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Abstract. We present a Domain Decomposition Reduced Order Data Assimila-
tion (DD-RODA) model which combines Non-Intrusive Reduced Order Modelling
(NIROM) method with a Data Assimilation (DA) model. The NIROM is defined
on a partition of the domain in sub-domains with overlapping regions and the DA
is defined on a partition of the domain in sub-domains without overlapping re-
gions. This choice allows to avoid communications among the processes during the
Data Assimilation phase. However, during the balance phase, the model exploits
the domain decomposition implemented in DD-NIROM which balances the results
among the processes exploiting overlapping regions. The model is applied to the
pollutant dispersion within an urban environment. Simulations are performed using
the open-source, finite-element, fluid dynamics model Fluidity.
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1. Introduction

It is estimated that by 2050, around four-million deaths per year will be attributable to
outdoor air pollution (twice the current mortality rate) [1]. This mandates the develop-
ment of techniques that can be used for emergency response, real-time operational pre-
diction and management. Numerical simulations are extensively used as a predictive tool
to better understand complex air flows and pollution transport on the scale of individual
buildings, city blocks and entire cities [2]. Fast-running Non-Intrusive Reduced Order
Model (NIROM) for predicting the turbulent air flows has been proved to be an effi-
cient method to provide numerical forecasting results [3]. However, due to the reduced
space on which the model operates, the solution includes uncertainties that are somewhat
ambiguous [3]. Additionally, any computational methodology contributes to uncertainty
due to finite precision and the consequent accumulation and amplification of round-off
errors. Taking into account these uncertainties is essential for the acceptance of any nu-
merical simulation. The main question is how to incorporate data (e.g. from physical
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measurements) in models in a suitable way, in order to improve model predictions and
quantify prediction uncertainty.

Here, the focus is on the prediction of nonlinear dynamical systems: the classical
application example being weather forecasting. In this paper, we combine a Domain De-
composition NIROM (DD-NIROM) method [4] with Data Assimilation (DA). DA is an
uncertainty quantification technique used to incorporate observed data into a prediction
model in order to improve numerical forecasted results. The DD-RODA (Domain De-
composition Reduced Order Data Assimilation) model we propose in this paper achieves
both efficiency and accuracy by including Variational DA (VarDA) into DD-NIROM.

The DD-NIROM can be constructed by a combination of proper orthogonal decom-
position (POD) and machine learning methods or interpolation methods. The key idea
of the DD-NIROM is that it constructs a set of hypersurfaces representing the reduced
system (including linear and non-linear processes). The novelty of the NIROM and DD-
NIROM, presented in [3], lies in how they are generated, i.e. how the hypersurfaces
are calculated using a machine learning method. The model we introduce in this paper
combines the state of the art of domain decomposition reduced order models with an
efficient variational DA model defined on an optimal reduced space [5,6,7,8] and on
a decomposition of the domain in sub-domains named (DD-DA). Even if the DD-DA
method we employ is efficient, it lacks of efficiency in the pre-processing phase which
mainly consists in evaluating and computing the background error covariance matrices.
Modelling and specification of the covariance matrix of background error constitute im-
portant components of any data assimilation system [9]. The main attributes of the back-
ground error covariance matrix are: to spread out the information from the observations;
to provide statistically consistent increments at the neighboring grid points; and to ensure
that observations of one model variable produce dynamically consistent increments in
the other model variables. The use of DD-NIROM for the pre-processing phase of the
DD-DA process can improve the efficiency of the whole prediction-correction cycle with
a consequent improvement of the operational prediction model fidelity.

In summary, in this paper we combine a Domain Decomposition Non-intrusive Re-
duced Order Modelling method [4] with Domain Decomposition Data Assimilation [8,7]
in a Domain Decomposition Reduced Order Data Assimilation (DD-RODA) model in
order to achieve both accuracy and efficiency in our simulations. An important advantage
of the DD-RODA approach is that once the DD-NIROM model is obtained, there is no
need to refer to the full model while performing DD-DA. With this approach, in fact, we
improve

• the accuracy of the DD-NIROM model by introducing information from observed
data using the variational DD-DA process.

• the efficiency of the DD-DA process in the pre-processing phase: we use the DD-
NIROM results to train our background error covariance matrices resulting in a
strong reduction of the overall execution time.

We demonstrate the accuracy and the scalability of our approach. A mathematical
formulation of the model is provided.

The model is tested on the pollutant dispersion within an urban environment. Sim-
ulations are performed using the open-source, finite-element, fluid dynamics software
Fluidity (http://fluidityproject.github.io/). The details of the equations solved and their
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implementations can be found in [10,11,12]. In this paper, the state variable consists of
values of pollution concentration. However, the algorithm and numerical methods pro-
posed in this work can be applied to other physical problem involving other equations
and/or state variables.

2. Reduced Order Assimilation model

Let u be a state variable and let f represent a full physical system:

u̇ = f (u, t) (1)

where t denotes the time.
Let Ω be the discrete spatial domain and let P(Ω) =

{
Ω j

}
j=1,...,s be a partition of Ω

in s sub-domains. Let u j be the restriction of the state variable u on the sub-domain Ω j.
In this work, a Domain Decomposition Non-intrusive Reduced Order Modelling (DD-
NIROM) method is used to enhance the computational efficiency. The reduced order
model projects the sub-domains of the full physical system with a big dimensional size
onto a reduced space sub-domains with a much smaller dimensional size, therefore it is
faster to solve.
Let n denotes a time level, the DD-NIROM uses a Proper Orthogonal Decomposition
(POD) method and Gaussian Process Regression (GPR) method to approximate the so-
lutions of equation (1).

In DD-NIROM based on the POD method, any variables un
j (for example, the veloc-

ity or tracers) at time level n can be expressed by the expansion,

un
j = u j +

M

∑
i=1

αn
jiφ ji, (2)

where αn
ji (i ∈ {1,2, . . . ,M}) denotes the POD coefficients of the POD basis functions at

the time level n. φ ji are the POD basis functions. M is the number of POD basis functions
(M << N) which can represent most (99% for example) of energy within the chosen
solution snapshots. u j represents the mean of the snapshots.

Let n be a fixed time level and let un
j be a state variable expressed by DD-NIROM

as described in equation (2). Let en
j = u j −un

j be the error introduced by replacing the
full physical system in (1) by the NIROM model (2). We introduce a DD-Reduce Order
Assimilation process by which the DD-NIROM model in (2) is combined with a DD-
Data Assimilation method in order to improve the accuracy of the solution un

j (i.e. reduce
en

j ) introducing information by observation of the state variable u j.
Let vn

j be an observation of the state variable at time n, the aim of DD-Reduced
Order Data Assimilation (DD-RODA) problem is to find an optimal trade-off between
the prediction made based on the DD-NIROM system state un

j (background) defined in
(2) and the available observation vn

j . For a fixed time step n, given un
j , vn

j and a mapping

Hj : un
j �→ vn

j , (3)
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the DD-RODA process consists in finding uDD−RODA
j as inverse solution of

vn
j = Hj

(
uDD−RODA) , (4)

subject to the constraint that uDD−RODA
j = un

j , i.e.:

uDD−RODA
j = u j +

M

∑
i=1

αn
jiφ ji. (5)

where φ ji denotes the POD basis functions. Since Hj is typically rank deficient, equation
(4) is an ill-posed inverse problem [13,14]. The Tikhonov formulation [15,16] leads to
an unconstrained least squares problem, where the term in (5) provided by DD-NIROM
ensures the existence of a unique solution in (4). The DD-RODA process can then be
described as follows:

uDD−RODA
j = argminu j

{
‖u j −un

j‖2
B−1

j
+‖vn

j −H (u j)‖2
R j

−1

}
(6)

where R j and B j are the observation and model error covariance matrices respectively,
defined on each subdomain Ω j, j = 1, . . . ,s:

R j := σ2
0 I j, (7)

with 0 ≤ σ2
0 ≤ 1 and I j the identity matrix,

B j =VjV T
j (8)

where Vj is the deviance matrix [6]. If equation (6) is linearised around the background
state [17], we have:

u j = un
j +δu j (9)

where δu j = u j −un
j denotes the increments. The DD-RODA problem is formulated by

the following form:

δuDD−RODA
j = argminδu j J j(δu j) (10)

where

Jj(δu j) =
1
2

δuT
j B−1

j δu j +
1
2
(H jδu j −dDD−NIROM

j )T R−1
j (H jδu j −dDD−NIROM

j ) (11)

and

dDD−NIROM
j = [vn

j −Hj
(
un

j
)
] (12)

is the misfit between the observation and the solution computed by DD-NIROM (see
Algorithm 1) and
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Hj (u j)� Hj
(
un

j
)
+H jδu j (13)

denotes the linearised observational and model operators evaluated at u j = un
j where H j

is the Hessian of Hj. In equation (10), the minimisation problem is defined on the field of
increments [18]. In order to avoid the inversion of B j, as B j = V jVT

j , the minimisation
can be computed with respect to a new variable [17] w j = V+

j δu j and V+
j denotes the

generalised inverse of V j:

wDD−RODA
j = argminw j J j(w j) (14)

where

Jj(w j) =
1
2

wT
j w j +

1
2
(HV jw j −dDD−NIROM

j )T R−1
j (HV jw j −dDD−NIROM

j ) (15)

In the next section, DD-RODA is applied to improve the pollutant dispersion pre-
diction within an urban environment. Simulations are performed using the open-source,
finite-element, fluid dynamics model Fluidity.

3. Numerical example

The capability of DD-RODA has been estimated using an urban environment located
in London South Bank University (LSBU) area (London, UK) shown in Figure 1. The
computational domain has a size of [0,2041]× [0,2288]× [0,250] (metres). This work
uses the 3D non-hydrostatic Navier-Stokes equations as the full physical system,

∇ ·u = 0, (16)

∂u
∂ t

+u ·∇u = −∇p+∇ · τττ, (17)

where u ≡ (u,v,w)T is the velocity, p = p̃/ρ0 is the normalised pressure (p̃ being the
pressure and ρ0 the constant reference density) and τττ denotes the stress tensor.

Simulations were carried out for the study area using Fluidity, an open-source, finite-
element, fluid dynamics model [12]. The dispersion of pollutant is described by the clas-
sic advection-diffusion equation with the pollutant concentration treated as a passive
scalar. A source term was added to the advection-diffusion equation to mimic a constant
release of pollutant generated by traffic in a busy intersection for example. The location
of the point source is depicted by the red sphere in Figure 1(a). The time step was adap-
tive based on the Courant (CFL) number defined by the user, and the Crank-Nicholson
scheme was used for the time discretization [11,10]. The mesh is shown in Figure 1(c).
The outlet boundary condition was defined by a zero-pressure (no-stress) condition; per-
fect slip boundary conditions were applied at the top and on the sides of the domain
and no-slip boundary conditions were applied on all building facades and the bottom
surface of the domain. A synthetic incoming-eddy method was used at the inlet [20] to
mimic the behaviour of the boundary layer. The mean velocity profile was prescribed as
in equation (18):
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Algorithm 1 DD-RODA algorithm on each sub-domain Ω j, j = 1, ...,s
� The following are known: { fi}m

i=1, {φφφ i}m
i=1, Hj and R j

ααα0
j = ααα j(t0) � Initialisation of POD coefficients

for n = 1 to Nt do
t = t0 +nΔt � Current time

� Step (a): calculate the POD coefficients, αααn
j , at the current time step:

for i = 1 to m do
αn

ji = f ji(αn−1
j1 ,αn−1

j2 , . . . ,αn−1
jm )

endfor
� Step (b): obtain the solution un

j in the full space at the current time, t, by projecting
αn

ji onto the full space using equation (2):
un

j = 0
for i = 1 to m do

un
j = un

j +αn
jiφφφ ji

endfor
� Step (c): compute the optimal background error covariance matrix:
Vn

j = un
j − ū j

V j = {V j,Vn
j}

endfor
V jτ = T SV D(V,τ). � Truncated SVD regularised matrix [6,19]

� Step (d): solve the reduced order assimilation process (6):
dDD−NIROM

j ← vn
j −Hjun

j � Compute the misfit

G j ← H jV jτ w j −dDD−NIROM
j

wDD−RODA
j = argminw j

{
1
2 wT

j w j +
1
2 GT

j R−1
j G j

}
� Compute the minimum

δuDD−RODA
j ← V jτ w j � From the reduced to physical space

uDD−RODA
j ← un

j +δuDD−RODA
j

(u,v,w) =
(

0.97561ln
( z

0.01

)
,0,0

)
(18)

where z denotes the height (in m). The inlet length-scale LLL and Reynolds stresses RRReee
are prescribed constant and equal to 100 m and 0.8 respectively, for the diagonal com-
ponents, and zero elsewhere. Zero velocity is prescribed on the bottom and on the wall
boundaries. Zero stress conditions is set to be p = 0 at the outlet boundary and a perfect
slip condition is specified on the vertical lateral boundaries. Experiments have been im-
plemented and tested on 3 high performance nodes equipped with bi-Xeon E5-2650 v3
CPU and 250GB of RAM with Python 3.5
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(a)

(b) (c)

Figure 1. (a) London South Bank University (LSBU) test case area. The red sphere denotes the location of the
pollution source and the blue arrows denote the wind direction. (b) 3D computational domain and (c) surface
mesh of the test site.

The accuracy of the DD-RODA results is evaluated by the mean squared error on each
sub-domain:

MSE(u j) =
‖u j −uC

j ‖L2

‖uC
j ‖L2

(19)

computed with respect to a control variable uC
j provided by observed data, for j =

1, . . . ,s and s denotes the number of sub-domains. Figure 2 shows the values of
MSE(uDD−NIROM) and MSE(uDD−RODA) for a decomposition made of s = 16 sub-
domains running on p = 16 processors. We can observe that the error decreases for each
sub-domain. We observe a bigger gain in terms of accuracy reduction in sub-domains
where the pollution concentration is more diffused. Fox example, the sub-domain num-
ber 11 presents a bigger gain as shown in Figure 2, this sub-domain is the central sub-
domain in Figure 4 (orange colour).

We evaluated the execution time needed to compute the solution of the DD-RODA
model using Algorithm 1. Let Ts denote the execution time of Algorithm 1 for a do-
main decomposition made of s sub-domains. We assume that p = s, where p denotes the
number of processors and we pose:

Ts = max{Tsi}i=1,...,s (20)

where Tsi denotes the execution time for each processor on each sub-domain. The total
execution time is shown in Figure 3(a). There is a clear decreasing trend in the total ex-
ecution time with the increase of number of processors. Figure 3(b) shows the values of
execution time of DD-NIROM and Fluidity on p = 4,16,32 processors for a decomposi-
tion of s = 4,16,32 sub-domains. The gain in terms of execution time provided by using
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Figure 2. Values of MSE(uDD−NIROM) and MSE(uDD−RODA) for a decomposition made of s= 16 sub-domains
running on p = 16 processors

DD-NIROM instead of Fluidity strongly impact on the efficiency of the pre-processing
to the Data Assimilation phase (Step (c) of Algorithm 1) for computing the covariance
matrices Vj for each time step n.

(a) (b)

Figure 3. (a) Values of execution times of DD-NIROM and DD-RODA for a number of sub-domains
s = 4,16,32 running on p = 4,16,32 processors (plot in linear scale) (b) Values of execution time for running
1 time step of DD-NIROM and Fluidity on p = 4,16,32 processors (plot in log scale).

Figure 4 shows the impact of DD-RODA on the iso-surface of the pollutant concen-
tration for 5.10−1kg/m3 computed in parallel with p = 16 processors and generated by
a point source. Figure 4(a) shows the results predicted by DD-NIROM, i.e. uDD−NIROM ,
while Figure 4(b) shows the observed data, i.e. v. Values v are assimilated in parallel
by DD-RODA to correct the forecasting data uDD−NIROM . The assimilated data after the
DD-RODA process, i.e. uDD−RODA, are then obtained (Figure 4(c)).

4. Conclusions

In this paper, we have presented a Domain Decomposition Reduced Order Data Assim-
ilation (DD-RODA) model which is a fusion of the Non-Intrusive Reduced Order Mod-
elling method with a 3D Data Assimilation both defined on a decomposition of the do-
main in sub-domains. We proved that our approach improves both accuracy of the DD-
NIROM model and efficiency of the DA process. The accuracy of the DD-NIROM model
is improved by introducing information from observed data exploiting the 3D variational
DA process. The efficiency of the DA process is mainly improved in the pre-processing
phase. In fact, we used the DD-NIROM results to train our background error covariance
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(a) uDD−NIROM : predicted pollutant iso-surface by DD-
NIROM.

(b) v: observed pollutant iso-surface.

(c) uDD−RODA: assimilated pollutant iso-surface by DD-
RODA.

Figure 4. Iso-surface, in white, of the pollutant concentration for 5.10−1kg/m3 computed in parallel with
p = 16 and generated by a point source.

matrices and we have shown that this implies a strong reduction of the overall execution
time. The efficiency and the accuracy of our model were discussed and tested using a 3D
case of air flows and pollution transport in an urban environment. The algorithms and the
method proposed are, however, enough generic and can be used easily for other physical
problems.
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