be a smooth function χ = χ(τ, Z) and
compute:

1

2

d

dτ

{
(p− 1)

∫
χρp−2

D ρT ρ̃
2
k +

∫
χρ2

T |∇Ψ̃k|2
}

=
1

2

{
(p− 1)

∫
∂τχρ

p−2
D ρT ρ̃

2
k +

∫
∂τχρ

2
T |∇Ψ̃k|2

}
+

p− 1

2

∫
χ(p− 2)∂τρDρ

p−3
D ρT ρ̃

2
k +

∫
χ∂τρT

[
p− 1

2
ρp−2
D ρ̃2

k + ρT |∇Ψ̃k|2
]

+

∫
∂τ ρ̃k

[
(p− 1)χρp−2

D ρT ρ̃k

]
−

∫
∂τ Ψ̃k

[
2χρT∇ρT · ∇Ψ̃k + χρ2

T∆Ψ̃k + ρ2
T∇χ · ∇Ψ̃k

]
,

∫
∂τ ρ̃k

[
(p− 1)χρp−2

D ρT ρ̃k

]
=

∫
F1

[
(p− 1)χρp−2

D ρT ρ̃k

]
+

∫ [
(H̃1 − kH̃2)ρ̃k − H̃2Λρ̃k − (∂kρT )∆Ψ̃− 2∇(∂kρT ) · ∇Ψ̃

] [
(p− 1)χρp−2

D ρT ρ̃k

]
−

∫
k∂ρT∂

k−1∆Ψ̃
[
(p− 1)χρp−2

D ρT ρ̃k

]
−
∫

(ρT∆Ψ̃k + 2∇ρT · ∇Ψ̃k)
[
(p− 1)χρp−2

D ρT ρ̃k

]
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and

−
∫
∂τ Ψ̃k

[
2χρT∇ρT · ∇Ψ̃k + χρ2

T∆Ψ̃k + ρ2
T∇χ · ∇Ψ̃k

]
= −

∫
F2∇ · (χρ2

T∇Ψk)

−
∫ {

− kH̃2Ψ̃k − H̃2ΛΨ̃k − (r − 2)Ψ̃k − 2∇Ψ̃ · ∇Ψ̃k

−
[
(p− 1)ρp−2

P ρ̃k + k(p− 1)(p− 2)ρp−3
D ∂ρD∂

k−1ρ̃
]} [

2χρT∇ρT · ∇Ψ̃k + χρ2
T∆Ψ̃k + ρ2

T∇χ · ∇Ψ̃k

]
=

∫
χρ2

T∇Ψk · ∇F2

−
∫ [
−kH̃2Ψ̃k − H̃2ΛΨ̃k − (r − 2)Ψ̃k − 2∇Ψ̃ · ∇Ψ̃k

]
∇ · (χρ2

T∇Ψk)

+

∫
(p− 1)ρp−2

P ρ̃k

[
2χρT∇ρT · ∇Ψ̃k + χρ2

T∆Ψ̃k + ρ2
T∇χ · ∇Ψ̃k

]
+

∫
k(p− 1)(p− 2)ρp−3

D ∂ρD∂
k−1ρ̃∇ · (χρ2

T∇Ψk)

This yields the energy identity:
1

2

d

dτ

{
(p− 1)

∫
χρp−2

D ρT ρ̃
2
k +

∫
χρ2

T |∇Ψ̃k|2
}

(9.7)

=
1

2

∫ (
∂τχ

χ
+
∂τρT
ρT

+ (p− 2)
∂τρD
ρD

)
(p− 1)χρp−2

D ρT ρ̃
2
k +

1

2

∫ (
∂τχ

χ
+ 2

∂τρT
ρT

)
ρ̃2
T |∇Ψk|2

+

∫
F1χ(p− 1)ρp−2

D ρT ρ̃k +

∫
χρ2

T∇F2 · ∇Ψ̃k

+

∫ [
(H̃1 − kH̃2)ρ̃k − H̃2Λρ̃k − (∂kρT )∆Ψ̃− 2∇(∂kρT ) · ∇Ψ̃

]
(p− 1)χρp−2

D ρT ρ̃k

−
∫ [
−kH̃2Ψ̃k − H̃2ΛΨ̃k − (r − 2)Ψ̃k − 2∇Ψ̃ · ∇Ψ̃k

]
∇ · (χρ2

T∇Ψk)

−
∫
k∂ρT∂

k−1∆Ψ̃
[
(p− 1)χρp−2

D ρT ρ̃k

]
+

∫
k(p− 1)(p− 2)ρp−3

D ∂ρD∂
k−1ρ̃∇ · (χρ2

T∇Ψk)

+

∫
(p− 1)ρp−2

P ρ̃k

[
ρT∇χ · ∇Ψ̃k

]
step 3 Bootstrap bound. We now run (9.7) with

χ(τ, Z) = χk = 〈Z〉2k−2σ−d+
2(r−1)(p+1)

p−1

〈
Z

Z∗

〉2nP− 2(r−1)(p+1)
(p−1)

+2σ

, 1 ≤ k ≤ k]

(9.8)
with Z∗ = eτ and estimate all terms. We will use the algebra
2(r − 1)(p+ 1)

p− 1
= 2(r−1)

(
1 +

2

p− 1

)
= 2(r−1)

(
1 +

`

2

)
= (`+2)(r−1) = `(r−1)+2(r−1)

χk = 〈Z〉2k−2σ−d+`(r−1)+2(r−1)

〈
Z

Z∗

〉2nP−`(r−1)−2(r−1)+2σ

(9.9)

We will use the bound for the damped profile from (4.9), (4.10):

|Zk∂kZρD| .
1

〈Z〉
2(r−1)
p−1

1Z≤Z∗ +
1

(Z∗)
2(r−1)
p−1

1(
Z
Z∗

)nP 1Z≥Z∗ (9.10)

and
|Zk∂kZρD|

ρD
≤ ck.
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In particular,

χkρ
2
D ∼ 〈Z〉2k−2σ−d+`(r−1)+2(r−1)ρ2

P

〈
Z

Z∗

〉2σ−2(r−1)

∼ 〈Z〉2k−d+2(r−1)〈Z〉−2σ

〈
Z

Z∗

〉2σ−2(r−1)

(9.11)

as well as

χk ≤
〈Z〉2k−d

ρ2
Dρ

p−1
P

〈Z〉−2σ

〈
Z

Z∗

〉2σ−2(r−1)

(9.12)

One of our main tools below will be the following interpolation result

Lemma 9.2. For any a > 0 and any m ≤ k],

‖ρ̃, Ψ̃‖2m,σ+a ≤ e
−c

a,k]
τ
. (9.13)

Proof. For 0 ≤ m ≤ k], on the set Z ≤ Z∗c = (Z∗)c, 0 < c � 1 we control the
desired norm by interpolating between the bootstrap bound (which controls all the
lower Sobolev norms) and the bound (7.1) of Lemma 7.1 for the highest Sobolev
norm. For Z ≥ Z∗c we just use the extra power of Z and the bootstrap bound (4.33)

‖ρ̃, Ψ̃‖2m,σ+a . (Z∗)Ce−ck]τ +
1

(Z∗c )2a
‖ρ̃, Ψ̃‖2m,σ . e

−c
a,k]

τ (9.14)

�

Unlike the previously dealt with case of the highest Sobolev norms, estimates
below do not require us tracking the dependence on the parameter k. Therefore, we
will let . to include that dependence.

step 4 Leading order terms.

Cross term. We estimate the cross term:

k(p− 1)

∣∣∣∣∫ χ∂ρT∂
k−1∆Ψ̃ρp−2

D ρT ρ̃k

∣∣∣∣ . ck ∫ χ
ρp−1
T

〈Z〉
|ρT∂k−1∆Ψ̃||ρ̃k|

.
∫

χ

〈Z〉
ρp−1
D ρ̃2

k +

∫
χ

〈Z〉
ρ2
T |∇∂kΨ̃|2 ≤ ‖ρ̃, Ψ̃‖2k,σ+ 1

2

. e−ck]τ .

The other remaining cross term is estimated using an integration by parts:

k(p− 1)(p− 2)

∣∣∣∣∫ ∇ · (ρ2
T∇Ψk)χρ

p−3
D ∂ρD∂

k−1ρ̃

∣∣∣∣
.

∫
χ

〈Z〉
ρp−1
D |∇ρ̃k−1|2 +

∫
χ

〈Z〉3
ρp−1
D ρ̃2

k−1 +

∫
χ

〈Z〉
ρ2
T |∇Ψ̃k|2 ≤ ‖ρ̃, Ψ̃‖2k,σ+ 1

2

. e−ck]τ .

ρk terms. We compute using (11.16):∫
χ(H̃1 − kH̃2)ρ̃k((p− 1)ρp−2

D ρT ρ̃k)

≤ −
∫
χ

(
k +

2(r − 1)

p− 1
+O

(
1

〈Z〉

))
(p− 1)ρp−2

D ρT ρ̃
2
k

. e−ck]τ −
∫
χ

(
k +

2(r − 1)

p− 1

)
(p− 1)ρp−2

D ρT ρ̃
2
k.
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We next recall that by definition of the norm:

‖ρ̃, Ψ̃‖2k,σ &
k∑

m=0

∫
χ
ρ2
T |Zm∂m∇Ψ|2

〈Z〉2k
&

k+1∑
m=1

∫
χ
ρ2
T |Zm∂mΨ|2

〈Z〉2k+2

and hence ∣∣∣∣∫ χ
[
(∂kρD)∆Ψ̃ + 2∇(∂kρD) · ∇Ψ̃

]
(p− 1)ρp−2

D ρT ρ̃k

∣∣∣∣
.

∫
χ
ρp−2
D ρT ρ̃

2
k

〈Z〉
+

∫
χρp−1

T ρ2
T

[
|∂2Ψ̃|2

〈Z〉2k−1
+

|∂Ψ̃|2

〈Z〉2(k+1)−1

]
≤ ‖ρ̃, Ψ̃‖2

k,σ+ 1
2

. e−ck]τ .

For the nonlinear term, we integrate by parts and use (4.34):∣∣∣∣∫ χ
[
ρ̃k∆Ψ̃ + 2∇ρ̃k · ∇Ψ̃

]
(p− 1)ρp−2

D ρT ρ̃k

∣∣∣∣ . ∫ χ
ρp−2
D ρT ρ̃

2
k

〈Z〉
. e−ck]τ .

Integrating by parts and using (11.16):

−
∫
χH̃2Λρ̃k

[
(p− 1)ρp−2

D ρT ρ̃k

]
+
p− 1

2

∫
χ(p− 2)∂τρDρ

p−3
D ρT ρ̃

2
k +

p− 1

2

∫
χ∂τρT ρ̃

p−2ρ̃2
k

=
p− 1

2

∫
ρ̃2
k

[
∇ · (ZχH̃2ρ

p−2
D ρT ) + χρT∂τ (ρp−2

D ) + χ∂τρTρ
p−2
D

]
=

p− 1

2

∫
χρp−2

D ρT ρ̃
2
k

[
d+

Λχ

χ
+ (p− 2)

(
∂τρD + ΛρD

ρD

)
+
∂τρT + ΛρT

ρT
+O

(
1

〈Z〉r

)]
.

We now estimate from (7.5), (7.6):

−
∫
χH̃2Λρ̃k

[
(p− 1)ρp−2

D ρT ρ̃k

]
+
p− 1

2

∫
χ(p− 2)∂τρDρ

p−3
D ρT ρ̃

2
k +

p− 1

2

∫
∂τρT ρ̃

p−2ρ̃2
k

=
p− 1

2

∫
χρp−2

D ρT ρ̃
2
k

[
d+

Λχ

χ
− 2(r − 1) +O

(
1

〈Z〉r

)]
=

p− 1

2

∫
χρp−2

D ρT ρ̃
2
k

[
d+

Λχ

χ
− 2(r − 1)

]
+O

(
e−ck]τ

)
.

Ψk terms. Integrating by parts:

(r − 2)

∫
Ψk∇ · (χρ2

T∇Ψk) = −(r − 2)

∫
χρ2

T |∇Ψ̃k|2.

Similarly using (11.16):

k

∫
H̃2Ψ̃k∇ · (χρ2

T∇Ψk) = k

[∫
χH̃2Ψk∇ · (ρ2

T∇Ψk) + H̃2Ψkρ
2
T∇χ · ∇Ψk

]
= k

{
−
∫
ρ2
T∇Ψk ·

[
χH̃2∇Ψk + H̃2Ψk∇χ+ χ∇H̃2Ψk

]
+

∫
H̃2Ψkρ

2
T∇χ · ∇Ψk

}
= −k

[∫
χ

[
1 +O

(
1

〈Z〉r

)]
ρ2
T |∇Ψ̃k|2 +O

(∫
χρ2

T

|Ψ̃k|2

〈Z〉r+1

)]

= −k
∫
χρ2

T |∇Ψ̃k|2 +O
(
e−ck]τ

)
,
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where we also used that r > 1 and k 6= 0 (since otherwise the above term vanishes.)
Next, using (4.34):∣∣∣∣∫ 2χρT∇Ψ̃ · ∇Ψ̃k(2∇ρT · ∇Ψ̃k)

∣∣∣∣ . ∫ χ
ρ2
T |∇Ψ̃k|2

〈Z〉
. e−ck]τ

and from (11.17), (4.34):∣∣∣∣∫ 2χρT∇Ψ̃ · ∇Ψ̃k(ρT∆Ψ̃k)

∣∣∣∣ . ∫
χ|∇Ψ̃k|2

(
|∂(ρ2

T∇Ψ̃)|+
|ρ2
T∇Ψ̃|
〈Z〉

)
.
∫
χ
ρ2
T |∇Ψ̃k|2

〈Z〉2

. e−ck]τ

We now carefully compute from (11.17) again:∫
χρT H̃2ΛΨ̃k

(
2∇ρT · ∇Ψ̃k + ρT∆Ψ̃k

)
+

∫
H̃2ΛΨkρ

2
T∇χ · ∇Ψk

= 2
∑
i,j

∫
χρT H̃2Zj∂jΨ̃k∂iρT∂iΨ̃k −

∑
i,j

∫
∂i(χZjH̃2ρ

2
T )∂iΨ̃k∂jΨ̃k +

1

2

∫
∇ · (χZH̃2ρ

2
T )|∇Ψ̃k|2

+
∑
i,j

H̃2ρ
2
TZj∂jΨk∂iχ∂iΨk

=
∑
i,j

H̃2∂jΨk∂iΨk

[
2χρT∂iρTZj − ∂iχZjρ2

T − δijρ2
T − 2ZjρT∂iρT + Zjρ

2
T∂iχ

]
+

1

2

∫
χH̃2ρ

2
T |∇Ψk|2

[
d+

Λχ

χ
+

ΛH̃2

H̃2

+ 2
ΛρT
ρT

+O

(
1

〈Z〉

)]

=
1

2

∫
χρ2

T |∇Ψk|2
[
d− 2 +

Λχ

χ
+ 2

ΛρT
ρT

+O

(
1

〈Z〉

)]
. (9.15)

Finally, recalling (7.6):∫
χρT H̃2ΛΨ̃k

(
2∇ρT · ∇Ψ̃k + ρT∆Ψ̃k

)
+

∫
H̃2ΛΨ̃kρ

2
T∇χ · ∇Ψ̃k +

∫
χ∂τρTρT |∇Ψ̃k|2

=

∫
χρ2

T |∇Ψ̃k|2
[
d− 2

2
+

1

2

Λχ

χ
+

ΛρT
ρT

+
∂τρT
ρT

+O

(
1

〈Z〉

)]
=

∫
χρ2

T |∇Ψ̃k|2
[
d− 2

2
+

1

2

Λχ

χ
− 2(r − 1)

p− 1
+O

(
1

〈Z〉

)]
=

∫
χρ2

T |∇Ψ̃k|2
[
d− 2

2
+

1

2

Λχ

χ
− 2(r − 1)

p− 1

]
+O(e−ck]τ ).

Conclusion for linear terms. The collection of above bounds yields:

1

2

d

dτ

{
(p− 1)

∫
χρp−2

D ρT ρ̃
2
k +

∫
χρ2

T |∇Ψ̃k|2
}
≤ e−ck]τ

+

∫
χ

[
−k +

d

2
− (r − 1)− 2(r − 1)

p− 1
+

1

2

∂τχ+ Λχ

χ

] [
(p− 1)ρp−2

D ρT ρ̃
2
k + ρ2

T |∇Ψ̃k|2
]

+

∫
F1χ(p− 1)ρp−2

D ρT ρ̃k +

∫
χρ2

T∇F2 · ∇Ψ̃k.
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We now compute from (9.8):

−k +
d

2
− (r − 1)− 2(r − 1)

p− 1
+

1

2

∂τχ+ Λχ

χ

= −k +
d

2
− (r − 1)− 2(r − 1)

p− 1
+

1

2

[
2k − 2σ − d+

2(p+ 1)(r − 1)

p− 1
+O

(
1

〈Z〉

)]
= −σ +O

(
1

〈Z〉

)
and hence the first bound: ∀m ≤ k]

1

2

Iσ,m
dτ

+ σIσ,m ≤ e−ck]τ (9.16)

+

∫
F1χ(p− 1)ρp−2

D ρT ρ̃k +

∫
χρ2

T∇F2 · ∇Ψ̃k.

step 5 F1 terms. We recall (9.4) and claim the bound:

(p− 1)

∫
χkF

2
1 ρ

p−2
D ρT . e

−c
k]
τ . (9.17)

Source term induced by localization. Recalling (9.12), (9.10), (7.8):∫
χρp−2

D ρT |∂kẼP,ρ|2 .
∫
Z≥Z∗

ρ2
P 〈Z〉2k−d

ρ2
Dρ

p+1
P

ρp−2
D ρDρ

2
D

〈Z〉2k+2δ
Zd−1dZ .

∫
Z≥Z∗

dZ

〈Z〉2δ+1
. e−2δτ .

[∂k, H̃1] term. From (6.5), (9.13):

(p− 1)

∫
χkρ

p−1
D ([∂k, H̃1]ρ̃)2 .

k−1∑
j=0

∫
ρp−1
D χk

|∂j ρ̃|2

〈Z〉2(r+k−j)

. ‖ρ̃, Ψ̃‖2k−1,σ+r ≤ e−ck]τ .

[∂k, H̃2] term. We argue similarly using (6.5):

|[∂k, H̃2]Λρ̃| .
k∑
j=1

|∂j ρ̃|
〈Z〉r−1+k−j (9.18)

Hence, using r > 1 and (9.13):

(p− 1)

∫
χρp−1

D ([∂k, H̃2]Λρ̃)2 .
k∑
j=1

∫
χρp−1

D

|∂j ρ̃|2

〈Z〉2(r−1+k−j)

. ‖ρ̃, Ψ̃‖2k,σ+r−1 ≤ e−ck]τ .
Nonlinear term.

Nj1,j2 = ∂j1ρT∇j2∇Ψ̃, j1 + j2 = k + 1, 2 ≤ j1 ≤ k j2 ≤ k − 1

If j1 ≤ k] − 2 then we use the pointwise bound (4.34) to estimate:

|∂j1ρT∇j2∇Ψ̃| . ρD
|∇j2∇Ψ̃|
〈Z〉j1

= ρD
|∂j2∇Ψ̃|
〈Z〉k+1−j2

and hence recalling (9.13):∫
(p− 1)χN2

j1,j2ρ
p−2
D ρT .

∫
χk

ρ2
T |∂j2∇Ψ̃|2

〈Z〉2(k+1−j2)+2(r−1)

.
∫

χj2
〈Z〉2r

ρ2
T |∇j2∇Ψ̃|2 ≤ e−ck]τ



60 F. MERLE, P. RAPHAËL, I. RODNIANSKI, AND J. SZEFTEL

In the other case, when j2 ≤ k] − 2, we use the pointwise bound (4.34) for ∇Ψ
instead and estimate similarly.
step 7 Dissipation. [Calculations below and specification d = 3 are only needed in
the Navier-Stokes case.]
We now compute carefully the dissipation term in (9.7):

Dissk =

∫
χkρ

2
T∇(b2∂kF) · ∇Ψ̃k.

Indeed, recalling (2.3):

∇F(uT , ρT ) =
∆uT
ρ2
T

yields

Dissk = b2
∫
χkρ

2
T∂

k

(
∆uT
ρ2
T

)
· ũk

case k = 0. We conclude:

Diss0 = b2
∫
χ0ρ

2
T

∆uT
ρ2
T

· ũ = b2
∫
χ0∆uT · ũ.

For Z ≤ 10Z∗, we use the bootstrap bound |〈Z〉k∂kuT,D| . 1
〈Z〉r−1 as well as that

uD is supported in Z ≤ 10Z∗ to estimate, recalling (9.9),(9.11),

b2
∫
χ0|∆uT · ũ| . b2

∫
χ0|∆uT · uT |+ b2

∫
χ0|∆uT · uD|

. b2
∫
〈Z〉−2−2σ−d+2(r−1)

〈
Z

Z∗

〉−2(r−1)+2σ u2
T + (Z2∆uT )2

ρ2
D

+
1

(Z∗)`(r−1)+r−2

∫
Z≤10Z∗

〈Z〉`(r−1)

〈Z〉2σ+3
dZ

≤ b2
∫
〈Z〉−2−2σ−d+2(r−1)

〈
Z

Z∗

〉−2(r−1)+2σ u2
T + (Z2∆uT )2

ρ2
D

+ e−ceτ

with

ce = min{`(r − 1) + r − 2, r} > 0

Exactly the same bounds apply to

b2
∫
χ0|∇ũ|2 ≤ b2

∫
〈Z〉−2−2σ−d+2(r−1)

〈
Z

Z∗

〉−2(r−1)+2σ u2
T + (Z2∆uT )2

ρ2
D

+ e−ceτ .

Therefore,

Diss0 ≤ −b2
∫
χ0|∇ũ|2+b2

∫
〈Z〉−2−2σ−d+2(r−1)

〈
Z

Z∗

〉−2(r−1)+2σ u2
T + (Z2∆uT )2

ρ2
D

+e−ceτ

case k ≥ 1:

Dissk = b2
∫
χkρ

2
T∂

k

(
∆uT
ρ2
T

)
· ũk =

∑
k1+k2=k

b2
∫
χkρ

2
T∂

k1∆uT∂
k2

(
1

ρ2
T

)
ũk
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For k2 = 0 we decompose uT = uD + ũ and estimate, using that uD localized for
Z ≤ 10Z∗

b2
∫
χk∂

k∆uD · ũk ≤ b2δ
∫
χkρ

2
T |ũk|2

+ b4−2δ

∫
Z≤10Z∗

〈Z〉2k−2σ−d+`(r−1)+2(r−1)

〈Z〉2(r−1+2+k)
〈Z〉`(r−1)Zd−1dZ

≤ e−ck]τ + b4−2δ

∫
Z≤10Z∗

〈Z〉2`(r−1)dZ

〈Z〉2σ+5

≤ e−ck]τ + b4−2δ . e−ck]τ

since the condition

`(r − 1) < 2 holds for d = 3 (9.19)

in view of
r∗(d, `) < r+(d, `) = 1 +

d− 1

(1 +
√
`)2

The main dissipation term is

b2
∫
χk∆ũk · ũk = −b2

[∫
χk|∇ũk|2 −

1

2

∫
∆χk|ũk|2

]
≤ −b2

∫
χk|∇ũk|2 +O(b2)

∫
χk
〈Z〉2

|ũk|2 ≤ −b2
∫
χk|∇ũk|2 +O(b2)

k−1∑
j=0

χj |∇ũj |2

If 1 ≤ k2 ≤ k] − 2, we estimate from (7.11) and Leibniz:

b2
∫
χkρ

2
T

∑
k1+k2=k,k1≤k−1

∣∣∣∣∂k1∆uT∂
k2

(
1

ρ2
T

)∣∣∣∣ |ũk| . b2 ∫ χkρ
2
T |ũk|

∑
k1+k2=k+1,k1≤k

|∇∂k1uT |
ρ2
D〈Z〉k2

. b2
∫ √

χk|ũk|
〈Z〉

k∑
k1=0

√
χk1 |∇∂k1uT | ≤

b2

10

∫
χk|∂k∇uT |2 + Ckb

2
k−1∑
j=0

∫
χj
(
|∇ũj |2 + |∇∂juT |2

)
.

For k2 = k] − 1, k1 ≤ 1, we integrate by parts once and use (7.11) to estimate

b2
∣∣∣∣∫ χkρ

2
T∂

k1∆uT∂
k2

(
1

ρ2
T

)
· ũk
∣∣∣∣

. b2
∫

χkρ
2
T

ρ2
T 〈Z〉k2−1

[
|∂k1+1∆uT ||ũk|+

|∂k1∆uT ||ũk|
〈Z〉

+ |∂k1∆ũ||∇ũk|
]

≤ b2

10

∫
χk|∇ũk|2 + Ckb

2
k−1∑
j=0

χj
(
|∇ũj |2 + |∇∂juT |2

)
.

For k2 = k], k1 = 0 and k = k], we integrate by parts once and use (7.11) to
estimate (the highest derivative term)

b2
∣∣∣∣∫ χkρ

2
T∆uT∂

k2

(
1

ρ2
T

)
· ũk
∣∣∣∣ . b2 ∫ χk|∂k−1ρT |

ρT

[
|∂∆uT ||ũk|+

|∆uT ||ũk|
〈Z〉

+ |∆uT ||∇ũk|
]
.

(Lower derivative terms are easier to estimate. We omit the details.) Estimates for
the three terms are similar but for the first two we can use estimates from the step
k = k] − 1. We therefore will only explicitly treat the term

b2
∫
χk|∂k−1ρT |

ρT
|∆uT ||∇ũk|
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First,

b2
∫
Z≤12Z∗

χk|∂k−1ρT |
ρT

|∆uT ||∇ũk| .
b2

10

∫
χk|∇ũk|2 + Cb2

∫
Z≤12Z∗

χk|∂k−1ρT |2

〈Z〉4+2(r−1)ρ2
T

≤ b2

10

∫
χk|∇ũk|2 + Cb2

∫
Z≤12Z∗

〈Z〉2(r−1) p+1
p−1
−2−2(r−1)

χkρ
p−1
D

|∂k−1ρT |2

〈Z〉2

≤ b2

10

∫
χk|∇ũk|2 + C

1

(Z∗)`(r−1)+r−2

∫
Z≤12Z∗

〈Z〉`(r−1)−2χkρ
p−1
D

|∂k−1ρT |2

〈Z〉2

≤ b2

10

∫
χk|∇ũk|2 + C

∫
Z≤12Z∗

〈Z〉−rχkρp−1
D

|∂k−1ρ̃|2

〈Z〉2

+C
1

(Z∗)`(r−1)+r−2

∫
Z≤12Z∗

〈Z〉`(r−1)−2χkρ
p−1
D

|∂k−1ρD|2

〈Z〉2

≤ b2

10

∫
χk|∇ũk|2 + e−ck]τ

+C
1

(Z∗)`(r−1)+r−2

∫
Z≤12Z∗

〈Z〉`(r−1)−2−d+2k+`(r−1)−2σ Zd−1

〈Z〉2+2(k−1)+`(r−1)
dZ

≤ b2

10

∫
χk|∇ũk|2 + e−ck]τ + C

1

(Z∗)`(r−1)+r−2

∫
Z≤12Z∗

〈Z〉`(r−1)dZ

〈Z〉2σ+3

≤ b2

10

∫
χk|∇ũk|2 + e−ck]τ

where we used the condition that `(r − 1) + r − 2 > 0, see (2.9), as well as (9.19).
We now estimate

b2
∫
Z≥12Z∗

χk|∂k−1ρT |
ρT

|∆uT ||∇ũk|

We first decompose ρT = ρD + ρ̃.

b2
∫
Z≥12Z∗

χk|∂k−1ρD|
ρT

|∆uT ||∇ũk| . b2
∫
Z≥12Z∗

χk〈Z〉−k+1|∆uT ||∇ũk|

≤ b2

10

∫
χk|∇ũk|2 + Cb2

∫
Z≥12Z∗

〈Z〉−2k+2χk|∆uT |2

≤ b2

10

∫
χk|∇ũk|2 + Cb2

k−1∑
j=0

∫
χj |∇ũj |2

where we used that χk = 〈Z〉2k−2χ1 and that uD is supported in Z ≤ 10Z∗.
Integrating from infinity and using Cauchy-Schwarz,

Zd−1χ2

Z
|∆ũ|2(Z) .

∫ ∞
Z

Zd−1χ2|∇∆ũ|2dZ+

∫ ∞
Z

Zd−1 χ2

Z2
|∆ũ|2dZ .

∫
χ2|∇ũ2|2+

∫
χ1|∇ũ1|2

Using that uD is supported in Z ≤ 10Z∗ and that χk = 〈Z〉2k−4χ2 we then obtain

b2
∫
Z≥12Z∗

χk|∂k−1ρ̃|
ρT

|∆uT ||∇ũk| ≤ b2

10

∫
χk|∇ũk|2

+Cb2

k−1∑
j=0

∫
χj |∇ũj |2

∫
Z≥12Z∗

Z−d
|〈Z〉k−1∂k−1ρ̃|2

ρ2
T
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We now use the estimate (5.13)∫
Z≥12Z∗

〈Z〉−d+2k

〈
Z

Z∗

〉µ−2σ ∣∣∣∣∇kρ̃ρD

∣∣∣∣2 ≤ δ
which holds for any k ≤ k] − 1 and positive µ = min{1, 2(r − 1)}, to conclude that

b2
∫
Z≥12Z∗

χk|∂k−1ρ̃|
ρT

|∆uT ||∇ũk| ≤
b2

10

∫
χk|∇ũk|2 + Cb2

k−1∑
j=0

∫
χj |∇ũj |2

We now set

J := b2
∫
〈Z〉−2−2σ−d+2(r−1)

〈
Z

Z∗

〉−2(r−1)+2σ u2
T + (Z2∆uT )2

ρ2
D

Choose a decreasing sequence of positive constants Cm and sum the above inequal-
ities to obtain for

I :=

k]∑
m=0

CmIm,σ (9.20)

1

2

dI

dτ
+σI+

1

2
b2

k]∑
m=0

Cm

∫
χm|∇ũm|2 ≤ CJ+

k]∑
m=0

Cm

∫
χmρ

2
T∇F̃m2 ·∇Ψ̃m+e−ck]τ ,

(9.21)
where

F̃2 = Fm2 − b2∂mFm

denotes the F2 terms minus the contribution from the dissipative terms.
step 6 F̃2 terms. We claim:

k]∑
m=0

Cm

∫
χmρ

2
T∇F̃m2 · ∇Ψ̃m ≤ O(e−ck]τ )− σCk]K −

1

2

d

dτ
Ck]K (9.22)

with
|K| ≤ dIk],σ

Source term induced by localization. Recall (6.1):

ẼP,Ψ = ∂τΨD +
[
|∇ΨD|2 + ρp−1

D + (r − 2)ΨD + ΛΨD

]
which yields

∂Z ẼP,Ψ = ∂τuD +
[
2uD∂ZuD + (p− 1)ρp−1

D ∂ZρD + (r − 1)uD + ΛuD

]
.

In view of the exact profile equation for uP and the fact that uP coincides with uD
for Z ≤ Z∗, ∂Z ẼP,Ψ is supported in Z ≥ Z∗. Furthermore, from (4.10):

uD(τ, Z) = ζ(λZ)uP (Z)

and hence

∂τuD + ΛuD + (r − 1)uD = −Λζ(x)uP (Z) + Λζ(x)uP (Z) + ζ(x)ΛuP (Z) + (r − 1)ζ(x)uP (Z)

= ζ(x) [(r − 1)uP + ΛuP ] (Z) = O

(
1Z∗≤Z≤10Z∗

Zr−1+δ

)
.

Using that |uD|+ ρ
p−1

2
D . 〈Z〉−(r−1), with the inequality becoming ∼ in the region

Z∗ ≤ Z ≤ 10Z∗ and that uD vanishes for Z ≥ 10Z∗, we infer

|∂Z ẼP,Ψ| .
1Z≥Z∗

〈Z〉δ
ρ
p−1

2
D
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with a similar statement holding for higher derivatives

|∇∂kẼP,Ψ| .
1Z≥Z∗

〈Z〉k+δ
ρ
p−1

2
D

Then, using (9.12),∫
χρ2

T |∇∂kẼP,Ψ|2 .
∫
Z≥Z∗

Zd−1Z2k

Zdρp−1
P ρ2

D

ρ2
Tρ

p−1
D

〈Z〉2k+2δ
dZ ≤ e−2δτ .

[∂k, H̃2]ΛΨ term. From (6.5):

|∇([∂k, H̃2]ΛΨ)| .
k+1∑
j=1

|∂jΨ̃|
〈Z〉r+1+k−j .

k∑
j=0

|∇∂jΨ̃|
〈Z〉r+k−j

and hence:∫
χkρ

2
T |∇([∂k, H̃2]ΛΨ)|2 .

k∑
j=0

∫
χkρ

2
T

|∇∂jΨ̃|2

〈Z〉2(k−j)+2r
. e−ck]τ .

[∂k, ρp−2
D ] term. By Leibniz and (7.14):∣∣∣[[∂k, ρp−2

D ]ρ̃− k(p− 2)ρp−3
D ∂ρD∂

k−1ρ̃
]∣∣∣ . k−2∑

j=0

|∂j ρ̃|
〈Z〉k−j

ρp−2
D

and hence taking a derivative and using (9.13):∫
χkρ

2
T

∣∣∣∇ [[∂k, ρp−2
D ]ρ̃− k(p− 2)ρp−3

D ∂ρD∂
k−1ρ̃

]∣∣∣2 . k−1∑
j=0

∫
χkρ

2(p−2)+2
D

|∂j ρ̃|2

〈Z〉2(k−j)+2

. e−ck]τ

since 2(p− 2) + 2 = 2(p− 1) > p− 1.
Nonlinear Ψ term. Let

∂Nj1,j2 = ∂j1∇Ψ∂j2∇Ψ, j1 + j2 = k + 1, j1 ≤ j2, j1, j2 ≥ 1.

We have j1 ≤ k]

2 and hence the L∞ smallness (4.34) yields:∫
χkρ

2
T |∂j1∇Ψ∂j2∇Ψ|2 ≤ d

∫
Z≤Z∗

χkρ
2
T

|∂j2∇Ψ|2

〈Z〉2(k−j2)+2(r−1)

+ de−2(r−1)τ

∫
Z≥Z∗

χkρ
2
T

|∂j2∇Ψ|2

〈Z〉2(k−j2)

≤ ‖ρ̃, Ψ̃‖2j2,σ+r−1 + e−2(r−1)τ‖ρ̃, Ψ̃‖2j2,σ ≤ e
−c

k]
τ .

step 8 NL(ρ̃) term. Arguing as for the proof of (7.16) yields:

∇∂kNL(ρ̃) = F ′
(
ρ̃

ρD

)
ρp−1
D

∇ρ̃k
ρD

+O

 δ

ρD
ρp−1
D

k∑
j=0

|∂j ρ̃|
〈Z〉k+1−j

 . (9.23)

We recall that

F (v) = (1 + v)p−1 − 1− (p− 1)v, F ′(v) = (p− 1)
(
(1 + v)p−2 − 1

)
We need to estimate going back to (9.7)

Jk = −
∫
χρ2

T∇∂kNL(ρ̃) · ∇Ψ̃k
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and claim
|Jk| ≤ e−ck]τ for k ≤ k] − 1 (9.24)

and for k = k]:

Jk ≤ −1

2

d

dτ

{∫
χkF

′
(
ρ̃

ρD

)
ρp−2
D ρTρ

2
k

}
− σ

∫
χkF

′
(
ρ̃

ρD

)
ρp−2
D ρTρ

2
k

+ O(e−ck]τ ). (9.25)

Indeed, we estimate:

Jk = −
∫
χkρ

2
T

F ′( ρ̃

ρD

)
ρp−1
D

∇ρ̃k
ρD

+O

 δ

ρD
ρp−1
D

k∑
j=0

|∂j ρ̃|
〈Z〉k+1−j

 · ∇Ψ̃k

= −
∫
χkρ

2
TF
′
(
ρ̃

ρD

)
ρp−1
D

∇ρ̃k
ρD
· ∇Ψ̃k +O(e−ck]τ )

and we now integrate by parts:

−
∫
χkρ

2
TF
′
(
ρ̃

ρD

)
ρp−1
D

∇ρ̃k
ρD
· ∇Ψ̃k =

∫
ρ̃k∇ ·

(
χkF

′
(
ρ̃

ρD

)
ρp−2
D ρ2

T∇Ψ̃k

)
=

∫
ρ̃k

[
χkF

′
(
ρ̃

ρD

)
ρp−2
D ∇ · (ρ2

T∇Ψ̃k) + ρ2
T∇Ψ̃k · ∇

(
χkF

′
(
ρ̃

ρD

)
ρp−2
D

)]
.

We estimate ∣∣∣∣∇(F ′( ρ̃

ρD

)
ρp−2
D

)∣∣∣∣ . δρp−2
D

〈Z〉
and hence∣∣∣∣∫ ρ̃kρ

2
T∇Ψ̃k · ∇

(
χkF

′
(
ρ̃

ρD

)
ρp−2
D

)∣∣∣∣ . δ ∫ χkρ̃k|∇Ψ̃k|ρp−1
D ρD

〈Z〉
≤ e−ck]τ .

For k ≤ k] − 1, we estimate directly∣∣∣∣∫ ρ̃kχkF
′
(
ρ̃

ρD

)
ρp−2
D ∇ · (ρ2

T∇Ψ̃k)

∣∣∣∣ . ∫ χk|ρ̃k|ρp−2
D

[
|ρ2
D|
〈Z〉
|∇Ψ̃k|+ ρ2

D|∆Ψ̃k|
]

. Ik],σ+1 ≤ e−ck]τ

and (9.24) is proved. We now let k = k] and insert (6.7)∫
χkρ̃kF

′
(
ρ̃

ρD

)
ρp−2
D ∇ · (ρ2

T∇Ψ̃k)

= −
∫
χkρ̃kF

′
(
ρ̃

ρD

)
ρp−2
D ρT

[
∂τ ρ̃k − (H̃1 − k(H̃2 + ΛH̃2)ρ̃k + H̃2Λρ̃k

+ (∆KρT )∆Ψ̃ + k∇ρT · ∇Ψ̃k + 2∇(∆KρT ) · ∇Ψ̃− F1

]
and treat all terms in the above identity. The ∂τ ρ̃k is integrated by parts in time:

−
∫
χkρ̃kF

′
(
ρ̃

ρD

)
ρp−2
D ρT∂τ ρ̃k = −1

2

d

dτ

{∫
χkF

′
(
ρ̃

ρD

)
ρp−2
D ρTρ

2
k

}
+

1

2

∫
ρ̃2
k∂τ

(
χkF

′
(
ρ̃

ρD

)
ρp−2
D ρT

)
.

We now recall the identity∫
ρ̃kGΛρ̃k = −1

2

∫
ρ̃2
k(dG+ ΛG)
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Therefore,

1

2

∫
ρ̃2
k∂τ

(
χkF

′
(
ρ̃

ρD

)
ρp−2
D ρT

)
−

∫
χkρ̃kF

′
(
ρ̃

ρD

)
ρp−2
D ρT

[
−[H̃1 − k(H̃2 + ΛH̃2)]ρ̃k + H̃2Λρ̃k

]
=

∫
ρ̃2
kA

with

A =
1

2
∂τ

(
χkF

′
(
ρ̃

ρD

)
ρp−2
D ρT

)
+ χkF

′
(
ρ̃

ρD

)
ρp−2
D ρT

[
H̃1 − kH̃2 − kΛH̃2

]
+

d

2
χkF

′
(
ρ̃

ρD

)
ρp−2
D ρT +

1

2
Λ

(
χkH̃2F

′
(
ρ̃

ρD

)
ρp−2
D ρT

)
leading order term. We claim

A ≤ χkF ′
(
ρ̃

ρD

)
ρp−2
D ρT

[
−σ +O

(
1

〈Z〉r

)]
(9.26)

which ensures

−
∫
χkρ̃kF

′
(
ρ̃

ρD

)
ρp−2
D ρT∂τ ρ̃k

≤ −1

2

d

dτ

{∫
χkF

′
(
ρ̃

ρD

)
ρp−2
D ρTρ

2
k

}
− σ

∫
χkF

′
(
ρ̃

ρD

)
ρp−2
D ρTρ

2
k +O(e−ck]τ ).

Therefore, see (9.22),

K = −
∫
χkF

′
(
ρ̃

ρD

)
ρp−2
D ρT ρ̃

2
k

and

|K| ≤ δ
∫
χkρ

p−1
D ρ̃2

k. (9.27)

Proof of (9.26): First ∣∣∣∣F ′( ρ̃

ρD

)
ΛH̃2

∣∣∣∣ . C

〈Z〉r
.

Then from (9.8), (7.5), (7.6), (11.16):

1

2

∂τ (ρp−2
D ρT ) + H̃2Λ(ρp−2

D ρT )

ρp−2
D ρT

+ H̃1 − kH̃2 +
d

2
+

1

2

∂τχk + ΛχkH̃2

χk

=
1

2

[
(p− 2)

(
−2(r − 1)

p− 1

)
− 2(r − 1)

p− 1

]
− 2(r − 1)

p− 1
− k +

d

2

+
2k − 2σ − d+ 4(r−1)

p−1 + 2(r − 1)

2
+O

(
1

〈Z〉r

)
= −σ +O

(
1

〈Z〉r

)
.

We then estimate from (6.3), (4.34), (11.16), (7.8):

(∂τ + Λ)

[
F ′
(
ρ̃

ρD

)]
= F ′′

(
ρ̃

ρD

){
(∂τ + Λ)ρ̃

ρD
− ρ̃

ρD

(∂τ + Λ)ρD
ρD

}
= F ′′

(
ρ̃

ρD

){
−2(r − 1)

p− 1
+

2(r − 1)

p− 1
+O

(
1

〈Z〉r

)}
= O

(
1

〈Z〉r

)
.
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and (9.26) is proved.
lower order terms. Using (7.2), (4.34):∣∣∣∣∫ χkρ̃kF

′
(
ρ̃

ρD

)
ρp−2
D ρT∆KρT∆Ψ̃

∣∣∣∣ ≤ δ ∫ χkρ̃kρ
p−1
T |∆Ψ̃|

[
ρD

〈Z〉k]
+ |ρ̃k|

]
≤ e−ck]τ .

The term ∣∣∣∣∫ χkρ̃kF
′
(
ρ̃

ρD

)
ρp−2
D ρT∇∆KρT · ∇Ψ̃

∣∣∣∣
is treated similarly after integrating by parts once. Furthermore,∣∣∣∣∫ χkρ̃kF

′
(
ρ̃

ρD

)
ρp−2
D ρT∇ρT · ∇Ψ̃k

∣∣∣∣ ≤ δ ∫ χkρ
p−1
T ρ̃k

ρT
〈Z〉
|∇Ψ̃k| ≤ e−ck]τ

Finally, from (9.17): ∣∣∣∣∫ χkρ̃kF
′
(
ρ̃

ρD

)
ρp−2
D ρTF1

∣∣∣∣ ≤ e−ck]τ .
The collection of above bounds concludes the proof of (9.25).

step 9 Conclusion. Going back to (9.21) we obtain

1

2

d(I + Ck]K)

dτ
+ σ(I + Ck]K) +

1

2
b2

k]∑
m=0

Cm

∫
χm|∇ũm|2 ≤ CJ + e−ck]τ . (9.28)

We integrate in time and use (9.27) to obtain for σ < ck]

I(τ) ≤ e−2σ(τ−τ0)I(τ0) + Ce−2στ

∫ τ

τ0

e2στ ′J + e−ck]τ

We now recall (7.12), choose a small constant b > 0 (which will depend only on the
constants r and nP ,) let Z∗b = (Z∗)1+b and estimate∫ τ

τ0

e2στ ′J =

∫ τ

τ0

b2(Z∗)2σ

∫
〈Z〉2(r−1)−2−2σ−d

〈
Z

Z∗

〉2σ−2(r−1) u2
T + (Z2∆uT )2

ρ2
D

=

∫ τ

τ0

b2(Z∗)2σ

∫
Z≤Z∗

b

〈Z〉2(r−1)−2−2σ−d
〈
Z

Z∗

〉2σ−2(r−1) u2
T + (Z2∆uT )2

ρ2
D

+

∫ τ

τ0

b2(Z∗)2(r−1)

∫
Z≥Z∗

b

〈Z〉−2−du
2
T + (Z2∆uT )2

ρ2
D

We first obtain∫ τ

τ0

b2(Z∗)2σ

∫
Z≤Z∗

b

〈Z〉2(r−1)−2−2σ−d
〈
Z

Z∗

〉2σ−2(r−1) u2
T + (Z2∆uT )2

ρ2
D

.
∫ τ

τ0

(Z∗)−`(r−1)−r+2+2σ

∫
Z≤Z∗

b

〈Z〉−2−2σ−1〈Z〉`(r−1)+2bnP dZ

. e−(r−2bnP )τ0 + e−(`(r−1)+r−2−2σ)τ0 ≤ e−δτ0

as long as b has been chosen small enough, so that r � bnP and σ is small enough
so that 2σ < `(r − 1) + r − 2.
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To control the second integral we use the global bound (5.3)∫ τ

τ0

b2(Z∗)2(r−1)

∫
Z≥Z∗

b

〈Z〉−2−du
2
T + (Z2∆uT )2

ρ2
D

=

∫ τ

τ0

b2(Z∗)−d+2r

∫
Z≥Z∗

b

(
Z∗

Z

)d−2 u2
T + (Z2∆uT )2

〈Z〉4ρ2
D

≤ e−b(d−2)τ0

∫ τ

τ0

b2(Z∗)−d+2r

∫
u2
T + (Z2∆uT )2

〈Z〉4ρ2
D

≤ De−b(d−2)τ0 ≤ e−δτ0 ,

where the penultimate and last inequalities hold since7 d = 3. This concludes the
proof of (9.2). �

10. L∞ bounds

We are now in position to improve the bound (4.34).

Lemma 10.1 (Improved L∞ bounds). For all 0 ≤ k ≤ k] − 2,∥∥∥∥〈Z〉k∇kρ̃ρD

∥∥∥∥
L∞

+
∥∥∥〈Z〉k+(r−1)∇kũ

∥∥∥
L∞(Z≤Z∗)

≤ d0 (10.1)

and for all 0 ≤ k ≤ k] − 1,∥∥∥∥∥〈Z〉k+(r−1)

〈
Z

Z∗

〉−2(r−1)

∇kũ

∥∥∥∥∥
L∞(Z≥1)

≤ d0 (10.2)

Proof of Lemma 10.1. For any spherically symmetric function vanishing at infinity

|f |2(Z) ≤
∫ ∞
Z

Z−d|Z∂Zf |2Zd−1dZ +

∫ ∞
Z

Z−d|f |2Zd−1dZ (10.3)

We apply this to f2 = 〈Z〉dχkρ2
D|∇kũ|2 with χk from (9.9). For Z ≥ 1 we then

obtain

〈Z〉dχkρ2
D|∇kũ|2(Z) .

∫
χk+1ρ

2
D|∇k+1ũ|2 +

∫
χkρ

2
D|∇kũ|2 ≤ e−2στd0

We now observe that from (9.11)

〈Z〉dχkρ2
D ∼ 〈Z〉2k+2(r−1)−2σ

〈
Z

Z∗

〉2σ−2(r−1)

.

The estimate (10.1) for ∇kũ(Z) with Z ≥ 1 and k ≤ k] − 1 follows immediately.
For Z ≤ 1 the estimates for both ∇kρ̃ and ∇kũ for k ≤ k] − 2 follow from the
boundedness of the Sobolev norm ‖ρ̃, Ψ̃‖k] in dimension d ≤ 3.

The exterior estimates for ρ̃ have been already established in (5.14)∥∥∥∥∥
〈
Z

Z∗

〉µ
2
−σ 〈Z〉k∇kρ̃

ρD

∥∥∥∥∥
L∞(Z≥12Z∗)

≤ d0

7Once again, dimensional restriction arises in the treatment of the dissipative term. It is not
needed in the Euler case.
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for any 0 ≤ k ≤ k] − 2 and µ = min{1, 2(r − 1)}. It remains to prove (10.1) for ρ̃
for 1 ≤ Z ≤ 12Z∗. We again use (10.3) but integrating from 12Z∗ instead. Setting
f2 = 〈Z〉dχkρp−1

D |∇kρ̃|2, we obtain

〈Z〉dχkρp−1
D |∇kρ̃|2 . 〈Z〉dχkρp−1

D |∇kρ̃|2|Z=12Z∗ +

∫
Z≤12Z∗

χk+1ρ
p−1
D |∇k+1ρ̃|2

+

∫
Z≤12Z∗

χkρ
p−1
D |∇kρ̃|2

We now observe that for Z ≤ 12Z∗

〈Z〉dχkρp−1
D ∼ 〈Z〉2k−2σ+`(r−1) ∼ 〈Z〉

2k−2σ

ρ2
D

,

which implies

〈Z〉−2σ |∇kρ̃|2

ρ2
D

≤ (Z∗)−2σd0 + e−2στd0

The result now follows immediately. �

11. Control of low Sobolev norms and proof of Theorem 1.1

Our aim in this section is to control weighted low Sobolev norms in the interior
region |x| ≤ 1 which in renormalized variables corresponds to Z ≤ Z∗. On our way
we will conclude the proof of the bootstrap Proposition 4.5. Theorem 1.1 will then
follow from a classical topological argument. In this section all of the analysis will
take place in the region Z ≤ 5Z∗ where ρD = ρP and ΨD = ΨP . We recall the
decomposition (2.26)

ρT = ρ+ ρP , ΨT = ΨP + Ψ, Φ = ρPΨ

and note that (ρ,Ψ) = (ρ̃, Ψ̃) for Z ≤ 5Z∗.

11.1. Exponential decay slightly beyond the light cone. We use the expo-
nential decay estimate (3.20) for a linear problem to prove exponential decay for
the nonlinear evolution in the region slightly past the light cone. We recall the
notations of Section 3, in particular Za of Lemma 3.2.

Lemma 11.1 (Exponential decay slightly past the light cone). Let

Z̃a =
Z2 + Za

2
.

Then
‖∇Φ‖H2k[ (Z≤Z̃a) + ‖ρ‖H2k[ (Z≤Z̃a) . e

− δg
2
τ . (11.1)

Proof. The proof relies on the spectral theory beyond the light cone and an elemen-
tary finite speed propagation like argument in renormalized variables, related to [38].

step 1 Semigroup decay in X variables. Recall the definition (4.17) of X = (Φ,Θ)∣∣∣∣ Φ = ρPΨ
Θ = ∂τΦ + aH2ΛΦ = −(p− 1)Qρ−H2ΛΦ + (H1 − e)Φ +GΦ + aH2ΛΦ

(11.2)
with GΦ given by (3.3), the scalar product (3.14) and the definitions (4.19), (4.20):∣∣∣∣ Λ0 = {λ ∈ C, <(λ) ≥ 0} ∩ {λ is an eigenvalue of M} = (λi)1≤i≤N

V = ∪1≤i≤Nker(M − λiI)kλi
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the projection P associated with V , the decay estimate (3.20) on the range of (I−P )
and the results of Lemma 3.6. Relative to the X variables our equations take the
form

∂τX = MX +G,

which are considered on the time interval τ ≥ τ0 � 1 and the space interval Z ∈
[0, Za] (no boundary conditions at Za.) We consider evolution in the Hilbert space
H2k[ with initial data such that

‖(I − P )X(τ0)‖H2k[
≤ e−

δg
2
τ0 , ‖PX(τ0)‖H2k[

≤ e−
3δg
5
τ0 . (11.3)

According to the bootstrap assumption (4.37)

‖PX(τ)‖H2k[
≤ e−

δg
2
τ , ∀τ ∈ [τ0, τ

∗] (11.4)

Lemma 3.6 shows that as long as

‖G‖H2k[
≤ e−

2δg
3
τ , τ ≥ τ0 (11.5)

there exists Γ, which can be made as large as we want with a choice of τ0, such that

‖PX(τ)‖H2k[
. e−

δg
2
τ , τ0 ≤ τ ≤ τ0 + Γ. (11.6)

This will allow us to show eventually that if we can verify (11.5), the bootstrap time
τ∗ ≥ τ0 + Γ.

Moreover, as long as (11.5) holds, the decay estimate (3.20) implies that

‖(I − P )X(τ)‖H2k[
. e−

δg
2

(τ−τ0)‖X(τ0)‖H2k[
+

∫ τ

τ0

e−
δg
2

(τ−σ)‖G(σ)‖H2k[
dσ

. e
−δg

2
τ

[
e
δg
2
τ0‖X(τ0)‖H2k[

+

∫ +∞

τ0

e−
δg
6
τdτ

]
≤ e−

δg
2
τ . (11.7)

As a result,

‖X(τ)‖H2k[
. e−

δg
2
τ , τ0 ≤ τ ≤ τ∗ (11.8)

Below we will verify (11.5) ∀τ ∈ [τ0, τ
∗] under the assumption (11.7), closing both.

Once again, this will allow us to show eventually that the length of the bootstrap
interval τ∗ − τ0 ≥ Γ is sufficiently large.

Recall from (3.7), (3.5), (3.14):

‖G‖2H2k[
.
∫
Z≤Za

|∇∆k[GΘ|2gZd−1dZ +

∫
Z≤Za

G2
ΘZ

d−1dZ (11.9)

with ∣∣∣∣∣∣∣
GΘ = ∂τGΦ −

(
H1 +H2

ΛQ
Q

)
GΦ +H2ΛGΦ − (p− 1)QGρ

Gρ = −ρ∆Ψ− 2∇ρ · ∇Ψ
GΦ = −ρP (|∇Ψ|2 + NL(ρ)) + b2ρPF(uT , ρT ).

step 2 Semigroup decay for (ρ,Ψ). We now translate the X bound to the bounds
for ρ and Ψ and then verify (11.5). We recall (11.2) and obtain for any Ẑ > Z2

‖Θ‖H2k[ (Z≤Ẑ) + ‖Φ‖H2k[+1(Z≤Ẑ) . ‖ρ‖H2k[ (Z≤Ẑ) + ‖Ψ‖H2k[+1(Z≤Ẑ) + ‖GΦ‖H2k[ (Z≤Ẑ)

. ‖T‖H2k[ (Z≤Ẑ) + ‖Φ‖H2k[+1(Z≤Ẑ) + ‖GΦ‖H2k[ (Z≤Ẑ)

and claim:

‖GΦ‖H2k[ (Z≤Ẑ) . ‖∇Ψ‖2
H2k[ (Z≤Ẑ)

+ ‖ρ‖2
H2k[ (Z≤Ẑ)

+ e−δgτ . (11.10)
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Indeed, since H2k[(Z ≤ Ẑ) is an algebra for k[ large enough:

‖ρP (|∇Ψ|2 + NL(ρ))‖H2k[ (Z≤Ẑ) . ‖∇Ψ‖2
H2k[ (Z≤Ẑ)

+ ‖ρ‖2
H2k[ (Z≤Ẑ)

.

The remaining term, see (2.8), is treated using the pointwise bound (4.34) and the
smallness of b which imply:

‖b2ρPF(uT , ρT )‖H2k[ (Z≤Ẑ) . (Z0)Cb2 ≤ e−δgτ

provided δg > 0 has been chosen small enough, and (11.10) is proved. Choosing
Ẑ > Z2, this implies from (11.2) and the initial bound (4.24):

‖X(τ0)‖H2k[ . ‖Ψ(τ0)‖H2k[+1(Z≤Ẑ) + ‖ρ(τ0)‖H2k[ (Z≤Ẑ) + e−δgτ0

. e−
δgτ0

2 . (11.11)

This verifies (11.3). On the other hand, choosing Ẑ = Z̃a with

Z̃a =
Z2 + Za

2
,

we also obtain from (11.8)

‖Ψ(τ)‖H2k[+1(Z≤Z̃a) + ‖ρ(τ)‖H2k[ (Z≤Z̃a) . ‖X(τ)‖H2k[ + e−δgτ . e−
δgτ

2 . (11.12)

The estimate (11.1) follows.

step 3 Estimate for G. Proof of (11.5). We recall (11.9). On a fixed compact
domain Z ≤ Z0 with Z0 > Z2, we can interpolate the bootstrap bound (4.32) with
the global energy bound (7.1) and obtain for k] large enough and b0 < b0(k]) small
enough:

‖ρ‖H2k[+10(Z≤Z0) + ‖Ψ‖H2k[+10(Z≤Z0) ≤ CKe
−[ 3

8
− 1

100 ]δgτ ≤ e−[ 3
8
− 1

50 ]δgτ (11.13)

and since H2k[ is an algebra and all terms are either quadratic or with a b term,
(11.13) implies

‖GΘ‖H2k[+5(Z≤Z0) + ‖Gρ‖H2k[+5(Z≤Z0) + ‖GΦ‖H2k[+5(Z≤Z0)

≤ e−( 3
4
− 1

20)δgτ ≤ e−
2δg
3
τ (11.14)

which in particular using (11.9) implies (11.5). �

11.2. Weighted decay for m ≤ 2k[ derivatives. We recall the notation (3.1).
We now transform the exponential decay (11.1) from just past the light cone into
weighted decay estimate. It is essential for this argument that the decay (11.1) has
been shown in the region strictly including the light cone Z = Z2. The estimates in
the lemma below close the remaining bootstrap bound (4.32).

Lemma 11.2 (Weighted Sobolev bound for m ≤ 2k[). Let m ≤ 2k[ and ν0 =
δg
2 −

2(r−1)
p−1 , recall (4.23)

ξν0,m =
1

〈Z〉d−2(r−1)+2(ν0−m)
ζ

(
Z

Z∗

)
, ζ(Z) =

∣∣∣∣ 1 for Z ≤ 2
0 for Z ≥ 3,

then:
2k[∑
m=0

∫
(p− 1)Q(∂mρ)2ξν0,m + |∇∂mΦ|2ξν0,m ≤ Ce−

4δg
5
τ . (11.15)
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Proof of Lemma 11.2. The proof relies on a sharp energy estimate with time de-
pendent localization of (ρ,Φ). This is a renormalized version of the finite speed of
propagation. (Remember: this part of the argument treats the dissipative Navier-
Stokes term as perturbation and, at the expense of loosing derivatives, relies on the
structure of the compressible Euler equations.)

step 1 Ḣm localized energy identity. Pick a smooth well localized spherically sym-
metric function χ(τ, Z). For integer m let

ρm = ∂mρ, Φm = ∂mΦ.

We recall the Emden transform formulas (2.25):

∣∣∣∣∣∣
H2 = µ(1− w)

H1 = µ`
2 (1− w)

[
1 + Λσ

σ

]
H3 = ∆ρP

ρP

which yield the bounds using (2.20), (2.21):

∣∣∣∣∣∣∣∣∣∣∣

H2 = 1 +O
(

1
〈Z〉r

)
, H1 = −2(r−1)

p−1 +O
(

1
〈Z〉r

)
|〈Z〉j∂jZH1|+ |〈Z〉j∂jZH2| . 1

〈Z〉r , j ≥ 1

|〈Z〉j∂jZH3| . 1
〈Z〉2

1
〈Z〉2(r−1)

[
1 +O

(
1
〈Z〉r

)]
.j |〈Z〉j∂jZQ| .j

1
〈Z〉2(r−1)

(11.16)

and the commutator bounds:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|[∂mi , H1]ρ| .
∑m−1

j=0
|∂jZρ|

〈Z〉r+m−j

|∇ ([∂mi , H1]ρ) | .
∑m

j=0
|∂jZρ|

〈Z〉m−j+r+1

|[∂mi , Q]ρ| . Q
∑m−1

j=0
|∂jZρ|
〈Z〉m−j

|[∂mi , H2]Λρ| .
∑m

j=1
|∂jZρ|

〈Z〉r+m−j

|∇ ([∂mi , H2]ΛΦ) | .
∑m+1

j=1
|∂jZΦ|

〈Z〉r+1+m−j .

Commuting (3.2) with ∂mi :

∣∣∣∣ ∂τρm = H1ρm −H2(m+ Λ)ρm −∆Φm + ∂mi Gρ + Em,ρ
∂τΦm = −(p− 1)Qρm −H2(m+ Λ)Φm + (H1 − (r − 2))Φm + ∂mi GΦ + Em,Φ

with the bounds∣∣∣∣∣∣ |Em,ρ| .
∑m

j=0
|∂jZρ|

〈Z〉r−1+m−j +
∑m

j=0
|∂jZΦ|

〈Z〉m−j+2

|∇Em,Φ| . Q
∑m

j=0
|∂jZρ|

〈Z〉m+1−j +
∑m+1

j=0
|∂jZΦ|

〈Z〉r+m−j .
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We derive the corresponding energy identity:

1

2

d

dτ

{∫
(p− 1)Qρ2

mχ+ |∇Φm|2χ
}

=
1

2

∫
∂τχ

[
(p− 1)Qρ2

m + |∇Φm|2
]

+

∫
(p− 1)Qρmχ [H1ρm −H2(m+ Λ)ρm −∆Φm + ∂mi Gρ + Em,ρ]

+

∫
χ∇Φm · ∇

[
−(p− 1)Qρm −H2(m+ ΛΦm) + (H1 − (r − 2))Φm + ∂imGΦ + Em,Φ

]
=

1

2

∫
∂τχ

[
(p− 1)Qρ2

m + |∇Φm|2
]

+

∫
(p− 1)Qρmχ [H1ρm −H2(m+ Λ)ρm + ∂mi Gρ + Em,ρ] +

∫
(p− 1)Qρm∇χ · ∇Φm

+

∫
χ∇Φm · ∇ [−H2(m+ Λ)Φm + (H1 − (r − 2))Φm + ∂mi GΦ + Em,Φ] .

In what follows we will use ω > 0 as a small universal constant to denote the power
of tails of the error terms. In most cases, the power is in fact r > 1 which we do
not need.
ρm terms. From the asymptotic behavior of Q (2.21) and (11.16):

−
∫

(p− 1)QρmχH2Λρm =
p− 1

2

∫
ρ2
mχQH2

[
d+

ΛQ

Q
+

ΛH2

H2
+

Λχ

χ

]
=

∫
ρ2
m(p− 1)χQ

[
d

2
− (r − 1) +O

(
1

〈Z〉ω

)]
+

1

2

∫
(p− 1)QH2Λχρ2

m

Φm terms. We first estimate recalling (11.16):∫
χ∇Φm · ∇ [(−mH2 +H1 − (r − 2))Φm]

=

∫
(−mH2 +H1 − (r − 2))χ|∇Φm|2 +O

(∫
χ

〈Z〉r
|∇Φm||Φm|

)
= −

[
(m+ r − 2) +

2(r − 1)

p− 1

] ∫
χ|∇Φm|2 +O

(∫
χ

〈Z〉ω

[
|∇Φm|2 +

Φ2
m

〈Z〉2

])
We recall Pohozhaev identity for spherically symmetric functions∫

Rd
f∆g∂rgdx = cd

∫
R+

f

rd−1
∂r(r

d−1∂rg)rd−1∂rgdr

= −1

2

∫
Rd
|∂rg|2

[
f ′ − d− 1

r
f

]
dx

and for general functions∫
∆gF · ∇gdx =

d∑
i,j=1

∫
∂2
i gFj∂jgdx = −

d∑
i,j=1

∫
∂ig(∂iFj∂jg + Fj∂

2
i,jg)

= −
d∑

i,j=1

∫
∂iFj∂ig∂jg +

1

2

∫
|∇g|2∇ · F. (11.17)
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Now, taking F = χH2(Z1, . . . , Zd) in the above:

−
∫
χ∇Φm · ∇(H2ΛΦm) =

∫
H2ΛΦm[χ∆Φm +∇χ · ∇Φm]

= −
d∑

i,j=1

∫
∂iFj∂iΦm∂jΦm +

1

2

∫
|∇Φm|2∇ · F +

∫
H2ΛΦm∇χ · ∇Φm

=

d∑
i,j=1

∂iΦm∂jΦm [−∂i(χH2Zj) +H2Zj∂iχ] +
1

2

∫
|∇Φm|2χH2

[
d+

Λχ

χ
+

ΛH2

H2

]

=
(d− 2)

2

∫
χ|∇Φm|2 +

1

2

∫
H2Λχ|∇Φm|2 +O

(∫
χ

〈Z〉ω
|∇Φm|2

)
The collection of above bounds yields for some universal constant ω > 0 the

weighted energy identity:
1

2

d

dτ

{∫
(p− 1)Qρ2

mχ+ |∇Φm|2χ
}

(11.18)

= −
∫
χ
[
(p− 1)Qρ2

m + |∇Φm|2
] [(

m− d

2
+ r − 1

)
+

2(r − 1)

p− 1
+O

(
1

〈Z〉ω

)]
+

1

2

∫
(p− 1)Qρ2

m [∂τχ+H2Λχ] +
1

2

∫
|∇Φm|2 [∂τχ+H2Λχ] +

∫
(p− 1)Qρm∇χ · ∇Φm

+ O

∫ χ

m+1∑
j=0

|∂jZΦ|2

〈Z〉2(m+1−j)+ω +
m∑
j=0

Q|∂jZρ|2

〈Z〉2(m−j)+ω


+ O

(∫
χ|∇Φm||∇∂mGΦ|+

∫
χQ|ρm||∂mGρ|

)
step 2 Nonlinear and source terms. We claim the bound for χ = ξν0,m:

2k[∑
m=0

d∑
i=1

∫
ξν0,m|∇∂mGΦ|2 +

∫
(p− 1)Qξν0,m|∂mGρ|2

.

 2k[∑
m=0

d∑
i=1

∫
Qρ2

mξν0+1,m + |∇Φm|2ξν0+1,m

+ e−cgτ (11.19)

for some positive cg > 0.

Remark 11.3. Crucially, the constant cg can be chosen to be such that cg > δg.
More accurately, the constant cg will be computed to explicitly depend on the speed
e = `(r − 1) + r − 2, r and δg. It will be clear that adjusting δg while keeping all
the other universal constants (`, r) fixed we can satisfy the inequality cg > δg.

Gρ term. Recall (3.3)
Gρ = −ρ∆Ψ− 2∇ρ · ∇Ψ,

then by Leibniz:
|∂mGρ|2 .

∑
j1+j2=m+2,j2≥1

|∂j1ρ|2|∂j2Ψ|2.

We recall the pointwise bounds (4.34) for Z ≤ 3Z∗,

|∂j1ρ| ≤ CK

〈Z〉j1+
2(r−1)
p−1

, |∂j2Ψ| ≤ CK
〈Z〉j2+r−2

.
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This yields, recalling (11.32), for j1 ≤ 2k[:∫
ξν0,mQ|∂j1ρ|2|∂j2Ψ|2 .

∫
Qζ

(
Z

Z∗

)
|∂j1ρ|2

Z2(j2−m)+d−2(r−1)+2(r−2)+2ν0

.
∫
ζ

(
Z

Z∗

)
Q

|∂j1ρ|2

〈Z〉d−2(r−1)+2(ν0−j1)+2
.

j1∑
j=0

∫
ξν0+1,j1Q|∂

j
Zρ|

2

.
2k[∑
m=0

d∑
i=1

∫
Qρ2

mξν0+1,m + |∇Φm|2ξν0+1,m.

For j1 = m+ 1, j2 = 1, we use the other variable:∫
ξν0,mQ|∂j1ρ|2|∂j2Ψ|2 .

∫
Qζ

(
Z

Z∗

)
|∂j2Ψ|2

Z
2(j1−m)+d−2(r−1)+

4(r−1)
p−1

+2ν0

.
∫
ζ

(
Z

Z∗

)
ρ2
P |∂j2Ψ|2

〈Z〉d−2(r−1)+2(ν0−j2)+2
.

j2∑
j=0

∫
ζ

(
Z

Z∗

)
|∂jZΦ|2

〈Z〉d−2(r−1)+2(ν0−j)+2

.
j2∑
j=0

∫
ξν0+1,j |∂jZΦ|2 .

2k[∑
m=0

d∑
i=1

∫
Qρ2

mξν0+1,m + |∇Φm|2ξν0+1,m

and (11.19) follows for Gρ by summation on 0 ≤ m ≤ 2k[ .
GΦ term. Recall (3.3)

GΦ = −ρP (|∇Ψ|2 + NL(ρ)) + b2ρPF(uT , ρT ).

We estimate using the pointwise bounds (4.34) for j3 ≤ 2k[:

|∇∂m(ρP |∇Ψ|2)| .
∑

j1+j2+j3=m+1,j2≤j3

ρP
〈Z〉j1

|∂j2+1Ψ∂j3+1Ψ|

.
∑

j1+j2+j3=m+1,j2≤j3

1

〈Z〉
2(r−1)
p−1

+j1+r−2+j2+1
|∂j3+1Ψ| .

2k[∑
j3=0

|∂j3+1Φ|
〈Z〉r+m−j3

and since r > 1:

2k[∑
j3=0

∫
ξν0,m

|∂j3+1Φ|2

〈Z〉2(r+m−j3)
.

2k[∑
j3=0

∫
ξν0+1,j3 |∇Φj3 |2.

For j3 = 2k[ + 1, we use the other variable and the conclusion follows similarly.
The dissipative term is estimated using the pointwise bounds (4.34):∫
ξν0,m

∣∣∇∂m (b2ρPF(uT , ρT )
)∣∣2 . b4 ∫

Z≤3Z∗
ξν0.m

m+1∑
j=0

ρ2
P

|∂jF(uT , ρT )|2

〈Z〉2(m+1−j)

. b4CK

∫
Z≤3Z∗

1

〈Z〉d+δg−2(r−1)− 4(r−1)
p−1

−2m

m+1∑
j=0

1

〈Z〉
4(r−1)
p−1

|∂jF(uT , ρT )|2

〈Z〉2(m+1−j)

. b4
∫
Z≤3Z∗

〈Z〉2(r−1)

〈Z〉d+δg+2

m+1∑
j=0

|〈Z〉j∂jF(uT , ρT )|2
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For j ≥ 1, we estimate pointwise from (4.34):

〈Z〉j |∂jF(uT , ρT )| . 〈Z〉j
∣∣∣∣∂j−1

(
∆uT
ρ2
T

)∣∣∣∣ . 〈Z〉j ∑
j1+j2=j−1

|∂j1∆uT |
ρ2
T 〈Z〉j2

. 〈Z〉j+
4(r−1)
p−1

∑
j1+j2=j−1

1

〈Z〉r−1+j1+2+j2
.

1

〈Z〉r−
4(r−1)
p−1

=
〈Z〉`(r−1)

〈Z〉r

Therefore, recalling (1.13):

b4
∫
Z≤3Z∗

〈Z〉2(r−1)

〈Z〉d+δg+2

m+1∑
j=1

|〈Z〉j∂jF(uT , ρT )|2

.
1

〈Z∗〉2[`(r−1)+r−2]

∫
Z≤3Z∗

〈Z〉2(r−2)

〈Z〉1+δg

〈Z〉2`(r−1)

〈Z〉2r
dZ . e−cgτ ,

where cg = min{2[`(r − 1) + r − 2], δg + 2r} > 0. For j = 0, we have the bound:

|F(uT , ρT )| .
∫ Z

0

dz

〈z〉r−1+2−`(r−1)
=

∫ Z

0

dz

〈z〉1+r−`(r−1)

We observe at r∗(3, `):

r∗(`)− `(r∗(`)− 1) > 0⇔ `(r∗(`)− 1) < r∗(`)⇔ `

(
`+ 3

`+
√

3
− 1

)
<

`+ 3

`+
√

3

⇔ (3−
√

3)` < `+ 3⇔ ` <
3

2−
√

3

which holds since ` < 3 < 3
2−
√

3
. Therefore, in the case r ∼ r∗, |F(uT , ρT )| . 1,

which yields the contribution:

b4
∫
Z≤3Z∗

〈Z〉2(r−1)

〈Z〉d+δg+2
Zd−1dZ ≤ 1

〈Z∗〉2[`(r−1)+r−2]

(
1 + (Z∗)2(r−2)−δg

)
≤ e−cgτ ,

where cg = min{2[`(r − 1) + r − 2], δg + 2`(r − 1)} > 0. In the case of r ∼ r+,
we have either |F(uT , ρT )| . 1 in which case we obtain the bound as above, or
|F(uT , ρT )| . Z`(r−1)−r. Then, we obtain

b4
∫
Z≤3Z∗

〈Z〉(r−2)+`(r−1)

〈Z〉d+δg+2
Zd−1dZ .

1

〈Z∗〉[`(r−1)+r−2]

∫
Z≤3Z∗

dZ

〈Z〉1+δg+2
. e−2eτ .

This concludes the proof of (11.19).

step 2 Initialization and lower bound on the bootstrap time τ∗.
Fix a large enough Z0 and pick a small enough universal constant ω0 such that

∀Z ≥ 0, −ω0 +H2 ≥
ω0

2
> 0 (11.20)

and let Γ = Γ(Z0) such that
Z0

2Ẑa
e−ω0Γ = 1. (11.21)

We claim that provided τ0 has been chosen sufficiently large, the bootstrap time τ∗
of Proposition 4.5 satisfies the lower bound

τ∗ ≥ τ0 + Γ. (11.22)

Indeed, in view of the results in sections 7 and 8 there remains to control the bound
(4.32) on [τ0, τ0 + Γ]. By (11.6), the desired bounds already hold for Z ≤ Z̃a on
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[τ0, τ0 + Γ].

We now run the energy estimate (11.18) with χ = ξν0,m and obtain from (11.18),
(11.19) and the Remark 11.3 the rough bound on [τ0, τ

∗]:

d

dτ

{∫
(p− 1)Qρ2

mξν0,m + |∇Φm|2ξν0,m

}
≤ C

∫
(p−1)Qρ2

mξν0,m+|∇Φm|2ξν0,m+e−δgτ .

which yields using (4.24):∫
(p− 1)Qρ2

mξν0,m + |∇Φm|2ξν0,m ≤ eC(τ−τ0)

∫
(p− 1)Q(ρm(0))2ξν0,m + |∇Φm(0)|2ξν0,m

+ eCτ
∫ τ

τ0

e−(C+δg)σdσ ≤ eCΓ
[
C0e

−δgτ0 + e−δgτ0
]
≤ 2eCΓC0e

−δgτ0

and hence

e
4δg
5
τ

[∫
(p− 1)Qρ2

mξν0,m + |∇Φm|2ξν0,m

]
≤ e2CΓC0e

−δgτ0e
4δg
5
τ0 ≤ e2CΓe−

δg
10
τ0 ≤ 1

which concludes the proof of (11.22) and (11.15) for τ ∈ [τ0, τ0 + Γ].

step 3 Finite speed of propagation. We now pick a time τf ∈ [τ0 + Γ, τ∗] and
Za < Z0 < ∞ and propagate the bound (11.1) to the compact set Z ≤ Z0 using a
finite speed of propagation argument. We claim:

‖ρ‖2
H2k[ (Z≤Z0

2
)

+ ‖∇Ψ‖2
H2k[ (Z≤Z0

2
)
≤ Ce−δgτ . (11.23)

Here the key is that (11.1) controls a norm on the set strictly including the light
cone Z ≤ Z2. Let

Ẑa =
Z̃a + Z2

2
and note that we may, without loss of generality by taking a > 0 small enough,
assume:

Z̃a

Ẑa
≤ 2. (11.24)

Recall that Γ = Γ(Z0) is parametrized by (11.21). We define

χ(τ, Z) = ζ

(
Z

ν(τ)

)
, ν(τ) =

Z0

2Ẑa
e−ω0(τf−τ)

with ω0 > 0 defined in (11.20) and (11.21) and a fixed spherically symmetric non-
increasing cut off function

ζ(Z) =

∣∣∣∣ 1 for 0 ≤ Z ≤ Ẑa
0 for Z ≥ Z̃a.

, ζ ′ ≤ 0 (11.25)

We define
τΓ = τf − Γ

so that from (11.21):∣∣∣∣∣ τ0 ≤ τΓ ≤ τ∗
ν(τΓ) = Z0

2Ẑa
e−ω0(τf−τΓ) = Z0

2Ẑa
e−ω0Γ = 1.

(11.26)

We pick
0 ≤ m ≤ 2k[
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then (11.25), (11.26) ensure Supp(χ(τΓ, ·)) ⊂ {Z ≤ Z̃a} and hence from (11.1):(∫
(p− 1)Qρ2

mχ+ |∇Φm|2χ
)

(τΓ) . e−δgτΓ . (11.27)

This estimate implies that we can integrate energy identity (11.18) just on the in-
terval [τΓ, τf ]. We now estimate all terms in (11.18).

Boundary terms. We compute the quadratic terms involving Λχ which should be
thought of as boundary terms. First

∂τχ(τ, Z) = −∂τν
ν

Z

ν
∂Zζ

(
Z

ν

)
= −ω0Λχ.

We now assume that ω0 has been chosen small enough so that (11.20) holds, and
hence the lower bound on the full boundary quadratic form using Λχ ≤ 0:

1

2

∫
(p− 1)Qρ2

m [∂τχ+H2Λχ] +
1

2

∫
|∇Φm|2 [∂τχ+H2Λχ] +

∫
(p− 1)Qρm∇χ · ∇Φm

=

∫ {
1

2
(p− 1)Qρ2

m [−ω0 +H2] +
1

2
|∇Φm|2 [−ω0 +H2] + (p− 1)

Q

Z
∂ZΦmρm

}
Λχ.

The discriminant of the above quadratic form is given by the following expression
in the variables of Emden transform[

(p− 1)
Q

Z

]2

− (−ω0 +H2)2(p− 1)Q = (p− 1)Q

[
(p− 1)Q

Z2
− (−ω0 +H2)2

]
= (p− 1)Q

[
σ2 − (−ω0 + 1− w)2

]
= (p− 1)Q [−D(Z) +O(ω0)] .

where D(Z) = (1− w)2 − σ2, see Lemma 3.2.
We then observe by definition of χ that for τ ≥ τΓ:

Z ∈ SuppΛχ⇔ Ẑa ≤
Z

ν(τ)
≤ Z̃a ⇒ Z ≥ ν(τ)Ẑa ≥ ν(τΓ)Ẑa = Ẑa

from which since Ẑa > Z2:

Z ∈ SuppΛχ⇒ −D(Z) +O(ω0) < 0

provided 0 < ω0 � 1 has been chosen small enough.
Together with (11.20) and Λχ < 0, this ensures: ∀τ ∈ [τΓ, τ

∗],

1

2

∫
(p− 1)Qρ2

m [∂τχ+H2Λχ] +
1

2

∫
|∇Φm|2 [∂τχ+H2Λχ] +

∫
(p− 1)Qρm∇χ · ∇Φm

< 0 (11.28)

Nonlinear terms. From (11.25), (11.24) for τ ≤ τf :

Suppχ ⊂ {Z ≤ ν(τ)Z̃a} ⊂ {Z ≤ ν(τf )Z̃a} =

{
Z ≤ Z0

2

Z̃a

Ẑa

}
⊂ {Z ≤ Z0},

and hence from (11.14):∫
χ|∇∂mGΦ|2+

∫
(p−1)Qχ|∂mGρ|2 . ‖∇GΦ‖2H2k[ (Z≤Z0)

+‖∂mGρ‖2H2k[ (Z≤Z0)
≤ e−

4δg
3
τ .
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Conclusion. Inserting the collection of above bounds into (11.18) and summing over
m ∈ [0, 2k[] yields the crude bound: ∀τ ∈ [τΓ, τf ],

d

dτ


2k[∑
m=0

∫
(p− 1)Qρ2

mχ+ |∇Φm|2χ

 ≤ C
2k[∑
m=0

∫
(p−1)Qρ2

mχ+|∇Φm|2χ+e−
4δg
3
τ .

We integrate the above on [τΓ, τf ] and conclude using

χ(τf , Z) = ζ

(
Z

ν(τf )

)
= ζ

(
Z
Z0

2Ẑa

)
= 1 for Z ≤ Z0

and the initial data (11.27):[
‖ρ‖2

H2k[ (Z≤Z0)
+ ‖∇Ψ‖2

H2k[ (Z≤Z0)

]
(τf )

. eC(τf−τΓ)e−δgτΓ +

∫ τf

τΓ

eC(τf−σ)e−
4δg
3
σdσ . C(Γ)e−δgτf = C(Z0)e−δgτf .

Since the time τf is arbitrary in [τ0 + Γ, τ∗], the bound (11.23) follows.

step 4 Proof of (11.15). We run the energy identity (11.18) with ξν0,m and estimate
each term.

terms Z0
3 ≤ Z ≤

Z0
2 . In this zone, we have by construction

ρ = ρ̃

and hence the bootstrap bounds (4.33) imply

‖ρ‖
Hk] (Z≤Z0

2
)

+ ‖∇Ψ‖
Hk] (Z≤Z0

2
)
. 1

and hence interpolating with (11.23) for k] large enough:

‖ρ‖
Hm(

Z0
3
≤Z≤Z0

2
)
. ‖ρ‖

m

k]

Hk] (
Z0
3
≤Z≤Z0

2
)
‖ρ‖

1−m

k]

L2(
Z0
3
≤Z≤Z0

2
)
. e
− δg

2

(
1−m

k]

)

≤ e−
4δg
10 (11.29)

and similarly

‖∇Ψ‖
Hm(

Z0
3
≤Z≤Z0

2
)
. e
− δg

2

(
1−m

k]

)
≤ e−

4δg
10 . (11.30)

Linear term. We observe the cancellation using (11.16), (2.6):

∂τξν0,m +H2Λξν0,m =
1

〈Z〉d−2(r−1)+2(ν0−m)

[
−Λζ

(
Z

Z∗

)]
+ (1− w)

[
1

〈Z〉d−2(r−1)+2(ν0−m)
Λζ

(
Z

Z∗

)
+ Λ

(
1

〈Z〉d−2(r−1)+2(ν0−m)

)
ζ

(
Z

Z∗

)]
= − [d− 2(r − 1) + 2(ν0 −m)] ξν0,m +O

(
1

〈Z〉d−2(r−1)+2(ν0−m)+ω

)
(11.31)

for some universal constant ω > 0. We now estimate the norm for 2Z∗ ≤ Z ≤ 3Z∗.
Using spherical symmetry for Z ≥ 1 and m ≥ 1:

|Zm∂mρ| .
m∑
j=1

Zm
|∂jZρ|
Zm−j

.
m∑
j=1

Zj |∂jZρ| (11.32)
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and hence using the outer L∞ bound (4.34):

∫
2Z∗≤Z≤3Z∗

(p− 1)Q|∂mρ|2 + |∂m∇Φ|2

〈Z〉d−2(r−1)+2(ν0−m)+ω

.
∫

2Z∗≤Z≤3Z∗

 m∑
j=0

∣∣∣∣∣ Zj∂jZρ

〈Z〉
d
2

+ν0+ω
2

∣∣∣∣∣
2

+
m+1∑
j=1

∣∣∣∣∣ Zj∂jZΦ

(Z∗)ν0+ d
2
−(r−1)+1+ω

2

∣∣∣∣∣
2


.
∫

2Z∗≤Z≤3Z∗

 m∑
j=0

∣∣∣∣∣∣ Zj∂jZρ

ρP 〈Z〉
d
2

+ν0+
2(r−1)
p−1

+ω
2

∣∣∣∣∣∣
2

+

m+1∑
j=1

∣∣∣∣∣∣〈Z〉r−2 Zj∂jZΨ

〈Z〉ν0+
2(r−1)
p−1

+ d
2

+ω
2

∣∣∣∣∣∣
2

.
1

(Z∗)
ω+2

[
ν0+

2(r−1)
p−1

] ≤ e−δgτ (11.33)

using the explicit choice from (4.22):

2

(
ν0 +

2(r − 1)

p− 1

)
= δg

Conclusion Inserting the above bounds into (11.18) yields:

1

2

d

dτ

{∫
(p− 1)Qρ2

mξν0,m + |∇Φm|2ξν0,m

}
= −

∫
ξν0,m

[
(p− 1)Qρ2

m + |∇Φm|2
] [
ν0 +

2(r − 1)

p− 1

]

+ O

∫
Z0≤Z≤2Z∗

ξν0,m

m+1∑
m=0

|∂jZΦ|2

〈Z〉2(m+1−j)+2ω
+

m∑
j=0

Q|∂jZρ|2

〈Z〉2(m−j)+2ω

+ e−
4δg
5
τ


+ O

(∫
ξν0,m|∇Φm||∇∂mGΦ|+

∫
ξν0,mQ|ρm||∂mGρ|

)

and hence after summing over m:

1

2

d

dτ


2k[∑
m=0

∫
(p− 1)Qρ2

mξν0,m + |∇Φm|2ξν0,m


= −

[
ν0 +

2(r − 1)

p− 1

] 2k[∑
m=0

∫
ξν0,m

[
(p− 1)Qρ2

m + |∇Φm|2
]

+ O

e− 4δg
5
τ +

2k[∑
m=0

∫
(p− 1)Qρ2

mξν0+ω,m + |∇Φm|2ξν0+ω,m


+

2k[∑
m=0

O

(∫
ξν0,m|∇Φm||∇∂mGΦ|+

∫
ξν0,mQ|ρm||∂mGρ|

)
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Using (11.23) we conclude

1

2

d

dτ


2k[∑
m=0

∫
(p− 1)Qρ2

mξν0,m + |∇Φm|2ξν0,m

 (11.34)

= −
[
ν0 +

2(r − 1)

p− 1
+O

(
1

ZC0

)] 2k[∑
m=0

∫
ξν0,m

[
(p− 1)Qρ2

m + |∇Φm|2
]

+ O

e− 4δg
5 +

2k[∑
m=0

∫
ξν0,m|∇∂mGΦ|2 +

∫
(p− 1)Qξν0,m|∂mGρ|2

 .

Therefore, using also (11.19), for Z0 large enough and universal and

2

(
ν0 +

2(r − 1)

p− 1

)
= δg,

there holds

d

dτ


2k[∑
m=0

∫
(p− 1)Qρ2

mξν0,m + |∇Φm|2ξν0,m


≤ − 9

10
δg

2k[∑
m=0

∫
ξν0,m

[
(p− 1)Qρ2

m + |∇Φm|2
]

+ Ce−
4δgτ

5 .

Integrating in time and using (4.24) yields (11.15). �

11.3. Closing the bootstrap and proof of Theorem 1.1. At this point all the
required bounds of the bootstrap Proposition 4.5 have been improved. This now
will immediately imply Theorem 1.1.

Proof of Theorem 1.1. We conclude the proof with a classical topological argument
à la Brouwer. The bounds of sections 5,6,7,8 have been shown to hold for all initial
data on the time interval [τ0, τ0 + Γ] with Γ large. Moreover, as explained in the
proof of Lemma 11.1, they can be immediately propagated to any time τ∗ after a
choice of projection of initial data on the subspace of unstable modes PX(τ0). This
choice is dictated by Lemma 3.6. A continuity argument implies τ∗ = ∞ for this
data, and the conclusions of Theorem 1.1 follow. �

Appendix A. Hardy inequality

Lemma A.1 (Hardy inequality). There holds for α 6= 2− d and r0 > 0:∫
|x|≥r0

|x|α−2|u|2dx ≤ cr0,α‖u‖2L∞(r=r0) +
4

(d− 2 + α)2

∫
|x|≥r0

|x|α|∇u|2dx. (A.1)

Proof. We compute

∇ · (rα−1er) =
1

rd−1
∂r(r

d−1+α−1) = (d− 2 + α)rα−2
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and hence∫
|x|≥r0

|x|α−2u2dx =
1

d− 2 + α

∫
|x|≥r0

u2∇ · (rα−1er)dx

=
1

d− 2 + α

∫
|x|=r0

rα−1u2dσ − 2

d− 2 + α

∫
|x|≥r0

rα−1∂ruudx

≤ cr0‖u‖2L∞(r=r0) +
2

|d− 2 + α|

(∫
|x|≥r0

|x|α−2u2dx

) 1
2
(∫
|x|≥r0

|x|α|∇u|2dx

) 1
2

and (A.1) is proved using Hölder and optimizing the constant. �

Appendix B. Commutator for ∆k

Lemma B.1 (Commutator for ∆k). Let k ≥ 1, then for any two smooth function
V,Φ, there holds:

[∆k, V ]Φ− 2k∇V · ∇∆k−1Φ =
∑

|α|+|β|=2k,|β|≤2k−2

ck,α,β∇αV∇βΦ. (B.1)

where ∇α = ∂α1
1 . . . ∂αdd , |α| = α1 + · · ·+ αd.

Proof. We argue by induction on k. For k = 1:

∆(V Φ)− V∆Φ = 2∇V · ∇Φ.

We assume (B.1) for k and prove k + 1. Indeed,

∆k+1(V Φ) = ∆([∆k, V ]Φ + V∆kΦ)

= ∆

2k∇V · ∇∆k−1Φ +
∑

|α|+|β|=2k,|β|≤2k−2

ck,α,β∇αV∇βΦ + V∆kΦ

 = 2k∇V · ∇∆kΦ

+
∑

|α|+|β|=2k+2,|α|≥1

c̃k,α,β∇αV∇βΦ + 2k∇V · ∇∆kΦ + V∆k+1Φ + 2∇V · ∇∆kΦ

= V∆k+1Φ + 2(k + 1)∇V · ∇∆kΦ +
∑

|α|+|β|=2k+2,|α|≥1

ck+1,α,β∇αV∇βΦ

and (B.1) is proved. �
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