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Abstract

In this thesis, a fundamental study on the breakdown mechanisms of a helical flow is

conducted. The helical flow shares common traits with the wind turbine wake flow.

The simulation data generated by a Direct Numerical Simulation (DNS) of flow

around a rotating blade in a thermally stratified atmosphere were analysed in the

physical space before two modal analysis techniques which are Dynamic Mode De-

composition (DMD) and Proper Orthogonal Decomposition (POD) were employed

to the dataset. The DMD and POD analyses were able to determine the dynamics

of the wake behind the rotating blade, i.e., the dominant mode of the helical flow

structures and the corresponding frequency spectrum. As a result, the identification

of the coherent structures and dynamics of the helical vortices behind the rotating

blade in the stratified atmosphere is presented with the discussion on how the strat-

ified temperature field influenced the deformation and breaking down of the helical

wake structure. Various modes showed different characteristics of the flow fields.

Focuses on the energy of flow; the POD technique could capture large-scale vortex

structures and their organized behaviour, whereas the DMD method focuses on the

frequency, and it represented the perturbation dynamics. Overall, the helical wake

structure behind a rotating blade was proved to be remarkably influenced by the

variation of the thermal stratification in terms of their characteristics, dynamics, and

stability. Among all, the most affected is the one from the weakly stable stratified

atmosphere.
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Chapter 1

Introduction

This first chapter starts with a general introduction of the research background and

the problem statement in Section 1.1, followed by the motivation and objective of

the study in Section 1.2 and Section 1.3, respectively. The chapter continues with

Section 1.4 where the composition of the thesis is presented while in the last section

(refer to Section 1.5), the whole chapter is to be summarized.

1.1 Background

In different kinds of flows, helical vortices are observed and found in nature and

countless industrial applications. In rotating equipment such as propellers, wind

turbines, and so forth they are often developed as tip vortices as depicted by some

real-life events in Fig. 1.1. This kind of flow has been the topic of numerous

theoretical, experimental and numerical studies, for instance, the study in the wake

of helicopters [15], propellers [101] or wind turbines [105] in which a complex system

of vortices is shed possessing the features of general three-dimensional flows. These

flows are discovered to be somewhat easier: they fulfil a helical symmetry at least

locally, i.e., by combining axial translation and rotation, these vortices are invariant.

The vortex sheet of the flow behind the rotor system was created by the lift

distribution along with the blades. A roll-up process sets in immediately after the

vortex sheet is developed due to the interaction between the vortex components,

which in the instant near-wake behind the rotor forms powerful tips and root vor-

1
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tices. The roll-up process is governed in essence by Biot–Savart’s interaction law.

The tip/root vortex system in most cases is unstable, eventually breaking down

and forming small-scale turbulence further downstream owing to multiple instabil-

ity mechanisms. What more complicated is the structure of the vortex sheet down-

stream a rotating wind turbine blade. The wake obtains a typical helical shape due

to both rotational and axial velocity components. It is noted that the trailing vortex

filaments follow a circular path.

Figure 1.1: Helical vortices created from different devices such as from a: (a)

propeller [63]; (b) wing [176]; (c) rotor [27]; and (d) blade [38].

In the context of flow over a turbine blade, the occurrence of flow over a blunt

body was discussed by Matin in her work [104], leading to vortex shedding. Fig.

1.2 shows the development of distinct vortices in near-wake regions to large-scale

structures in the far wake that form through the process of vortex pairing and

stretching [32].

As wakes can be damaging to wind turbine structures and detrimental to their

power generation, it is essential to study the wake development to prevent the afore-

mentioned undesirable wake impacts. For instance, smoke released from the end of a

test blade in Fig. 1.1(d) demonstrates a horizontal-axis wind turbine helical pattern
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Figure 1.2: Evolution of a Wind Turbine Wake. Image is taken from [32].

of a tip vortex. Like air plane wings, wind turbine blades generate a vortex in their

wake, and the vortices from each blade can interact downstream. These intricate

wakes complicate wind turbine placement for wind farms. An example of an offshore

wind farm provided in Fig. 1.3, where the reader can see how the wind turbines

were positioned in the wind farm.

Figure 1.3: World’s Largest Offshore Wind Farm, Walney Extension covering an

impressive 145 sq km with 87 turbines from MHI Vestas and Siemens Gamesa. It

is located in the Irish Sea that is situated near the Walney Island, Cumbria. Image

from an article written by K. Vyas in [84].
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A downstream turbine has higher fatigue loads than the upstream neighbour,

and this explained its decreased power output. As illustrated in Fig. 1.2, a decrease

in momentum happens once the flow moves through the turbine rotor, causing a

region of momentum deficit in the wake. This results in a shear layer that mixes

high-velocity components outside the wake region with the-low velocity components

of the deficit region. As the wake axially progresses, it is expanding. The mixing

process generates turbulent eddies resulting in the wake recovery or wake recharging

[19]. Higher turbulence intensity improves the effectiveness of mixing, reducing

the distance of wake recovery. Such level, however, leads to blade fatigue in the

downstream turbine, thereby increasing maintenance costs. That is to say, the

downstream turbine generates less energy and will wear out sooner. In response

to this problem, many researchers visualize, measure, and simulate turbine wakes

and their interactions to find the course of actions to maximize the wind power

production.

Therefore, it is essential to have a thorough knowledge of wind turbine wakes

and, in particular, a better understanding of the well-known but less well-understood

wake-meandering phenomenon that causes the wake to move as a whole in both

horizontal and vertical directions as it is conveyed downstream, see for instance Fig.

1.4. This wake oscillatory movement is crucial for downstream turbine loading as

it increases fatigue loads and especially yaw loads on turbines as the wake drifts in

and out of the rotor planes of downstream turbines [104,112]. Meandering can also

reduce the wake’s overall deficit to eventually ease power losses [19]. Early wake

meandering study has shown that meandering has an important effect on reducing

the magnitude of wake deficits [56].

Over the past century, much of fluid dynamics studies have shifted away from the

growth of statistical models, focusing on identifying and describing the dynamics of

so-called coherent structures. While a number of authors have suggested their own

definitions, there is no fixed definition. Hussain first defined a coherent structure as

"a connected, large-scale turbulent fluid mass with phase-correlated vorticity over

its spatial extent” in [5]. More recently, Adrian & Marusic in their works described

the coherent structures as coherent motions of individual entities, that contribute
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Figure 1.4: Far-Wake Meandering, according to [178].

significantly, but are not solely spatially consistent, to mean flow and momentum

fluxes. While a universal definition may not yet exist, it is agreed that coherent

structures are spatially and temporally coherent and are the construction blocks of

turbulent flows [142,143].

There are several methods in fluid mechanics to identify these coherent struc-

tures. Some of them are based on the identification of invariants of the velocity gradi-

ent tensor [5,53,121], which is defined in terms of the velocity field spatial derivatives.

In this context, the swirling strength [76], Q-criterion, and λ2-criterion [61] are some

of the most common methods for identifying the vortical structure. Section 4.2 of

Chapter 4 gives detailed elaboration on the mathematical expressions of these crite-

ria. Other alternative that can be found is Direct Lyapunov Exponents (DLE), which

can be used to identify the Lagrangian coherent structures [45, 95]. At every point

in space, in the DLE method, this scalar is a function of the separation rate of adja-

cent particle trajectories initialized near that point. More specifically, if x(t,x0, t0)

denotes the position of a particle at time t, which started at x0 at the time of t0, the

expansion coefficient σT at any finite integration time T , is defined as the square of

the largest singular value of the deformation gradient ∂x(t0 + T,x0, t0)/∂x0:

σT (x0, t0) = λmax

([
∂x(t0 + T,x0, t, 0)

∂x0

]T [
∂x(t0 + T,x0, t, 0)

∂x0

])
(1.1.1)
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where λmax signifies the maximum eigenvalue. The DLE field is then defined as

DLET (x0, t0) =
1

2T
log σT (x0, t0) (1.1.2)

Since in the definition of σT , the maximum eigenvalue is used, direction informa-

tion in DLET (x0, t0) does not retain. If there is a large amount of expansion in one

direction, even if there is compression in all other directions, a point x0 will have a

high DLE value.

Most of these techniques enable instantaneous vortical structures to be identi-

fied, allowing the monitoring and extraction of significant trajectories and lifetime

features. These methods, however, are based only on instantaneous spatial statistics

and do not take the temporal evolution of the coherent structures into consideration.

An alternative to these methods is based on identifying the structures that enu-

merate the most statistically to the signal variance under evaluation; these methods

are referred to as modal decomposition techniques. In simple words, modal de-

composition technique is a method in which the flow system can be developed as an

expansion of modes of the structure and subsequently extract its coherent structure.

The Proper Orthogonal Decomposition, POD, is a classical approach to fluid me-

chanics [64]. In the case of a velocity signal, the POD technique can identify those

flow structures that most contributed to the turbulent kinetic energy, revealing their

spatial structure (POD modes) and temporal dynamics (POD coefficients). Even

so, as Schmid et al. noted in [129]; one restriction of the POD method is that it

assumes that the turbulent processes are linear, this is usually met by the dynamics

of large-scale constructions, but is usually not true in the global analysis of lower

turbulent field scales. The Dynamic Mode Decomposition, DMD [25, 129], is a re-

cent alternative that assumes temporal orthogonality, distinct from the POD, which

assumes a spatial one. DMD makes it possible to identify coherent structures in a

highly non-linear turbulent mechanism better, but one limitation is that it can not

rank the resulting modes in terms of their contribution to a certain magnitude, as

the POD does with the variance. Although DMD may give the key to describe co-

herent structures of temporal significance, it has only been effectively implemented

to highly theoretical works [60].
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1.2 Motivation

The motivation of this research is to understand the basic physics of helical wake

in the thermally stratified field, taking the wind turbine as an application. Remark

that the Reynolds number of the present study is much lower compared to the real-

life wind turbine cases. This is due to the drawbacks of Direct Numerical Simulation

(DNS - a method used in this study to model turbulent flows), which causes it to

suffer from the overall computational cost, thus limiting practical applications of

turbulent flows to small Reynolds numbers. The computing resources required by a

DNS will surpass the capability of the most powerful computers currently available

for the Reynolds numbers encountered in most industrial applications. Nonetheless,

DNS is a useful tool in fundamental turbulence research. Through DNS, "numeri-

cal experiments" can be conducted and extract from them the information that is

difficult or impossible to obtain in the laboratory, thereby enabling a better under-

standing of turbulence physics. Therefore, this fundamental study is essential before

one can enhance the positioning of offshore wind farms by avoiding the hazards im-

posed by wake impacts on energy production. It is, therefore a fundamental case

that shares common traits with the wind turbine flows was studied. Most of the past

research was carried out with designs of wind turbines positioned in flows with uni-

form incoming flow velocity and comparatively low turbulence intensity. Anyhow,

in reality, wind turbines always operate along the elevation direction in atmospheric

boundary layer winds with significant wind shear and turbulence intensity. How-

ever, (owing to some restrictions) the present study considers only the atmospheric

boundary layer winds with uniform incoming flow velocity and low turbulence.

In this present study, a fundamental study on the evolution of helical wake sta-

bility behind a rotating blade in the thermally stratified atmosphere was carried out

in order to see the influence of temperature effects on the wake flow. Afterwards,

two modal analysis techniques, which are DMD and POD, were employed to that

three-dimensional unsteady fluid flow to identify the coherent structure of the flow

from different atmospheric stability conditions. While the real-life wind turbine has

three blades, this study considered just a single blade due to the high computa-

tional cost. Even so, this is good enough for the fundamental study of the real wind
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turbine. Acknowledging the differences, strengths, and weakness of both methods

as mentioned in [20] and will be as well discussed in further details in Section 3.4

of this thesis, this work is not about comparing these two methods like what some

researchers did [44,135,169], but rather about collecting all the important informa-

tion from both methods. At the end of this study, the identification of the coherent

structures and the dynamics of the helical vortices behind a rotating blade in the

thermally stratified atmosphere are expected to be able to be presented with the

discussion on how the stratified temperature field can effects the evolution of the

helical vortices wake structure.

1.3 Objectives

The main question of this research is how much the helical wake flow behind wind

turbine can be affected in a different thermally stratified atmosphere. This sub-

sequently motivate the researcher to analyse the characteristics of helical flow in

different stability of the atmospheric stratification conditions and hence determine

the dynamics of the wake behind a rotating blade as a fundamental case which

shares a common traits with the wind turbine flows, e.g. the energetic/dominant

mode of the helical flow structures and the corresponding frequency spectrum from

the data generated by a Direct Numerical Simulation with different temperature

gradient fields at various Reynolds number.

In order to accomplish the ultimate goal, the analyses on DNS datasets are

carried out, and these are listed as the objectives of the present study. The objectives

to be performed are:

• to carry out a fundamental study on the evolution of helical wake stability

behind a rotating blade in a thermally stratified atmosphere.

• to investigate the helical wake structure behind a rotating blade under the

influence of temperature effects.

• to look into a fundamental study of the helical wake structure behind a rotating

blade under the impact of Reynolds number effects.
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1.4 Structure of the Thesis

This thesis provides the analysis of the helical wake vortices measured behind a

rotating blade in the stratified atmosphere, including the effect of the temperature

gradients and Reynolds numbers on the helical structures.

The thesis will be organized as follows:

In Chapter 1, the problem statement was introduced before the motivation of

working on this research, the objectives and the scope of the thesis were stated.

In Chapter 2, the literature review on few subjects relating to the aims of the

thesis was described and overviewed.

In Chapter 3, the numerical and computational in which how the data was con-

structed was firstly introduced. Next, the theory of both modal analysis techniques

used in this work (DMD and POD) will be described in detail. Furthermore, the

algorithms of both techniques will be presented, as well as their strengths and weak-

nesses.

In Chapter 4, the analyses of all cases where the helical wake flow behind the

rotating blade from different atmosphere stratification conditions; weakly, neutral,

and strongly stable were performed at Re = 1000, and Re = 2000 were presented.

In Chapter 5, the POD method will be employed to all cases of different at-

mospheric conditions at Re = 1000 and Re = 2000. The correlation between the

result from POD (POD modes from velocity POD) and PODT (POD modes from

temperature POD) modes will also be put into the discussion.

In Chapter 6, the DMD method will be applied to the same datasets as in

Chapter 5, provided together with the analysis and discussion of the results. The

reciprocity between DMD (DMD modes from velocity DMD) and DMDT (DMD

modes from temperature DMD) modes was to be compared to the POD and PODT

modes from the previous chapter.

Finally in Chapter 7, the conclusion made from the whole work will be given,

and some recommendation on the future study that has the potential to be explored

will be listed.
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1.5 Chapter Summary

The very first chapter of this thesis was about a general introduction of the research

in which the background and the problem statement of this study were provided.

The background talked about the helical wake, what meandering, the importance of

understanding helical wake instability behind a wind turbine, and the motivation of

the study. The objectives were listed before the structure of this thesis was finally

presented. The continuation chapter is all about the review of previous research

discussed on related questions to this study.



Chapter 2

Literature Review

This report continues with a chapter that provides a number of comprehensive sum-

mary of previous research on topics related to this study. A review of prominent

work for simulating wind farm wakes and a review of several studies done on the

helical wake flow is included in Section 2.1 and Section 2.2, respectively. Another

component of the research is to investigate the effect of temperature stratification

on general flow instability. Section 2.3 provides the prior study regarding the wake

in a thermally stratified atmosphere. Also, previous works in two considered modal

analysis techniques are included in Section 2.4. The last section of this chapter,

Section 2.5) presents a summary of the whole chapter.

2.1 Experimental Study on the Helical Wake

The fact that for a downstream wind turbine, the lower energy output, the enhanced

unsteady loads, and the noise produced can be immediately connected with the

turbine blades passing through the streamwise vortices generated by the upstream

wind turbine. Therefore, as reviewed in [1, 19, 50, 92], wind turbine wakes were the

topic of comprehensive research using both experimental and numerical methods.

Helical vortex wake flow was experimentally studied by few researchers such

as Felli et al. [101] studied the spatial development of marine propeller wakes for

two to four blades: disturbance growth resulted in vortex groupings and eventually

dissipation of the coherent structures. This study disclosed the existence of the

11
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hub vortex at the axis that plays a part in the process of instability. Bolnot et

al. [47] and Quaranta et al. [49], on the other hand, used a water channel where

helical wakes were closely controlled by one- and two-bladed rotors. Modification of

the rotor angular velocity or a tiny asymmetry between the two blades compelled

instability modes. The temporal growth rates measured as a function of the imposed

wavelength were discovered to agree with the concept of the filament.

In recent decades, a number of wind-tunnel experiments have been performed

to investigate the freestream (uniform and nearly laminar) airflow around wind tur-

bines. Vermeer et al. [92] offer a comprehensive review of this literature. Wind

tunnel studies have also been conducted over the past few years to study the in-

teraction of turbulent boundary layer flows with wind turbines or farms. Cal et

al. [136] performed an observational wind tunnel analysis considering the horizon-

tally distributed boundary layer structure over an array of wind turbine models. The

research focuses on the large-scale structure in conjunction with the boundary layer.

At this point, the variables of interest are the horizontally averaged velocities and,

Reynolds stresses. It is claimed that dispersive stresses (stresses associated with

mean velocity spatial variations), in theory, can also be responsible for the transfers

of momentum and kinetic energy [99]. Noted that the dispersive stress arises due to

correlations among the spatially non-homogeneous horizontal and vertical mean ve-

locities. The results of the measurement in the wind tunnel show that the dispersive

stresses are fairly small relative to the stresses of Reynolds, although it may lead to

a wake-up recovery in the near-wake region this is cancelled mostly by an opposite

behaviour in the front region of the flow. The horizontally average structure of the

flow can be understood using momentum theory, in the sense that consistency exists

between the friction velocities prevalent above and below the wind turbine region

with the turbine thrust coefficient.

A detailed wind tunnel experiment was proposed by Bastankhah and Porté [96]

to research the interaction of a turbulent boundary layer with a wind turbine work-

ing under various tip-speed ratios and yaw angles. In the recirculating wind tunnel,

a three-bladed horizontal-axis wind turbine was mounted in a neutrally stratified

boundary layer. In addition, a high-resolution particle object velocimetry (PIV)
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test to quantify the flow in the upwind, near-wake, and far-wake regions was carried

out. Using both instantaneous and phase-averaged vorticity fields, the evolution

of tip and root vortices was studied for the near-wake region. The results suggest

that it is impossible to determine the vortex breakdown location on the basis of

phase-averaged statistics, particularly for tip vortices under turbulent conditions of

inflow. Moreover, the near-wake region measurements indicate a complex velocity

distribution with a wake centre speed-up the region, especially for higher tip-speed

ratios. Particular emphasis was placed on studying the characteristics of large tur-

bulent structures in the boundary layer and their interaction with wind turbines

to elucidate the meandering tendency of far wakes. Although these structures are

elongated in the direction of the stream, their cross-sections are found to have a size

similar to the area of the rotor, so that the presence of the turbine can impact them.

Furthermore, the study of spatial coherence in turbine wakes reveals that due to

the effect of wake meandering, any statistics based on streamwise velocity fluctua-

tions can not provide reliable information on the size of large turbulent structures

in turbine wakes. The findings also suggest that wake meandering magnitude is not

contingent on the conditions of turbine-operating.

Hyvárinen et al. [3] performed an experimental analysis of the wake propagation

behind one or two aligned wind turbines on flat and hilly terrains with homogeneous

and sheared turbulent inflow conditions. The wind turbine design scale was about

1000 times smaller than full-size turbines, indicating that the findings should be

extrapolated to real-field scenarios only qualitatively. Wind tunnel measurements

are made using stereoscopic particle velocimetry to describe the velocity of flow in

planes perpendicular to the direction of flow. As the wakes dispersed downstream of

the turbines, they broke down their tip-vortex regions and became less distinct. At

the same time, the wakes seemed to become more prone to the perturbations of the

vertical flow generated by the hills, leading to greater deflections of the wake. Such

studies also provided valuable information about the flow structure of the turbine

wakes in boundary-layer flows, showing significant variations in freestream flows.

Most of the experimental results on the near-wake vortices exposed in the lit-

erature are obtained from small-scale experimental studies conducted in controlled
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environments. There are many explanations for this. On one side, field experiments

with full-scale wind turbines give invaluable data, but difficult tasks are due to the

highly chaotic nature of the inflow conditions, clear exposure of the physical phe-

nomena, and analysis of the underlying mechanisms. On the other side, wind tunnel

experiments on large-scale rotors would lead to the most appropriate outcomes, but

there are only a few documented sources in the literature owing to the economic

costs engaged in such projects [51, 160]; refer [7, 92] for comprehensive reviews as

reported by Vermeer et al. and Nemes, respectively. The laboratory experiments,

while confined to a lower range of Reynolds numbers, provide a streamlined but

beneficial approach that can assist elucidate the rather complex wake dynamics.

However, covering large ranges of helical pitches, core sizes, and Reynolds num-

bers is hard in experiments. This can be done more readily using a numerical ap-

proach. Hence, simulation models are increasingly needed to include the unsteady

aerodynamic loads and the aeroelastic response of the wind-turbine structures [105].

A number of distinct models are used today, ranging from fast and simple blade el-

ement momentum techniques to computational fluid dynamics [70,72].

2.2 The Study of Helical Wake through Numerical

Computations

Numerical simulations are an efficient and complementary tool for understanding

rotor wake aerodynamics. They are split primarily into two categories. The numer-

ical studies can be carried out in the computational domain with or without the

presence of the rotor. The former is mainly focused on engineering problems such

as aerodynamic rotor crafting, aero-mechanical efficiency, or noise reduction. An

instance of this kind of simulation is presented in Fig. 2.1, where the purple helical

vortices are embedded in a small-scale green-coloured turbulent flow. While giving

insight into realistic flow dynamics as much as possible, it continues hard to separate

the distinct physical phenomena clearly. The computational cost is also improved

with the rotor model in the computational domain owing to the requirement that

the boundary layer is resolved, e.g., Fig. 2.1 was produced using 1,536 cores with a
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supercomputer.

Figure 2.1: Snapshot of a Rotor Model and its Near Wake as plotted by

Selçuk [149].

Several techniques, such as the actuator disk method (ADM) [71] or the actuator

line method (ALM) [153], were used to solve the latter difficulty. These techniques

depict rotors distributed on a permeable disk or on lines in a flow domain by equal

forces. Such methods have been applied to predict a single wind turbine wake but

also to predict a whole wind farm’s power extraction [81]. Martínez et al. [85]

compared the performance of actuator disk and actuator line models in predicting

wind turbine power production and wake velocity deficits. The schematic of the

ALM and ADM with an example of the wake and vortex system created by both

models were nicely depicted by [85] and shown in Fig. 2.2.

The turbulence produced by wind turbine wakes due mainly to the presence

of the distinct tip and root vortices. The structured tip/root vortex system is

unstable in most cases and eventually breaks down and forms chaotic small-scale

turbulent structures. Remember that if a wind turbine is in the wake, consisting

of the stable tip and root vortices, the loading of fatigue is more extreme than if

the tip vortices were already broken down by instability mechanisms [70]. It is,
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Figure 2.2: (Above) Schematic of an: ALM (left) and ADM (right) turbine model

as developed by Martínez et al. [85]. (Below) Simulation of ALM on the left and

ADM on the right where the blue isosurface is of the second invariant of the

velocity-gradient tensor. Note that the contours are of streamwise velocity.

therefore, important to understand the physical nature of the vortices and their

dynamics in the wake of a turbine for the optimum design of a wind farm. One

of the first to suggest a design capable of representing the dominant features of a

propeller in 1912 was Joukowski [113]. The proposed model consisted essentially

of two revolving horseshoe vortices representing the tip vortices and straight root

vortices. The study by Okulov & Sørensen [172] in 2007 showed that the far wake

of the model is completely unstable.

Depending on the number of blades, the wake behind rotors such as propellers,

wind turbines, and helicopter rotors can be treated as single or multiple helical vor-

tices. The early study of a twisted helix dates back to work by Widnall [151] in

which the theoretical framework was given to study the linear stability of a single

helical vortex for inviscid flows. Widnall was among the pioneers proving the exis-
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tence of at least three different mechanisms of instability and showed that helical

vortices of finite core size are unstable to small sinusoidal displacements, particu-

larly as the pitch of the helix becomes small. The pitch of the helix is defined as

the displacement of one complete helix turn, measured parallel to the helix axis.

A short-wave instability mechanism can occur in the presence of disturbances with

a large number of waves for a relatively large helix pitch, and it may most likely

be found in all curved filaments. In addition, if the (normalized) wave-number of

the perturbations drops to less than unity, long-wave instability can occur. The

adjacent filament begins to interact strongly when the pitch of the helix decreases

beyond a certain threshold, which constitutes the underlying mechanism for mutual

inductance instability. Felli et al. [101] performed extensive research on propeller

wakes and noticed the traces in the experiments of all three forms of instability

mechanisms.

Gupta & Loewy [16] and Bhagwat & Leishman [102] studied the stability of

small perturbations in helical vortex filaments. In static thrust or axial flight mode,

the vortices mimic a helicopter rotor or propeller. A free vortex wake calculation

was used to classify the unstable modes in the wake structure. Results are reported

as there are neutrally stable (zero growth rate) and unstable (positive growth rate)

conditions for all perturbation wave-numbers. A maximum growth rate has been

recorded for wave-number disturbance equal to half-integer multiples of the number

of blades, e.g., K = Nb(i + 1/2) for all integer i where K is the wave-number

disturbance and Nb is the blade number. Remember that the above experiments

were carried out using quantitative methods where the viscosity effect was ignored.

A study about the stability of the tip vortices of a wind turbine was carried out

by Ivanell et al. [154] using computational fluid dynamics (CFD) in combination

with the ALM. The presence of the blades is implemented as a body force in the

ALM developed by Sørensen & Shen [72], and the flow field around the blades is cal-

culated by solving the Navier–Stokes equations using large-eddy simulations (LES).

Subsequently, the resulting wake was perturbed by imposing a harmonic excitation

near the tip of the blade. Analysis of the flow field that the instability is dispersive

and that spatial growth occurs for specific frequencies and spatial structures with
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wave-numbers equal to half-integer multiples of the number of blades, as previously

discovered in inviscid investigations similar to [16,72] and discussed above.

A few distinct analytical mean flow models were created using various funda-

mental approximations [56, 117, 152] to describe the mean wake field. Jensen [117]

made a simple model for the wake behind a wind generator. Before being used in

an example where the output from a circular cluster of ten wind generators was

measured, the model was compared to some full-scale experimental results. The

simple wake model was then expanded to deal with a number of aligned generators,

and an example was finally given where it was possible to calculate the output from

a linear cluster of ten generators. Meanwhile, Ainslie [56] presented a single wake

model that can be used to measure the wake velocity field behind a wind turbine,

taking into account all possible meteorological influences. The model is relatively

simple, and on a desktop machine, the equations can be solved speedily. Conse-

quently, it is proposed that the model can be used to provide accurate estimates of

wake deficits for use in wind farms planning and design. It is, therefore, proposed

that the model can be used to provide reliable estimates of wake deficits for use in

wind farms planning and design.

Frandsen et al. [152] proposed an empirical model for the wind speed deficit

in wind farms, including both small wind farms and large-scale wind farms. The

model handles a regular array of geometry with straight rows of wind turbines and

equidistant spacing between units in each row and the equidistant spacing between

rows, as is often the need for offshore wind farms. The model accurately and reliably

incorporates the flow characteristics of very large wind farms (with sufficient exper-

imental calibration). Nevertheless, these models do not include the dynamic wake

elements normally expected to be necessary for the loads and power generation of a

wake-flow turbine.

When the turbulence length scales are larger than the wake width based on

the basic wake meandering model, wake meandering, which is defined as random

oscillation, is generated and powered [35, 41, 43]. It can be used to assess power

generation and the loading of wind turbines. The importance of wake meandering

study lies in its potential for application in optimizing the topology and operation of



2.2. The Study of Helical Wake through Numerical Computations 19

wind farms as well as in optimizing wind turbines for wind farms applications [41].

Considering the meandering of the velocity deficit is an original move to include

dynamical behaviour. This is normally performed by assuming that the meander-

ing is primarily triggered by the large-scale dynamics of the atmospheric boundary

layer (ABL) [40, 41, 62]. The wake meandering model is said to be based on a fun-

damental assumption that it is possible to model the transportation of wakes in the

atmospheric boundary layer by considering wakes to serve as passive tracers powered

by large-scale turbulence structures. Consequently, the simulation of the meander-

ing process involves considerations of an appropriate description of the stochastic

transport media "carrier" and an appropriate interpretation of the cut-off frequency

defining large-scale turbulence structures in this context [40].

These procedures, however, do not consider the deficit structure temporal dy-

namics that can lead to very elevated loads. Besides, it is not entirely clear whether

the meandering can simply be dealt with as a passive tracer driven by the dynam-

ics of the large scale. By using LES with actuator disk or actuator line models,

it should be feasible to portray the turbines in more detail [4, 20, 99]. Regardless

of their simplifications, these simulations continue to experience the ill effects of

rather long computational times that severely restrict their efficiency for practical

purposes such as optimizing the wind farm. Developing computationally effective

wake models, including dynamic behaviour, is crucial in this manner.

It is possible to divide the wake behind a wind turbine into the near wake region

and the far wake region [92]. But, according to the description of the wake behaviour

by Crespo et al. [1], the wake of a wind turbine can be separated into three regions:

a near wake region, a far wake region, and a transition region in-between. Fig. 2.3

shows the development of the vertical velocity profile downstream a wind turbine.

The area is divided into four regions in the direction of flow: the (uninterrupted)

free stream region upstream of the rotor and the three wake regions. The picture

shows a velocity profile for each region. The near wake region ends at about two

rotor diameters downstream of the rotor, and the far wake begins downstream at

about 4-5 rotor diameters.

The near wake region begins at the rotor surface where means of a pressure drop
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Figure 2.3: Development of the vertical velocity profile downstream a wind turbine

as depicted by [34].

over the rotor plane extracted wind energy. The cylindrical shear layer separates the

slow-moving air inside the wake from the air outside the wake. A helical direction

is accompanied by vortices inside the shear layer that are expelled from the turbine

blades. Inside the wake, the velocity deficit increases as a result of the increasing

pressure inside the wake until this pressure reaches the external flow pressure. As a

result of the increasing velocity deficit, the wake expands. Inside the shear layer, the

stable structure of helical vortices creates only a small amount of turbulence. The

thickness of the shear layer grows slowly due to limited turbulent diffusion within

the shear layer. In [36], PIV measurements showed that the influence of individual

blades on axial velocity disappears beyond a distance of one rotor diameter while

the tip vortices remain for a much longer time.

The tip vortices begin to break down at the end of the near wake region and

produce high turbulence rates. Due to the increased turbulent diffusion, the thick-

ness of the shear layer increases more rapidly. The near wake stops when the shear

layer hits the wake axis, and the transition region begins. The transition region

ends where the wake is fully developed with self-similar distribution profiles of the

velocity deficit and turbulence intensity.

The wake has fully developed in the far wake area, and there is no longer the

shear layer between the wake and the outer flow (see Fig. 2.3). Also, the aerody-

namic properties of the rotors are no longer apparent, which makes it somewhat
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easier to model the far wake than the near wake. There is often a clear distinction

between near and far wake models in engineering models used for wind farm energy

predictions, whereas in reality, the regions are obviously related. Furthermore, kine-

matic far-wake models isolate the effects of wind speed deficit and wake turbulence

strength while these phenomena are connected in reality.

The rotor shape, amount of blades, blade aerodynamics (attached or stalled

flows), and 3D effects have a strong effect on the near wake [48]. The helical structure

of tip vortices, which are shed from the blades, is another strong feature of the near

wake. These vortices have been discovered to have a significant impact on the

turbulent flow structures in the wake [48] and also have a powerful effect on the

wind turbine rotor behaviour as a whole [92]. The vortices were also discovered to

be a cause of noise generation and blade vibrations [36]. The far wake is the wake

component where the real shape of the rotor is less essential. Turbulence is the

primary contributor to the flow regime in the far wake region where in large-scale

and small-scale motions, called eddies, has developed [181]. Eddies are rotating flow

swells that are present in the far wake.

2.3 Wakes in Thermally Stratified Atmosphere Flows

Whether wind turbines, propellers, or helicopter rotors, the blades of rotor systems

shed vortices into the wake that advect downstream and are characterized by helical

paths. In wind energy [172], aviation [37, 102], and marine industries [101], the

evolution and breakdown dynamics of these vortical wakes are not fully grasped and

remain an important question. In the field of vortex dynamics, it is also of basic

concern [8, 16, 151,171,172].

Widnall in [151] first predicted the stability features of helical vortices. The

author performed the linear stability analysis of a helical vortex filament with respect

to sinusoidal perturbations and found that the system was subject to three types of

unstable mode: a long-wavelength mode, a mutual-inductance mode, and a short-

wavelength mode. The work then was extended by Gupta and Loewy [16] to several

helical vortices forming a regular array. The modes analogous to those obtained for
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one single vortex and additional ones arising from the mutual interaction between

distinct vortices were found from the study. It is noteworthy that in the limit of

infinite wavelengths, these latter modes are compatible with the helical symmetry

constraint. Okulov [171] focused specifically on these helically symmetrical modes in

arrays of N vortices with circular cores and constant vorticity. The author showed

that such systems are unstable when the helical pitch is smaller than a threshold

value. Later, in order to study the more realistic case of rotor wakes, Okulov and

Sørensen [172] investigated the effect of a central hub vortex and found that the

stability of such flows strongly depends on the vorticity profile in the core and that

the central hub has a destabilizing effect.

These helical vortices play a significant part in the growth of the wake directly

downstream of the rotor (the near-wake) in the case of wind turbines, and their

evolution and breakdown dynamics impact the features of the resulting far-wake

downstream rotor diameter. This has immediate consequences in wind farms where

wake interaction with downstream turbines can lead to dynamic blade loading and

a drop in the efficiency of wind farms. Such industrial difficulties provide the moti-

vation to study these structures [108].

While worthwhile information has been discovered by these past research, it

should be observed that most of these experimental research has been performed

with models of wind turbines installed in air or water flows with homogeneous,

uniform incoming flow rate and comparatively low turbulence intensity. In fact,

however, most wind turbines work along vertical paths in atmospheric boundary

layer winds with important differences in mean wind speed as well as turbulence

intensity concentrations. The impacts on the dynamic wind loads of the important

differences in the mean wind speed and turbulence intensity levels of the atmospheric

boundary layer winds; and the evolution of the unsteady vortex and turbulent flow

structures in the wake of wind turbines were not fully studied.

Turbulence is produced primarily by vertical shear during the neutrally strati-

fied periods, while thermally driven buoyancy plays a significant part in turbulence

generation during the unstable stratified periods [139] (see Fig. 2.4). As the ground

surface heats up, the near-surface flow warms with it, and buoyancy makes a ben-
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eficial contribution to the energy budget, thereby improving vertical mixing and

turbulence kinetic energy (TKE) output. In contrast, turbulence is primarily dissi-

pated by buoyancy during stable stratification periods, resulting in a sharp reduction

in a mixing [73, 88, 94]. As a result, the wind farm’s performance relies heavily on

atmospheric stratification, see [21, 42, 82, 93, 167]. Thus, understanding the inter-

action of wind farms with the time-changing atmospheric thermal stratification is

critical to the effective growth of wind energy resources.

Figure 2.4: Boundary-layer Structure during a Diurnal Cycle in a High-Pressure

Region over Land as illustrated by [139].

The boundary layer is not frozen in time but instead changes dramatically during

the course of the day. It consists of a mixed layer stirred by solar heating of the

surface and convection of warm moist air, which sporadically emerges from place-to-

place, and time-to-time, mixing the air within the boundary layer as a consequence.

It takes about 10 to 20 minutes for this convective stirring to go from bottom to

top. As the air bubbles up, it mixes with the surrounding air and the top air from

the free troposphere, producing an entrainment zone where the clouds are located.

As the sun sets, the surface solar heating, and the convection and associated

turbulent eddies cease. Air from the surface no longer mixes with air throughout

the convective boundary layer, and the air mixed during the day remains in a layer

called the residual layer above the much lower stable boundary layer at night. Within

this nocturnal boundary layer, any gaseous or particle emissions from the surface

are mixed. Because convection stops at night, the friction caused by convection no
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longer affects the winds in the residual layer, and they accelerate in the presence

of a gradient of horizontal pressure. The residual layer winds are thus accelerating,

blowing harder across the top of the more stagnant nocturnal boundary layer, and

shear is forming. This shearing is volatile and produces turbulence that mixes the

boundary layer air and the remaining layer air close to the interface so that the

nocturnal boundary layer grows slightly during the night.

The sun returns to heat the surface in the morning and begin convection driving

and mixing again. This convection bubbles up in the residual layer, bumping in

and bringing in air. The convection has more energy as solar heating increases

and can grow higher and induce more air from the residual layer. Ultimately, the

convection-driven air reaches its highest energy level, and this peak energy limits

how high the boundary layer will develop into the above stable free troposphere.

Fig. 2.5 is referred to for this whole explanation.

Figure 2.5: Conceptualization of wind farm turbulent mixing during: daytime

(left) and night time (right). Image is taken from [100].

Hu et al. in [48] conducted an experimental study to characterize the dynamic

wind loads and evolution of the unsteady vortex structures in the near wake of a

horizontal axis wind turbine (HAWT) model installed in an atmospheric boundary

layer wind. The wandering of the tip vortices was concluded to be strongly linked

to the elevated turbulence levels of the atmospheric boundary layer winds as well

as the wake meandering phenomena reported by Bingöl et al. [35] and Larsen et

al. [41].

Besides, a large bluff body in a stable layer was then regarded by Haywood &

Sescu [74], and findings were recorded and debated composed of vertical profiles
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of turbulent momentum, thermal flux, and turbulence intensity. The variation in

thermal stratification was discovered to have only a slight impact on all statistical

quantities, but in comparison to the smaller wind velocity, the bigger wind velocity

substantially influenced all vertical profiles. Contrary to the slight impact seen in

statistical quantities, differences in heat stratification considerably influenced the

distribution of helical modes obtained from POD analysis at the highest levels. The

profiles in the wake of the turbulence intensity and the vertical turbulent momentum

flux were only slightly affected by the thermal stratification variance (refer to Fig.

2.6(a) & Fig. 2.6(b), respectively). This can be interpreted as the rise in thermal

stratification, which concentrates the turbulent energy in the higher energy levels,

manifesting as more helical modes at higher energy levels, thus leaving the overall

statistics largely unaffected. Through looking at Fig. 2.6(c), on the other hand,

maintaining constant wind velocity to increase thermal stratification and hence,

increased the relative energy levels of the POD modes.

Abkar & Porté-Agel [93] investigated the impact of thermal stability on a wind

turbine wake. The spatial distribution of the mean velocity and wake meandering

downstream of the turbine are highly correlated with the stability of the atmosphere.

Under the unstable situation, the wake’s development rate is about 2.4 times that

of the stable one. Here, in the context of power extraction, the different conditions

that conform to the turbulence kinetic energy budget are regarded.

2.4 Modal Analysis Techniques

Complex flows such as separation, shear layer, and turbulence always show dynamic

behaviour in both space and time across a wide range of scales. Due to the diversity

of these scales and their interactions, describing the fundamental fluid dynamics is

a difficult task. Looking for and extracting physically important features or modes

as a first step in the analysis has become common practice in the analysis of flows.

In practice, decomposition of the entire flow field into modes can be performed

to capture and recognize the dominant features as interpreters of dominant flow

structures. The mathematical derivation of the two model decomposition techniques
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Figure 2.6: Vertical Distribution, z/hbox of (a) turbulence intensity,
√
〈u′2〉/Ug, (b)

vertical turbulent momentum flux, 〈u′, w′〉/U2
g ; measured every two box lengths

from the rear of the body with wind velocity, Ug = 18m/s. ∆T = 0.2K represented

by - - - while — represents ∆T = 0.4K. (c) The first twenty POD mode energies

normalized with the first mode energy. The blue and red solid lines are

representative of ∆T = 0.2K and ∆T = 0.4K for Ug = 18m/s. Remark that the

two dashed lines were for Ug = 8m/s and will not be described in this discussion.

Figure courtesy by [74].
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that will be used widely in this analysis will be presented in Section 3.4 of the

subsequent chapter.

Many mathematical methods have been suggested over the past two centuries

for the purpose of coherent structures identification. Taira K. et al. [83] provided

a short summary of several well-established methods, outlined some of their works

and analyses that have emerged in recent decades [26, 67, 68, 123, 127, 174]. Table

2.1 is a table constructed by Taira K. et al. in [83], where all the reviewed modal

decomposition techniques were listed together with their general description. Above

all, POD and DMD have enjoyed widespread used among all of the techniques.

Beyond the bounds, both POD and DMD methods can be employed to numerical

simulation flow field data and experimental measurements [83].

There are some DMD applications in various flow configurations. For instance,

DMD has been applied in the study of the wake behind a flexible membrane [125],

detonation waves [89], cavity flows [10, 125], and various jets [25, 125, 126, 130].

Schmid [125] used DMD on a number of examples ranging from plane Poiseuille

flow (for validation purposes) to the cavity flow, from wake flow behind a flexi-

ble membrane determined by time-resolved PIV to jet flow between two cylinders.

DMD has proved itself from all the tests as a powerful and effective algorithm for

spatio-temporal coherence structures extraction.

DMD was employed to study the self-excited fluctuations aided by transversely

unstable detonations in the study conducted by Massa et al. [89]. The study focuses

on the stability of the limit cycle solutions and their response to forcing. Floquet

analysis of the unforced conditions reveals that the least stable disturbances are

nearly sub-harmonic with the ratio between global mode frequency and fundamental

frequency λi/ωf = 0.47. This indicates the emergence of period-doubling modes as

the route to chaos observed in larger systems.

Seena & Sung [10] established large-scale vortical structures responsible for self-

sustained oscillations through the use of a DMD of turbulent flow pressure fluctua-

tions over an open cavity. DMD was applied to incompressible turbulent flows over

an open cavity at ReD =3000 and 12000, with upstream turbulence of Reθ =670

and 300, respectively, respectively, given at the inlet. The dynamic modes extracted
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Techniques Inputs General Descriptions

da
ta
-b
as
ed POD

data (L or NL

flow; C&E)

Determines the optimal set of

modes to represent data based

on L2 norm (energy).

Balanced POD

data (L forward

& L adjoint

flow; C)

Gives balancing and adjoint

modes based on input-output

relation (balanced truncation).

DMD
data (L or NL

flow; C&E)

Captures dynamic modes with

associated growth rates and

frequencies; linear approximation

to non-linear dynamics.

op
er
at
or
-b
as
ed Koopman

analysis

theoretical (also

see DMD)

Transforms non-linear dynamics

into linear representation but

with an infinite-dimensional

operator; Koopman modes are

approximated by DMD modes.

Global linear

stability

analysis

L NS operators

& mean flow (C)

Finds linear stability modes

about base flow (i.e., steady

state); assumes small

perturbations about base flow.

Resolvent

analysis

L NS operators

& mean flow (C)

Provides forcing and response

modes based on input-output

analysis with respect to mean

flow; can be applied to turbulent

flow.

Table 2.1: Summary Table of selected Modal Analysis reviewed by [83]. The

considered modal decomposition/analysis techniques for fluid flows where linear

denotes as L, nonlinear (NL), computational (C), experimental (E), and

Navier–Stokes (NS).
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from the thick boundary layer suggested that the upcoming boundary layer struc-

tures and the shear layer structures along the cavity lip line coexisted with coinci-

dent frequency space but with different wave-number space, while structures with

a thin boundary layer displayed complete consistency between modes to generate

self-sustained oscillations. This finding indicates that the hydrodynamic resonances

that gave rise to self-sustained oscillations occurred when the upcoming boundary

layer structures and shear layer structures interacted, not only in frequencies but

also in wave-numbers.

Schmid, in 2011, applied the DMD technique to two different jets. In the case of

visualizations by a passive scalar field, the results from Schlieren pictures of a low-

density helium jet have shown typical modal structures on the jet’s shear layer show-

ing the commonly known scaling of temporal frequencies and spatial wave-numbers

of the associated modal structure. The DMD can clearly distinguish between the

flow fields of a forced and unforced axisymmetric jet when using time-resolved PIV-

data. This difference was reflected in both the temporal spectrum and the spatial

structure of the associated least damped dynamic modes [130]. Later, Schmid [126]

employed the DMD to a series of slow jet flow images entering a quiescent liquid,

showing the identification of dynamically specific coherent structures that play an

important role in characterizing the fluid activity over the time interval analysed. It

was concluded that the DMD has clear advantages over the POD as the former at-

tempts to reflect the prevailing flow characteristics within a temporarily orthogonal

system (i.e., pure frequencies), while the latter is based on a spatially orthogonal

model. For fluid phenomena characterized by distinct frequency bands, it should be

particularly suitable. In conclusion, both studies have been conducted to prove that

DMD is capable of providing experimentalists with a helpful tool for detecting and

quantifying important mechanisms in time-resolved measurements of complex fluid

flow and helping to understand fundamental fluid processes further.

While for POD, it has been applied in the works involving the turbulent jet in

flow [77,148], wake flows [39,55,97,155], turbulent separated flow over an air foil [133]

and open cavity flow [116]. Also, some applications of POD have included stratified

turbulent patches [124], free shear flows [165,166], and boundary layer flows [141].
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Bernero & Fiedler [148] conducted experiments on a round jet in a uniform

counterflow with a PIV. POD analysis was then applied to time series of PIV data

at high-velocity ratios to distinguish a few common trends from a jet’s chaotic

fluctuation in a counter-flow. Later in 2007, a comprehensive instantaneous velocity

field of a cross flow jet was calculated using stereoscopic PIV [77]. The jet emerged

from a turbulent pipe flow that was fully developed and entered a cross flow with a

turbulent boundary layer. The POD analyses of the experimental data found that

the shear-layer vortices are not coupled with the wake vortices dynamics.

Subsonic flow over an open cavity was studied by Murray et al. [116] for five

free-stream Mach numbers ranging from 0.19 to 0.73 by analysing both the surface

pressure and the field of velocity. The implementation of the POD was carried out

separately from each of the different free stream cases on the velocity fields, resulting

in a spatially dependent basis set. The spatial distribution of the first several modes

demonstrated some correlations over the spectrum of free-stream Mach numbers

had been analysed. The similarity in the modes was quantitatively verified using a

similarity parameter, which relies on the orthogonality of the modes. The similarity

in the modes was verified quantitatively using a similarity parameter dependent on

the orthogonality of the modes. The fact that there are so many similar POD modes

from the different free-stream conditions implies that the underlying turbulence

structure is quite similar regardless of the variations in the mean flow recirculation.

Diamessis et al. [124] applied the POD method to two-dimensional vorticity

transects obtained from numerical simulations of the stratified turbulent wake of a

towed sphere at a Reynolds number Re = 5 × 103 and Froude number Fr = 4. In

terms of the relative effect of buoyancy on flow dynamics, POD tends to provide a

normal decomposition of the vorticity field within the wake core. The geometry of

the eigenmodes reveals a vorticity structure that is dominated by buoyancy at the

lowest modes and is increasingly turbulent as the mode index increases.

Gordeyev & Thomas introduced the study of free shear flows in the continuity

papers [165,166], where in the priors of the planar turbulent jet [165], the possibility

of large-scale organized motions in the similarity region was suggested. The large-

scale term has been used to denote a spatial scales of the order of the local jet half-
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width. The application of POD experimentally examined the coherent structure in

the similarity region of the turbulent planar plane. The POD results suggest that

the flow supports a planar structure aligned in the spanwise direction as well as an

essentially three-dimensional structure with asymmetric shape in the direction of the

cross-stream and pseudo-periodically distributed in the spanwise direction. There is,

however, some uncertainty about the presence of large-scale organized motions in the

similarity region of the planar turbulent jet, questions regarding the origin, topology,

and dynamics remain. Therefore, the later study [165] was performed to provide the

answer. The primary aim of the later study is to provide a more detailed description

of the structural topology in the planar turbulent jet that is responsible for large-

scale motions. The topology of the large-scale structure was tested experimentally

in the similarity area of a turbulent planar plane. The large-scale structure was

reconstructed in physical space by projection on instantaneous flow-field realizations

of measured POD eigenmodes. Results indicate that in the planar jet, the self-similar

large-scale structure consists of a dominant planar component consisting of two lines

of large-scale spanwise vortices arranged approximately asymmetrically in relation

to the jet centreline. This planar part of the structure is similar to the classic

Kármán vortex street. On opposite sides of the plane, there is a strong interaction

between structures in the form of almost two-dimensional lateral streaming motions

that extend well across the flow.

In turbulent flows, Gurka et al. [141] proposed a framework for defining and

characterizing large-scale coherent structures. The method is based on the linear

combination of vorticity POD modes. The POD approach explicitly complies with

the proposed guidelines for any objective and statistically significant identification

procedure which is; first, the study uses an entire data set rather than a single flow

field; second, it provides the spatial characteristics of a turbulent flow as opposed to

single-point statistics; third, it does not depend on the choice of the basic functions

(i.e., sinusoidal functions in Fourier transform or wavelet-based functions), and last

but not least; is dependent on a rigorous mathematically defined POD method.

Table 2.2 lists a number of examples of the successful application of these two

methods to various flows.
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Table 2.2: List of the Application of POD and DMD to various analysis

Literature Applications, findings, and variants

POD DMD

Meyer et al., 2007a [77] Turbulent jet in crossflow (PIV) -

Meyer et al., 2007b [78] Turbulent jet in crossflow (PIV & LES) -

Rowley et al., 2009 [25] - Jet in crossflow (DNS)

Schmid et al., 2009 [129] Flow in a lid-driven cylindrical cavity (PIV)

Diamessis et al.,

2010 [124]

Stratified turbulent wake of a towed sphere

(LES)
-

Schmid, 2010 [125] -

Plane Poiseuille flow; linearized two-dimensional

flow over a square cavity; wake of a flexible

membrane (PIV); jet between two cylinders

(PIV)

Feng et al., 2011 [86]

Flow around circular cylinder under synthetic

jet control (experiment), flow field measurement

(PIV)

-

Continue on the next page
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Table 2.2: List of the Application of POD and DMD to various analysis(cont.)

Literature Applications, findings, and variants

POD DMD

Pan et al., 2011 [22] -
Wake of a NACA 0015 airfoil with Gurney flap

(PIV)

Schmid et al., 2011 [126] -
Passive tracer in flame simulation and

axisymmetric water jet (experiment)

Schmid et al., 2011 [130] -
Schlieren snapshots of a helium jet; PIV

snapshots of an acoustically forced jet

Seena & Sung, 2011 [10] - Turbulent cavity flow (DNS)

Chen et al., 2012 [80] - Transitional cylinder flow (DNS)

Duke et al., 2012 [30] - Annular liquid sheet instabilities (experiment)

Muld et al., 2012 [169] Wake of high-speed train model (Detached Eddy Simulation, DES)

Schmid et al., 2012 [131] - Transitional water jet with tomographic (PIV)

Tirunagari et al.,

2012 [163]
Subsonic jets flow (LES)

Continue on the next page
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Table 2.2: List of the Application of POD and DMD to various analysis(cont.)

Literature Applications, findings, and variants

POD DMD

Andersen et al.,

2013 [155]
Flow in an infinitely long row of turbines (LES) -

Munday & Taira,

2014 [133]

Turbulent separated flow over an air foil

(CharLES)
-

Nemes et al., 2014 [8]
Three-bladed Glauert wake flow in water

channel (experiment)
-

Sarmast et al., 2014 [159] Wind turbine wakes (LES)

Shah & Bou-Zeid,

2014 [161]
Thermally stratified ABL flows (LES)

Tu et al., 2014a [58] -
Wake of a cylinder (DNS); finite-thickness flat

plate (PIV)

Tu et al., 2014b [59] -
Flow past a cylinder (PIV); temporally sparse

data

Zhang et al., 2014 [135] Flow past a single cylinder & two cylinders of different size (Time Resolved PIV, TR-PIV)

Continue on the next page
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Table 2.2: List of the Application of POD and DMD to various analysis(cont.)

Literature Applications, findings, and variants

POD DMD

Bastine et al.,

2015 [28,29]
Wind turbine wakes (LES) -

Liu & Zhang, 2015 [182] -
Separated flow over a finite blunt plate

(TR-PIV)

Tang et al., 2015 [157]
Two-dimensional flow over circular cylinder

(experiment)
-

Ali et al., 2017 [110]
Wake flow in thermally stratified wind turbine

array(LES)
-

Towne et al., 2018 [11] Complex Ginzburg-Landau equation; turbulent jet

Haywood & Sescu,

2019 [74]

Wake flow in thermally stratified large bluff

body (LES)
-
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Using the POD to develop reduced-order models for particular flow problems is

one of the simplification methods that occasionally used in fluid dynamics [39,55,97].

Berkooz et al. described the POD technique and demonstrated its use in the analysis

and modelling of turbulent flows in their study [39]. This gave the coherent structure

a brief theory of POD as well as other techniques.

The large-scale structures in a turbulent mixing layer were analysed in the works

of Delville et al. [55] through the use of correlation and POD. In a turbulent plane

mixing layer, extensive experimental measurements were obtained using the means

of two cross-wire rakes aligned normally with the direction of the mean shear and

perpendicular to the mean flow direction. The correlation tensor was determined us-

ing data collected with two cross-wire rakes lying perpendicular to the splitter plate.

In order to acquire the necessary data, two separate experiments were conducted,

and the missing information was filled in using the continuity relationship. The POD

was applied twice: first, only to the u− and v−components of the correlation tensor

and, secondly, to the full correlation tensor, i.e. u, v and w. In the mean square

sense, this decomposition yields an optimal basis. The energy in the POD modes

converges rapidly with the dominant first mode (49% of the TKE). Examination

of these modes reveals that the first mode provides evidence in the mixing layer of

both recognized flow organizations, i.e., quasi-two-dimensional spanwise structures

and streamwise aligned vortices.

Bergmann et al. [97] investigated the optimum control approach for active control

and drag optimization of incompressible viscous flow through circular cylinders.

The technique was introduced in the laminar regime (Re=200) for unstable rotary

control of the cylinder wake. The optimal control problem was solved with a POD

reduced-order model (ROM) of the controlled flow as the state equation, specifying

a cost-functional representation of the wake instability. The optimization method

solution was then used with the Navier-Stokes equations as a flow model to control

the wake flow numerically. Eventually, the amplitude of the drag coefficient was

found to be significantly reduced (25%). Even so, since the earlier numerical studies

on mean drag reduction were confirmed: it is shown, in general, that the proposed

solution was energetically inefficient without a proper penalization of the control
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output.

In 2013, Andersen et al. [155] used data from LES simulations with actuator line

models to apply the POD to the flow in an infinitely long row of turbines. The sim-

ulated data gave insight into the performance of the wind turbines operating in the

wake of others as well as details on key turbulent quantities. One of the key features

of wakes behind wind turbines is the dynamic wake meandering that is shown to be

connected to the spacing of the wind turbine and the turbine vortex shedding as a

bluff body. Through applying POD, the flow was analysed and reconstructed. The

spatial POD modes show symmetries as well as the pairing of configuration. The

first 10 POD modes comprise 51% of the TKE, while 403 modes comprise 90%. Re-

construction of the flow field reveals that 74% of total TKE production is accounted

for by the first 10 POD modes.

Meanwhile, Bastine et al. [28] applied the POD to LES data of a single wake of

a wind turbine modelled by an actuator disk. Unlike [155], they analysed a single

wake situation and included a more realistic inflow by modelling a turbulent ABL

in the case of a neutrally stable atmosphere. The POD was applied to a plane

perpendicular to the main flow in the far wake of the turbine. In order to isolate the

wake from the ABL structures, it is possible to extract well-defined POD modes with

sufficient preprocessing. It turned out that these modes are similar to the modes

obtained by Andersen et al. [155] for an infinitely long row of turbines without

ABL suggesting that wake dynamics can generally be represented by similar kinds

of modes. Depending on the number of POD modes used, field reconstructions are

investigated. Although it took a large number of modes to recover a large part of

the turbulent kinetic energy, the results indicate that only a few modes can recover

relevant aspects of a wake flow. Particularly, it is possible to partly capture the

dynamics of the average velocity over a potential disk in the wake using only three

modes.

DMD was developed by Schmid [125] on the basis of Koopman analysis of dy-

namic systems [25, 52]. This technique uses snapshots of the flow field only and is

capable of describing the flow components that characterize the dominant dynamic

behaviour without any recurrence to the underlying governing equations [125]. In
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contrast to POD, it has advantages in providing temporarily orthogonal dynamic

information of the flow field, such as the temporal dynamics and the related spatial

shapes, thus offering a more compact and instructive way of understanding the fluid

system. In 2011, Pan et al. proved that the DMD is a powerful tool for decompos-

ing quasi-periodic flow fields and studying the underlying temporal dynamics [22].

Nevertheless, it can be difficult to determine which modes are the most physically

important since there is no single right way to rank eigenvalue importance like what

POD can do [83].

One of the extra benefits of the DMD is the capability to process limited or spa-

tially restricted data [125]. The multiple flow domains and the instability mechanism

were presented in a lot of realistic applications such as in [147], Kelvin–Helmholtz-

like instabilities of the counter-rotating vortex sheet that exists together with wake-

vortices and the breakdown of horse-shoe vortices for a jet in cross flow. Within a

global stability analysis, it is hard to extract and separate these local instabilities

because they act on distinct time scales. Nevertheless, the DMD algorithm is able

to determine the system matrix for every sub-domain by extracting the measure-

ments from the corresponding localizes regions. Consequently, it can efficiently and

competently depict the dominant dynamical features of a multi-scale process.

It is also feasible even for the analysis of spatially evolving disturbance dynam-

ics [125, 128]. Other DMD applications in a time or space environment include

countless aspects of regular data processing requirements for experimental measure-

ments. These include the low-dimensional representation of a dynamic process, the

filtering of raw information based on structural and dynamic coherence, and the

recovery of information from gappy measurements or signals [126].

As the data sequence becomes adequately long, owing to the fact that only neu-

trally stable fluid elements will remain and be recognized, [126] expected a naturally

stable eigenvalue for a temporally ordered data sequence from a non-linear process.

It is either inadequate sequences of data or the decomposition of temporally tran-

sient phenomena that may have led the eigenvalues to grow or decay. There are

regions in the flow domain where a linear process within a spatial setting can prop-

erly describe the flow. In this situation, eigenvalues and dynamic modes can grow
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or decay spatially.

In contrast to the POD, where the enforcement of spatial orthogonality of the

identified structures was applied in each individual POD mode at the expense of a

mixture of frequencies, the DMD aims at timely orthogonality (by identifying pure

frequencies). The resulting dynamic modes are usually non-orthogonal [126].

Coherent structures with distinct spatial and temporal scales characterize fluid

flows in large part. The temporal analysis deals with the evolution of spatially

wave-like solutions, while the spatial approach deals with the growth or decay of

time-harmonic perturbations upstream and downstream from their origin. Despite

the fact that more research has yet to be done on complex two and three-dimensional

flows, the theoretical refinement between a temporal and spatial analysis persists in

a global analysis of stability.

In [125], they reorganized the flow fields by presenting a snapshot sequence in

space and caused the quantities to be sliced differently through a spatio-temporal

data set. The low-dimensional full-rank matrix, extracted in the same way from a

spatially ordered data sequence, then represents the mapping from a stream field

at one spatial area to a flow field at the following spatial area. Consequently, the

eigenvalues give information about the spatial dynamics of the underlying flow. An

example of spatial DMD was demonstrated on the flow in the wake of the flexible

membrane.

Three-dimensional flow fields of a transitional water jet were extracted from

experiments by using the time-resolved tomographic PIV in [131]. In addition to

the existence of obviously identifiable frequencies and wave-numbers, the flow fields

were characterized by a wide spectrum of spatial and temporal scales. A DMD

technique was applied to a sequence of forty time-snapshots, where each captured

with a spatial resolution and three velocity components. In both temporal and

spatial cases, the DMD method isolated the coherent structures and their spectral

properties and thus proved that it is effective in providing coherent dynamics with

a low-dimensional representation.

These two famous modal analyses were implemented efficiently over a wide spec-

trum of turbulent flows, including the atmospheric flows and the wake of wind
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turbine. For example, Shah & Bou-Zeid (2014) [161] applied the POD method to

thermally stratified ABL flows to study the existence of large-scale turbulent fea-

tures, demonstrating that the effect of buoyancy flux in the dominant POD modes

is significant to the energy balance. In the first POD modes of the unstable case,

streamwise rolls were noted, which were invisible in the stable case. The first modes

also demonstrated sheet-like motions under unstable stratification, i.e., motions sit-

uated in low-rotation regions that do not contribute to vortical structures. Refer to

Fig. 2.7 for the illustration.

Concerning turbulent flow in wind farms, VerHulst & Meneveau [24] used POD to

study the turbulence structure in the canonical, neutral wind turbine array boundary

layer (WTABL). As a function of the wind farm layout, the results illustrated the

contribution of individual POD modes to the energy input. Consisting of streamwise

counter-rotating vortex pairs that are much larger than the individual wind turbine

scale, the most energetic structures have been discovered. Less than ten of these

roller modes captured 20% –30% of the domain TKE and more than 14% of the

turbine rate kinetic energy output. In the lower region of the boundary layer where

the wind turbines reside, the influence of the wind farm on POD modes is most

noticeable. The energy content of the POD modes also varies from case to case. In

cases with wind farms, greater TKE was presented, and some energy from the large-

scale structures of the ABL was distributed between small-scale modes of lower-

energy. Also, Andersen et al. [155] employed POD to analyse the LES data of a

large wind farm, demonstrating that the wake meandering dynamics are strongly

dependent on the spacing of the turbines. It was shown that the first 10 modes were

sufficient to capture more than 51% of the total TKE and that the following 400

modes captured less than 40%.

Bastine et al. [29] developed a POD analysis of LES data of a characteristic wind

turbine wake. The spatial modes characteristic of the isolated wind turbine wake

could be identified from the findings. In that research, a few modes were adequate

to capture the flow dynamics, with the first mode being exclusively linked to the

large-scale turbulence horizontal movement.

More recently, POD was used by Hamilton, Tutkun & Cal [114] to identify
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Figure 2.7: The first two POD modes in the xz-plane for the neutral (a,b),

unstable case (c,d), and stable case (e,f). The colour bar indicates the normalized

u component of the POD mode, which is in the x-direction. The blue contours

show u- and w- components in the plane. The numbers above each sub-figure

indicate the value of TKE as a fraction of the total TKE presented by [161].

the coherent structures of aligned and staggered wind farm settings in the wind

turbine wake, demonstrating that the turbulent flux and output are rebuilt with
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only 1% of the total orthogonal POD modes. In subsequent experimental work,

Hamilton, Tutkun & Cal [115] developed the double POD in the wind turbine wakes

to determine the sub-model organization of the largest projection and correction

modes coefficients. Only 0.015% of the total degrees of freedom of the original flow

field needed to represent the turbine wakes with this approach.

Under the thermal stratification regimes, Ali et al. [110] used POD to extract

coherent structures of the turbulent flow. In order to reproduce the distinctive

flow conditions found in realistic atmospheric boundary layer flows, three different

regimes of thermal stratification, stable, unstable, and neutral, were regarded. The

research offers a fresh view on how wind turbines under different thermal stratifica-

tion conditions interfere with the atmospheric flow. Under various thermal stratifi-

cation conditions, the findings discovered in their study were claimed to benefit the

optimization and control of new generation wind farms.

DMD was applied by Xiang et al. [179] to an experimental data of wakes produced

in a stably stratified background by a towed grid and effectively-recognized the

dynamically significant flow patterns and revealed the impact of stratification on

their initiation and evolution. The distribution of energy overs various length scales

ranges, as defined by DMD, shows a simple Froude number, Fr dependence in the

near wake. Not only do the properties of the lee wave depend on Fr, but they also

affects the evolution of shear modes. While at Re = 2700, a smaller Fr reduces the

energy contained in all vortical modes, at Re = 11000, it mainly limits the growth

of Kelvin–Helmholtz billows and their pairing and retains more energy for longer

distance in smaller scales.

In the numerical field, a rather complex flow can now be analysed as to their

global stability, receptivity, and controllability with the ever-increasing computer

resources [138, 173, 175]. The modern techniques which adapted to linear algebra

problems from fast iterative algorithms are becoming widespread in many large-scale

problems and multi-physics calculation.
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2.5 Chapter Summary

This overview chapter gave a detailed literature review of the helical wake study in

experiments and numerical computations; and thermally stratified atmosphere flow

and modal decomposition methods of extracting the coherent flow structure. The

computational model which simulates the wake flow behind a rotating blade will

then be presented in the next chapter together with the mathematical background

of the two model decomposition techniques, POD and DMD that will be deeply

discussed in Chapter 5 & 6, respectively.



Chapter 3

Simulation and Modal Analysis

Techniques

This chapter consists of two sections in which the governing equations were derived

in Section 3.1, followed by the description of the computational modelling of wake

flow behind the rotating blade in Section 3.2. Section 3.3 presents the information on

the actuator model, and Section 3.4 explains the mathematical background, the al-

gorithm, and the strengths and weaknesses of both model decomposition techniques

in Subsection 3.4.2.1 and Subsection 3.4.2.2. Finally, the last section concludes this

whole chapter.

3.1 The Governing Equations

The wind turbine wake features helical vortices, which are shed from the tips of

blades and inflict undesirable fatigue loading on downstream turbines. Earlier stud-

ies of helical vortices concentrated on their hydrodynamic instabilities, and the fol-

lowing breakup in the neutrally stable, isothermal atmospheres where gravity bal-

ances the buoyancy force. Be that as it may, the atmosphere is usually unstable

during the day and mostly stable at night, but is rarely neutral. Mao & Hussain

in [177] presented numerical work by addressing the helical vortices growth in a

thermally stratified atmosphere and also focuses on the stable condition, which is

typical for offshore applications. This work is a continuation of the work previously

44
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performed by [177] by giving detail analyses on the helical wake simulated by Mao.

There is a critical Reynolds number for all flows where the flow is laminar be-

low this critical point, and there is a transition to turbulence above this point.

Turbulence is the usual state of motion of fluids except at low Reynolds numbers.

Understanding the physics of the turbulence is essential, and thus, turbulence mod-

els that allow steady state simulation is important and desirable to be performed for

turbulent flow. Direct Numerical Simulation (DNS), Large Eddy Simulation (LES

- which is similar to DNS, but the small scale motions are modelled, and used at

a lower level of approximation) and Reynolds Averaged Navier–Stokes (RANS) are

three methods that can be used to model turbulent flows.

LES is a mathematical model for turbulence used in computational fluid dynam-

ics (CFD). It was originally proposed for simulating atmospheric air currents by

Joseph Smagorinsky in 1963 [75] and first explored by Deardorff in 1970 [54]. In

LES, large-scale turbulent flow motions (large eddies) are computed directly, and

only small-scale motions (sub-grid scale (SGS)) are modelled. That is why the space

grid and time steps may be much longer than DNS, leading to a significant reduction

in computational cost compared to DNS. Nevertheless, its unsteady simulation with

small time steps generates long run times and large volumes of data.

A wide range of RANS approach then was introduced around 1972 (see, e.g.,

Launder and Spalding [13] and Launder et al. [14]). In the approach of RANS,

the starting point is the Reynolds decomposition of the flow variables (velocity and

pressure in the case of an incompressible fluid) into mean and fluctuating parts.

The introduction of the Reynolds decomposition in the non-linear Navier-Stokes

equations followed by an ensemble averaging of the equations themselves gives rise

to an unknown term – the Reynolds-stress tensor – that has to be modelled in

order for the RANS equations to be solved. This operation essentially consists of

the problem of the closure of the system of the Navier-Stokes equations. In short,

RANS approach is based on ensemble-averaged governing equations; hence, it can

not predict the local unsteadiness in the flow.

It has been shown at the end of the last century that DNS projections are in

line with experimental outcomes acquired with Laser Doppler Anemometry (LDA)
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and PIV (see [57] & [120], for example) of weakly turbulent flows, i.e., low Reynolds

numbers, are considered. The first DNS was proposed by Orszag and Patterson [145]

in 1972. In spite of its widely accepted merit for basic flow research, DNS has not

yet been able to shake off the prejudice that it is of little use to solve industrial

flow problems. The reason might be that the computing resources needed to be

increased by approximately the third power of the Reynolds number, and most of

the industrially relevant flows, and especially aircraft or vehicle aerodynamics, are

characterized by very high Reynolds numbers.

Although being expensive, it does not mean that DNS can not be used at all.

In fluid mechanics, turbulent flow can theoretically be simulated using DNS, for

instance, the direct numerical solution of the Navier-Stokes equations. However,

the computational resources required to calculate even the smallest of domains is

very high, resulting in very limited use of DNS for practical applications. If DNS

is not practical, the Navier-Stokes equations can be filtered and only the largest

scales solved (for example, in LES), but when analysing the data, the effects, and

assumptions related to this filtering need to be taken into account.

Statistical and deterministic are the most crucial currents in turbulence analyti-

cal research. However, there are some disadvantages with these approaches, such as

closure problems and limited criteria in studying and analysing only transition and

pre-turbulence. A significant advantage of DNS is to be able to solve the Navier-

Stoke equation numerically, without turbulence modelling. As well as having a

higher order of accuracy, the computation can be done on complex geometries with

non-conformal meshes in local refinements. However, increasing the Reynolds num-

ber make this method challenging and costly (according to the reciprocal ratio of the

lowest turbulent eddies to Re
3
4 ), especially in the inhomogeneous turbulence flow.

Simple geometries and low Reynolds numbers are therefore restricted to the cases.

While DNS is the most accurate simulation method for turbulent flows, it is

impossible to apply to many industrial flows because of the data storage and com-

putational resource limitations. For example, for the wind turbines in the atmo-

spheric boundary layer, the largest scales of motion are of the order of a several

hundred meters while the boundary layer formed around the blades is of the order
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of millimetres. DNS is, therefore, mostly used for validation purposes and for flows

at low Reynolds numbers. Since this work provides a fundamental case that shares

common traits with the wind turbine flows, this proves that DNS is one of the best

available methods.

In this study, DNS of helical wake flow behind a rotating blade in neutral

(N), weakly stable (WS), and strongly stable (SS) stratification were performed

at Re = 1000, and Re = 2000 defined as Re =
U∞D

ν
where U∞ is the free-stream

velocity, D is the radius of the rotating blade, and ν is the kinematic viscosity. The

thermal stratification of the atmosphere will be described in detail at the end of this

subsection.

The following dimensional equations are the continuity and momentum equation

that has been derived from the incompressible Navier-Stokes equations:

∇∗ · u∗ = 0 (3.1.1)

ρo

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= −∇∗p∗ + µ∇∗2u∗ + ρg∗ (3.1.2)

where u∗ and p∗ are velocity and pressure fields; g∗ is the gravity; t∗ is time; ρ is

density; ρo is a constant density; µ is the fluid dynamic viscosity; ∇∗ is the gradient

operator; ∇∗2 is the Laplacian operator, and ∇∗· is the divergence operator. The

asterisks (*) represent the dimensional quantity as the non-asterisks form is reserved

for the dimensionless quantity that will be used most in this thesis.

The buoyancy term can be rewritten as (ρo+∆p)g∗, where ∆ρ = ρ−ρo represents

the density variation with respect to the reference density, ρo. This yields:

ρo

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= −∇∗p∗ + µ∇∗2u∗ + (ρo + ∆ρ)g∗ (3.1.3)

The Boussinesq approximation states that in the buoyancy term, only the density

variation is essential and can be ignored in the rest of the equation. The founda-

tion of this approximation is that there are flows in which the temperature differs

slightly, and thus the density varies slightly, yet in which the motion is driven by the

buoyancy. Hence, the density variation is overlooked everywhere except in the term

of buoyancy. This is a very commonly used assumption, a more detailed discussion

of the Boussinesq approximation and its validity can be found in [46] and [150].
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The reason for using the approximation is the resulting simplifications to the

governing equations. In order to avoid having to evaluate the fluid density based

on the local temperature, the buoyancy term ∆ρg∗ = (ρ − ρo)g
∗ can further be

rewritten as (ρ − ρo)g∗ = −ρoβ(T ∗ − Tref)g
∗, where β is the coefficient of thermal

expansion. For ideal gases, β =
1

Tref

and becomes −ρo
(T ∗ − Tref)

Tref

g∗. Applying the

Boussinesq approximation to the momentum equation, Eq. 3.1.3 gives

ρo

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= −∇∗p∗ + µ∇∗2u∗ + ρog

∗ − ρoβ(T ∗ − Tref)g
∗ (3.1.4)

or alternatively

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = − 1

ρo
∇∗p∗ + ν∇∗2u∗ + (1− β(T ∗ − Tref))g

∗ (3.1.5)

where ν =
µ

ρo
is the kinematic viscosity.

In thermal convection problems, the flow is created by the density gradients

related to the temperature gradients. As a result, Eq. 3.1.5 needs to be coupled

with an equation for the temperature, T ∗ and they have to be solved together. This

equation can be obtained from the energy equation. There are many different ways

to write an energy equation, such as the one given below:

ρ

[
∂h∗

∂t∗
+∇∗ · (h∗u∗)

]
= −Dp

∗

Dt∗
+∇∗ · (k∇∗T ∗) + Φ∗ (3.1.6)

where h is specific enthalpy which is related to specific internal energy, e∗ as h∗ =

e∗ +
p∗

ρ
. T ∗ is the absolute temperature, and Φ∗ is the viscous-dissipation function

representing the work done against viscous forces, which is irreversibly converted

into internal energy. This last term is generally negligible but, in general, it is given

by following equation:

Φ∗ = µ

{
2

[(
∂u∗

∂x∗

)2

+

(
∂v∗

∂y∗

)2

+

(
∂w∗

∂z∗

)2
]

+

(
∂u∗

∂y∗
+
∂v∗

∂x∗

)2

+

(
∂u∗

∂z∗
+
∂w∗

∂x∗

)2

+

(
∂v∗

∂z∗
+
∂w∗

∂y∗

)2
} (3.1.7)

where u∗, v∗, w∗ are the velocity components in the of x∗, y∗, z∗ directions, respec-

tively. Since all terms in Eq. 3.1.7 are quadratic; the viscous-dissipation terms are

always positive such that the flow always tends to lose its available energy due to

dissipation.
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Pressure term on the right-hand side of Eq. 3.1.6 is usually neglected. To derive

this energy equation, the conduction heat transfer governed by Fourier’s law was

being considered with k is the thermal conductivity of the fluid.

As it has been known, the relationship between density, pressure, and tem-

perature is given by the perfect gas relations, p = ρRT ∗ where the gas constant,

R = (cp − cv) with cp is the specific heat for constant pressure and cv is the specific

heat for constant volume. The following relations can also be used to relate enthalpy

and internal energy to temperature for an ideal gas so that the energy equation can

be written as the temperature is the only unknown.

dh∗ = cpdT
∗, de∗ = cvdT

∗ (3.1.8)

Conservation of energy given in Eq. 3.1.6 then can be simplified and written as:

ρcp

[
∂T ∗

∂t∗
+ (u∗ · ∇∗)T ∗

]
= k∇∗2T ∗ (3.1.9)

Note that cp ≈ cv for incompressible flows.

Thus the final form of the energy equation is

∂T ∗

∂t∗
+ u∗ · ∇∗T ∗ = κ∇∗2T ∗ (3.1.10)

where κ = k/ρocp is the thermal diffusivity since the fluid was assumed to have a

constant heat capacity per unit volume given by ρocp under the Boussinesq approx-

imation.

The continuity equation (Eq. 3.1.1,) the momentum equation (Eq. 3.1.5) and,

the energy equation (Eq. 3.1.10) are called Boussinesq equations and describe the

motion of a Boussinesq fluid. Hence, complete the governing equations scheme.

By using the free-stream velocity, U∞, a characteristic length scale (which in this

study is the diameter of the blade, D), characteristic pressure, p∞, and characteristic

temperature, T∞, the terms of the governing equations can be non-dimensionalized.

∇ = ∇∗D, u =
u∗

U∞
, t =

t∗

D/U∞
, g =

g∗D

U2
∞

, T =
T ∗ − T∞
Tref

, p =
p∗ − p∞
ρoU2

∞
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When the above terms are substituted, this set of the equation becomes:

∇ · u = 0 (3.1.11)

∂tu+ u · ∇u+∇p−Re−1∇2u+ Tsg = 0 (3.1.12)

∂tT + u · ∇T −Re−1Pr−1∇2T = 0 (3.1.13)

where u, t, p, g, Ts, and Re represent the dimensionless velocity flow, time, pressure,

gravity term, thermal term, and Reynolds number, respectively. Meanwhile, Pr

is Prandtl number given by Pr =
ν

α
= 0.72 where α is thermal diffusion and

Ts = 1− β(T − Tref) with the reference temperature, Tref = 298K.

Dirichlet boundary condition specifies the value of a variable at a boundary. It

may also be referred to as a fixed boundary condition. Therefore, it is used when

a value needs to be imposed at a boundary. Typically, this study is dealt with a

Dirichlet condition where the velocity is fixed at the inlet and the pressure is fixed

at the outlet. Noted also, the rotational speed is constant for all the computations,

Ω = 5rad/s.

3.2 Computational Model of Helical Flow behind a

Rotating Blade

Three-dimensional numerical simulations have been performed in cylindrical coor-

dinate system with z, r and θ representing the streamwise, radial, and azimuthal

coordinates, respectively, is adopted to study the flow behind the rotating blade.

The computational domain, as shown in Fig. 3.1 is a cylinder with dimensions

Lz = 63, Lr = 35, where −3 < z < 60, 0 < r < 35, respectively, and a rotating

blade is located at (z, r) = (0, 0). The computational domain then was normalized

by D.

A higher-order accuracy method, the Spectral Element Method (SEM), is a

popular technique for applying to fluid flow DNS with moderate Reynolds number.

The method offers both the effectiveness of global spectra method and flexibility

in geometry of the finite element method, provided by non-conforming deformed
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Figure 3.1: Schematic of the computational domain along the streamwise

direction. Note that the inner cylinder is the sub-domain that will be used most in

this study to perform the analysis.

hexahedral elements [158]. For every case in this study, the z−r plane is decomposed

into 5109 spectral elements, each of which is further discretised with nodal based

Gauss-Labatto-Legendre basis functions with a different order of the polynomial, O

(refer to Table 3.1). In the azimuthal direction, a Fourier decomposition is applied,

and a number of Fourier modes, Fm are calculated. The simulations were performed

in Fourier because it is more time consuming to carry out the computation in physical

space [23]. The simulations in Fourier space are used to extend the total time interval

simulated, and to apply the scheme to finer meshes. The corresponding parameters

for each case are listed in Table 3.1 below:

The raw data parameters from each case, including the number of time steps, t,

time separation, ∆t and sample frequency, fs = 1/∆t were listed in the separated

table of Table 3.2:

The atmospheric boundary layer can be classified into three types according to

the thermal stratification and the dominant mechanisms of turbulence generation,

which are neutral, convective (unstable), and stable. There is little heating or cooling

on the surface in the neutral case. Consequently, the mean potential temperature is

approximately constant with height, and turbulence is generated primarily by shear
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Atmospheric

Conditions
Re Notation Parameters

O No. of Fm

Neutral, N 1000 N, Re1k 8 100

2000 N, Re2k 9 100

Weakly Stable, WS 1000 WS, Re1k 8 100

Strongly Stable, SS

case 1, SS1
1000 SS1, Re1k 9 100

2000 SS1, Re2k 9 100

Strongly Stable, SS

case 2, SS2
1000 SS2, Re1k 8 100

Table 3.1: Parameters of the Computational Model per Cases

Atmospheric Conditions t ∆t fs

N, Re1k 200 0.08 12.5

N, Re2k 93 0.04 25

WS, Re1k 90 0.40 2.5

SS1, Re1k 155 0.16 6.25

SS1, Re2k 220 0.08 12.5

SS2, Re1k 91 0.40 2.5

Table 3.2: The number of time steps, t; time separation, ∆t; and sample frequency,

fs of all cases.

near to the surface. During comparatively brief transition periods after sunset or

in windy conditions with a complete cloud cover, the neutrally stratified is noted.

Whilst, in the daytime, when the surface is warmer than the air, the unstable is

typically observed. Under convective conditions, heat transfer between the surface

and air yields positive buoyancy, enhancing TKE and the vertical transport of mo-

mentum, heat, and moisture. Lastly, in reaction to surface cooling by long-wave

radiation to outer space, the stably stratified generally happens at night. Turbu-
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lence is produced by shear and demolished by adverse buoyancy and viscosity, under

this atmospheric condition [93]. Fig. 2.5 in the previous chapter depicted the effects

of atmospheric conditions.

The atmospheric lapse rate, ζ refers to the change of an atmospheric variable with

altitude transition. Lapse rates are typically expressed as the amount of temperature

change associated with a specified amount of altitude change, such as 9.8◦Kelvin (K)

per kilometre or the equivalent 0.0098◦K per meter. The lapse rate can be expressed

as a negative number if the ambient air cools with increasing altitude. If the air heats

at higher altitudes, the lapse rate then can be expressed as a positive number [98].

Atmospheric stability is atmospheric resistance to vertical air movement. A

very stable atmosphere is one which has very little, if any, vertical air movement

while a stable atmosphere is one which discourages vertical motion but has some

air movement. On the other hand, an unstable atmosphere is one that promotes

constant upward or downward vertical motion of the air. A neutral environment is

one that neither discourages nor facilitates vertical air movement, and is also called

conditionally stable. The stability depends on how the temperature of the air varies

with altitude (the lapse rate of temperature).

In this study, all four atmospheric stability conditions were defined by setting

their temperature field as given by Eq. 3.2.1 below and illustrated in Fig. 3.2.

T =
y

C
(3.2.1)

with −3 < y < 3 and C = 0, 200, 500, 1000 for N, SS1, SS2 and WS, respectively.

When the temperature increases with altitude, a temperature inversion. Air is

negatively buoyant at ground level and does not grow. If air is forced to rise, it will

sink back towards the ground again. This is when the atmospheric condition is said

to be in a strongly stable. In the present study, the lapse rates for both SS1 and

SS2 as can be calculated from Fig. 3.2(a) & Fig. 3.2(d) is ζSS1 =
0.006

6
= 0.001,

and ζSS2 = 0.002, respectively. In Fig. 3.2(b), it shows that the temperature is the

same as the dry adiabatic lapse rate with ζN = 0. i.e., if air is forced to rise, it

will cool at the same rate as the temperature around it drops. In this case, it will

be neutrally buoyant and categorized as neutral. Last but not least, Fig. 3.2(c)

shows how the atmospheric stability was classified as weakly stable. It is when the
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Figure 3.2: Temperature contours of: (a) SS1, (b) N, (c) WS, and (d) SS2 in the

xy-plane at z = 5.5.

temperature lapse rate is less than the dry adiabatic lapse rate (i.e. it falls less

than by 0.0098◦K), but temperature does decrease with altitude. In this study,

ζWS = 0.005.
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3.3 Actuator Models

In the past few years, actuator models have been proposed, including the Actuator

Disk Model (ADM) and the Actuator Line Model (ALM), in order to avoid the

computational cost associated with resolving the blade boundary layer as well as

the atmospheric boundary layer. Using the ADM and ALM techniques avoids the

need for resolving the development of the boundary layer over the blades, allowing

the use of a higher resolution to capture the details of the wake. In these actuator

models, the body forces are distributed in the flow field. In the ALM model, body

forces representing the aerodynamic loads on the rotor are distributed along with

points on rotating lines representing the individual blades, which allows information

about the force on the blades to be directly provided as a function of the blade

azimuth angle. Meanwhile, in the ADM model, the body forces are distributed on

points over a rotating disc represented on a local polar mesh, which can provide

information about the local forces on the disc as a function of the azimuth angle.

The body forces in both techniques are smeared into their imposition points with a

three-dimensional Gaussian function [140].

ADM was initially used in the far wake simulation of the wind turbines. How-

ever, it could not replicate the tip vortex system accurately [118]. Then, Sørense

& Shen [72] launched ALM to resolve this difficulty where the body forces were

distributed radially along with the blades and added as the source item to the three

dimensional Navier-Stokes equation. In addition, ALM is also an efficient technique

for anticipating the loading on the blades with only simple structured grids, which

has been demonstrated by Troldborg [118]. As shown in [119], the conventional

uniform actuator disk is not a great choice for a cross-flow turbine wake generator,

regardless of the fact that performance predictions are not typically computed.

Moreover, the ALM is capable of capturing flow structures near the blades, such

as root and tip vortices, which the ADM does not capture [85]. It was also being

said that if the simulations are more concerned with the far wake, the ADM will

offer the right solution without compromising the time-step of simulation. For all

these reasons and as the ALM allows for a more realistic representation of the wind

turbine rotor, the numerical simulations presented in this work were all conducted
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using the ALM, where a single rotating blade was replaced by a line of forcing. As

ALM is well known for its expensive computational cost, this work was carried out

with the study of just a single rotating blade instead of three blades, which normally

being considered as it gives a better approximation to the real-life wind turbine.

For the comparison to the ALM method, the ADM (with ∆T = 0) was computed

by decomposed the z − r plane into 4522 spectral elements before it was further

discretized with polynomial order 7 and 96 Fourier modes were employed in the

azimuthal direction. Fig. 3.3 is an example of the wake and vortex system created

by the ALM and ADM for Neutral case at Re = 1000.
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Figure 3.3: Isosurface of Vorticity Magnitude, |ω| = (ωx
2 + ωy

2 + ωz
2)

1
2 resulting

from the use of the ALM (a) and ADM (b) and their contours (c, d), respectively

for Neutral case at Re = 1000. Note that (a, b) is the 3D |ω| and (c, d) is their

2D’s, respectively.

As can be seen in Fig. 3.3, when using the ALM, there is a formation of tip and

root vortices, but not in the ADM. The circulation around the individual blade forms

these structures. A continuous disk covering the blade’s swept area leaves no room

for circulation to occur in ADM. The structure of the ALM wake is not symmetric
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concerning the centre of the wake because the vortical structures produced by the

individual blade are helical and asymmetric across the wake. Whilst, the ADM

wake is symmetric about the centre of the wake. This is because the rotor is being

modelled as a continuous disk instead of the individual blade.

3.4 Modal Analysis Techniques

The simulation of the flow does not provide the knowledge of fundamental dynamics

in it as it can not really reveal the physics of the flow; the simulation outcome needs

to be analysed. On the other hand, coherent structures approach to turbulence

provides a distinct picture, based on this idea that some turbulent ones are not

so complicated that they look at first sight. In other words, it is presumed that

such flows consist of the set of structured motions with simple spatial structures.

Complexity of such turbulent flows produced by the superposition in space and time

of these organized, so-called coherent structures [33]. Applying modal decomposition

to identify coherent structures and dynamics of the evolving flow field is a solution

to overcome the difficulties of the study of turbulent flows. The set of the modes

acquired by modal decomposition can be represented as the base of reduced-order,

which is an approximation of the initial flow. There are various former derived

decomposition techniques, but two of them will be considered in the current study,

which is POD and DMD.

3.4.1 Proper Orthogonal Decomposition

Lumley [64] first launched the POD technique in the context of fluid mechanics.

It is also recognized in various areas under a multitude of names: POD, principal

component analysis (PCA), Hotelling analysis, empirical component analysis, quasi-

harmonic modes, empirical eigenfunction decomposition, and others. This technique

is used to find a set of spatially orthogonal modes which are ordered by their con-

tribution to the total variance, i.e., turbulent kinetic energy in the case of velocity

time series, or enstrophy in the case of vorticity fields.
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3.4.1.1 Mathematical Theory

The main idea of POD is to classify structures in the velocity field with the largest

mean square energy, the most energetic fluctuations in a random field. Different

approaches to the POD system were used, depending on how the data were collected

and the nature of the available data. The classical and snapshot POD methods are

the two main approaches to perform POD of the flow field data. The classical

approach, as proposed by Lumley [64], is a method where a temporal average is

used in statically stationary flows. Meanwhile, the snapshot method initiated by

Sirovich [91] using a uniformly sampled discrete time spatial average of N .

The classical POD method is the original formulation in which the ensemble

average is temporal. The POD determined the set of essential functions that can

represent the flow field data optimally. First, given the flow field q(ξ, t), snapshots

of the flow field stacked in terms of a collection of column vectors x(t) were then

prepared. Consider, therefore, a set of finite-dimensional data vectors representing

the flow field

x(t) = q(ξ, t)− q̄ ∈ Rn, t = t1, t2, ..., tm. (3.4.1)

x(t) is taken to be the fluctuating component of the data vector with the time-

averaged value q̄(ξ) being omitted. While it is possible to write the data vector as

x(ξ, t), it is simply written as x(t) to show that it is being considered as a snapshot

at time t.

Reynolds decomposition in fluid dynamics is a statistical method used to distin-

guish the expectation value of a quantity from its fluctuations. This decomposition

was applied to the input dataset in the Cartesian coordinate. The reason for using

the fluctuating velocity components in the Cartesian system for both modal decom-

position techniques and how the process was carried out will be further explained

in Section 5.1.1 of Chapter 5.

The objective of the POD analysis is to find the optimal basis vectors that can

best represent the given data. In classical POD, it is vital to look for the vectors

of orthogonal modes, φj(ξ) which can represent q(ξ) in an optimal way and with a

minimum number of modes. The problem can be solved by finding the eigenvectors,

φj, and the eigenvalues, λj from
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Rφj = λjφj, φj ∈ Rn, λ1 > ... > λn > 0 (3.4.2)

where R is the covariance matrix of vector x(t).

x(ti)R =
m∑
i=1

x(ti)x
T (ti) = XXT ∈ Rn×m (3.4.3)

where the matrix X represents the m snapshot data being stacked into a matrix

form of

X = [x(t1) x(t2) . . . x(t1m)] ∈ Rn×m. (3.4.4)

The size of the n covariance matrix is dependent on the spatial degrees of freedom

of the data. As shown in Eq. 3.4.9, n is usually large for fluid flow data and is equal

to the number of grid points times the number of variables to be included in the

data.

The eigenvectors found from Eq. 3.4.2 are called the POD modes. It should be

noted that the POD modes are orthonormal, which implies that the inner product

between the modes is orthonormal:

〈φj ,φk〉 ≡
∫
V

φj · φk dV = δjk, j, k = 1, . . . , n. (3.4.5)

As a result, the eigenvalues λk express how well each eigenvector φk captures the

original data in the sense of L2(scaled by m). The eigenvalues correspond to the

kinetic energy were captured by the respective POD modes when the velocity vector

is used for x(t). It is possible to arrange the PODmodes in the order of importance in

terms of capturing the kinetic energy of the flow field if the eigenvalues are arranged

in decreasing order from the largest to the smallest.

The eigenvalues can be used to determine the number of modes necessary to

represent the fluctuations in the flow field data. Notably, the number of modes, r

was retained to express the flow such that
r∑
j=1

λj/
n∑
j=1

λj ≈ 1. (3.4.6)

The flow field can be represented only in terms of finite or truncated series with the

determination of essential POD modes

q(ξ, t) ≈
r∑
j=1

aj(t)φj(ξ) (3.4.7)
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in an optimal way, effectively reducing the high-dimensional (n) flow field to be

represented only with r modes. The temporal coefficients are determined by

aj(t) = 〈q(ξ, t)− q̄(ξ),φj(ξ)〉 = 〈x(t),φj〉 (3.4.8)

where q̄ is the mean flow variable.

The size of the correlation matrix R = XXT becomes very large (n× n) when

the size of the data n is enormous. This makes it virtually impossible to use the

classical POD method to find eigenfunctions. Sirovich [91] pointed out that the

matrix of temporal correlation would produce the same dominant spatial modes

while generating a much smaller and more computationally tractable eigenvalue

problem. Another alternative approach called the snapshots method takes a series

of x(ti) snapshots at a discrete time level of ti, i = 1, 2, ...,m with m� n and solves

an eigenvalue problem of a smaller size of (m×m) to find the POD modes.

Nonetheless, due to the advantages of its computational efficiency, it is more

customary to use the snapshot POD. Hence, the present work uses the so-called

snapshot POD method by Sirovich [91].

In this study, the fluctuating velocity components, (unj , v
n
j , w

n
j ) where u, v, w

denote the fluctuating part of each of the three velocity components were being

investigated. Index n runs through the N snapshots, and j runs through the M

positions of velocity vector in a given snapshot, i.e. uj = u(xj, yj, zj). All the

time-dependent fluctuating velocity components from N snapshots are arranged in

a matrix V as

V = [v1v2 . . .vN ] =



u1
1 u2

1 . . . uN1
...

...
...

...

u1
M u2

M . . . uNM

v1
1 v2

1 . . . vN1
...

...
...

...

v1
M v2

M . . . vNM

w1
1 w2

1 . . . wN1
...

...
...

...

w1
M w2

M . . . wNM



(3.4.9)
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Also, let T be the scalar temperature component:

T = [t1t2 . . . tN ] =


t11 t21 . . . tN1

t12 t22 . . . tN2
...

... . . . ...

t1M t2M . . . tNM

 (3.4.10)

The autocovariance matrix, C̃ is created as

C̃ = V TV (3.4.11)

where and the superscript, T here denotes the transpose operator. Thus, the corre-

sponding eigenvalue problem can be resolved by

C̃Ai = λiAi (3.4.12)

where Ai is the eigenvector, and λi is the eigenvalue. The solutions are ordered by

the size of the eigenvalues

λ1 > λ2 > · · · > λN = 0 (3.4.13)

which is from large to small to guarantee the first few modes are the most significant

energy modes. The eigenvectors of Eq. 3.4.12 make up a basis for constructing the

POD modes φi,

φi =

∑N
n=1A

i
nv

n

||
∑N

n=1A
i
nv

n||
, i = 1, 2, . . . , N (3.4.14)

where Ai is the nth component of the eigenvector corresponding to λi from Eq. 3.4.12

and the discrete 2-norm is defined as

||y|| =
√
y2

1 + y2
2 + · · ·+ y2

M (3.4.15)

Each snapshot can be expanded in a series of the POD modes with expansion

coefficients for each PODmode i. The POD coefficients are determined by projecting

the fluctuating part of the velocity field onto the POD modes

an = ψTvn (3.4.16)
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where ψT =
[
φ1φ2 . . .φN

]
has been introduced. The expansion of the fluctuating

part of a snapshot n is

vn =
N∑
t=1

ani φ
n = ψan (3.4.17)

It has been shown in [79] that the amount of the total kinetic energy from ve-

locity fluctuations in the snapshots that are associated with a given POD mode is

proportional to the corresponding eigenvalue. The ordering of the eigenvalues and

eigenvectors in Eq. 3.4.13, therefore, ensures that the most important modes in

terms of energy are the first modes. This generally implies that large-scale flow

structures are associated with the first few modes. Therefore, if a flow has domi-

nant flow structures, these are reflected in the first POD modes, and thus, a given

snapshot can often be satisfactorily reconstructed using only the first few modes.

See [66] and [123] for more information on the POD.

3.4.1.2 The Algorithms

The complete algorithm is given below:

Inputs : Snapshots of spatial field (1D, 2D or 3D) of any scalar (e.g., pressure,

temperature) or vector (e.g., velocity, vorticity) field, q(ξ, t), over discrete spatial

points at ξ discrete time ti.

i. Arrange the data as Eq. 3.4.9.

ii. Calculate the matrix Eq. 3.4.11.

iii. Solve the eigenvalues problem in Eq. 3.4.12.

iv. Arrange solutions by eigenvalues as Eq. 3.4.13.

v. The POD modes are found by Eq. 3.4.14.

Outputs: Set of orthogonal modes, φj(ξ), with the respective temporal coeffi-

cients, aj(t), and energy levels, λj, arranged in the order of their relative amount of

energy. The initial field is described as a linear combination of the modes and their

corresponding temporal coefficients, q(ξ, t) =
∑

j aj(t)φj(ξ).
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3.4.1.3 POD Virtues and its Limitations

Virtues:

• POD provides such a valuable property in the construction of a flow field

reduced-order model gained from its orthogonal set of basis vector with mini-

mal dimension.

• POD modes can simply be computed using both classical or snapshot methods.

However, the snapshots technique is particularly appealing to high-dimensional

spatial datasets.

• POD is able to remove high order modes from the expansion simply, and this

made it able to be used to remove the incoherent noise from the dataset.

• POD (PCA) analysis is commonly used in a wide range of research. It is used

to recognize patterns, process images, and to store/compress large databases

optimally.

Limitations:

• Since POD is based on the correlation of second-order (Eq. 3.4.11), correla-

tions of higher order are ignored.

• POD modes usually correspond to a mix of frequencies.

• POD arranges modes, not in the order of the dynamical significance but in

terms of energy level. Balanced POD and DMD analyses are addressing this

point.

• The number of POD modes that should be kept is not always precise, and

there are various criteria for truncation.

• POD modes are not suitable for describing travelling wave structures as the

technique assumes that the flow field can be separated into temporal and

spatial functions.
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POD is one of the powerful tools used to decompose the flow field [17, 39, 87].

Diagonalizing the correlation matrix of the temporal-spatial velocity field ensemble

has extracted the orthogonal structures and provides an order of coherent structures

ranked by their energy. In spite of that, there is a loss of phase information caused by

the averaging process associated with the production of the correlation tensor [122]

for example, the spatial POD modes might be temporally dependent on one another,

which is critical for the dynamic identification.

3.4.2 Dynamic Mode Decomposition

Schmid [125] firstly proposed and studied DMD and introduced the method that

is able for the extraction of dynamic information from flow fields that are either

generated by the numerical or experimental data. The mathematical background

and algorithm of the method are summarized below, and more details can be found

in [125, 126, 130]. DMD is known to be equivalent to a global stability analysis for

data sequences from a linearised flow simulation. Meanwhile, for data sequences

from a non-linear flow, it generates modes of the tangential linear approximation

of the full-system matrix and describes dominant dynamic behaviour in the data

sequence. DMD is supposed to be analogous to Fourier transform (FFT) for a

periodic signal. The DMD-based predictions were superior for a small number of

snapshots [168]. The most important reason DMD is more beneficial than FFT is

that FFT suffers from spectral leakage when a wave with less than a full period is

considered, as visible by the peaks. DMD does not exhibit the same pattern, and

due to the robustness of the DMD method, this decomposition technique will be

used to analyse the helical wake flow behind a rotating blade.

3.4.2.1 Mathematical Theory

The aim of DMD is to extract the dynamic characteristics of the dynamic process

defined by A based on the sequence V 1N , such as eigenvalues, eigenvectors, pseu-

doeigenvalues, energy amplification, resonance behaviour, and so forth. There are

two methods to obtain these eigenvalues and modes of identification. The first is

Arnoldi-like, in which, due to its connection with Krylov methods, it is useful for the-
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oretical analysis. The second is an approach based on singular value decomposition

(SVD) that is more robust to noise in the data and numerical errors.

The general flow field data first will be assumed and denote each such field by

a vector vj. An N snapshot sequence is then written as Eq. 3.4.9, where two

subsequent snapshots vj and vj+1 are presumed to have an equal time interval

∆t. For experimental data, a non-linear process produces the snapshots vj. An

assumption that a linear mapping A connects the flow field from one snapshot to

the next is then should be made and can thus write

vj+1 = Avj (3.4.1)

This mapping is also taken over the data sequence as roughly the same. As in

Arnoldi method which by following the idea underlying Krylov techniques [2,90], the

linear map was expressed and approximated using an (N − 1) dimensional snapshot

basis V N−1
1 as written below

{v2,v3, . . . ,vN} = A{v1,v2, . . . ,vN−1} ≈ {v1,v2, . . . ,vN − 1}S (3.4.2)

or

V N
2 = AV N

1 ≈ V N
1 S (3.4.3)

where S is a companion matrix with sub-diagonal entries that can simply shift the

snapshots 1 through N − 1, and the last snapshot can be approximated by a linear

combination of the previous N snapshots [9].

In this form, the eigenvalues of S approximate some of the eigenvalues, λi of the

full system matrix A, called empirical Ritz values [25]. The eigendecomposition is

performed on S rather than A because S is much smaller than A, so the computa-

tional cost of DMD is determined by the number of snapshots rather than the size

of a snapshot.

Furthermore, the eigenvalues can be mapped logarithmically as

υj =
log λj

∆t
(3.4.4)

where ∆t = f−1 is the separation time between successive snapshots. The discrete

frequencies of the decomposed data, oj, are determined from the imaginary part of
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the logarithmically mapped eigenvalues as

oj = 2πImag(υj) =
arg(λj)

2π∆t
(3.4.5)

Typically, the eigenvalues emerge as complex conjugate pairs, resulting in com-

plex conjugate eigenvectors (modes). It is the result of using a matrix of real-valued

data. These conjugate modes have the same stability characteristics and frequencies

but a different sign. Note that since the negative frequencies are ignored, only the

mode with the positive-valued frequency defines each mode pair.

Besides, the logarithmic mapping of these eigenvalues also provides the growth

rate determined from the real part:

σj = 2πReal(υj) (3.4.6)

The empirical Ritz values lying on the unit circle represent the modes with zero

growth rates, whereas the eigenvalues lying inside and outside the unit circle repre-

sent the damped and undamped modes, respectively.

The associated eigenvectors provide the coefficients of the linear combination

that is necessary to express the modal structure within the snapshot basis. Then

the following equation obtained

min
s
||vN ≈ V N

1 S|| (3.4.7)

where s denotes the last column of the companion matrix S. The vector s can be

computed by a straightforward least-squares procedure which minimizes the overall

residue. In particular, if the QR – decomposition of V N−1
1 = QR was taken, the

solution to the above equation will be obtained as

s = R−1QHvN (3.4.8)

where QH is the complex conjugate transpose of Q from the QR – decomposition

of V N−1
1 .

As noted in [122], despite the fact that the above decomposition based on a

companion matrix is mathematically correct [9], computing accurately more than

the first couple modes and eigenvalues on experimental data sets can be hard.
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Thus, a more robust implementation that results in a ‘full’ matrix instead of

computing the companion matrix S was chosen for the present study. The SVD –

based approach yields the matrix S̃ that is related to A via a similarity transform.

The advantage of this approach over the Arnoldi – like approach is that noise in

the data and numerical truncation issues can be compensated for by truncating the

SVD of V N−1
1 .

In order to achieve the robustness, the preprocessing step was done using an

SVD of the data sequence in the form

V N−1
1 = UEWH (3.4.9)

where UTU = V TV = 1 with U (an m×m matrix) is an orthonormal eigenvector

of V N−1
1 (V N−1

1 )T , matrix W (an n × n matrix) is an orthonormal eigenvector of

(V N−1
1 )TV N−1

1 and E is a diagonal m × n matrix with non-negative real numbers

on the diagonal.

Then, by substituting Eq. 3.4.9 into Eq. 3.4.3, and upon some rearrangement,

we obtain

UHV N
2 WE−1 = UHAU ≡ S̃ (3.4.10)

Then, the modal structures were extracted from the matrix S̃ in a manner analogous

so that the global modes can be recovering from the eigenvectors of the Hessenberg

matrixH of the standard Arnoldi method. In this research, the following expression

was defined as the dynamic modes, ϕi:

ϕi = Uyi (3.4.11)

where yi is the ith eigenvector of S̃ such that S̃yi = λiyi, and U is the right singular

vectors of the snapshot sequence V N−1
1 .

3.4.2.2 The Algorithms

The complete algorithm is given below:

Inputs : A set of snapshot pairs from fluid experiments or simulations, where

there is a constant interval of time between two snapshots in each pair. This will
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often come from a time-series of data. Let a sequence of N snapshots {v1,v2, ...,vN}

sampled equispaced in time with ∆t.

i. Arrange the data {v1,v2, ...,vN} into matrices

V N−1
1 = {v1,v2, ...,vN−1} , V N

2 = {v2,v3, ...,vN}

ii. Compute the (reduced) SVD of V1, writing as Eq. 3.4.9.

iii. Define the matrix as Eq. 3.4.10.

iv. Compute the eigenvalues, λi, and eigenvectors, yi of S̃.

v. The DMD mode, ϕi corresponding to the DMD eigenvalues, λi is then given

by Eq. 3.4.11.

The separation ∆t between the snapshots and the number N of processed snap-

shots are the main parameters of the algorithm, while the last one can be determined

by the observation of the residual obtained from the least-squares step. The sep-

aration between samples has to consider the characteristic time-scale of the fluid

phenomenon under investigation for the case involves a restricted amount of snap-

shots. An excessively low or too high sampling frequency leads to the dissatisfying

results.

Outputs: The eigenvalues and modes of DMD. The modes are spatial structures

oscillating and/or growing/decaying at rates provided by the respective eigenvalues.

These come from the eigendecomposition of a best-fit linear operator, which approx-

imates the dynamics presents in the data.

3.4.2.3 DMD Virtues and its Limitations

Virtues:

• DMD requires neither prior deductions nor any understanding of the funda-

mental dynamics as it is entirely data-driven.

• DMD can be employed to a variety of data types or even concatenation of

disparate data sources.
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• DMD provides the Koopman operator, an infinite-dimensional linear operator

that can be used to describe non-linear dynamics, under certain conditions.

• DMD modes can isolate specific dynamic structures in which associated with

a particular frequency.

• DMD has evinced to be quite tailor-able in the sense that the limitations listed

below are addressed by a number of suggested modifications.

Limitations:

• It is too subjective and can be hard in the determination of the most physically

important modes because unlike other methods such as POD; there is no single

right way to rank the eigenvalue importance.

• Even though there is an existence of extensions, DMD typically needs time-

resolved data to identify the dynamics [58, 59].

• The resulting model will be linear if DMD is used to identify the system

without any modifications.

• For a non-linear system, DMD can be unreliable. Specifically, an adequately

rich set of measurements in each snapshot must be carefully selected for a

non-linear system. The connection with the Koopman operator and the fun-

damental dynamical system may be lost if it was handled without care. In

addition, there are additional complications that could restrict the applicabil-

ity of DMD and associated algorithms for non-linear systems with complex

and chaotic dynamics.

• DMD output can be susceptible to noisy data that has been displayed em-

pirically [30] and analytically [164]. Also explored was the impact of process

noise, which is a disturbance that influenced the system’s dynamics [146].

Sensor noise, however, has more robust algorithms [107,164].

• DMD should generally be used only for autonomous systems. Unless these are

explicitly accounted for, the governing equations should have no time reliance

or external inputs [65]).
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• There are no orthogonal DMD modes. This has a number of drawbacks: for

example, if the modes are used for a reduced-order model as a basis/coordinate

system, the model will have additional terms due to the non-zero spatial inner

product between different modes. Note that the orthogonalized DMD modes

are considered by a recent variant, recursive DMD [18].

• DMD is basically depended on the separation of variables, as does POD, and

therefore does not easily extend to the problems of travelling waves.

• Typically, DMD does not operate well for extremely intermittent dynamic

systems. Multi-resolution variants [69] and time-delay variants [156], however,

are promising to overcome this weakness.

3.5 Chapter Summary

This chapter presented how the wake flow behind a rotating blade was simulated us-

ing a computational model. Three methods widely used in turbulent flows modelling

were briefly described, but DNS is the one used in this study. The dimensionless

incompressible Navier-Stokes equations used in this study were derived, and the

difference between two actuator models which are ALM and ADM were provided

before the definition of four stratified atmospheric stability conditions were given in

the first section. The second section of this chapter provided a detailed mathemat-

ical background of the two model decomposition techniques, which will be used in

this study. For the databased method, POD analysis captures the most energetic

modes, while DMD extracts the dynamic modes along with their growth rates and

frequencies from the flow field data. Apparently, both POD and DMD methods can

use the flow field data from numerical simulation and experimental measurement.

The following chapter will provide an interesting analysis of the physics of the helical

vortex core from four different atmospheric stratification conditions. Few charac-

teristics and behaviours of the helical flow will be investigated, and the difference

between every case will be discussed.



Chapter 4

Helical Vortex Breakdown – Analysis

in the Physical Space

In this chapter, the helical wake flow behind a rotating blade was studied in four

different stratification atmospheres which are in weakly stable, neutral and two

different temperature gradients from the strongly stable stratification as discussed

in Section 4.2. In the strongly stable, case 1 and neutral stratification, the analysis

were carried out at two Reynolds numbers, Re = 1000, and Re = 2000. The other

two cases, which are weakly stable and strongly stable case 2 were studied at Re

= 1000. The analysis on the vortex identification, deformation, vorticity dynamics,

breaking mechanism, and the core centroids analysis of the vorticity magnitude for

all six cases will be presented in Subsection 4.2.1, 4.2.2, 4.2.3, 4.2.4, and 4.2.5,

respectively. Section 4.3 is about the physical interpretation of the flow on the

analysis of power spectra before this chapter ends with the conclusion in Section

4.4. The computational domain of the simulation of the wake flow behind the

rotating blade will be described in Section 4.1.

4.1 Helical Flow behind a Rotating Blade

The sub-domain of the complete computational domain was being considered to per-

form the analysis in order to decrease the size of the computations and concentrate

on the interesting part appropriate to the physics in the flow. In the sub-domain

71
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1 < z < 11, the perturbation growth is linear and the magnitude of the velocity

of the perturbations remain low compared to the base flow. The non-linear effects

in the wake breakdown and the turbulent wake are out the sub-domain. Thus, the

analysis has been performed to the three components of the instantaneous velocity,

u = (u, v, w) in a smaller region of the computational domain as shown in Fig. 3.1

of Section 3.2.

The wake behind a wind turbine is typically divided into two sections; near wake

and far wake, where it is difficult to determine exactly the boundary between the

two sections. Nevertheless, it is known that the end of the near wake is where the

shear layer hits the wake axis [19]. Crespo et al. [1] concluded that this normally

takes place at around 2 − 5D. The velocity deficit declines slowly downstream of

the turbine in the far wake, and the wake is fully developed. Consequently, axis-

symmetry and thus a self-similar wake structure can be assumed [19].

Fig. 4.1 was referred for the view of Fig. 3.1 in z − y plane. This is to focus on

the smaller domain which were studied in this work.

-3
3

z = D z = 11D

-3<z<60

-3
5

<
y
<

3
5

Figure 4.1: The side view of Fig. 3.1 with the blue rectangle represents the radius

of the rotating blade, D = 1, located at (z, y) = (0, 0).
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4.2 Analysis of Instantaneous Helical Flow behind

a Rotating Blade

Wakes originate from the shed trailing vortices of the spinning blades that form

the concentrated helical tip and root vortex structures. In considering the effect of

upstream turbines on downstream turbines, the growth and lifetime of tip vortices

are being the subjects of interest. Due to self-induced instability and ambient at-

mospheric turbulence, the tip vortices break up. Therefore, when considering the

aerodynamic loads and fatigue on impacted turbines, the lifetime of tip vortices and

the process of the break up is valuable knowledge. For this reason, [159] conducted a

study focusing on the stability properties of tip vortices and the mechanisms leading

to vortex pairing.

4.2.1 Vortex Identification

Fluid mechanics is a discipline in applied mechanics concerned with the behaviour

of liquids and gasses at rest or in motion. The fluid dynamics is the component

of the fluid movement. Fluid mechanical problems are often dominated by vortical

structures, and in flow fields, vortices are usually considered to be the most impor-

tant structures. The vortices are commonly associated with turbulence, but occur

in laminar flow as well. Thus, the identification of vortices is important as it can be

seen as a tool for a better understanding of complex flow phenomena.

In the literature over the past three decades, numerous vortex identification

methods, vortex definitions and vortex core visualization techniques have been pro-

posed [53,61,76,106,121]. Various vortex identification schemes that distinguish the

region-type definitions of a vortex from the line-type definitions of a vortex core.

In practice, these approaches may be effectively combined [162]. Although there

is no final agreement on what is a vortex, fluid vortices were mostly related to a

quite rigorous and physically well-established quantity representing an average fluid

component angular velocity, the so-called vorticity.

The widely used local criteria such as Q-criterion, ∆-criterion and λ2-criterion

sharing a basis in ∇u which are local in character. There are two distinct Galilean-
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invariant definitions of a vortex proposed using invariants of the velocity gradient

tensor [53, 106, 109] which can be expressed as the following three-dimensional ma-

trix:

∇u =
∂ui
∂xj

=


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z

 (4.2.1)

As this is a second order tensor in Cartesian coordinates it can be decomposed

into a symmetric and a skew-symmetric part

∇u = Sij + Ωij (4.2.2)

where Sij =
1

2
(∇u + ∇Tu) =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
and Ωij =

1

2
(∇u − ∇Tu) =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. Sij is known as the rate-of-strain tensor, and Ωij is the vor-

ticity/rotation tensor.

The velocity gradient tensor, ∇u has the following characteristic equation:

λ3 + Pλ2 +Qλ+R = 0 (4.2.3)

where λ is the eigenvalues of ∇u and P , Q and R are the three invariants of the ve-

locity gradient tensor. Using the decomposition into symmetric and anti-symmetric

parts these invariants can be expressed as follows:

P = −∇ · u =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (ux, uy, uz) = −

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
(4.2.4)

Q = −1

2

(
∂ui
∂xj

∂uj
∂xi

)
=

1

2
(‖Ω2‖ − ‖S2‖) (4.2.5)

R = −det

(
∂ui
∂xj

)
(4.2.6)

The Q-criterion defines a vortex as "a connected fluid region with a positive

second invariant of ∇u" [170], i.e Q > 0. This criterion also provides a secondary

pressure condition, requiring reduced pressure than ambient pressure in the vortex.

Looking at the definition of the second invariant, it is clearly shown thatQ represents

the local equilibrium between the rate of shear strain and the magnitude of vorticity,

|ω| defining vortices as areas where |ω| is greater than the magnitude of rate-of-

strain [53,170].
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The ∆-criterion defines vortices as "regions in which the eigenvalues of ∇u are

complex and the streamline pattern is spiralling or closed" [170]. In order to deter-

mine if the eigenvalues are complex, the discriminant of the characteristic equation

was examined.

∆ =

(
Q

3

)3

+

(
R

2

)2

> 0 (4.2.7)

For incompressible flows where P = 0 is valid this definition. If two of the eigenvalues

form a complex conjugate pair, the streamlines are said to be closed or spiralling.

From Eq. 4.2.7, it is shown that Q > 0 and this implifies that Q-criterion more

restrictive than ∆-criterion [121].

The λ2-criterion seeks for a minimum pressure, but by discarding these terms, it

removes the impacts from unsteady straining and viscosity. Taking the gradient of

the Navier-Stokes equations results in

ai,j = −1

ρ
pij + νui,jkk (4.2.8)

where aij is the gradient of acceleration and pij is symmetric. The decomposition

of the acceleration gradient into symmetric and antisymmetric parts provides the

transport equation of vorticity as the antisymmetric part, and the symmetric part

−DSij
Dt
− νSij,kk + ΩikΩkj + SikSkj = −1

ρ
pij (4.2.9)

The first two terms on the left hand side, respectively, represent unsteady irrota-

tional strain and viscous effects. Therefore, it is regarded only S2 +Ω2 to determine

if there is a minimum local pressure that involves a vortex. A vortex is defined as "a

region connected with two negative eigenvalues of S2 + Ω2" [61]. Since S2 + Ω2 is

symmetric, it has only real eigenvalues and by ordering the eigenvalues λ1 ≤ λ2 ≤ λ3

the definition becomes equivalent to requiring that λ2 < 0. Generally visualized as

isosurfaces for different values of −λ2 [61]. The three conditions described above are

equal in planar flows.

On the other hands, vorticity is defined as the curl of the velocity by the following

equation:

ω = ∇× u (4.2.10)

where ∇ is the del operator and u is the flow velocity. Since it is equal to the

rotation of the fluid at (x, t), it can be used directly to identify vortices.
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Mathematically, the vorticity of a three-dimensional flow is a pseudo-vector (a

quantity that transforms like a vector under a proper rotation) field that describes

the local spinning motion of a fluid near some point (the tendency of something

to rotate), as would be seen by an observer located at that point and travelling

along with the flow. It is usually denoted by ω, defined as the curl or rotational of

the instantaneous velocity field u describing the continuum motion. In Cartesian

coordinates, Eq. 4.2.10 is written as

ω =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
× (ux, uy, uz) =

(
∂uz
∂y
− ∂uy

∂z
,
∂ux
∂z
− ∂uz

∂x
,
∂uy
∂x
− ∂ux

∂y

)
(4.2.11)

In words, the vorticity tells how the velocity vector changes when one moves

in a direction perpendicular to it, through an infinitesimal distance. It can be

readily visualized by plotting the isosurfaces of vorticity magnitude, |ω| given by

the following equation, in which was commonly used for representing vortex cores

[6, 31,144].

|ω| = (ωx
2 + ωy

2 + ωz
2)

1
2 (4.2.12)

where ωx, ωy, ωz is the vorticity of its three components.

Fig. 4.2 shows the isosurface of all three vortex identification techniques, Q-

criterion, ∆-criterion and λ2-criterion including |ω| in the streamwise direction for

the Strongly Stable at Re = 1000 case (SS1, Re1k). The readers are reminded that all

these quantities are dimensionless since the calculations are based on dimensionless

velocities. It is the same for x, y, z as it was dimensionalized by the radius of the

rotating blade, D.

As it can be seen in Fig. 4.2, there is no difference between all the vortex iden-

tification methods in visualizing the vortex. Thus, |ω| will be used in the following

analysis to further understand the characteristics and behaviours of the vortices

since the other three criterion mentioned before can not be used to calculate the

circulation. The significance of the circulation is that it helps at quantifying the

actual strength of a vortex and tells the force that will exert on surrounding the

helical flows.
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Figure 4.2: Isosurface of: (a) Q = 0.0025, (b) ∆ = 1e−8, (c) λ2 = 0.006, and (d)

|ω| = 1.25 with contours indicate the temperature field of SS1, Re1k.
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The isosurface of |ω| for SS1, Re1k and all the other cases which are SS1 at Re =

2000 (SS1, Re2k), Strongly Stable case 2 at Re = 1000 (SS2, Re1k), Weakly Stable

at Re = 1000 (WS, Re1k), and Neutral at Re = 1000 and Re = 2000 (N, Re1k, and

N, Re2k, respectively) can be seen in the Fig. 4.3 below:
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Figure 4.3: Isosurface of |ω| = 2.5 for: (a) SS1, Re1k, (b) SS1, Re2k, (c) N, Re1k,

(d) N, Re2k, (e) WS, Re1k, and (f) SS2, Re1k cases with contours indicate their

temperature field.
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In particular, the tip and root vortices may interact depending on the tip speed

ratio. However, the root vortices break down faster than the tip vortices as it can

be seen in Fig. 4.4, due to their weak proximity. The root vortices are therefore not

included in this analysis as there is a very weak interaction between root and tip

vortices.
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Figure 4.4: Contour of |ω| in yz-plane cut (SS1, Re1k). The blue squares represent

the tip vortices while the pink stars are the root vortices.

4.2.2 Deformation of the Helical Wake Flow

In this study, the deformation of the flow structure was defined to be the degree of

eccentricity (non-circularity) the helical wake is. In order to quantify it, we average

through slices of |ω| in the streamwise direction over a range where the helical core

makes a complete revolution (from now it will be called as ‘cycle’) as shown in Fig.

4.5.

The available streamwise distance 1 < z < 11 typically accommodates nine

complete cycles, as shown in Fig. 4.6. In each sub-figure, the black circle was plotted

from the mean distance, d̄ (which will be described later in the next paragraph) and

the red circle with r = 1.5 were plotted for indicative purposes, to show qualitatively

how non-circular the wake is.
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Figure 4.5: Isosurface of |ω| from SS1, Re1k case for nine complete cycles with the

dashed lines indicate the second complete cycle at 2.1 ≤ z ≤ 3.2

The root-mean-square (RMS) error is a measure of the variations between the

expected values and the actual observed values that are often used. It represents

the sample standard deviation of the differences between the values of prediction

and observation. The RMS of the distance between the core points to the origin, d

(shows in Fig. 4.7) for observations of the mean distance, d̄ was computes for N = 9

complete cycles (as shown in Fig. 4.6 (a) – (i)) as the square root of the mean of

the square of the deviations:

RMS =

√∑N
i=1(di − d̄i)2

N
(4.2.13)

A total of 100 core points as represented by the blue stars in Fig. 4.7 were

referred to the points with the highest values of |ω| (after this will be called as the

"core points") that formed the helical core structure of |ω|.
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Figure 4.6: Contour of |ω| (SS1, Re1k) at: (a) 1 ≤ z ≤ 2.1, (b) 2.1 ≤ z ≤ 3.2, (c)

3.2 ≤ z ≤ 4.3, (d) 4.3 ≤ z ≤ 5.4, (e) 5.4 ≤ z ≤ 6.5, (f) 6.5 ≤ z ≤ 7.6, (g)

7.6 ≤ z ≤ 8.7, (h) 8.7 ≤ z ≤ 9.8, and (i) 9.8 ≤ z ≤ 10.9.

Fig. 4.8 shows the RMS values of the tip vortices. The deformation of the helical

flow structure increased as the flow moves downstream except for both N cases. It

shows how non-circular the helical flow is for every cycle and indirectly tells that

the circular helical flow deformed to the ellipse at the end.

Fig. 4.6, Fig. 4.9, Fig. 4.10, and Fig. 4.11 were referred for a better visualization

of how the helical flow shape distorts from its initial circular to an ellipse one in the

process.
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Figure 4.7: Contour of |ω| at 8.7 ≤ z ≤ 9.8 with black arrow indicates the distance,

d, the black dashed line is the mean distance, d̄ of the cores from the origin, (0,0)

and the blue stars are the core points from 100 angles of the cycle.
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Figure 4.8: RMS Error of |ω| cores for all cases.
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Figure 4.9: Caption and colormap as Fig. 4.6, but for SS1, Re2k.
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Figure 4.10: Caption and colormap as Fig. 4.6, but for WS, Re1k.
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Figure 4.11: Caption and colormap as Fig. 4.6, but for SS2, Re1k.
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However, for the neutral cases (refer to the Fig. 4.12), the helical flow started as

non-circular as other cases before it went through the deformation into the perfect

circle with zero RMS value. The blue and red line from Fig. 4.8 support this

observation when they both drop to zero in the second cycle and remain till the

last.
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Figure 4.12: Caption and colormap as Fig. 4.6, but for (a) N, Re1k, and (b) N,

Re2k cases.
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4.2.3 Vorticity Dynamics

In order to further comprehend the evolution of the vortex structure in terms of

vorticity dynamics, the spatial derivative terms of the vorticity transport equation

given by the following equation were evaluated.

Dω

Dt
= (ω · ∇)u+ ν∇2ω (4.2.14)

where u = (uz, ur, uτ ) with z, r and τ representing the streamwise, radial and

tangential components, respectively. The tangential velocity, uτ is related to the

angular velocity, uθ and the radius, r as uτ = ruθ. As justified in [12], owing to the

rotating nature of flow motion, it is better to represent the vector fields in a series of

rotating Cartesian frames rather than a single fixed Cartesian frame. The velocity

field in rotating Cartesian frame, u(z, r, τ) = (uz, ur, uτ ) is related to that in the

fixed Cartesian frame, u(z, x, y) = (uz, ux, uy) by the relationship:

u(z, r, τ) = J(θ)u(z, x, y) (4.2.15)

where J is the Jacobi rotation matrix which is a function of θ, the azimuthal angle.

The same relation applies to all the other vector fields. The details of the derivation

of Eq. 4.2.14 are provided in [12] & [132].

The individual components of Eq. 4.2.14 then can be written as

ω̇i = −(u · ∇)ωi + (ω · ∇)ui + ν∇2ωi (4.2.16)

where i = z, r, τ and ω̇i = ∂ωi/∂t. It can be seen that the temporal change of local

vorticity is equal to the sum of the convection −(u ·∇)ωi, tilt/stretch (ω ·∇)ui, and

dissipation terms ν∇2ωi, which are essentially derived from the spatial distribution.

The tilt/stretch term then can be expanded as

(ω · ∇)ui =
∂ui
∂z

ωz +
∂ui
∂r

ωr +
∂ui
∂τ

ωτ (4.2.17)

The terms on the right-hand side can be separated into tilting and stretching com-

ponents as follows.

As for the streamwise component i = z, (∂uz/∂z)ωz represents the vortex stretch-

ing, while the other two terms (∂uz/∂r)/ωr and (∂uz/∂τ)ωτ represent the vortex
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tilting from the vertical and tangential components, respectively. In this study, the

focus is on the two tilting terms (which then were normalized by ||ω||2max) as it helps

in further understanding the deformation of the helical structure discussed in the

previous Subsection 4.2.2.

Vortex tilting is the mechanism that normally tilts a vortex to give the vortex a

small component of the vorticity in a perpendicular direction to its core. Note that

the direction of streamwise vorticity was chosen in this analysis because it provides

a significant illustration for vortex tilting (as Fig. 4.6 shows the helical flow mostly

tilted in the two directions perpendicular to streamwise direction), which appear to

be the dominant components.

The vorticity tilting of ωz in x- and y-direction in the fixed Cartesian frame are

shown in the isosurface plot of |ω| as the isocolor of Fig. 4.13(a) and Fig. 4.13(b),

respectively. However, it is hardly to see the vortex tilting clearly from it. This

poor result somehow shows a good agreement to what [12] said about the advantage

of using the rotating Cartesian frame instead. Hence, this study on the vortex

dynamics will then be carried out and discussed in rotating Cartesian frame.
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Figure 4.13: Isosurface of |ω| coloured by streamwise vorticity tilting, into: (a)

x-direction, and (b) y-direction in the fixed Cartesian frame for SS1, Re1k.

The vorticity tilting of ωz along radial, r- and tangential, τ - direction in the

rotating Cartesian frame as the flow goes downstream were shown in Fig. 4.14(a) –

Fig. 4.19(a) and Fig. 4.14(b) – Fig. 4.19(a), respectively.
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Figure 4.14: Tilting of streamwise vorticity, ωz into r-direction (a), and τ -direction

(b), respectively in the rotating Cartesian frame for SS1, Re1k at: (i) 1 ≤ z ≤ 2.1,

(ii) 2.1 ≤ z ≤ 3.2, (iii) 3.2 ≤ z ≤ 4.3, (iv) 4.3 ≤ z ≤ 5.4, (v) 5.4 ≤ z ≤ 6.5, (vi)

6.5 ≤ z ≤ 7.6, (vii) 7.6 ≤ z ≤ 8.7, (viii) 8.7 ≤ z ≤ 9.8, and (ix) 9.8 ≤ z ≤ 10.9.

Remark that the black dashed line is the mean distance, d̄ of the cores from the

origin, (0,0).
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Figure 4.15: Caption and colormap as Fig. 4.14, but for SS1, Re2k.
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Figure 4.16: Caption and colormap as Fig. 4.14, but for N, Re1k.
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Figure 4.17: Caption and colormap as Fig. 4.14, but for N, Re2k.
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Figure 4.18: Caption and colormap as Fig. 4.14, but for WS, Re1k.
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Figure 4.19: Caption and colormap as Fig. 4.14, but for SS2, Re1k.
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It was found that the contribution of the tilting along radial direction for both

weakly stable cases is significant compared to the tangential direction. In compari-

son, the contribution due to tilting by radial flow in both neutral case is quiet low

and may be neglected as it is even smaller than the tangential. Meanwhile, the

vorticity tilting in both directions give significant contributions to both WS, Re1k

and SS2, Re1k although the radial flow contributes more than tangential.

For SS1, Re1k & SS2, Re2k cases, the tilting term in the significant direction,

r as shown by Fig. 4.14(a) & Fig. 4.15(a) is clearly dominant in the left diagonal

portion of the vorticity distribution. The tilting term increased from the first cycle

to the end and this observation suggest that the deformation of the circular helical

flow to the ellipse (as discussed before in Subsection 4.2.2) was caused by the tilting

term of the streamwise vorticity, ωz along the radial direction.

This is totally opposite to the neutral case for both Re since the tilting term is

dominant all over the portion of the vorticity distribution along tangential direction

as in Fig. 4.16(b)(ii - ix) & Fig. 4.17(b)(ii - ix). On the other hand, the decrease

of tilting value as the flow moves downstream and since the tilting term in the first

cycle occurred in just one part of the circle (refer to Fig. 4.16(b)(i) & Fig. 4.17(b)(i))

support the result of the deformation in previous discussion where the helical flow

of the first cycle is not completely circle compared to others.

As for the weakly stable case, Fig. 4.18(a) shows the tilting along r-direction

where it dominant in all four corners and the intensity keeps increasing towards the

end. This makes the circular helical flow distorts to (almost) perfect square. The

same observation was observed for the last case in Fig. 4.19(a) where the tilting

term becomes more intense as the flow went downstream and it dominant in the four

corners. This finally turned the circular helical to (almost) a square helical at the

end. Again, the tilting term in r- direction for both strongly stable cases is mainly

a distorting effect just like both in weakly stable cases.
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4.2.4 Breaking Mechanism

The instabilities and breakdown of the helical vortices are crucial to the development

of the wake flow and consequently impose significant impacts on downstream wind

turbines in terms of fatigue loading, lifetime and acoustic noise. Better understand-

ing of the helical vortices breaking mechanism would lead to more advanced wind

turbine design and wind farm layout techniques, more reliable lifetime predictions of

wind turbines and wind farms generating energy, and potentially lower wind energy

prices.

From the isosurface of |ω| plotted in Fig. 4.5, the helical structure starts to

break at a certain angle as the flow move downstream at a fixed threshold. In order

to see where it started to break, the broken angle of the structure was determined

for each cycle. The values for all core points in every cycles of all cases which less

than 1
3
|ω|max were set to be zero so that, it can be clearly seen where the breaking

structure happened in every cycles as illustrates in Fig. 4.20 – Fig. 4.25 below.

This threshold value was chosen because it gives the ideal contour plot of all cases

by explicitly highlighting the breaking/non-breaking part of all cycles. Note that

the contour detection is closely linked to the optimum threshold.
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Figure 4.20: Contour of all nine cycles with the threshold more than 1
3
|ω|max in

SS1, Re1k.
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Figure 4.21: Caption as Fig. 4.20, but for SS1, Re2k.
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Figure 4.22: Caption as Fig. 4.20, but for N, Re1k.
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Figure 4.23: Caption as Fig. 4.20, but for N, Re2k.
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Figure 4.24: Caption as Fig. 4.20, but for WS, Re1k.
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Figure 4.25: Caption as Fig. 4.20, but for SS2, Re1k.
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As for the selected threshold value, the flow seems to start break up at the sixth

cycles. By taking that particular cycle (refer to Fig. 4.20(f)) as example, it clearly

can be seen that the helical structure breaks at θ for ∆θ broken angle. Referring to

Fig. 4.26, the two lines, P1 and P2 were determined by connecting the tip point of

each remaining contour, (px1, py1) & (px2, py2), respectively, to the origin while the

red dashed line is the horizontal line at y = 0. The angle of the broken structure,

∆θ then can be calculated by

∆θ = tan−1

[
m2 −m1

1 +m2 ·m1

]
(4.2.18)

wherem1 andm2 are the slops of line P1 and P2, respectively given by andm1 =
py1

px1

and m2 =
py2

px2

.
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Figure 4.26: Contour of |ω| at 6.5 ≤ z ≤ 7.6 (SS1, Re1k) for contour level [1.5 6]

with two solid black lines P1 and P2 which represent the radius from point (px1,

py1) & (px2, py2), respectively; and a red dashed line, y = 0. The blue stars are

the core points from 100 angles of the cycle.

As for θ, the angle measured anticlockwise from the red dashed line with m = 0

which gives θ = tan−1(m1) = tan−1(
py1

px1

). Thus, Table 4.1 concludes where and how

much (in π) the flow structure breaks for the last few cycles.
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Atmospheric Conditions Angles (in π)

5.4 ≤ z ≤ 6.5 6.5 ≤ z ≤ 7.6 7.6 ≤ z ≤ 8.7 8.7 ≤ z ≤ 9.8 9.8 ≤ z ≤ 10.9

θ ∆θ θ ∆θ θ ∆θ θ ∆θ θ ∆θ

N, Re1k - - - - 1.3278π 0.8833π 1.1222π 1.2111π 0.9722π 1.3939π

N, Re2k - - - -
0.2389π

0.3833π

0.0944π

0.4389π
1.7833π 1.1833π 1.7056π 1.3389π

WS, Re1k
0.8167π

1.3889π

0.1278π

0.1944π

0.1611π

0.2667π

0.7833π

1.1111π

1.2333π

1.8167π

0.0333π

0.3167π

0.1611π

0.0556π

0.3944π

0.1222π

0.1167π

0.7778π

1.1056π

1.6944π

0.5389π

0.1833π

0.5889π

0.1944π

0.1167π

1.0722π

0.8444π

0.9056π

0.0611π

1.0556π

0.9056π

0.9444π

SS1, Re1k - -
0.2722π

0.7444π

0.3889π

0.1055π

0.1167π

1.2722π

0.7944π

0.6056π
1.0556π 1.9556π 0π 2π

SS1, Re2k - - - -
0.1167π

1.1222π

0.1667π

0.5278π

0.0944π

1.0722π

0.4055π

0.7167π

0.0444π

1.0556π

0.5278π

0.8277π

SS2, Re1k
0.4388π

1.3611π

0.0944π

0.2111π

0.3222π

0.8222π

1.2889π

0.3833π

0.1055π

0.3667π

0.2278π

0.9944π

1.2167π

0.7556π

0.1111π

0.6556π

0π 2π 0π 2π

Table 4.1: The breaking helical flow at θ for ∆θ broken angle of all cases.
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Overall, the flows with the atmospheric stratification condition (all cases except

neutral) break at the upper and lower part of the helical structure and the remaining

structure usually located at the right and left helical flow. If this result to be related

to the previous analysis, the breaking part is actually the one with higher tilting

vorticity values. As for a comparison, both neutral cases have a flow which only

breaks at one part of the helical structure.

Considering the breaking helical flow from SS1, Re1k as an example, it shows

clearly that the helical structure breaks at the sixth cycle where 6.5 ≤ z ≤ 7.6, the

next question raised is "At what exact location of z does the helical flow actually

started to break?". An analysis of the core points at all twelve slices which made the

sixth cycle were done. All the core points of the twelve considered slices together

with their θ location were displayed in Fig. 4.27. Note that the same threshold,
1
3
|ω|max was used for this analysis. Subsequently, all the θ values of Fig. 4.27 were

plotted in Fig. 4.28(a) in order to observe the weakest |ω| which caused the breaking

of the helical flow. The same things were done to the rest of the cases and shows in

Fig. 4.28(b) – Fig. 4.28(f).
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θ =

1.3283π

θ =

0.0152π

θ =

1.8939πθ =

1.7121π

θ =

1.5303π

θ =

0.1566π θ =

0.4596π
θ =

0.6616π

θ =

0.8030π
θ =

0.9445π θ =

1.0858π
θ =

1.3081π

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.27: Contour of |ω| of SS1, Re1k case at:(a) z = 6.5, (b) z = 6.6, (c)

z = 6.7, (d) z = 6.8, (e) z = 6.9, (f) z = 7.0, (g) z = 7.1, (h) z = 7.2, (i) z = 7.3,

(j) z = 7.4, (k) z = 7.5, and (l) z = 7.6. The grey coloured region is the area where

the same contour level of |ω| as Fig. 4.20 was applied while the blue star is the

core point of every slices located at the stated θ in every picture, respectively.
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Figure 4.28: |ω|min of broken angle at: (a) 6.5 ≤ z ≤ 7.6, (b) 7.6 ≤ z ≤ 8.7, (c) 7.6 ≤ z ≤ 8.7, (d) 7.6 ≤ z ≤ 8.7, (e) 5.4 ≤ z ≤ 6.5,

and (f) 5.4 ≤ z ≤ 6.5 of SS1, Re1k; SS1, Re2k; N, Re1k; N, Re2k; WS, Re1k; and SS2, Re1k, respectively.
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As the result, Fig. 4.28(a) shows the first core point to hit a low value is at

z = 7.0 which reveals the location of the first breaking flow started in streamwise

direction. Noted that θ values provided in Fig. 4.28 represent the location of the

breaking point in azimuthal direction. As for SS1, Re1k, the flow breaks at the

upper hand side of helical structure where θ = 0.1566π at z = 7.0.

For the next strongly stable case 1 at Re = 2000 (Fig. 4.28(b)), the helical flow

started to break later at z = 7.8 at θ = 1.0455π. The earliest to break is the flow

from weakly stable case WS, Re1k (Fig. 4.28(e)), where the breaking mechanism

started as early as at z = 5.6 at θ = 0.0758π followed by SS2, Re1k (Fig. 4.28(f)),

later at z = 5.8 at θ = 0.6818π. On the other hand, the latest to break are the

helical flows from both neutral case (Fig. 4.28(c & d)), to which happen at the

same streamwise location, at z = 8.7. This might be due to the kinetic energy

recovery in the streamwise direction. Basically, the kinetic energy is enhanced at

lower Reynolds numbers and lessen at higher Reynolds numbers.

4.2.5 Analysis on Centroid of the Cores

The fact that the broken angle of the helical structure getting more prominent as

it moves downstream concluded that the flow consequently experiences the decay of

the structure. In order to explain the decay of helical flow, the Gaussian function

was fitted to each centroid of the core points and precisely determined the height of

the curve’s peak, the position of the centre of the peak, and the width of the "bell".

The centroid method takes advantage of a Gaussian function’s symmetry, enabling

an efficient determination of the Gaussian peak position [137,180].

Centroid, by definition in mathematics and physics, is the centre of mass of a

geometric object. The position of the core centroids (row and column) for each plane

(in azimuthal direction) are calculated in pixels through a weighted average: each

pixel is assigned a weight equal to its intensity (in this case, |ω|). In the present

study, this centroid of the system of point vortices is also often called the centre of

vorticity. The following equations give the row and column of the centroid.
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zc =

∫ ∫
z|ω|dzdy∫ ∫
|ω|dzdy

; yc =

∫ ∫
y|ω|dzdy∫ ∫
|ω|dzdy

(4.2.19)

where zc and yc represent the row and column coordinate of the centroid, respec-

tively. For all cases, the threshold was set to be 1
2
|ω|max.
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Figure 4.29: Contour of the |ω| cores from the first plane, θ = 1 with the blue

asterisks, indicates the centroid of each core.

Binary image of |ω| from the first azimuthal plane, θ = 1 was read, and the

centroids for connected components in the image were calculated using the build-in

function, "regionprops" in Matlab. Then, for each of the core centroids (shown in

Fig. 4.29 for SS1, Re1k ), the Gaussian function was fitted to the row and column

coordinate separately, as displayed in Fig. 4.30:

Mathematically, a Gaussian function (in this case, called Gaussian vortex core)

is of the form:

f = ae−
(x−b)2

2c2 (4.2.20)

for arbitrary real constants a, b, and non zero c. This function can be graphed with

a symmetrical bell-shaped curve centred at x = b, with a is the peak’s height and

c is the width-controller. The tails (low-amplitude portions) of the curve on both

sides of the peak fall off rapidly and approach the x-axis.

As shown in Fig. 4.30, the highest peak in Fig. 4.30(b) corresponding to the

one at the farthest left of the curves in Fig. 4.30(a) and the rest of the peaks follow

the same sequence. The decreasing of the peaks in both figures proves the fact that

the helical flow structure decays as it moves downstream. The following Fig. 4.31
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Figure 4.30: Gaussian Fit of all eight core centroids for the first plane, θ = 1 in:

(a) z-, and (b) y-direction of SS1, Re1k case. Red lines are the Gaussian curve,

while the blue dots are the actual data.

concludes the pattern of Gaussian peaks of all cases. Several lines, such as the line of

WS, Re1k, and SS2, Re1k stop earlier owing to the number of their core centroids.

Due to instability of the flow, there are just two, and three core centroid found,

respectively. This is one of the arguments to show that the two cases decay earlier

compared to the others.

As clearly shown below in Fig. 4.31, the fastest helical flow to decay is from

WS, Re1k, since it has the lowest Gaussian peak’s value. Recall from the previous

discussion; it is the same case in which the helical flow breaks the earliest.
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Figure 4.31: Gaussian Peaks of the first plane, θ = 1 in: (a) z-, and (b) y-direction

for all cases plotted from the red Gaussian fit curve in Fig. 4.30 (SS1, Re1k).

Next, the size of the core can then be determined from the same Gaussian

function by calculating the full width of the Gaussian curve at half the maximum,

FWHM. This is somewhat larger than σ (in this case, standard variation, σ = c)

and can easily be shown to be:

FWHM = 2σ
√

2 ln 2 ≈ 2.355σ (4.2.21)

This is illustrated in Fig. 4.32, where the first Gaussian curve in Fig. 4.30(b) is

being considered as an example.

The graph of FWHM in both z- and y- direction in Fig. 4.33 describes how the

size of the core continues to increase up to the last core. The difference in FWHM

values in both direction indirectly tells that the shape of the core must be some sort

of ellipse. The oval shape of all core from all cases remains the same as the flow

goes downstream.

From the two figures, Fig. 4.31, and Fig. 4.33, the conclusion can be made

that as the flow develops, the core size keeps increasing, and this leads to the next

question about the force that will exert on surrounding the helical flows.
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Figure 4.32: Halfwidth of a Gaussian Distribution.
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Figure 4.33: Full width at half the maximum, FWHM of the first plane, θ = 1.

Another vortex property that can be analysed is the vortex core circulation

strength, Γ. This analysis will answer the question mentioned before about the

energy of the flow. It is widely known that the vorticity and circulation are the two

primary measures of rotation in a fluid. If |ω| is a microscopic measure of rotation
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from a vector field at any point in the fluid, Γ which is a scalar integral quantity, is

a macroscopic measure of the rotation for a finite area of the fluid. The circulation

around a closed core centroid region, C is defined as the line integral evaluated along

the contour of the azimuthal component, θ of the velocity vector since it is locally

tangent to the contour:

Γ =

∮
C

~u · d~l =

∫
S

(∇× ~u) · d~S =

∫ ∫
ωθ · dz · dy (4.2.22)

where S is an arbitrary surface bounded by C.

Physically, circulation can be considered as the amount of force that pushes along

a closed boundary [103]. Fig. 4.34 shows the decrease of the circulation strength of

the vortex core, Γ from the first core towards the last. The Γ values in Fig. 4.34

were interpolated so that the circulation can be seen clearly for every z location.

The same pattern happened to all the cases. There is a good agreement between

the circulation and the core size (refer Fig. 4.33) as the relationship between those

two quantities is inversely proportional. Again, the fastest to decay with the lowest

Γ value is the helical flow from WS, Re1k followed by the second strongly stable

case, SS2, before SS1, Re 1k and, SS1, Re 2k. The slowest to decay as before are

from both neutral cases. Hence, this result strongly supports the previous study in

Subsection 4.2.4.

Since the core trajectory of each plane was successfully derived earlier in this

subsection, it is possible to build a 3D helical structure from it. Fig. 4.35 shows the

construction of the helical structure from the core centroid of all planes. Note that

the figure was illustrated from the strongly stable case 1 at Re = 1000.

A helix is a curve for which the tangent makes a constant angle with a fixed-line.

As a space curve, it is generally given by the following parametric equations:

(x, y, z = r cos θ, r sin θ, hθ) (4.2.23)

where r > 0 is the radius of the helix, θ ∈ [0, 2π]) is the angle of the point (x, y, z)

makes with the x-axis (projected to the xy-plane) and h is a constant where 2πh

gives the separation of the helix loops.
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Figure 4.35: Helical structure of |ω| from all core centroids in SS1, Re1k indicated

by the black dots, and the red line is the one constructed from the best fit.

Earlier in Subsection 4.2.2, a discussion on how the flow went through a defor-

mation from a circular helix to an ellipse has been carried out, and this gives the

idea that the changes of the radius depend on its angle as it moves downstream.

Thus, a simple linear regression such that the best fit line (in a least-squares sense)
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of

r = aθ + b (4.2.24)

with constants, a, b was performed to the yc of all planes with the helix axis in the

z-direction. The parameter r for each case are listed in Table 4.2, together with the

norm of residual, Normr. In order to signify the "goodness" of fit, Normr was used.

This term was calculated as the square-root of the sum of squares of residuals:

Normr =

√∑
i

(Ri − ri)2 =

√∑
i

(ei)2 = ‖e‖ (4.2.25)

where Ri is the radius from the input dataset, ri is a fitted R value and ei = Ri− ri
is the residuals.

The Normr ranges between 0 and infinity, with smaller numbers indicating better

fits and zero indicating a perfect fit. Hence, it can be concluded that the best fitted

helical flow is the one from N, Re2k while, the worse one is from SS1, Re1k. Note

that this analysis does not aim for the discussion on the distortion of the helical

flow. In the near field, the radius of helical wave is nearly constant, so it is not a

bad approximation to fit the core trajectory with a constant r. Thus, the presented

results were obtained by fitting the flows with a non-uniform radius to the circular

helix (with fixed-radius).

Atmospheric Conditions Radius, r(θ) Norm of residual, Normr

N, Re1k −0.0001θ + 1.0577 0.2247

N, Re2k 0.0001θ + 1.0510 0.1200

WS, Re1k 0.0021θ + 1.0511 0.6174

SS1, Re1k 0.0068θ + 1.0593 1.1581

SS1, Re2k 0.0024θ + 1.0568 0.8535

SS2, Re1k 0.0046θ + 1.0516 1.1327

Table 4.2: Parameter, r, and norm of residual, Normr of the helical for all cases.

A 3D helix formed from Eq. 4.2.23 was then plotted on the same figure (Fig.

4.35) as the core centroids helical structure to illustrate how they match each other.
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4.3 Power Spectra Analysis

Before the modal analysis of the flow was employed in the next chapter (Chapter

5), a general understanding of the flow, such as the signal distribution, is needed.

The impact of fluctuating velocity flow on the Fast Fourier Transform (FFT) of the

signals in the frequency domain was studied. Power Spectral Density (PSD) was

used to provide information about how the energy of the flow signal is distributed

concerning the frequency. The goal of spectral estimation is to describe the distri-

bution (over frequency) of the power contained in the flow signal, based on a finite

set of data. The input from each case is based on the number of time steps, t and

time separation, ∆t as listed in Table 3.2 in Section 3.2.

A time series model generally reflects the fact that observations close together

in time will be more closely related than observations further apart. One of the

uses of a time series model is to describe and explain the general characteristics

of the series. Time series analysis in the spectral analysis was used to examine

the cyclic behaviour since the time series, xt can be expressed as a combination

of cosine (or sine) waves with differing periods, T (how long it takes to complete

a full cycle) and amplitudes, A (maximum/minimum value during the cycle), i.e.

xt = A cos(2πωt + φ) with ω =
1

T
is the frequency which controls how rapidly the

cosine (or sine) curve oscillates, and φ represents the phase as it determines the

starting point, in angle degrees, for the cosine wave.

The power spectrum of a time series defines the energy distribution into frequency

components composing the flow signal [134]. Any physical signal can be decomposed

down into a several discrete frequencies, or a spectrum of frequencies over a constant

range, according to Fourier analysis. The statistical average of a given signal (or

any kind of signal), including noise, is called its spectrum, as analysed in terms of

its frequency content. More commonly used is the PSD or simply referred to as

power spectrum, which applies to all-time existing signals, or over a sufficiently long

period of time, especially concerning the duration of a measurement, that it could

also have exceeded an infinite time interval.

In practice, one can only get an estimation of the PSD of the process, and hence,

in the present study, the spectral estimator called periodogram was applied. It is
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used for the identification of the dominant periods or frequencies of a time series. It

is comparable to the Fourier transform but is optimized for various shapes in periodic

signals and for uneven time-sampled data. The periodogram for real-valued, hj, of

evenly spaced data, ∆t is defined by

P̂ (f) =
2∆t

N

∣∣∣∣∣
N−1∑
j=0

hje
−i2πj∆tf

∣∣∣∣∣
2

(4.3.1)

i is the imaginary unit.

However, it should never be calculated explicitly from Eq. 4.3.1 since it is much

faster and mathematically equivalent to use the FFT, which is an intelligent, fast,

and efficient (∼ N logN) algorithm used to compute the Discrete Fourier Transform

(DFT).

Xk =
M−1∑
j=0

e−i2πkj, k = 0, 1, . . . ,M − 1 (4.3.2)

for any array of M (in general complex) values of x0, x1, . . . , xM−1

The results Xk are in general complex (even if xj are real). Putting M = N and

xj = hj, gives

P̂ (fk) =
2∆t

N
|Xk|2 , k = 0, 1, . . . , N − 1 (4.3.3)

where fk =
k

∆t
is the discrete frequencies

For a better understanding of the flow behaviour, the time series data from the

fluctuating streamwise velocity, u′(t) at the spatial location (x, y) = (−1.04,−1.04)

of three different z locations which are z= 6, 8.5 & 11 where the core of helical

flow located was examined. The time series of u′ at the monitored point, as can be

observed in Fig. 4.36(above) shows a periodic state of asymptotic finite-amplitude.

Such oscillations period is measured from the data by using the PSD as shown in

Fig. 4.36(below).

The signal power spectrum is useful when analysing the power distribution con-

tained in a signal. Note that Fig. 4.36(below) are the power of signals in the range

of 0-3.125 Hz for all cases except 0-1.25 Hz for both strongly stable cases. The

PSD units depend on the units of the signal and the sample rate. For this study,

the PSD units would be dB/Hz. Decibels, dB is always a comparison between two

power levels as it is a unit measurement used to express the ratio of one value of a
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power to another on a logarithmic scale, the logarithmic quantity being called the

power level. A better definition of decibels is 10 log10(P/P0), where P and P0 is

the measured power and reference power, respectively. This explains the presence

of negative values and is perfectly normal.

A steady time variation of all cases in Fig. 4.36(a, b, c, d, & f) show that the flow

is well sustained before it slowly reduced in magnitude at the end of the domain.

This is, however different for the weakly stable case. In the time series figure of WS,

Re1k (refer to Fig. 4.36(e)), it shows a fluctuating time variation where the flow

started with the lowest magnitude at z = 6 then increased to the highest magnitude

before it dropped at z = 11. This is probably due to the instability of the flow.

It can also be seen from the power spectra density figure, portrayed by Fig.

4.36(a) & Fig. 4.36(b) that the amount of energy for both the neutral case without

the atmospheric stratification (N, Re1k & N, Re2k) are less than those with it

(Fig. 4.36(c) – Fig. 4.36(f)). This means that the fluctuations of the streamwise

component of velocity for the wake flow where the atmosphere is stratified gave a

fluid flow with a higher turbulence level.

The fundamental properties of FFT are the inability to compute the growth

rates, as well as the predetermination of frequency regardless of data content. In

addition, if the dataset covers less than one corresponding period, FFT failed to

capture a specific frequency. Moreover, if the data are non-periodic, the decay of

temporal FFT energies is slow [80]. Hence for these reasons, there is the need for the

two modal analysis techniques to be carried out in the next Chapter 5 & Chapter 6

since their global solutions may provide more valuable information and better result.
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Figure 4.36: Time Series (above) and Power Spectra Density (below) of u′ for (a) N, Re1k, (b) N, Re2k, (c) SS1, Re1k, (d) SS1,

Re2k, (e) WS, Re1k, and (f) SS2, Re1k.
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4.4 Chapter Summary

In this chapter, the instantaneous helical wake behind a rotating blade of the six

cases from three different atmospheric stratification conditions has been investi-

gated. A few of vortex identification techniques were presented, and the decision to

carry out the following study using the vorticity magnitude, |ω| was made. There

is some interesting characteristics of the wake flow identified, such as its deforma-

tion/distortion, vorticity dynamics, vortex breakdown, and the centroid of the cores.

All these analyses were focused only on the tip vortices. In the study of the deforma-

tion, the RMS values of the tip vortices were calculated to see how non-circular the

helical flows are. Next, as for the vorticity dynamics, the vorticity transportation

equation was being considered, but only the tilting term was highlighted and being

discussed in detail. This is because the deformation of the circular helical seems

to happen due to the tilting of the flow. Instead of study the velocity field in the

fixed Cartesian frame, this work study the vorticity tilting in the rotating Cartesian

frame as it gives a better representation of the vector field as justified in [12]. As

the wake flow will eventually go through the breaking of its structure, the location

of the breaking was determined at both streamwise and angular directions. The

analysis of the core centroids started with Gaussian fit to find the FWHM and the

circulation, Γ of the core in both z and y directions. The FWHM values gave the

size of the cores while Γ granted the energy of the core. Later, 3D helical structure

was built up using the position of core centroid and made it is possible to fit all

different helix curves from all the cases into one single general equation that varies

in radius. It was concluded from the final section of this chapter that the results

from power spectra analysis of the instantaneous flow conclude that in the stable

case, turbulence is stronger than in the neutral case. Hence in the next chapter, the

first modal decomposition method called POD will be employed to the DNS data

of a rotating blade before the analysis with some discussion will be presented. This

will validate the current findings.



Chapter 5

Proper Orthogonal Decomposition of

the Helical Wake

This chapter begins with Section 5.1 where a brief explanation of the preparation

of the input datasets before it can be used in both techniques was presented. Next,

the result from both POD methods will be reported in three sections, which the

comparison between POD modes gained from the individual velocity POD and all

velocity components POD in Section 5.2. the analysis of POD in the near field

presents in Section 5.3, followed by the study of temperature POD, PODT mode in

Section 5.4. The next POD analysis will be on the far wake for Neutral Re1k case

provided in Section 5.5. This chapter ends with a brief conclusion in Section 5.6.

In each case for both modal decomposition analyses, a set of t − 1 snapshots,

N (refer to Table 3.2 in Section 3.2) of the full three-dimensional temperature and

velocity field, u(z, x, y) equispaced in space, ∆z = ∆x = ∆y = 0.1 where z, x, y

are the streamwise, spanwise and vertical components, respectively was used in this

work. The datasets are also equispaced in time with an interval of ∆t (Table 3.2 in

Chapter 3). Note that the present study excluded the analysis of pressure field, p as

to the author’s knowledge, there are not many interesting findings extracted from it

since the pressure field coupled very well with the velocity field. By the same token,

Towne et al. exclusively visualized all the modes in [11] using the pressure field,

instead.

119
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5.1 Preprocessing of the Datasets

Before any modal analysis techniques were employed to the input dataset, the ve-

locity field was preprocessed. Since the incompressible Navier-Stokes solvers were

adapted to a non-uniform mesh and the modal analysis methods should be done to

the equispaced datasets [125,126,130], an interpolation was first adopted to the raw

dataset. Before that, the raw dataset in the cylindrical system was converted to the

Cartesian. It is also important for both techniques to apply the algorithms on the

fluctuating data where the mean should be removed so that the frequency base will

be uniformed, similar to the one obtained by the Fourier transform [80]. Otherwise,

the decomposition on the raw data without subtracting the mean will be resulting

to a non-uniform frequency content.

5.1.1 Interpolation of the Raw Datasets

For the first step of data preprocessing, the raw datasets, which are in a cylindri-

cal coordinate system, was transformed into Cartesian before the interpolation was

done. A built-in function in MATLAB called "griddata" function interpolates scat-

tered data values on a plane or a sphere to a regular grid, an irregular grid, a speci-

fied set of interpolates, or scattered data points. It was used to fit the velocity field,

u(z0, x0, y0) where z0, x0, y0 are the streamwise, spanwise, and vertical components,

respectively; to the data in the non-uniformly spaced vectors, (z0, x0, y0). It interpo-

lates the velocity field at the points specified by a uniform grid of −2 < x < 2 and

−2 < y < 2, which was produced by "meshgrid" in order to create u(z, x, y). The

analysis of both modal analysis methods was applied to sub-domains of 6 < z < 11.

5.1.2 Mean Subtraction

The time-mean velocity, ū(x) described here, is the average of the flow passing a

point over a duration of time. It is simply known as the time-average flow fields

given by

ū(x) = lim
T→∞

(
1

T

∫ T

0

u(x, t)dt

)
(5.1.1)

where u(x, t) is the velocity flow field.
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Figure 5.1: Contour plot of |ω| from time mean velocity field for (a) N, Re1k, (b) N, Re2k, (c) SS1, Re1k, (d) SS1, Re2k, (e) WS,

Re1k, and (f) SS2, Re1k in xy-cut at z = 8.5 (left) and zy-cut at x = 0 (right).
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Fig. 5.1 provides the contour plot of |ω| from Eq. 4.2.12 constructed from ū(x)

of each case. If this mean flow is not being removed before the modal decomposition

techniques were employed, it then will come out as the first mode with the highest

energy level at frequency f = 0 Hz. This so-called mean mode does not relevant

to the total flow, or it decays very fast, not being of much importance in the long

term.

Afterwards, the mean-subtracted data which also known as the fluctuating data,

u
′
(x, t) was defined as

u
′
(x, t) = u(x, t)− ū(x) ∈ <n, t = t1, t2, · · · , tm. (5.1.2)

The snapshots of the flow field then were stacked in terms of a collection of

column vectors u
′
(x, t) as in Eq. 3.4.9. That is, a collection of finite-dimensional data

vectors that represent the flow field was considered. For a more detailed discussion

on the subtraction of the data mean including its implications toward the modal

decomposition methods, [80] can be referred.

5.2 Separated versus Combined Velocity-based POD

A velocity-based POD analysis can be performed either combining all the velocity

components or separately [86, 157]. Hereafter, the velocity-based POD means that

all velocity components (u, v, w) are used as input (see Eq. 3.4.9) to do the POD

analysis, whereas the u-, v- or w-based POD means that either u, v or w is used as

the input.

In order to create a hierarchy of coherent structures based on the time-averaged

spatial correlation tensor, the eigenvalues decomposition was carried out by the POD

algorithm. The total turbulence kinetic energy in the vector space is equivalent to

the summation of the eigenvalues and can be presented in either cumulative or

normalized form. The energy content in each individual POD mode, Ern, relative

to the total resolved energy is then given by

Ern =
λn∑N
j=1 λj

(5.2.1)
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While the cumulative energy provides a direct measure of the rate of energy conver-

gence of the POD modes with n and is given by

Ecn =

∑n
j=1 λj∑N
j=1 λj

(5.2.2)

For this particular section, the entire domain −3 < z < 60 was separated into

two sub-domains which are 6 < zn < 11 and 21 < zf < 26 for near and far wake

region, respectively, while −2 < x < 2 and −2 < y < 2 is the same for both regions.

The purpose of having separated sub-domains is to observe the flow difference in two

different regions besides to maximize the accuracy of mode shape while minimizing

the computational time. Fig. 5.2 presents both the relative energy content Er and

the cumulative energy Ec of the POD modes for u-, v-, w- and velocity-based POD

in near and far wake.

It clearly shows that combining all velocity components in the near wake leads to

the same results as obtained with the individual velocity component. However, this

does not really apply to the far wake case. This is consistent with [86, 157], which

suggested that the POD analysis using only one velocity component is appropriate

for investigating the near wake.

Even so, the u-, v-, w-based POD are not suitable to be used in this work because

the study of |ω| needs all the velocity components to go through the decomposition

method together. For this reason, note that from now on all the POD analysis will

be carried out using the velocity-based POD.

5.3 POD Analysis of the Results in the Near-field

Region

The wakes can be divided into near and far wake regions. The near wake is the area

just downstream of the blade, where the flow field is determined by the impact of the

blade properties, including the blade aerodynamics and geometry. Near wake study

in the real-life application focuses typically on the efficiency of the wind turbine

and the physics of energy extraction. The far wake, on the other hand, is the region

beyond the near wake, where the blade details are less important. In this section, the
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Figure 5.2: Relative (inside) and Cumulative (outside) Energy Content of the

POD Modes in the (a) Near Wake and (b) Far Wake from N, Re1k.

POD analysis of all cases was performed and focused on the near wake flow where

6 < z < 11. Even though z = 6D is not the immediate downstream, the end of the

near wake is said to be where the shear layer reaches the wake axis [19]. Moreover,

from the observation, the wake flow before it reaches z = 6D does not show much

exciting features to be explored. Due to the matrix size limitation in MATLAB,

the study of the wake flow was in 6 < z < 11 rather than considering a more

extended domain. The discussion covered the energy contribution, the eigenvalues

& eigenvectors, and the coefficients of the first few energetic POD modes.
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Before further discussion, it is better to have a good understanding of the con-

tribution of both root and tip vortices of the flow. Turbulence kinetic energy (TKE)

in fluid dynamics is the mean kinetic energy per unit mass associated with eddies

in a turbulent flow. Physically, measured root-mean-square (RMS) velocity fluctu-

ations characterizes the TKE. TKE, in general, is defined as half the sum of the

variances (square of standard deviations) of the velocity components given by TKE

=
1

2

(
(u′)2 + (v′)2 + (w′)2

)
.

The percentage of TKE for both inner (root) and outer (tip) cores where the

considered x, y domain is Din = {(xin, yin) : −0.4 ≤ xin ≤ 0.4,−0.4 ≤ yin ≤ 0.4}

and Dout = {(xout, yout) : (−1.2 ≤ xout ≤ −0.8) ∪ (0.8 ≤ xout ≤ 1.2), (−1.2 ≤

yout ≤ −0.8) ∪ (0.8 ≤ yout ≤ 1.2)}, respectively, were calculated as the flows went

downstream and plotted in the following Fig. 5.3.
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Figure 5.3: Percentage TKE (%) of the (a) tip vortices represent by the solid lines

and (b) root vortices designate by dashed-lines for all cases.

All in all, the TKE of root vortices decay for all cases, while the tip vortices

increase in the percentage TKE. However, the fact that the tip vortices containing

over 90% of the kinetic energy made the root vortices’ contribution to both modal

analysis less important and can be neglected. Therefore, the following discussion

will only focus on the tip vortices.
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5.3.1 Energy Distribution

Energy distribution of the first seven POD modes was plotted relatively and cu-

mulatively in Fig. 5.4. Note that the contribution of modes beyond the seventh

mode is practically negligible. It shows that the first few POD modes contain the

highest amount of relative energy. The fact that the energy of the following modes

continues to reduce as the mode number increase ensures that the most important

modes in terms of energy are the first modes. The most energetic modes can be

viewed as ‘dominant’ flow structures. The less dominant modes may correspond to

measurement noise and smaller eddies.

The energy distribution in the neutral atmospheric condition as portrayed in

Fig. 5.4(a) & Fig. 5.4(b) show that the first two POD modes contain more energy,

and these modes correspond to the dominant flow features buried within the flow

solution.

Fig. 5.4(c) & Fig. 5.4(d) show that the percentage of the cumulative POD

modes energy to the total one for both Re of strongly stable case 1. It is indicated

that the first few modes occupy most energy, while the energy percentage for higher

mode decreases to zero gradually. This is because the first few modes represent

the large-scale coherent structures that dominate the global flow field, while higher

modes represent the small-scale turbulent structures.

For both weakly stable and strongly stable case 2 (see Fig. 5.4(e) & Fig. 5.4(f)),

the first two modes contain about 0.8994 – 0.9183 of the energy while the remaining

energy was shared mostly between the third and fourth modes; the contribution of

modes beyond the fourth modes is practically negligible.

Based on the energy distribution for the POD modes, the main features of these

wake vortices are mostly described by the first two modes. Precisely, the first four

modes of all cases are all needed to capture approximately 99% of the turbulent

kinetic energy of the flow field for all cases. For this reason, the POD reconstructions

of the fluctuation can be carried out from only these four modes. Thus, the rest

of the analysis will be focused only on these first four captivating modes (POD1,

POD2, POD3, and POD4) and will be analysed with further discussion.
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Figure 5.4: Energy Distribution of POD Modes in Near Wake for: (a) N, Re1k, (b)

N, Re2k, (c) SS1, Re1k, (d) SS1, Re2k, (e) WS, Re1k, and (f) SS2, Re1k. Er and

Ec referred to relative and cumulative energy, respectively.

5.3.2 POD Modes

The obtained eigenvectors from Eq. 3.4.14, which also known as the POD modes,

were shown in Fig. 5.5 – Fig. 5.10. |ω| POD modes of those four modes were
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plotted in the streamwise direction. In particular, with growing mode number,

the modes demonstrate clear structures with a trend from larger to smaller scales.

This trend is readily clarified by the fact that the modes are sorted with respect

to energy, and the kinetic energy in a turbulent flow typically decreases with scale.

Furthermore, it is essential to note that the first two modes, POD1 & POD2, contain

distinct dipole structures, implying that these modes are accountable for periodic

lateral motions [96]. The wavelength of the periodic motion induced by each of these

modes is twice the streamwise distance between consecutive negative and positive

poles. The amplitude of this periodic motion is equal to the lateral distance between

positive and negative poles [96].

Meanwhile, the second pair of most energetic modes, POD3 & POD4 shows a

quadrupole structure and the next pair of modes. POD5 & POD6 of N, Re1k and

N, Re2k cases give a hexapole structure, as one may expect since they have similar

energy contribution (as shown in Fig. 5.11). These well-defined multi-pole modes

are remarkably similar to the ones discovered by [28, 29, 155] and indicate vague

statistical isotropy [39] in which the wake dynamics seem to partially retain some of

its symmetric behaviour even though the atmospheric boundary layer (ABL) breaks

this rotational symmetry.

Similar trends are observed from all other cases, except for weakly stable and

strongly stable case 2. This might be due to their chaotic flows with random noise.

It is hard to see a clear helical flow from POD1 & POD2 of WS, Re1k in Fig. 5.9 as

the contour plots look a bit messy. On the other hand, POD3 & POD4 from the same

case decay quite early at z = 8, and this situation happen just for these two POD

modes only. Last but not least, POD1 & POD2 from the SS2, Re1k case show two

helical flows with different radius moving together close to each other, as illustrated

in Fig. 5.10, while their second pair of mode displays a vaguely quadrupole-like

structure.
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Figure 5.5: POD Modes illustrated using contours of |ω| for the corresponding first four dominant modes, i.e POD1 (top left)

followed by POD2, POD3, and POD4 respectively in xy-cut at z = 8.5 (left) and zy-cut at x = 0 (right) for N, Re1k.
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Figure 5.6: Caption and colormap as Fig. 5.5, but for N, Re2k.
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Figure 5.7: Caption and colormap as Fig. 5.5, but for SS1, Re1k.
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Figure 5.8: Caption and colormap as Fig. 5.5, but for SS1, Re2k.
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Figure 5.9: Caption and colormap as Fig. 5.5, but for WS, Re1k.



5.3.
P
O
D

A
n
alysis

of
th
e
R
esu

lts
in

th
e
N
ear-fi

eld
R
egion

134

-2 -1 0 1 2
x

-2

-1

0

1

2

y

6 7 8 9 10 11
z

-2

-1

0

1

2

y

-2 -1 0 1 2
x

-2

-1

0

1

2

y

6 7 8 9 10 11
z

-2

-1

0

1

2

y

POD1

POD2

-2 -1 0 1 2
x

-2

-1

0

1

2

y

6 7 8 9 10 11
z

-2

-1

0

1

2

y

-2 -1 0 1 2
x

-2

-1

0

1

2

y
6 7 8 9 10 11

z

-2

-1

0

1

2

y

POD3

POD4

Figure 5.10: Caption and colormap as Fig. 5.5, but for SS2, Re1k.
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Figure 5.11: POD Modes illustrated using contours of |ω| for POD5 (above), and POD6, respectively in xy-cut at z = 8.5 (left) and

zy-cut at x = 0 (right) for (a) N, Re1k, and (b) N, Re2k.
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For better visualization of the most energetic mode, POD1, the isosurface of its

|ω| in streamwise direction for all cases were plotted in Fig. 5.12 below:
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Figure 5.12: Isosurface of |ω| = 0.05 POD1 for: (a) N, Re1k, (b) N, Re2k, (c) SS1,

Re1k, (d) SS1, Re2k, (e) WS, Re1k, and (f) SS2, Re1k cases coloured by their

respective POD1 of temperature field.
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5.3.3 The POD Mode Coefficients

Eq. 3.4.16 tells that each snapshot can be reconstructed. The importance of the dis-

tinct modes for a given snapshot can be expressed by the POD coefficients discovered

by projecting the snapshot onto the POD modes, as illustrated by Eq. 3.4.16 [25].

For all snapshots, it is possible to show the relation between two consecutive modes

as a scatter plot of the two coefficients. Fig. 5.13(a) – Fig. 5.18(a) shows a circular

pattern of scatter plots for the coefficients of the first two modes, a1 and a2 followed

by Fig. 5.13(i) – Fig. 5.18(i) for a circular pattern of a3 and a4. All the points are

located near a circle with a radius in the range from ≈ 1.7D up to ≈ 10D. The

circular distribution of the (a1, a2) and (a3, a4) coefficients indicate a cyclic variation

of the first two pairs of POD modes, which is precisely what is anticipated when two

POD modes describe distinct phases of a smooth process that creates and convects

vortices [77].

Next, the POD coefficients variation in time was plotted as in Fig. 5.13(b)&5.13(ii)

– Fig. 5.18(b) & 5.18(ii). As expected, the two pairs of POD coefficients change

similarly to cosine and sine functions in a time-resolved study of the flow. The ampli-

tude of each modal coefficient series is proportional to the kinetic energy fluctuation

embedded in the corresponding mode. As the mode index increases, the amplitude

of the modal coefficients decreases, as expected. For example, the amplitude of the

second pair modal series is always lower than the first one.
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Figure 5.13: Distribution (a, i), and Time Variation (b, ii) of

the first four POD modes coefficients, a1 & a2 (a, b), and a3

& a4 (i, ii) for N, Re1k in the near wake region. (c) PSD of

the first four POD coefficients.
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Figure 5.14: Caption as Fig. 5.13, but for N, Re2k.
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Figure 5.15: Caption as Fig. 5.13, but for SS1, Re1k.

-10 0 10
a1

-10

0

10

a 2

50 100 150 200
t

-20

0

20

PO
D
Co
ef
f

-5 0 5
a3

-5

0

5

a 4

50 100 150 200
t

-20

0

20

PO
D
Co
ef
f

0.5 1 1.5 2 2.5 3
f (Hz)

-80
-60
-40
-20
0
20
40

Po
w
er
/F
re
qu
en
cy
(d
B/
Hz
)

POD1
POD2
POD3
POD4

(a) (b)

(i) (ii)

(c)

Figure 5.16: Caption as Fig. 5.13, but for SS1, Re2k.
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Figure 5.17: Caption as Fig. 5.13, but for WS, Re1k.
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Figure 5.18: Caption as Fig. 5.13, but for SS2, Re1k.
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By plotting the power spectra of the POD coefficients in Fig. 5.13(c) – Fig.

5.18(c) above, generally, for all cases, two distinct amplitude peaks are readily picked

up from the first and second pairs of POD modes, respectively. The frequency of

every peak shown in those figures was listed in the following Table 5.1:

Atmospheric Conditions f (Hz)

POD1st POD2nd

N, Re1k 0.8125 1.5620

N, Re2k 0.8065 1.6130

WS, Re1k 0.8056 0.9167

SS1, Re1k 0.8065 1.6130

SS1, Re2k
0.7955

1.5910

2.3865

0.7955

1.5910

2.3865

SS2, Re1k 0.7967 0.9066

Table 5.1: Frequencies, f captured by POD modes coefficients for all cases

The first and second mode spectra of the N, Re 1k case show clear peaks at the

frequency 0.8125 Hz and 1.5620 Hz, which is shown in Fig. 5.13(c) and as for N,

Re 2k (see Fig. 5.14(c)), the two peaks were detected at frequencies 0.8065 Hz, and

1.6130 Hz, respectively, from the first and second pair of POD mode.

For the strongly stable case 1 with Re = 1000, the temporal evolution of the

time-varying coefficients shown in Fig. 5.15(b) & Fig. 5.15(ii) revealed a single

frequency in both pair of POD modes at 0.8065 Hz and 1.6130 Hz as it can be seen

in Fig. 5.15(c) whereas the POD modes of strongly stable case 1 with Re = 2000

captured the most energetic structures resulting in a mode that contained several

frequencies as there are several peaks shown in Fig. 5.16(c) i.e. 0.7955 Hz, 1.5910

Hz, and 2.3865 Hz from the first and second pairs of POD modes.

Meanwhile, for both WS and SS2 at Re = 1000 (refer to Fig. 5.17(c) & Fig.

5.18(c)), the first pair of POD mode spectra show a clear peak at 0.8056 Hz and

0.7967 Hz, respectively while the second peak captured by the second pair of POD
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modes at frequencies 0.9167 Hz and 0.9066 Hz.

The general patterns of the first and second pairs of the POD modes matched the

corresponding wake flow structure and well-captured the same dominant frequencies

identified by fluctuating streamwise velocity analysis of the physical space in previous

Chapter 4.

5.4 POD Analysis of the Temperature Field

In this section, the first few temperature POD (PODT) modes computed from the

temperature field, T , were studied and discussed. This chapter involves the four

cases with the stratified atmospheric condition ∆T 6= 0, which made the two neutral

cases excluded. The equispaced temporal data comprising t number of snapshots

(refer to Table 3.2) of the temperature fields is recorded and ensembled in a matrix

form as Eq. 3.4.10. The four most energetic PODT modes of all cases representing

almost 97.95% to 99.46% of the total contribution, as display in Fig. 5.19.

The illustration of all PODT modes in Fig. 5.20 – Fig. 5.23 demonstrate the

first four modes capture the dominant features of the flow field. Every two PODT

modes look alike due to their similarity in energy contribution. There are two helical

structures in the first pair of PODT modes build from their positive and negative

magnitudes. As the PODT mode index increases, the number of helical structures

doubled. These observations, however, do not show any multi-pole like structure

as it can be seen earlier form the POD modes. This is probably because of the

fact that the temperature equation is completely decoupled from the Navier-Stokes

equations, as described in Section3.1, since the viscosity does not depend on the

temperature. Hence, the temperature is decoupled with the velocity as the solution

to the Navier-Stokes equations just gives the velocity and pressure field for flows of

fluids with constant viscosity and density.

As for the analysis of the PODT coefficients, every pair of PODT modes con-

vincingly reflected as strong cycle-to-cycle variations, as portray by Fig. 5.24(a)&(i)

– Fig. 5.27(a)&(i), and they change similarly to cosine and sine functions in a time-

resolved study of the flow in Fig. 5.24(b)&(ii) – Fig. 5.27(b)&(ii). The PODT
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Figure 5.19: Energy Distribution of PODT Modes in Near Wake for: (a) SS1,

Re1k, (b) SS1, Re2k, (c) WS, Re1k, and (d) SS2, Re1k.

coefficients successfully captured all the same frequencies, as listed in Table 5.1. All

these agreements between POD and PODT modes conclude that the POD method

gave a consistent result from both velocities and temperature fields.
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Figure 5.20: Temperature POD Modes illustrated using contours of |ω| for the corresponding first four dominant modes, i.e.,

PODT1 (top left) followed by PODT2, PODT3, and PODT4 respectively in xy-cut at z = 8.5 (left) and zy-cut at x = 0 (right) for

SS1, Re1k.
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Figure 5.21: Caption and colormap as Fig. 5.20, but for SS1, Re2k.
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Figure 5.22: Caption and colormap as Fig. 5.20, but for WS, Re1k.
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Figure 5.23: Caption and colormap as Fig. 5.20, but for SS2, Re1k.
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Figure 5.24: Distribution (a, i), and Time Variation (b, ii) of

the first four PODT modes coefficients, a1 & a2 (a, b), and

a3 & a4 (i, ii) for SS1, Re1k in the near wake region. (c)

PSD of the first four PODT coefficients.
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Figure 5.25: Caption as Fig. 5.24, but for SS1, Re2k.
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Figure 5.26: Caption as Fig. 5.24, but for WS, Re1k.
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Figure 5.27: Caption as Fig. 5.24, but for SS2, Re1k.
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5.5 POD Analysis of the Results in the Far-field

Region

As mentioned earlier in Section 5.3, since the details of the blade from the far wake

are less critical the velocity deficit in this region gradually decays downstream of the

rotating blade, and the wake is fully developed. Therefore, in order to have a look

at the difference of the wake between the near and far wake regions, an analysis was

carried out just for the neutral case at Re = 1000.

Fig. 5.27 shows the time series (Fig. 5.27(a)) and PSD (Fig. 5.27(b)) of u′ at

three different core locations which are (z, x, y) = (21,−1.04,−1.04), (23.5,−1.04,−1.04),

(26,−1.04,−1.04) in Fig. 3.1. The mean velocity field then was illustrated using

contours of |ω| in Fig. 5.27(c) and lastly, the isosurface plot of |ω| from the instan-

taneous velocity field was plotted in Fig. 5.27(d).
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(d)

Figure 5.27: (a) Time Series, (b) Power Spectra Density, (c) Contour plot of |ω|

from mean velocity field, and (d) Isosurface |ω| = 0.1 from instantaneous velocity

field for N, Re1k in the far wake region.

A steady time variation at z = 21 and 23.5 in Fig. 5.27(a) show that the flow is

well sustained before it slowly reduced in magnitude at the end of the domain. From

the pattern of this time series, one clear peak at frequency 0.8125 Hz can easily be

detected in Fig. 5.27(b), and this is the same frequency captured by the PSD of

u′ as shown in Fig. 4.36(a). However, there is only one peak can be detected in

the far-field region. The second peak at frequency 1.562 Hz was no longer observed.

The disappearance of the peak suggests that the turbulence is dissipated in the far

wake region. The turbulence energy was absorbed by breaking down the eddies into

smaller and smaller eddies until viscous forces eventually converted it into heat.

POD was employed in the far wake region where the wake structure’s coherence

is weaker than in the near wake. Accordingly, the energy in this region is expected

to be spread over a less number of modes than the near wake Fig. 5.4(a). This is

indeed shown in Fig. 5.28. The energy distribution among the modes was found

to differ significantly from that observed in the near wake. The first and second

modes have more or less similar energy contribution, which is about 25 times the

third mode. This implies that the first two POD modes are enough to capture

approximately 98.5% of the turbulent kinetic energy of the flow field.



5.5. POD Analysis of the Results in the Far-field Region 152

1 2 3 4 5
POD Modes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E r
,E

c

Er
Ec

Figure 5.28: Relative and cumulative contribution of the POD modes for N, Re1k

in the far wake region.

The most energetic POD mode, POD1 was illustrated by the isosurface of its |ω|

in Fig. 5.29 below:

Figure 5.29: Isosurface plot of |ω| = 0.05 corresponding to POD1.

Next, the first four POD modes were plotted in Fig. 5.30. Notice there is a

striking difference between the third and fourth modes, which reflects the difference

in their energy contribution. On the other hand, the first two POD modes are quite

similar as they contain the same energy. The POD1 and POD2, which are the most

energetic modes in the far wake region, show a dipole structure, just like POD1 and

POD2 in the near wake region (recall Fig. 5.5). Except that these two modes have

a higher magnitude.
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Figure 5.30: Contours of |ω| in Far Wake from N, Re1k.
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As expected, the POD coefficients of the first two modes convincingly reflected

as substantial cycle-to-cycle variations, as display in Fig. 5.31(a) and they change

similarly to cosine and sine functions in a time-resolved study of the flow in Fig.

5.31(b). There is only one distinct amplitude peak at the frequency of 0.8125 Hz in

Fig. 5.31(c) that readily picked up from both POD1 & POD2. Nevertheless, there

is no correlation shown between POD3 & POD4, as in Fig. 5.31(i) since they are

unpaired mode. On other hands, POD3 acts as shift mode [17] in which it charac-

terizes the base flow change between a steady and time-average periodic solution.

This can be seen in Fig. 5.31(ii) as a solid line of POD3 coefficient shows an increas-

ing trend. The behaviour of the mode amplitudes corroborates this interpretation.

POD4, on the other hand, does not vary so regularly and caused the existence of

several low-frequency peaks in the power spectra.
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Figure 5.31: Caption as Figure 5.13, but for N, Re1k in the far wake region.

5.6 Chapter Summary

In the present chapter, a detail explanation on how the datasets were prepared be-

fore the modal analysis methods can be applied has been presented followed by a
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comparison study on the separated and combined velocity-based POD as proposed

by [86, 157] that both will give the same result in the near wake region but not in

the far wake region. Even though the result from the present study agrees with the

literature, it was decided to carry out the following POD and DMD analysis using

the combined velocity. The POD analysis was done on the velocity field (the modes

called POD modes) of the near and far wake region and on the temperature field

(PODT modes), separately. Basically, the discussion on every section is about the

energy distribution of POD/PODT modes, the spatial distributions of POD/PODT

modes, and the coefficients of the first few energetic POD/PODT modes. Subse-

quently, DMD analysis will be presented and discussed in the upcoming chapter.



Chapter 6

Dynamic Mode Decomposition of the

Helical Wake

In this chapter, the results from the DMD method will be presented, and the analysis

of DMD in near wake, temperature field (DMDT), and far wake is to be discussed

in Section 6.1, 6.2, and 6.3, respectively. Section 6.4 at the end of this chapter gives

a conclusion of the chapter.

6.1 DMD Analysis of the Results in the near-field

region

The temporal DMD analysis was performed, and the analysis was focused on pa-

rameters pertaining to the spatio-temporal behaviour of DMD modes such as modal

energy, growth/decay rate, the eigenvalues & eigenvectors, and the mode coeffi-

cients. The result obtained for the wake flow in the range 6 < z < 11 are shown

with modes (most energetic modes corresponding to the one discovered in POD

analysis) highlighted.

6.1.1 The Global Energy Norm

For the purpose of visualizing the DMD spectrum, the ’power’ of each mode, ||ϕ||

where ϕ obtained from Eq. 3.4.11 in Subsection 3.4.2.1 was plotted against its

156
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frequency of oscillation, f . The norm of each mode indicated the energy in the

corresponding mode. Fig. 6.1 plots the energy spectra of all DMD modes, in which

each mode is accompanied by a vertical scaled with the magnitude of the mode at its

corresponding frequency. Two modes with distinct amplitude peaks can be identified

from the first case (N, Re1k), i.e., f1 = 0.7958 Hz (after this will be called DMD1)

and f2 = 1.592 Hz (DMD2) in Fig. 6.1(a). Since the negative frequencies (refer

to Eq. 3.4.5 in Subsection 3.4.2.1) correspond to the complex conjugate resulting

from the decomposition process, only the positive frequency was shown in the figure.

Here, the mode number sequences in terms of the magnitude of the global energy

norm of each mode. Two to three modes have been selected, ranging from the

highest to the lowest modal energy, as shown in Fig. 6.1.

The following Table 6.1 summarized the frequencies and energy spectra of Fig.

6.1.

Atmospheric

Conditions
DMD Modes

DMD1 DMD2 DMD3

f (Hz) ||ϕ|| f (Hz) ||ϕ|| f (Hz) ||ϕ||

N, Re1k 0.7958 24.4200 1.5920 0.8354 - -

N, Re2k 0.8126 75.8300 1.6130 1.8890 2.19 2.445

WS, Re1k 0.7960 11.9300 0.9086 0.9083 1.0374 0.8739

SS1, Re1k 0.8025 14.9000 1.5800 2.3330 1.9565 1.4760

SS1, Re2k 0.7958 43.4900 1.5920 8.0220 2.3870 1.1260

SS2, Re1k 0.7958 15.96 0.9084 1.6670 - -

Table 6.1: Power Spectra, ||ϕ|| of temporal DMD modes with their respective

frequency for all cases
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Figure 6.1: Energy Spectra of temporal DMD for (a) N, Re1k, (b) N, Re2k, (c)

SS1, Re1k, (d) SS2, Re2k, (e) WS, Re1k, and (f) SS2, Re1k. Remark that the

energy spectra were also plotted in log-log scale in the inside figure. The

considered modes were circled by the blue marker and labelled accordingly.
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In a brief glance, the energy contribution of the most dominant modes from

both neutral cases is higher compared to all other stable cases. This proved that the

coherent modes in atmospheric conditions without the temperature stratification are

most durable. On the other hand, between both Reynolds numbers, the dominant

modes of the case with Re = 2000 contained more energy than the case with Re =

1000. In contradict to the findings from the power spectrum of the instantaneous

flow in Section 4.3 of Chapter 4, the most energetic DMD mode of N, Re2k contained

the highest amount of energy, as shown in Fig. 6.1(b). This suggests that when the

atmosphere is stratified, the turbulence level is low compared to the one without

the stratification.

In analysing oscillatory dynamics, the Fourier transform, and power spectra are

often used. By applying the FFT to the time series, one can determine approximate

frequency values of the modes via the power spectrum before using a non-linear

least-square solver to find growth rates of the modes. However, note that FFT

analysis may be too inaccurate for exponentially growing or decaying oscillations.

Recall Fig. 4.36 of Section 4.3, which shows the time series and the power spectrum

provided by FFT and Fig. 6.1 was referred for DMD. While the DMD spectrum

is sparse and is in excellent agreement with the time series, the FFT spectrum is

seen to be fundamentally dense in the sense that the particular modes present in the

time series are difficult to find. The DMD technique was applied to the wake flow

measures in the global velocity field while the power spectrum method was applied

to one time-step of the velocity field.

In Fig. 6.1(b), there are three amplitude peaks, which are DMD1, DMD2, and

DMD3, with the corresponding frequencies of 0.8126 Hz, 1.613 Hz, and 2.19 Hz,

respectively are readily picked up from the extracted spectra based on the global

energy norm of each mode. It is so much difference between the energy of the first

mode compared to the second and third, which more or less have a similar energy

contribution.

For strongly stable case 1, three energetic structures were extracted at frequencies

0.8025 Hz, 1.58 Hz, and 1.9565 Hz in the case with Re = 1000 as it can be seen in

Fig. 6.1(c) and Fig. 6.1(d) clearly shows the three peaks with frequency 0.7958 Hz,



6.1. DMD Analysis of the Results in the near-field region 160

1.592 Hz, and 2.387 Hz from DMD1, DMD2, and DMD3, respectively.

Lastly, the spectra obtained in Fig. 6.1(e) displays dominant peaks with three

leading modes at frequencies 0.7960 Hz, 0.9086 Hz and 1.0374 Hz, respectively for

the weakly stable atmospheric condition while for the second case of strongly stable,

the two modes with the most substantial contributions to the total energy are the

0.7958 Hz, and 0.9084 Hz modes as can be found in Fig. 6.1(f).

In short, the magnitude of f2 (from all cases except for WS, Re1k and SS2, Re1k)

and f3 (from SS1, Re2k) is just the integral multiple of the fundamental frequency,

f1 representing the higher-order harmonics in the flow field. It is not surprising to

find that the f1 is equal to the vortex shedding frequency since vortex shedding

dominates the dynamics of wake flow. Altogether, the same dominant frequencies

identified from the POD analysis in previous Chapter 5 were successfully extracted

from the DMD method.

The drawback of the POD method is that it obtains the flow fields by statistical

means, thus losing the phase information of the system. Because POD modes are

still doped with vortex structures at a different frequencies, it is difficult to analyse

the original flow field from the complex point. Coincidentally, the decomposition

and extraction in DMD techniques are based on flow field dynamics, and the modes

obtained are time irrelevant.

6.1.2 The Eigenvalues & Eigenvectors

The eigenvalues, λ (also known as the Ritz values), and DMD spectrum of all the

DMD modes were subsequently calculated. Eventually, the spatial distributions of

each dominant mode obtained from its eigenvectors as in Eq. 3.4.11 was illustrated

using the contours of |ω|. Note that for brevity, only the real part of each mode is

being considered as a similar agreement is observed in the imaginary parts [58].

Observing the real and imaginary components of the eigenvalues determines the

stability and energy of each mode. The unstable modes will grow in time, while

the stable modes decay. In both spectra, the stable eigenvalues which are located

inside the unit disk and in the left half-plane, respectively, were observed. The real

and imaginary parts of the extracted Ritz values, λ (as listed in Table 6.2) shown in
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Atmospheric

Conditions
λ of DMD Modes

DMD1 DMD2 DMD3

N, Re1k 0.9211 + 0.3895i

(0.0005 + 5.0003i)

0.6967 + 0.7174i

(0 + 10.0001i)
-

N, Re2k 0.9802 + 0.2030i

(0.0246 + 5.1058i)

0.9130 + 0.3919i

(−0.1611 + 10.1376i)

0.6479 + 0.39751i

(−6.8571 + 13.7582i)

WS, Re1k −0.4164 + 0.9088i

(−0.0008 + 5.0011i)

−0.6539 + 0.7567i

(0.0001 + 5.7086i)

−0.7066 + 0.4182i

(−0.4928 + 6.518i)

SS1, Re1k 0.6892 + 0.7233i

(−0.0058 + 5.0592i)

−0.0180 + 0.9940i

(−0.0369 + 9.9304i)

−0.3105 + 0.7423i

(−1.3588 + 12.2932i)

SS1, Re2k 0.9210 + 0.3894i

(−0.0005 + 5i)

0.6967 + 0.7173i

(−0.0003 + 10i)

0.3624 + 0.9320i

(−0.0002 + 15i)

SS2,Re1k −0.4162 + 0.9093i

(0 + 5.0001i)

−0.6536 + 0.7568i

(0 + 5.7079i)
-

Table 6.2: The eigenvalues, λ of temporal DMD modes for all cases with their

logarithmic mapping in the form (σ + oi).

Fig. 6.4(left) tend to be well distributed on the unit circle in the complex pane of

|λ| = 1, with the exception of only several points locating inside the unit circle. This

indicates that the states of the dynamic system evolve on an attractor, while those

dynamic modes fallen inside the unit circle might have resulted from contamination

of measurement noise. Also, the most dominant mode typically has Ritz values of

|λ| = 1. The eigenvalues then were transformed via the logarithmic mapping and

shown in Fig. 6.4(right). The real part of the eigenvalues, σ, gives the growth/decay

rate of the mode while the imaginary part, o provides its frequency. Generally, the

eigenvalues with real components ≈ 0 contain the highest energies with less damping

and are worthy of analysis.
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Figure 6.4: Dynamic eigenvalue characteristics of (a) N, Re1k, (b) N, Re2k, (c)

SS1, Re1k, (d) SS1, Re2k, (e) WS, Re1k, and (f) SS2, Re1k. Ritz values (left) and

DMD spectra (right) of temporal DMD modes. All considered modes marked by

the blue star and labeled accordingly.
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The eigenvalues of the first two dominant modes from every case, DMD1 and

DMD2, were observed to lie exactly on the unit circle in the left figure of Fig. 6.4(a)

– (f) and on the red line of the right figure. This explains the stability of the first two

modes, which decayed over time and least damped. Taking DMD1 with frequency

f1 =
o

2π
= 0.7958 Hz from N, Re1k as an example, the mode was observed to decay

over time in the stable region since σ1 ≈ 0. This behaviour is expected once the

mean flow was subtracted [80].

Different from the first two modes, DMD3 from neutral at Re = 2000, strongly

stable case 1 at Re = 1000, and weakly stable, which is a high-frequency mode with

lower energy lies inside the unit circle as shown in the left figure of Fig. 6.4(b, c, e).

The eigenvalues in the interior of the unit circle are strongly damped. Thus, they

influence only early stages in the time evolution. While in the logarithmic mapping

(refer to the right figures of Fig. 6.4(b, c, e)), that particular mode lies on the far

left of the figure, and this shows how the mode severely decayed and become the

most decayed mode.

Also, for some cases like SS1, Re1k, it was observed that there is several modes

lay outside of the unit circle and located on the right half-plane of the logarith-

mic mapping figure, which proved the existing of unstable/grow modes. These

high-frequency and low energy modes with severe temporal growth are not really

interesting and hence will not be analysed further.

Last but not least, Fig. 6.5 – Fig. 6.10 are referred for the |ω| plots corresponding

to each dominant mode. Since the frequency of the higher modes, DMD3, and DMD2

are larger than DMD1, the spatial scale associated with this mode is correspondingly

smaller, and this pattern can be noted in all figures from Fig. 6.5 to - Fig. 6.10.

It is also known that each mode represents a flow structure that oscillates with one

single frequency, and the superposition of several of these modes results in the quasi-

periodic global system. For example, the spatial structures of modes with frequency

0.7716 Hz and 0.8462 Hz (see Fig. 6.1(c)) in SS1, Re1k are very similar to those of

DMD1, which elucidated in Fig. 6.7, as one expects since the frequencies are very

close.
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Figure 6.5: Contour plots of |ω| visualized by the real part of
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Figure 6.6: Caption and colormap as Fig. 6.5, but for N,
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Figure 6.7: Caption and colormap as Fig. 6.5, but for SS1,

Re1k.
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Figure 6.8: Caption and colormap as Fig. 6.5, but for SS1,

Re2k.
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Figure 6.9: Caption and colormap as Fig. 6.5, but for WS,

Re1k.

-2 -1 0 1 2

x

-2

-1

0

1

2

y

6 7 8 9 10 11

z

-2

-1

0

1

2

y

-2 -1 0 1 2

x

-2

-1

0

1

2

y

6 7 8 9 10 11

z

-2

-1

0

1

2

y

DMD1

DMD2

Figure 6.10: Caption and colormap as Fig. 6.5, but for SS2,

Re1k.



6.1. DMD Analysis of the Results in the near-field region 169

Just like in POD modes, similar observation of vortex multi-pole formation was

noted in the first two DMD modes of all cases (excluded the two cases from WS,

Re1k and SS2, Re1k), and hence, the same arguments are applicable for this sit-

uation. From all these dipole and quadrupole structures, it is clear that the first

two dynamic modes present periodically convect vortices in a hierarchy of descend-

ing scale, e.g., higher-order harmonics have finer-scale structures. These multi-pole

observations indicate approximate statistical isotropy [39]. ABL clearly breaks the

rotational symmetry. The extracted wake structure, therefore, behaves approxi-

mately isotropic in the non-isotropic ABL flow. [29]. Even there is no multipole-like

structure observed in DMD modes from WS, Re1k and SS2, Re1k cases, the modes

still show the same structure as the one from POD analysis in Chapter 5. Thus, the

same arguments are valid for this result. A complex vortex flow was illustrated by

DMD3 of WS, Re1k, as the Fig. 6.9 showed a very messy, chaotic contour plot.

It is however, not necessarily the case for DMD3 of N, Re2k, and SS1, Re1k.

An expected hexapole-like structure could not be elucidated from DMD3, instead, a

vortex merging structure was observed. The spatial pattern of the mode depicts a

highly damped (severe temporal decayed) asymmetric mode that spatially merged

the two helical vortices. These co-rotating vortices travel (almost) the same distance

side by side, as this can be seen in the zy-cut of Fig 6.5. On the other hand, DMD3

of SS1, Re2k does show the hexapole-like structure, but two of the helical were

moving closely together.

For better visualization of the most coherent mode, DMD1, the isosurface of its

|ω| in streamwise direction for all cases were plotted in Fig. 6.11 below:
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6.1.3 The DMD Mode Coefficients

The DMD mode coefficient, ai which is the coefficient used when reconstructing the

flow field with isolated dynamic modes was determined by

V N−1
1 (z, x, y) =

N−1∑
i=1

ai(t)ϕi(z, x) (6.1.1)

where ai takes the form of ai(t) = e(ωr+iωi)t; V N−1
1 is the input vector, and ϕi is the

dynamic modes. The complex exponential of ai is a complex-valued signal which

simultaneously encapsulates a cosine wave as well as a sine wave by posting them

on the real and imaginary components of the complex wave. In the exponential, the

real part indicates the growth rate and the imaginary part indicates the oscillation

frequency.

As stated by [182], the real and imaginary parts of a single DMD mode coefficient

can be used to disclose the phase information of the respective vortical structure.

For this reason, the correlation map of the considered DMD modes was plotted in

Fig. 6.12(a, i , I) – Fig. 6.17(a, i , I). In this study, the phase shift is defined as any

change that occurs in the phase difference between the real and imaginary part of the

coefficient. In addition, the phase difference is the difference (expressed in degrees

or radians) between the real and imaginary part of the DMD mode coefficient,

which definitely having the same frequency and referenced to the same point in

time. Now, the real and imaginary part of the DMD coefficient is said to be in

phase if they oscillate together and cross the time, t at the same point in the same

direction, otherwise, they are out of phase. The well-organized circular patterns

of the first coherent mode, DMD1 in all cases, as shown in Fig. 6.12(a) – Fig.

6.17(a) is convincingly reflected as strong cycle-to-cycle variations in the vortex-

shedding processes. On the other hand, the distortion of the circular shape indicates

variations in the phase differences, whereas the oscillation amplitudes changes caused

dispersion of the circulation.

Next, in order to study the temporal variation in the above-mentioned DMD

modes, the real and imaginary part of DMD mode coefficients were plotted together

in Fig. 6.12(b, ii , II) – Fig. 6.17(b, ii , II). A global view of time-varying coef-

ficients demonstrated their perfect periodic fashions. Recall the amplitude of the
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DMD mode coefficients reflects the global trend of the corresponding event, which

represents its growth or decay trend. Overall, the coefficients of DMD1 from all

cases do not represent appreciable variation in the peak magnitude, as depicted

in Fig. 6.12(b) – Fig. 6.17(b). Besides, the amplitudes in higher mode (refer to

DMD2) were relatively small compared to in DMD1 for all cases, as expected based

on the eigenvalues. There is, however an exception for DMD3 which will be discussed

further in the following paragraph.

According to the Nyquist criterion, with a sampling interval of ∆t, the highest

frequency of f = (2∆t)−1 was expected to be resolved. Note that the DMD tech-

nique is subject to the Nyquist frequency criterion for high frequencies, but it can

determines modes with frequency even lower than the one given by the total time

spanned by the snapshots [80]. Besides, the separation between samples must reflect

the characteristic time-scale of the fluid phenomenon under investigation of a limited

number snapshots. A too low (below the Nyquist frequency) or too high sampling

frequency will yield unsatisfactory outcomes [126]. Following this, a PSD analysis

was performed on the time-varying mode coefficients, and the spectrum curves are

depicted in Fig. 6.12(c, iii, III) – Fig. 6.17(c, iii, III). As it has been mentioned

earlier in the previous paragraph, DMD1 mode with the real and imaginary part

of its coefficients oscillate in a fixed amplitude resulting in the existence of a clear

single dominant peak at f1 = 0.8125 Hz, 0.8065 Hz, 0.8065 Hz, 0.7955 Hz, 0.8056Hz,

and 0.7967 Hz, as elucidated in Fig. 6.12(c) – Fig. 6.17(c), respectively with no

other peaks are detected. This is consistent with the afore-mentioned discussion in

Section 6.1.1. Remark that this is an alternative analysis to extract the frequencies

of the DMD modes besides the analysis discussed in Section 6.1.1 earlier.
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Figure 6.12: DMD Mode Coefficients characteristics of N,

Re1k. (a, i, I) Correlation Maps, (b, ii, II) Time Variation,

and (c, iii, III) Power Spectra Analysis, PSD. The black (a,
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the imaginary part.
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Figure 6.13: Caption as Fig. 6.12, but for N, Re2k.
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Figure 6.14: Caption as Fig. 6.12, but for SS1, Re1k.
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Figure 6.15: Caption as Fig. 6.12, but for SS1, Re2k.
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Figure 6.16: Caption as Fig. 6.12, but for WS, Re1k.
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Figure 6.17: Caption as Fig. 6.12, but for SS2, Re1k.
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Atmospheric Conditions f (Hz)

DMD1 DMD2 DMD3

N, Re1k 0.8125 1.5620 -

N, Re2k 0.8065 0.8065

1.6130

0.8065

1.6130

2.4190

WS, Re1k 0.8056 0.9167 0.8065

0.9167

SS1, Re1k 0.8065 0.8065

1.6130

0.8065

1.6130

SS2, Re2k
0.7955

1.5910

2.3860

0.7955

1.5910

2.3860

0.7955

1.5910

2.3860

SS2, Re1k 0.7967 0.9066 -

Table 6.3: Frequencies, f captured by DMD modes coefficients for all cases.

The correlation maps of DMD2 mode coefficients of all cases except for neutral

case at Re = 2000 and strongly stable case 1 at Re = 1000, display a circular pattern

(refer to their figure (i)) and present periodical variation with amplitude almost fixed

over periods (figure(ii)), providing further evidence that these dynamic modes are

neutrally stable with time. Their spectrum curves in their figure(iii) determined a

single dominant frequencies of f2 = 1.562 Hz, 1.613 Hz, 0.9167 Hz, and 0.9066 Hz,

respectively for the case N, Re1k; SS1, Re2k; WS, Re1k; and SS2, Re1k. This is

again agreed with the result from Section 6.1.1.

Meanwhile, for the exceptional cases, the dispersion of the circular shape was

obviously illustrated by DMD2 mode coefficients, as can be identified in Fig. 6.13(i)

& Fig. 6.14(i). This suggests that there are changes in the amplitudes of DMD2,

and Fig. 6.13(ii) & Fig. 6.14(ii) supported this suggestion. Because of this, there

are two peaks extracted in spectra curves of DMD2 at f2 = 0.8065 Hz and 1.613

Hz (dominant peak), as shown in Fig. 6.13(iii) and f2 = 0.8065 Hz and 1.573 Hz
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(dominant peak) in Fig. 6.14(iii). These multiple peaks indicate the presence of

mixed frequencies.

As for the last considered mode in this study, the distortion of the circular shape

illustrated in Fig. 6.13(I), 6.14(I), and 6.16(I) proved that DMD3 of these cases is an

"out-of-phase" mode, and the mode amplitudes shown in Fig. 6.13(II), 6.14(II), and

6.16(II) supported this, as both of their real and imaginary parts of the coefficients

vary irregularly and totally different from each other. This explains why there are

multiple peaks at f3 = 0.8065 Hz (dominant peak), 1.6130 Hz, and 2.419 Hz for N,

Re2k; f3 = 0.8065 Hz (dominant peak) and 1.573 Hz for SS1, Re1k; and f3 = 0.8056

Hz (dominant peak), 0.9167 Hz for WS, Re1k in the PSD graph of this particular

mode coefficient (see Fig. 6.13(III), 6.14(III), and 6.16(III), respectively). On top

of this, none of the captured frequencies matched the one from Section 6.1.1. This

comes to a conclusion where an "out-of-phase" mode can not be used to estimate

the frequency of a flow system.

Furthermore, from all the previous discussions (recall its energy contribution,

eigenvalue and eigenvector behaviours) on this third mode, it is finally concluded

as just a random mode with no important role in the wake flow because of its low

energy, high frequency, most decayed and lastly can’t be used to estimate frequency.

On the other hand, there are exciting things about the three most energetic

modes of the most strongly stable case at Re = 2000 (refer to Fig. 6.15). All

the DMD mode coefficients were observed with a well-organized circular pattern

in Fig. 6.15(a, i, I) and the variation of these three DMD mode coefficients, as

shown in Fig. 6.15(b, ii, II) reveal that it contains by construction only a single

frequency component. However, the fact that Fig. 6.15(c, iii, III) which shows the

peak frequencies of f1 = 0.7955 Hz (dominant peak), 1.591 Hz, and 2.386 Hz, f2 =

0.7955 Hz, 1.591 Hz (dominant peak), and 2.386 Hz, and f3 = 0.7955 Hz, 1.591

Hz, and 2.386 Hz (dominant peak) are distinctly discriminated in the spectrum of

DMD1, DMD2, and DMD3 mode coefficients, respectively gave a disagreement to

this. Even so, those multiple peaks suggesting the existence of harmonic structure

since the second and third frequency is approximately twice and thrice higher than

the first one.
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For overall comparison with POD analysis in previous Chapter 5, it came to

the conclusion that the first two most coherent DMD modes were the same as the

first two pairs of most energetic POD modes. Meanwhile, the DMD3 for some

instances is just another unstable modes with high energy. Similar to the energetic

POD modes, these stable coherent DMD modes are identical to the corresponding

wake flow structure and well-captured the same dominant frequencies identified in

fluctuating streamwise velocity analysis in previous Chapter 4.

6.2 DMD Analysis of the Temperature Field

Moving to the temperature DMD (DMDT), the energy of the extracted modes are

shown as a function of frequency in Fig. 6.18, where each DMDT mode is displayed

with the vertical line scaled with its magnitude at its corresponding frequency. The

most dominant DMDT mode from the first strongly stable case at Re = 1000 is the

one with frequency f1 = 1.479 Hz followed by f2 = 0.7967 Hz and f3 = 0.3908 Hz

in Fig. 6.18(a). The other two DMDT modes with frequency 1.5926 Hz and 1.9607

Hz were highlighted and labelled with the pink font. These DMDT2* and DMDT3*

modes are the modes with the same frequency as the second and third energetic

modes identified from the DMD method on the velocity field. Meanwhile, DMDT2

with frequency 0.7967 Hz shared the same frequency as DMD1. However, the three

amplitude peaks from SS1, Re2k, which are DMDT1, DMDT2, and DMDT3 with the

corresponding frequencies of 0.7958 Hz, 2.3908 Hz, and 1.5915 Hz as can be referred

in Fig. 6.18(b) have exactly the same frequency as the three energetic DMD modes

in the previous discussion.

The spectra obtained in Fig. 6.18(c) displays dominant peaks with three leading

modes at frequencies 0.7959 Hz, 0.6422 Hz, and 0.9753 Hz for WS, Re1k. Just like

SS1, Re1k, which their second and third modes frequency different to the previous

DMD2 and DMD3, the two DMDT modes matched the frequency are DMDT2* and

DMDT3* where f2∗ = 0.9086 Hz and f3∗ = 1.0213 Hz, respectively. For the second

case of strongly stable, DMDT1 and DMDT3 of the first three dominant modes

with frequency 0.7958 Hz, and 0.9084 Hz, respectively, shared the same frequency
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as DMD1 and DMD2 while DMDT3 in Fig. 6.18(d) with f3 = 0.9084 Hz does not

match any dominant mode in DMD of the velocity field.
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Figure 6.18: Energy Spectra of temporal DMDT Modes in Near Wake for: (a) SS1,

Re1k, (b) SS1, Re2k, (c) WS, Re1k, and (d) SS2, Re1k. Remark that the three

first DMDT modes with higher energy level were labelled by DMDT1, DMDT2,

and DMDT3 while the pink DMDT2*, and DMDT3* are two DMDT modes with

the same frequency as DMD2 and DMD3 from previous analysis of velocity field.
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Atmospheric

Conditions
λ of DMDT Modes

DMDT1 DMDT2 DMDT3 DMDT2* DMDT3*

WS, Re1k −0.4163 + 0.9090i

(−0.0005 + 5.0007i)

−0.0325 + 0.7517i

(−0.7110 + 4.0350i)

−0.6029i+ 0.4979i

(−0.6152 + 6.1283i)

−0.6538 + 0.7565i

(−0.0003 + 5.7086i)

−0.8390 + 0.5434i

(−0.0008 + 6.4171i)

SS1, Re1k 0.0418 + 0.4972i

(−4.3448 + 9.2929i)

0.6962 + 0.7181i

(0.0011 + 5.0057i)

0.8439 + 0.3498i

(−0.5652 + 7.4556i)

−0.0302 + 0.9995i

(−0.0007 + 10.0064i)

−3.8313 + 0.9009i

(−0.1374 + 12.3198i)

SS1, Re2k 0.9211 + 0.3894i

(−0 + 5i)

0.3480 + 0.8998i

(−0.4485 + 15.0215i)

0.6967 + 0.7173i

(−0.0003 + 10i)
- -

SS2, Re1k −0.4162 + 0.9093i

(0 + 5.0001i)

−0.2896 + 0.7862i

(−0.4423 + 4.8093i)

−0.6536 + 0.7568i

(0 + 5.7079i)
- -

Table 6.4: The eigenvalues, λ of temporal DMDT modes for all cases with their logarithmic mapping in the form (σ + oi).
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The eigenvalues then were calculated and listed in Table 6.4 and subsequently

displayed in Fig. 6.20, where the blue and pink stars indicate the highlighted DMDT

modes. All the Ritz values are either almost on or within the unit circle |λ| = 1

in the left Fig. 6.20. It is a well-established fact that unstable modes are depicted

when the eigenvalues lie outside the unit circle. They are stable when they lie inside

the unit circle and are marginally stable when they lie on the unit circle itself. As for

the DMDT spectrum, the eigenvalues were logarithmically mapped to the complex

plane elucidated in Fig. 6.20(right).

It can be concluded that the eigenvalues of all DMDT modes which matched the

frequency of DMD modes identified in the earlier study (including the pink DMDT

modes except for DMDT3* of WS, Re1k) lie exactly on the unit circle in the left

figure of Fig. 6.20 and on the red line of the right figure. These stable modes decayed

over time and least damped. This, however, does not occur to DMDT1, and DMDT3

of SS1, Re1k, as well as DMDT2 and DMDT3 of WS, Re1k and DMDT2 from SS2,

Re1k. All these strongly damped modes lie inside the unit circle, as shown in the

left figure. These particular modes are severely decayed, and DMDT1 of SS1, Re1k,

becomes the most decayed mode as elucidated in the logarithmic mapping figure,

which lies on the far left.
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Figure 6.20: Dynamic eigenvalue characteristics of: (a) SS1, Re1k, (b) SS1, Re2k,

(c) WS, Re1k, and (d) SS2, Re1k. Ritz values (left) and DMDT spectra (right) of

temporal DMDT modes. All considered modes were marked by the blue star and

labeled accordingly, including two extra considered DMDT modes marked by the

pink marker.
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The first three most dominant DMDT modes for SS1, Re1k; SS1, Re2k; WS,

Re1k; and SS2, Re1k were illustrated using contours of |ω| and shown in Fig. 6.21,

6.23 ,6.25, and 6.26, respectively. Meanwhile, DMDT2* and DMDT3* of SS1, Re1k;

and, WS, Re1k were depicted by Fig. 6.22 and 6.24.

If these to be associated with the PODT modes gained in the previous chap-

ter, DMDT2, and DMDT2* look exactly the same as the first and second pair of

PODT modes (recall Fig. 5.20), respectively for SS1, Re1k. As for WS, Re1k,

PODT1&PODT2 closely resembles DMDT1 and PODT3&PODT4, as shown in Fig.

5.22 is just the same as DMDT2*. For the rest two cases, the exact match for the

first and second pairs of PODT modes is the first and third DMDT modes. The

same arguments as in Subsection 5.4 were applied for why there is no multi-pole like

structure observed in the DMDT modes like the one detected in DMD modes.

On the other hand, the remaining modes like DMDT1, DMDT3 and DMDT3*

from SS1, Re1k appeared as a vague contour plot of their |ω|. The same remark was

observed in DMDT2, DMDT3, and DMDT3* from WS, Re1k as well as in DMDT2

of both SS1, Re2k, and SS2, Re1k. These contour plots were not as clear and sharp

as the DMDT modes that matched the PODT modes. Looking back to the Ritz

value of these DMDT modes, they were the ones located on the unstable side of Fig.

6.20. This explains the instability of the modes spatial distribution.

Last but not least, the phase information of each DMDT modes was revealed by

the DMDT modes coefficient, as shown in the first row of Fig. 6.27 – Fig. 6.32. The

circular correlation patterns for DMDT2 and DMDT2* of SS1, Re1k; DMDT1 and

DMDT2* of WS, Re1k; DMDT1 & DMDT3 of SS1, Re2k and SS2, Re1k are reflected

as strong cycle-to-cycle variation. The same argument was applied here since these

DMDT modes here are the stable modes concluded from the prior analysis on their

DMDT eigenvalues and eigenvectors. For the unstable modes, the distortion of the

circular shape was plotted by these unstable DMDT mode coefficients.

This discrepancy of the DMDTmodes coefficient can be connected to the changes

in the amplitudes of the unstable modes, and the second row of Fig. 6.27 – Fig.

6.32 supported this. As a result, there are two or three peaks extracted in spectra

curves, as portrayed in the last row of Fig. 6.27 – Fig. 6.32. Regarding the stable
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modes, they change similarly to cosine and sine functions in a time-resolved study

of the flow and hence extracted just a single dominant frequency. All the same

frequencies listed in Table 6.3 from the foregoing investigation on DMD modes were

successfully captured by these single peaks extracted by the stable DMDT mode

coefficients. Full list of every peak frequency was compiled in the Table 6.5 below.

Atmospheric

Conditions
f (Hz)

DMDT1 DMDT2 DMDT3 DMDT2* DMDT3*

WS, Re1k 0.8056 0.8065

0.9167

0.8065

0.9167
0.9167

0.8065

0.9167

1.0286

SS1, Re1k 0.8065

1.6130
0.8065 0.8065

1.6130
1.613 0.8065

1.6130

SS1, Re2k 0.7955

2.3860

0.7955

1.5910

2.3860

1.5910 - -

SS2, Re1k 0.7967 0.7967

0.9066
0.9066 - -

Table 6.5: Frequencies, f captured by DMDT modes coefficients.
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Figure 6.21: Contour plots of |ω| for DMDT1, DMDT2, and

DMDT3 respectively in xy-cut at z = 8.5 (left) and zy-cut at

x = 0 (right) for SS1, Re1k.
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Figure 6.22: Caption and colormap as Fig. 6.21, but for

DMDT2*, and DMDT3* of SS1, Re1k.
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Figure 6.23: Caption and colormap as Fig. 6.21, but for WS,

Re1k.
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Figure 6.24: Caption and colormap as Fig. 6.21, but for

DMDT2*, and DMDT3* of WS, Re1k.
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Figure 6.25: Caption and colormap as Fig. 6.21, but for SS1,

Re2k.
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Figure 6.27: DMDT Mode Coefficients characteristics of

SS1, Re1k. (a, i, I) Correlation Maps, (b, ii, II) Time

Variation, and (c, iii, III) Power Spectra Analysis, PSD. The

black (a, b, c), blue (i, ii, iii), and red (I, II, III – if any)

dots/lines are representative of DMDT1, DMDT2, and

DMDT3, respectively. Note also the solid line in (b, ii, II)

represents the real part of DMDT Mode Coefficients while

the dashed line refers to the imaginary part.
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Figure 6.28: (a, i) Correlation Maps, (b, ii) Time Variation,

and (c, iii) Power Spectra Analysis, PSD of SS1, Re1k

DMDT Mode Coefficients. The blue (a, b, c) and red (i, ii,

iii) dots/lines are representative of DMDT2* and DMDT3*,

respectively. Note also the solid line in (b, ii) represents the

real part of DMDT Mode Coefficients while the dashed line

refers to the imaginary part.
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Figure 6.29: Caption as Fig. 6.27, but for WS, Re1k.
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Figure 6.30: Caption as Fig. 6.28, but for WS, Re1k.
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Figure 6.31: Caption as Fig. 6.27, but for SS1, Re2k.
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Figure 6.32: Caption as Fig. 6.27, but for SS2, Re1k.
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6.3 DMD Analysis of Results in the far-field region

It now comes to the final analysis of this study where the decomposition of the

far-field wake flow from N, Re 1k case was carried out, and the energy contributions

of all modes were presented in the following Fig. 6.33. The only clear peak was

identified at frequency f = 0.7964 Hz, and as it has been mentioned earlier, the

other modes with the nearest frequencies as this coherent mode are considered to

have similar characteristics.
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Figure 6.33: Energy Spectra of temporal DMD for N, Re1k in the far wake region.

DMD1 with f = 0.7964 Hz was labelled and circled by the blue marker.

Fig. 6.34 below was referred for the next discussion on the dominant mode. It

seems to lie well on the unit circle in Fig. 6.34(a) and stable with σ = -0.0121

growth/decay rate in Fig. 6.34(b). Finally, its spatial distribution was illustrated

by the contour and isosurface plot of DMD1 in Fig. 6.34(c). That particular mode

shows a spatial decay in |ω| after z ≈ 24D and resembles the first pair POD modes

that can be found in Subsection 5.5. The frequency of the most dynamic mode in

the far wake region is more or less similar to the frequency of DMD1 in the near wake

region. However, the energy of the first mode in this case (||ϕ|| ≈ 0.5) is much less

compared to the prior region where the energy is approximately fifty times higher.



6.3. DMD Analysis of Results in the far-field region 192

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Re (λ )

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Im
(λ
)

DMD1*

(a)

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
σ

-40

-30

-20

-10

0

10

20

30

40

ω

DMD1

(b)

*

-2 -1 0 1 2
x

-2

-1

0

1

2

y

21 22 23 24 25 26
z

-2

-1

0

1

2
y

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(c)

(d)

Figure 6.34: Dynamic eigenvalue characteristics of N, Re1k. (a) Ritz values and

(b) DMD spectra of temporal DMD1. (c) |ω| contour plot in xy-cut at z = 23.5

(left) and zy-cut at x = 0 (right). (d) Isosurface plot of |ω| = 0.05 corresponding

to DMD1 (λ = 0.9201 + 0.3893i).
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Figure 6.35: DMD Mode Coefficients characteristics. (a) Correlation Maps, (b)

Time Variation, and (c) PSD of N, Re1k in the far-field region.

The circular distribution of real and imaginary parts of the mode coefficient, a1

(see Fig. 6.35(a)), suggests a cyclic variation of the dominant mode and Fig. 6.35(b)

presents periodical variation with a fixed amplitude over periods, providing further

evidence that this dynamic mode is neutrally stable with time. Moreover, the power

spectrum of the mode coefficient (Fig. 6.35(c)) captured a similar frequency, as in

Fig. 6.33, which is f = 0.8125 Hz, at once demonstrating the ability to orthogonalize

the temporal dynamics from DMD.

All these examples and analysis clarify how the DMD method decomposes the

flow structure and reveals the essential dynamic information.

6.4 Chapter Summary

The present chapter performed an analysis on temporal DMD where the DMD

method were employed to the velocity field (the modes called DMD modes) of the

near and far wake region and on the temperature field (DMDT modes), separately.

In each section, the spatio-temporal behaviour of DMD/DMDTmodes such as modal
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energy, growth/decay rate, the eigenvalues & eigenvectors, and the mode coefficients

were presented and compared to the POD/PODT modes gained from the previous

chapter. The final chapter will be about the overall discussion on the findings before

the conclusion will be made based on the crossed analysis of all six cases. On top of

that, a couple of descriptions and suggestions for the future direction of this research

will be granted at the end of this thesis.



Chapter 7

Conclusion and Future Directions

This thesis details a number of analyses on the vortex characteristic of three-

dimensional unsteady fluid flow behind a rotating blade in thermally stratified at-

mosphere besides the use of proper orthogonal decomposition (POD) and dynamic

mode decomposition (DMD) to extract the coherent and energetic modes of the

flow. Some of these are direct contributions to the understanding of POD and

DMD, whereas others make use of POD and DMD as a means to other ends. In this

chapter, a general discussion and conclusion of the main findings will be presented,

and the description of future directions in which this work can be extended is given

at the end of the thesis.

7.1 Conclusion

Altogether, in the near wake region, the helical wake flow behind a rotating blade

in the thermally stratified atmosphere did affect in terms of their characteristics,

dynamics and stability compared to the one without stratification. It is, however,

difficult to apply the same analysis on the far wake region for the stratified case

because the flow is not fully developed for sufficiently long time in the simulation.

After applying the two modal decomposition techniques, the effect of atmospheric

stratification towards the helical wake flow becomes more apparent and convincing.

Table 7.1 summarised all the results gained from this study. The first three

columns introduce the different flow conditions considered in this study by giving the

195
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respective atmospheric conditions, Re and their contour plot of vorticity magnitude,

|ω| from the last cycle. The RMS column refers to the RMS values of tip vortices

from the last cycle, while the vorticity tilting column shows the contour plot of

vorticity tilting along their dominant direction, respectively. The following column

lists the streamwise location of the flow in which the breaking mechanism started to

occur. The last two columns represent the size and the circulation of the last core

as the flow moves downstream, respectively.

It was observed that the circular helical wake behind a rotating blade in the

physical space, of four cases with atmospheric stratification conditions, were dis-

torted. The weakly stable stratified atmosphere distorted much stronger compared

to the others (refer to the highlighted row in the third column of Table 7.1). This

non-circularity of the helical flows was quantified by the RMS values of tip vortices,

and WS appeared to have the highest value, followed by SS2 and SS1.

The deformation phenomena were supported by the result obtained from the

vorticity tilting of streamwise vorticity, ωz along the radial, r- and tangential, τ - di-

rection in the rotating Cartesian frame as the flow goes downstream. The region with

the highest vorticity tilting value was observed to be the reason for the distortion

of the helical structure. Table 7.1 is referred to for the observation. The contribu-

tion of the tilting along the radial direction for all thermally stratified atmosphere

is significant compared to the tangential direction, and is totally contradicting the

neutral case as it dominates in the tangential direction.

In the weakly stable stratified atmosphere, the breaking of the helical flow hap-

pens earlier compare to the others. As has been highlighted in Table 7.1, the helical

flow of WS breaks as early as at z = 5.6, based on the chosen threshold, followed by

SS2 and SS1. In other words, another threshold will give a different z value. The

analysis of the Gaussian peak of the core verified these findings since the helical flow

of WS is the earliest to decay, for it has the lowest Gaussian peak’s value. This can

be seen in Fig. 4.31.

The size of the core in both z- and y- directions increases, whereas the circulation

declines as the flow moves downstream. This happens to all cases, including the one

without atmospheric stratification. Simply put, the energy of the core reduces as
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the core keep growing. As highlighted in the last two columns, the energy of core

calculated from the circulation of WS and SS2 flows are quite low for their size. In

contrast to other cases, the size of the core is still reasonable for the energy contained

in the flow. In the same order as the prior conclusion, the fastest to decay with the

lowest Γ value is the helical flow from WS, followed by SS2 and SS1.

Fig. 4.36 deduced that the power spectra of the instantaneous wake flow in the

thermally stratified atmosphere has a higher turbulence level compare to the neutral

one. Accordingly, two well-known modal analysis techniques, which are POD and

DMD, were employed to the DNS dataset to see if they are capable of producing

the same findings from their global analysis and indirectly supports the result from

the analyses done to the instantaneous wake flow.

The POD/PODT analysis focused on the most energetic mode while the DMD/

DMDT analysis discussed the dynamics of the corresponding modes found earlier in

the POD study. The snapshot technique of POD, PODT, DMD, and DMDT have

been applied successfully on DNS datasets for four different atmospheric stratifi-

cation conditions. All four most energetic modes from POD and PODT show the

similarity in terms of energy distribution and their POD/PODT modes coefficients.

Meanwhile, few distinct findings were obtained in DMD and DMDT. The Ritz val-

ues of both studies extracted energetic modes at different frequency. These different

dominant modes have dissociated stability, growth/decay rate, spatial distribution,

and gave a totally unrelated mode coefficients outcomes.

In POD and DMD analyses, the results from the spatial distribution show that

the modes have a multipole-like structure; even so, this does not happen in both

PODT and DMDT modes. As for the spatial distribution of all energetic modes,

whether form POD, PODT, DMD, or DMDT, where observed carefully, it is clearly

disclosed how messy and chaotic the modes from the weakly stable case are. On

the contrary, the modes from the neutral case seem very clear and well-organized.

Similar to the significant effect seen in the analysis of instantaneous wake flow,

the dominant modes extracted from both modal decomposition techniques were

remarkably affected by the variation of the thermal stratification.
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All in all, the helical wake flow in the weakly stable stratified atmosphere is the

one with the lowest physical stability. The foregoing analysis and conclusion proved

this, be it the raw data analysis (Chapter 4), the analysis conducted to study the

distortion of circular helical flow (Subsection 4.2.2); the vorticity tilting (Subsection

4.2.3); the decay (Subsection 4.2.5) and breaking flow (Subsection 4.2.4); the core

analysis covering the circulation and core size (Subsection 4.2.5), be it modal de-

composition analyses (Chapter 5 & Chapter 6) which show the chaotic and complex

structure of their most dominant (energetic) modes. This vigorously concludes that

varying the thermal stratification did influence the helical wake behind a rotating

blade.
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Table 7.1: Summary of overall findings.
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7.2 Suggestion for Future Works

While the work presented in this thesis has answered a number of questions about

the physics, POD, and DMD of the wake flow behind a rotating blade in the strat-

ified atmosphere, it has also led to some of new ones. As an example, while the

vorticity magnitude, ω was being discussed in Chapter 4 to represent the flow, it

still allows to consider other quantity to represent the flow such as helicity or other

velocity/vorticity components, and discuss their characteristics, instead. Besides,

there are several questions related to the inherent characteristics of the flow with a

different type of dataset that merits further study. These include the following:

• The simulation data using LES with higher Re – As DNS is well-known for its

high-priced computational cost and restricted the Reynold number to a low

value, one can run a numerical computation using LES enlarging the Re values,

instead, so that a free-stream turbulence dataset can be simulated affordably.

Haywood & Sescu, for example, worked on the study of wakes in stratified

atmospheric boundary layer flows simulated using LES with considering a

Reynolds number on the order of 107 [74].

• The unstable stratified atmosphere – Due to time limitation, this study can

only be carried out for the stable stratification wake flow and the one with-

out any stratification (neutral). This study will be more interesting if the

wake flow in an unstable stratification can be included, studied, analysed, and

discussed further together with the neutral and stable cases. Thus, future

works are recommended for the exploration of wake flow in unstable stratified

atmosphere (convective). As it has been described briefly in Section 3.2, the

unstable stratification atmospheric condition occurs during the daytime, when

the surface is warmer than the air.

• The experimental data to validate the result – Usually, validation experiments

and validation analyses are conducted to confirm the data and result in preci-

sion. Again, as a consequence of the time restriction, the validation study can

not be provided. Therefore, it is suggested to compare the findings obtained
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from this present simulation study with the experimental analysis and hence,

validate it with verified precision.

A number of future directions also arise from the decomposition techniques of

POD, and DMD discussed in Chapter 5 & 6, respectively, such as:

• Modify or improvise POD or DMD method with new definition and algorithm

in order to either strengthen or enhance the robustness and applicability of the

existing approach – While this present study focused on applying the method

of POD and DMD, the development of its underlying theory was always wel-

comed to be explored by the future researcher. For instance, Optimized DMD

is a modification of the original DMD algorithm intended to compensate for

two constraints of that approach [80] whereas Exact DMD algorithm general-

izes the original DMD algorithm in two ways [58]; First, it accepts a data set of

snapshot pairs, and second, its algorithm removes the pre-processing step (the

step where the data set was projecting onto a set of POD modes), and can pro-

duce DMD modes that can not be written as the superposition of POD modes.

In addition, Extended DMD is a modification of Exact DMD that strength-

ens the connection between DMD and the Koopman operator. In 2014, Tu

et al. [58] proposed a new definition in which DMD was interpreted as an

approximate eigendecomposition of the best-fit (in a least-squares/minimum-

norm sense) operator relating two data matrices. As a result, it can generalize

the DMD algorithm to arbitrary datasets, not just sequential time-series (as

are typically considered).

• Use other modal decomposition techniques so that wide information on the

various type of systems can be explored – There are few other modal analysis

techniques as reviewed by Taira et al. in [83] such as Balanced Proper Or-

thogonal Decomposition (BPOD), Spectral Proper Orthogonal Decomposition

(SPOD), Higher-Order Dynamic Mode Decomposition (HODMD), empirical

mode decomposition, Koopman analysis, global linear stability analysis, resol-

vent analysis, and more, that have their own strengths and weaknesses. Future

researchers can consider these decomposition methods for their dataset and
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discuss on the information these methods can provide. For instance, BPOD is

capable of capturing the dynamics of the non-normal systems with large tran-

sient growth, while Koopman analysis offers an alternative operator-theoretic

perspective to dynamical systems and allows the representation and analysis of

non-linear systems using linear techniques. Global linear stability analysis de-

termines a spectrum of (discrete and continuous) eigenmodes, especially with

the matrix-based approach. Resolvent analysis can use the mean flow as the

base state (instead of the exact solution to the Navier–Stokes equations), even

in the case of turbulent flows, and it identifies the form of the most amplified

inputs, the corresponding output, and the gain.
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