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Abstract 

In medicine, “big data” refers to the interdisciplinary analysis of high volume, diverse clinical 

and lifestyle information on large patient populations. Recent advancements in data storage 

and electronic record keeping have enabled the expansion of research in this field. In the United 

Kingdom, Big data has been highlighted as one of the Government’s ‘8 Great Technologies’ 

and the Medical Research Council has invested over £100 million since 2012 in developing the 

Health Data Research UK infrastructure. The recent Royal College of Surgeons commission 

of the Future of Surgery concluded that analysis of big data is one of the four most likely 

avenues to bring some of the most innovative changes to surgical practice in the 21st Century.  

In this article, we provide an overview of the nascent field of big data analytics in plastic and 

highlight how it has the potential to improve outcomes, increase safety and aid service 

planning. 

We outline the current resources available, the emerging role of big data within the sub-

specialties of burns, microsurgery, skin and breast cancer and how these data can be used. We 

critically review the limitations and considerations raised with big data, offer suggestions 

regarding database optimisation and suggest future directions for research in this exciting field. 
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Introduction 

Although Big data has been highlighted as one of the UK government’s ‘8 Great Technologies  

and it been a widely used term in the contemporary literature, it is often seen as a nebulas 

concept with several definitions(1). In healthcare it is commonly said to refer to the 

interdisciplinary analysis of high volume, complex and diverse clinical and lifestyle 

information. It encompasses a number of different data sources and analytical techniques that 

have not traditionally been seen or utilised in healthcare before. In 2011, David Cameron, the 

then Prime Minister, famously quoted that every patient was a “research patient”(2), paving 

the way for the use of data from all patients within a healthcare system to be used in big data 

analytics. The Medical Research Council (MRC) subsequently invested £120 million in health 

informatics(3) to drive this area of research forward. 

We are now entering an era where access to big data and research emanating from it will be of 

immense benefit to practising plastic surgeons. The recent Royal College of Surgeons of 

England Commission on the Future of Surgery concluded that analysis of big data is one of the 

four most likely avenues to bring some of the most innovative changes to surgical practice(4). 

Other specialities are already taking advantage of significant research council investment and 

centralisation of resources within the United Kingdom (UK) to begin harnessing the potential 

of big data (Table 1). We will outline potential sources of data, as well as briefly discussing 

some analytical techniques and difficulties associated with this field of research. Most 

importantly, we aim to highlight areas of plastic surgery that could benefit from the field of big 

data research, inspiring all readers to push the boundaries of this exciting research field to 

improve patient care.  
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Table 1-Big Data in other medical specialities 

Name Aim Data Sources Analysis Results 

Dementia 
Platform UK(5) 

A multi-million pound national 
collaboration funded by the 
Medical Research Council, 
aiming to improve knowledge on 
the pathogenesis of dementia. 

 

Electronic Health Records, 
genetic samples and MRI 
images of a cohort of over 2 
million participants. 

Launched in 2017, numerous 
studies are currently in 
progress. 

N/A 

Deepmind and 
Moorfield’s Eye 
Hospital(6) 

To develop a diagnostic tool, that 
interprets Optical Coherence 
Tomography (OCT) images of the 
retina. 

OCT images of the retina, 
provided by Moorfield’s 
Hospital. 

Artificial Intelligence. A deep 
classification network, trained 
with 14,884 images with 
known diagnosis, interprets the 
images.  

No significant 
difference in error 
rate when compared 
to clinical 
specialists. 

Deepmind 
Streams 
Application(7) 

Real time analysis of blood 
results, alerting healthcare 
professionals of Acute Kidney 
Injury (AKI). 

Blood results. Blood results analysed 
according to pre-set algorithm. 
Warning of AKI, sent directly 
to the Deepmind Streams 
Application of clinical team 
caring for the patient. 

 

Breast Cancer(8) To develop a tool that is able to 
interpret mammogram images. 

Mammogram images 
obtained from the Digital 
Database for Screening 
Mammography, Florida. 

Machine learning trained with 
supervision from clinical staff 
interpreting mammograms. 

90% sensitivity.  
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What are big data? 

Big data refers to datasets that have three defining key characteristics: volume, variety and 

velocity(1). More recently, other attributes have also been considered, including variability 

(consistency of data over time), veracity (trustworthiness of the data obtained) and value(9).  

Volume refers to the volume of data per “transaction”. The volume per transaction has grown 

exponentially from bytes (e.g. traditionally recording free flap observations every 6 hours), to 

kilobytes (e.g. clinic letters), to megabytes (e.g. clinical photographs), to gigabytes (e.g. 

Computed Tomography images), to terabytes (e.g genomic sequencing)(10). Consequenly, 

large volumes of data are being accumulated; in 2011 data from the United States of America 

healthcare system reached 150 exabytes (161061273600 gigabytes)(11), the equivalent of 9 

billion copies of the James Bond collection on DVD. 

The variety of data available makes health analytics both exciting and challenging (Table 2). 

Traditionally, the data collected and analysed has been structured. Structured data are data that 

can be easily stored, manipulated and analysed. Such data includes familiar input fields that 

are easily coded into traditional databases such as patient demographics, diagnostic codes and 

treatment reimbursement codes. However, over 80% of current healthcare data exists in an 

unstructured format such as hand-written clinical records and operation notes(12).  

Furthermore, new data streams of both structured and unstructured data are becoming 

available, such as information from wearable devices (fitness devices, ECGs, glucose 

monitors), genetics and genomics, clinical trial data, social media feeds, geographical type data 

(person and service location) and smartphone applications. One component of big data is 

therefore built around how to manage, clean and analyse these new and unstructured data 

sources that are rich in content. This will be discussed later in this article. 

Velocity refers to the speed at which data are collected and processed. Advanced analytic 

techniques, such as machine learning, offer the ability for real time data processing. 

Traditionally, healthcare data has been mostly static (data that does not change once it has been 

recorded e.g. clinical images such as a plain chest radiograph)(10), however more sources of 

data are available on dynamic variables e.g. vital signs. Real time accumulation and processing 

of dynamic data has significant advantages, particularly in the monitoring of a patients 

condition and the early identification of a change requiring intervention.  
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Table 2 Sources of data utilised in big data 

Source Description 

Electronic Health Records 
(EHRs) 

Patient records have become increasingly computerised in both primary and secondary care to facilitate 
communication and improve patient care.   

Databases and Registries A wide range of plastic surgery related international databases and registries exist, such as those for general 
plastic surgical procedures(13), oncology(14, 15), aesthetic surgery(16, 17), trauma and burns(18, 19).  

Clinical Trial Data The concept of “open data”, whereby raw clinical trial datasets are made freely available to all, is becoming 
an increasingly encouraged and in some cases required for publication(20).  

Social Media and Web 
Searches 

A large percentage of patients and healthcare professionals use the Internet and social media, providing data 
for both research and clinical practice (21).  

Wearables The rise in wearable technology has the potential to provide vast and rich data(22). These data could help 
plastic surgeons in the monitoring of post-operative patients, collecting data on activity levels once discharged, 
or tracking patients around a hospital to improve workflow efficiency.     

Genetics and biological data The combined analysis of genomic, proteomic and clinical data has potential to provide further insights into 
tumour development and genetic profiling, paving the way for personalised medicine.  
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Management of Data 

A practical challenge in big data research is the need to ensure that health related data are 

acquired, stored and analysed in a manner that is socially aware and appropriately governed. 

Problems with electronic capture of routine clinical data in the UK were demonstrated by the 

NHS National Programme for Information Technology (NPfIT). While the cause of this was 

multifactorial, the lack of collaboration between stakeholders were common themes(23).   

The development of Data Safe Havens (DSH), in the early 1990s, has been crucial to ensure 

data is appropriately managed. DSH adhere to 12 principles, based on three themes. Firstly, 

data must be managed according to collection and storage of data that preserves confidentiality, 

adheres to ethical and legal requirements and allows appropriate, secure access. Secondly, the 

data must be accurate and reliable. Finally, the criteria relate to maintaining the security of 

data(24). Working to such standards allow DSHs to provide access to health data to enable 

research while protecting the confidentiality. 

Examples of DSHs are seen in Australia(25), Canada(26), Scotland(27), England(28)  and the 

Secure Anonymous Information Linkage System (SAIL) in Wales(29). The SAIL databank is 

a privacy protecting repository for population level person-based anonymised health and socio-

economic administrative data, which provides a good example of how DSHs receive and 

manage data according to best practice(29-31). Figure 1 illustrates the overlying architecture 

of the SAIL databank system. 
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Figure 1 A diagram of how data enters the SAIL databank
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Data Analysis  

The analysis of big data requires an interdisciplinary collaboration between data scientists, 

researchers and clinicians in order to manage very large datasets, analyse them appropriately 

and present the data in an understandable manner(1, 10). Firstly, familiarisation and 

understanding of the data is essential to ensure relevant data are extracted. Data extraction is 

commonly performed using Structured Queried Language (SQL) to create data in a structured 

format suitable for analysis.   

This extraction process is more complicated for unstructured data such as clinic letters or 

operation notes and is an area where Natural Language Processing (NLP) is beginning to play 

a role. NLP employs techniques from embedding expert knowledge into rule-based systems, 

to statistical learning methodologies such as Artificial Intelligence (AI) and Machine Learning 

(ML). While rules based systems require expert knowledge, AI and ML methods can use 

experts to annotate unstructured text with direct coding systems to train models and infer 

knowledge from new, unseen data (fully supervised ML)(32). Alternatively a data driven semi-

supervised or unsupervised technique can be utilised to mine novel patterns from text that 

might not be considered by experts(33).  

Once data are extracted they can be analysed either in a similar approach to traditional data or 

with new techniques from the field of artificial intelligence and machine learning (Figure 2). 
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Key definitions(4, 34) 

Artificial Intelligence - A field of computer science studying mechanisms that allow 

machines to perform tasks that would normally require human intelligence. 

Machine Learning - A form of AI that enables machines to learn from data and patterns they 

analyse, rather than prior programming by experts i.e clinicians. 

Natural Language Processing - An area of computer science in which computer programs 

are developed to ‘read’ and understand human written language. 

Deep Learning - A type of machine learning inspired by the functioning of neural networks 

in the human brain. It uses algorithms to analyse different layers of data, establishing 

hierarchical relationships between the outputs of one layer and the analysis of the next. It thus 

enables learning through the recognition of patterns and the interpretation of data and images 
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Figure 2 An overview of data analysis 
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Potential benefits of Big data in Plastic Surgery Research and Clinical Practice 

Advantages over traditional research methodologies 

Big data research provides several advantages compared to traditional research 

methodologies(35). Firstly, the large volume of patient data accessible from big data can 

overcome some of the difficulties in recruiting patients with rare conditions or where there is 

significant variation in practice(36). The size of such datasets can improve statistical power, 

reducing the risk of type II errors.  

Patients recruited in prospective trials are often subject to selection bias (e.g. healthier and 

more compliant patients), therefore reducing the translation into clinical practice. From an 

administrative perspective, big data analysis can be performed at a much faster rate, that is 

more cost efficient than clinical trials(1).  

The use of big data can be utilised to complement traditional research methods. A notable 

example is that of the identification in a laboratory-based model using rat fibroblasts that 

wounds that occurred during the night led to delayed healing time compared to day time 

wounds. This finding was confirmed in humans using the international Burn Injury Database 

(iBID)(37). 

Surgical Outcomes  

One powerful use of big data would be to inform patients and professionals alike of the accurate 

prevalence regarding post-operative complications, such as the average length of stay, patient 

re-admission rate, venous thromboembolism risks or flap failure. An overview of data driven 

support tools are summarised in table 3.
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Table 3 – Data Driven Clinical Support Tools in Plastic Surgery 

Reference Overview Method Results 

Esteva et al (38) A diagnostic tool used to diagnose skin 

lesions from clinical photographs. 

A Deep convolutional neural network 

trained using 129,450 images of 2,032 

lesions. 

Accuracy consistent with 

consultant 

dermatologists. 

IBM Watson (39) To develop a diagnostic tool to diagnose 

melanoma from clinical images. 

A deep CNN network trained using images 

from the International Skin Imaging 

Collaboration (ISIC). 

Work currently 

underway. 

Kiranantawat et 

al (40) 

A smartphone application designed for 

postoperative microsurgery monitoring. 

Application taught to analyse skin colour 

of ischaemic digits from smartphone 

photographs. 

94% Sensitivity at 

diagnosing venous or 

arterial occlusion. 

Yeong et al (41) A diagnostic tool designed to predict 

healing time in burn wounds. 

Artifical Neural Networks trained using 

reflective spectrometry, a technique 

whereby a probe shines light on tissues 

and measures the colour and intensity of 

reflected light of burn wounds. 

Predictive accuracy of 

86%. 
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Service planning 

The comparison of outcomes between geographical regions would inform service planners, 

politicians and clinicians on best practices that could improve patient care and resource 

distribution. In this role, big data has the power to reduce the cost of healthcare. The Getting It 

Right First Time (GIRFT) programme(42) aims to save the National Health Service (NHS) 

£1.4 billion by using big data analysis. The programme investigates clinical variations of 

practice within specialities, comparing these with outcomes to identify best practices. GIRFT 

analyses data from a number of sources including hospital episode statistics, NHS litigation 

Authority and relevant data for the speciality. The GIRFT programme is currently underway 

in plastic surgery. 

Public Health 

On a population level, big data can inform public health. The incidence of a variety of diseases 

such as skin cancer and trauma can be closely monitored and allow evolving risk factors to be 

identified. At present, multiple traditional databases exist in plastic surgery. Analysis of the 

international Burns Injury Database (iBID) has recently been used to identify detailed 

demographics and variations of incidence of burn injuries within England & Wales(43).  

Litigation 

The NHS Litigation Authority (NHSLA), a compulsory database for claims against the NHS, 

estimates that there are currently over £23 billion of potential negligence claims in process. Big 

data can be effectively used in the field of litigation, to identify common causes of litigation 

and thus try to reduce these, along with reducing overall expenditure through reduced claims. 

Governance 

The plastic surgery community has been faced with several governance challenges over the last 

few decades, most notably the Silicon controversy, and more recently Poly Implant Prothèse 

(PIP)(44) and breast implant associated Anaplastic Large Cell Lymphoma (ALCL)(45). 

The PIP breast implant scandal is well documented; it is estimated that 400,000 women 

worldwide received substandard implants. In response, the UK government’s Department of 

Health called for registration of professionals performing cosmetic surgery and for devices(46). 
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The creation of The Breast and Cosmetic Implant Registry(47) should in time provide a 

valuable database to improve patient safety, and will become more robust with linkage to 

EHRs. 
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Figure 3 An overview of the role of big data in Plastic Surgery using the example of skin 
cancer. 
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Limitations of big data 

Missing data – Big data commonly deals with data collected for non-research purposes, 

resulting in incomplete data sets. Assuring full data collection using a Minimum Dataset will 

be essential moving forward.  

Data quality - Diagnoses and procedures may be documented using International Classification 

of Diseases (ICD) codes or via Office of Population Censuses and Surveys Classification of 

Interventions and Procedures (OPCS-4) codes. The knowledge of such coding systems 

amongst surgeons is limited, reducing the quality of the data captured or relying on other staff 

to perform this coding process. Consequently, considerable discrepancies can exist in such data 

sources as demonstrated in numerous studies(48-51).  Extraction of data from unstructured 

sources using NLP could have significant potential to overcome such limitations. 

Statistical analysis – The analysis of large datasets requires unique analytic approaches(51). It 

must be acknowledged, with such large numbers, statistical significance may not always reflect 

clinical significance. Furthermore, it has been demonstrated that many studies selectively use 

data and statistical analysis techniques to emphasise findings consistent with the study 

hypothesis(52).  

Privacy, ethics and security in big data – Considerations surrounding privacy, ethics and 

security in big data need addressing at the outset, especially give a number of recent high profile 

concerns such as the 2017 ransomware attach on 80 NHS trusts and hundreds of GP practices 

across the UK. The attack reportedly cost the NHS £92 million, highlighting the vulnerability 

of NHS IT infrastructure to Cyber attacks(53).  

Currently privacy and data protection laws are based around an individual’s control over their 

information and on principles such as data minimization and purpose limitation. This 

however does not always fit that easily with the principles of maximizing available data. In 

May 2018, the European Union implemented the General Data Protection Regulation 

(GDPR) to strengthen data protection for all individuals in the EU. Researchers can use these 

data without consent providing appropriate safeguards are in place and that it is permitted 

under EU law (54). 
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It is crucial that the public are convinced that once adequate safeguards have been put in 

place to maintain their privacy and security, big data analysis will provide significant 

benefits. The launch of the Understanding Patient Data initiative by the Wellcome Trust to 

improve the public’s understanding about the use of healthcare data in research is a welcome 

development(55).  

The Future of Big Data 

Big data analytics in plastic surgery is currently in a nascent stage, however as this review 

demonstrates, the long-term potential is huge. It will be through greater routine collection of 

data, extraction of unstructured data using techniques such as Natural Language Processing 

and the integration of these data sources that the greatest breakthroughs will be made. It is 

important that as a surgical community we understand the potential benefits as well as pitfalls 

of Big Data, that will in time lead to streamlined services and improve surgical outcomes for 

our patients.  
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