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Stéphane Le Roux

Department of Mathematics, Technische Universität Darmstadt1, Germany

leroux@lsv.fr

Arno Pauly

Department of Computer Science, Swansea University, UK
a.m.pauly@swansea.ac.uk

Abstract

We investigate the existence of various types of equilibria (Nash, subgame per-

fect, Pareto-optimal, secure) in multi-player multi-outcome infinite sequential

games. Our results are transfer theorems: Assuming determinacy for a class of

simple two-player win/lose games, we obtain existence results about equilibria

in the associated multi-player multi-outcome games.
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1. Introduction

We investigate the existence of various kinds of equilibria in multi-outcome

multi-player infinite sequential games. Our results are transfer theorems that

construct such equilibria from winning strategies in derived, simpler two-player

win/lose games. Together with Borel determinacy [1], or even assuming the5

axioms of projective determinacy (PD) or determinacy (AD), we can conclude

the existence of such equilibria.

1Le Roux has since moved to the Laboratoire Spécification et Vérification at ENS Paris-
Saclay.

Preprint submitted to Information & Computation December 9, 2018



Rather than working with real-valued payoff functions, as common in this

area, we use strict weak orders as preferences. This is a proper generalization,

and better behaved regarding constructions such as taking lexicographic prod-10

ucts (cf. [2, Proposition 43]). In Section 5 we mention corollaries about games

with real-valued payoff functions, which we obtain from our main theorems. For

contrast we also mention known results in this area.

Section 3 is an extension of the conference paper [3], and improves upon

results in [4]. There we investigate subgame-perfect equilibria in antagonistic15

games as well as Nash equilibria in a general setting. In Section 4 we then look

at Pareto-optimal equilibria (Definition 7) and secure equilibria (Definition 9).

The research programme this article contributes to reunites two mostly sepa-

rate developments in the study of games. On the one hand, the first development

is the investigation of variations on solution concepts for games, and of different20

formalizations of the preferences of the players, which primarily happened inside

game theory proper. On the other hand, the study of infinite sequential games

has a long history in logic. Many variations on the rules of games have been

studied, albeit mostly restricted to zero-sum games with two players and two

outcomes. The celebrated core result here is Borel determinacy (Martin [1]):25

In a two-player win/lose game where the winning set is Borel, one of the two

players has a winning strategy.

A similar synthesis of the approaches is found in e.g. [5, 6, 7, 8]. In this

area, typically results either are given only for low complexity settings (such as

semicontinuous payoff functions), or they reduce the case at hand to Borel de-30

terminacy (which is how we proceed here). There are various existence theorems

for equilibria known, and various counterexamples. The precise requirements

needed to necessitate the existence of certain equilibria are generally unknown.

In some cases, we are able to give exact classifications (Theorems 16, 21), in

others, we are merely pushing forward the boundary of the known. We discuss35

the state of the art some more in Subsection 3.1 and at the end of Section 5.

Our main interest in pursuing this theme is to better understand the inter-

play between features of the preferences of players and of types of equilibria.
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Contrasting Theorems 16 and 21, for example, shows that for Nash equilibria

to exist, the fundamental obstruction is (informally spoken) repeated improve-40

ment (in a narrow sense) can still leave a player off worse in the limit; while for

pareto-optimal equilibria the obstruction is the same pattern in the preferences

that also pertains to subgame-perfect equilibria in other settings.

A similar move from two-player win/lose games to multi-player multi-outcome

games is occurring in games used for verification and synthesis in theoretical45

computer science (e.g. [9] for multi-outcome, [6] for multi-player). Here the

winning conditions (respectively preferences) are much more structured than

just being Borel: a common assumption would be ω-regularity. In turn, the

desired winning strategies (respectively equilibria) would be realized by finite

automata. Transfer results in the same spirit as in the present paper are im-50

plicitly present in [10], and very explicitly in [2] (which was inspired by [3], the

precursor of this article).

2. Background

In our most abstract definition, a game is a tuple 〈A, (Sa)a∈A, (≺a)a∈A〉

consisting of a non-empty set A of agents or players, for each agent a ∈ A a55

non-empty set Sa of strategies, and for each agent a ∈ A a preference relation

≺a ⊆
(∏

a∈A Sa
)
×
(∏

a∈A Sa
)
. The generic setting suffices to introduce the

notion of a Nash equilibrium: a strategy profile σ ∈
(∏

a∈A Sa
)

is called a

Nash equilibrium, if for every agent a ∈ A and every strategy sa ∈ Sa we find

¬ (σ ≺a σa7→sa), where σa 7→sa is defined by σa7→sa(b) = σ(b) for b ∈ A \ {a} and60

σa 7→sa(a) = sa. In words, no agent prefers over a Nash equilibrium some other

situation that only differs in her choice of strategy.

We will consider games where strategy spaces and preferences are derived

objects from more structured variants of games. One such variant is the infinite

sequential game:65

Definition 1 (Infinite sequential game, cf. [4, Definition 1.1]). An infinite se-

quential game is an object 〈A,C, d,O, v, (≺a)a∈A〉 complying with the following.
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1. A is a non-empty set (of agents).

2. C is a non-empty set (of choices).

3. d : C∗ → A (assigns a decision maker to each stage of the game).70

4. O is a non-empty set (of possible outcomes of the game).

5. v : Cω → O (assigns outcomes to infinite sequences of choices).

6. Each ≺a is a binary relation over O (modeling the preference of agent a).

Here C∗ denotes the set of finite sequences over C, and Cω the set of infinite

sequences over C.75

The intuition behind the definition is that agents take turns to make a choice.

Whose turn it is depends on the past choices via the function d. Over time,

the agents thus jointly generate some infinite sequence, which is mapped by

v to the outcome of the game. Note that using a single set of actions C for

each step just simplifies the notation, a generalization to varying action sets is80

straightforward.

The infinite sequential games can be seen as abstract games: the agents

remain the agents and the strategies of agent a are the functions sa : d−1({a})→

C. We can then safely regard a strategy profile as a function σ : C∗ → C whose

induced play is defined below, where for an infinite sequence p ∈ Cω we let pn85

be its n-th value, and p≤n = p<n+1 ∈ C∗ be its finite prefix of length n.

Definition 2 (Induced play and outcome, cf. [4, Definition 1.3]). Let s : C∗ →

C be a strategy profile. The play p = pγ(s) ∈ Cω induced by s starting at

γ ∈ C∗ is defined inductively through its prefixes: pn = γn for n ≤ |γ| and

pn := s(p<n) for n > |γ|. Also, v ◦ pγ(s) is the outcome induced by s starting at90

γ. The play (resp. outcome) induced by s is the play (resp. outcome) induced

by s starting at ε.

In the usual way to regard an infinite sequential game as a special abstract

game, an agent prefers a strategy profile σ to σ′, iff he prefers the outcome

induced by σ to the outcome induced by σ′. And indeed we shall call a strat-95

egy profile of an infinite sequential game a Nash equilibrium, iff it is a Nash
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equilibrium with these preferences. In a certain notation overload, we will in

particular use the same symbols for the preferences over strategy profiles and

the preferences over outcomes.

The above translation of sequential games into abstract games yields the100

standard concept of Nash equilibrium for sequential games. However, this con-

cept does not capture rationality as much as desirable: players may indeed use

empty threats, i.e. declarations they would play in a certain way from a posi-

tion onwards, even if it would be against their own interests once the position

is reached. As long as the empty threats keep other players from moving to105

that position, they may be used in a Nash equilibrium nonetheless. This lack of

rationality can be fixed by considering the concept of subgame perfect equilib-

rium [11]. It is usually seen as an alternative concept to (actually a restriction

of) Nash equilibrium, but Definition 3 defines it simply by considering an alter-

native translation of the preferences from sequential games to abstract games.110

(Similar remarks were made in [12, Lemma 144 in Section 7.2.3, Section 7.3.2].)

Definition 3. Given an infinite sequential game 〈A,C, d,O, v, (≺a)a∈A〉, let the

subgame perfect preferences2 ≺sgpa ⊆ CC
∗ × CC∗

be defined by σ ≺sgpa σ′ iff

∃γ ∈ C∗ such that pγ(σ) ≺a pγ(σ).

The subgame perfect equilibria of 〈A,C, d,O, v, (≺a)a∈A〉 are the Nash equi-115

libria of 〈A, (Cd−1({a}))a∈A, (≺sgpa )a∈A〉.

We consider a further variant, namely the infinite sequential games with real-

valued payoffs, which can (but do not have to) be understood as a special case

of infinite sequential games.

Definition 4. An infinite sequential game with real-valued payoffs is a tuple120

〈A,C, d, (fa)a∈N〉 where A, C, d are as above, and fa : Cω → R is the payoff

function of player a.

2Note that the translation of preferences in the following definition does not preserve

acyclicity. Preservation could be ensured, e.g., by giving the nodes a linear ”priority” order,

in a lexicographic fashion. This, however, would complicate the definition against little benefit

for the point that we want to make.
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Such a game can be identified with the infinite sequential game

〈A,C, d,RA, v, (≺a)a∈A〉

where v(p) = (fa(p))a∈A and for x, y ∈ RA, we set x ≺a y iff xa < ya.

As with the introduction of the subgame perfect equilibria, we can consider

infinite sequential games with real-valued payoffs as infinite sequential games125

in several ways. One way gives rise to another commonly studied equilibrium

concept, namely ε-Nash equilibria. Given some ε > 0, we define the relation

≺εa ⊆ RA×RA by x ≺εa y iff ya−xa > ε. Using ≺εa in place of ≺a in Definition 4

then provides the notion of ε-Nash equilibrium. Furthermore, by combining the

two alternative ways (the one for SPE and the one for ε-NE) to translate from130

infinite sequential games to abstract games, we also obtain ε-subgame perfect

equilibria.

For infinite sequential games with real-valued payoffs, every Nash equilib-

rium (w.r.t. the standard preferences) is an ε-Nash equilibrium; and every sub-

game perfect equilibrium is an ε-subgame perfect equilibrium. Moreover, every135

subgame perfect equilibrium is a Nash equilibrium, and in particular, every

ε-subgame perfect equilibrium is an ε-Nash equilibrium.

We use antagonistic game to refer to two-player games with preferences

satisfying ≺a = ≺−1b , where x ≺−1 y ⇔ y ≺ x.

Definition 5 recalls a few more notions that are only tangentially related to140

the formulation of our results, but that do show up in the proofs.

Definition 5. A two-player win/lose game is a tuple 〈C,D,W 〉 with D ⊆ C∗

andW ⊆ Cω. It corresponds to the infinite sequential game 〈{a, b}, C, d, {0, 1}, v, {<

,<−1}〉 where d is defined via d−1({a}) = D and v is defined via v−1({1}) = W .

We extend the notion of the induced play. Given some partial function

s :⊆ C∗ → C, we define the consistency set P (s) ⊆ Cω by:

P (s) = {p(σ) | σ : C∗ → C ∧ σ|dom(s) = s}

Strict weak orders145

A strict weak order is a strict partial order whose complement is transitive.
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Definition 6 (Strict weak order). A relation ≺ is called a strict weak order if

it satisfies:

∀x, ¬(x ≺ x)

∀x, y, z, x ≺ y ∧ y ≺ z ⇒ x ≺ z

∀x, y, z, ¬(x ≺ y) ∧ ¬(y ≺ z) ⇒ ¬(x ≺ z)

Said otherwise, a strict weak order is a partial order whose non-comparability

relation is an equivalence relation. We write x ∼ y to denote ¬(x ≺ y)∧¬(y ≺ x)

and x - y to denote x ∼ y ∨ x ≺ y. An important property is that the quotient

≺ / ∼ is a strict linear order (over the equivalence classes of ∼).150

The usual preferences induced by real-valued payoff functions are strict weak

orders. However, strict weak orders are more general than real-valued payoff

functions (for an example, see e.g. [2]). Many results in this article, more specif-

ically their proof techniques, rely on the preferences being strict weak orders.

Given a strict weak order ≺ over a set O, a --terminal interval is a set I155

satisfying the formula ∀x, y ∈ O, x - y ∧ x ∈ I ⇒ y ∈ I. Initial intervals are

defined likewise, and an interval is extremal if it is terminal or initial.

Pareto-optimality

Pareto-optimality provides a notion of social desirability in game theory,

and can be used either to pick particularly relevant equilibria, or to investigate160

whether the strategic interaction is costly in some sense3. In this article we study

the latter. The fundamental idea is that a Pareto-optimal outcome cannot be im-

proved for someone without being worsened for someone else. Pareto-optimality

is often only defined for real-valued payoff tuples, but the same, syntactically,

definition also makes sense for strict weak orders, and more generally for strict165

partial orders.

Definition 7. An outcome is realizable in some game, if it is assigned to some

sequence of choices. We call an outcome o Pareto-optimal, if there is no other

3Similar to the (quantitative) price of stability, see [13].
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realizable outcome q such that for some player a we find o ≺a q and for no

player b we have q ≺b o.170

We shall call a Nash equilibrium Pareto-optimal iff it induces a Pareto-

optimal outcome. For this notion of Pareto-optimality, there are games with

NE but without Pareto-optimal NE:

Example 8. Let z ≺a y ≺a x and x ≺b z ≺b y. The game below has only one

Nash equilibrium, which yields outcome z. However, both players would prefer175

the realizable outcome y. Thus, the unique Nash equilibrium is not Pareto-

optimal.

b

a

x y

z

We characterize sequential games admitting Pareto-optimal Nash equilibria

in Subsection 4.1.180

Secure equilibria

Secure equilibria were introduced in connection with model checking [14], for

two-player games whose outcomes are in {0, 1}2. They were then generalized

into quantitative secure equilibria [15], for two-player games whose outcomes are

in R2. They were again generalized in [16], for n-player games with outcomes185

in Rn. The (quantitative) secure equilibria of a game are the Nash equilibria

of another game obtained by changing the usual preference of each player into

a malevolent preference: instead of just trying to maximize her own payoff, she

tries primarily to do so and, in case of ties, to minimize the opponents’ payoff.

Here we generalize further the secure equilibria, for multi-player games with190

strict weak order preferences.

Definition 9. The secure equilibria of a game 〈A,C, d,O, v, (≺a)a∈A〉 are the

Nash equilibria of the derived game 〈A,C, d,O, v, (≺′a)a∈A〉, where for all a ∈ A

we set x ≺′a y if either x ≺a y or the following conditions are all satisfied:
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• x ∼a y195

• ∃b ∈ A, y ≺b x

• ∀b ∈ A, y -b x

We discuss the existence of secure equilibria in Subsection 4.2.

Descriptive set theory

We mention certain concepts from descriptive set theory. The precise defini-200

tions are not required to follow the presentation here, but we include them for

completeness. A pointclass is just a set of subset of Cω. A pointclass is called de-

termined if for every element W of the pointclass the two-player win/lose games

with W as winning set are determined. Pointclasses of particular relevance for

us are the Borel and the quasi-Borel sets. We start with {wCω | w ∈ C∗}205

and close it under union to obtain the open sets. Closing the open sets under

countable union and complement yields the Borel sets. Adding in closure un-

der union of open-separated families gives the quasi-Borel sets, where a family

(Ai)i∈I of sets is open-separated, if there is a disjoint family of open sets (Oi)i∈I

with Ai ⊆ Oi. If C is countable, the Borel sets and quasi-Borel sets coincide210

and are just the closure of the class {wCω | w ∈ C∗} under countable union

and complement. It is a folklore generalization of Martin’s theorem that the

quasi-Borel sets are determined, cf. [17]. We also mention ∆0
2-sets, these are

those that are simultaneously obtainable from open sets by taking countable

intersections and from complements of open sets by countable union.215

3. Nash and subgame-perfect equilibria

3.1. What is known

Games with finite action sets and continuous payoff functions are known to

have subgame-perfect equilibria, as originally shown by Fudenberg and Levin

[18]. The topology used on the strategies here is just the product topology220

derived from the discrete topology on the action sets. Over the years, many
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improvements and extensions of the original setting have been obtained, for

example with more general action sets [19] or with partial information in dy-

namical games [20]. The fundamental continuity of the payoff functions has not

been relaxed however, and we will show below why.225

Approximate equilibria can be obtained provided that the payoff functions

are Borel-measurable and bounded. This is a classic result, and a proof can be

found e.g. at [21, Page 97]. It is also a direct corollary of our Theorem 15. The-

orem 15 shows what the sufficient and necessary criteria are for the fundamental

idea behind the classical result to go through. Approximate subgame-perfect230

equilibria exist in two-player antagonistic games. This is again a classical result,

with one incarnation being found as [22, Proposition 11]. Our generalization

is found as Theorem 11, showing that antagonistic games with finitely many

outcomes have subgame-perfect equilibria.

3.2. A key example235

As soon as we go beyond continuous payoff functions (or more generally,

open preferences), Nash equilibria in infinite sequential games may fail to exist.

We provide a generic folklore counterexample below, and will demonstrate that

the underlying feature is essential for the failure of existence of Nash equilibria.

The counterexample only requires a single player, and its payoff function is in a240

sense the least discontinuous payoff function, and in particular is ∆0
2-measurable.

Example 10. Let the payoff function P : {0, 1}N → [0, 1] for the single player

be defined by P (1n0p) = n
n+1 for all p ∈ {0, 1}N and P (1N) = 0. As P does not

attain its supremum, the resulting game cannot have a Nash equilibrium.

a

1
2

a

2
3

a

n
n+1

0
245
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We will show in particular that the presence of a converging sequence of plays

(pn)n∈N such that a player prefers pn+1 to pn, but prefers any pn to limi→∞ pi,

is a crucial feature of the example above to have no Nash equilibrium. The

proof will be an adaption of the main result of [4] by the first author. Under

the additional assumption of antagonistic preferences in a two-player game, we250

can even obtain subgame perfect equilibria.

3.3. Results

We state existence results for subgame perfect equilibria first, and then for

Nash equilibria.

The restriction to antagonistic games here is motivated by [23, Example255

3], which shows that even under very favourable conditions, non-antagonistic

preferences lead to the non-existence of subgame-perfect equilibria. Our first

result deals with the case of finitely many outcomes, such that for any history

the set of its extensions yielding a particular outcome is determined. The most

obvious way to ensure this condition is by having the set of plays yielding a260

particular outcome be (quasi)-Borel (Corollary 12).

Theorem 11. Let 〈{a, b}, C, d,O, v, {<,<−1}〉 be an infinite sequential game

where O is finite and < is a strict linear order. Let Γ ⊆ P(Cω) and assume the

following.

1. ∀O′ ⊆ O,∀γ ∈ C∗, {α ∈ Cω | v(γα) ∈ O′} ∈ Γ265

2. The game 〈C,D,W 〉 is determined for all W ∈ Γ and D ⊆ C∗.

Then the game 〈{a, b}, C, d,O, v, {<,<−1}〉 has a subgame perfect equilibrium.

Corollary 12. Let 〈{a, b}, C, d,O, v, {<,<−1}〉 be an infinite sequential game

where O is finite and < is a strict linear order. If v−1(o) is quasi-Borel for all

o ∈ O, the game has a subgame perfect equilibrium.270

Proof. From Theorem 11, quasi-Borel determinacy [24], and Lemma 3.1. in [4].
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The statement of the second existence result for subgame perfect equilibrium

involves the notion of guarantee of a player. This notion, also central in our

proofs, was introduced in Definitions 2.3 and 2.5 from [4]. The guarantee of a275

player is the smallest terminal interval, w.r.t her strict-weak-order preference,

that includes the outcomes compatible with a given strategy of the player in

the subgame at a given node of a given infinite sequential game. The best

guarantee of a player consists of the intersection of all her guarantees over the

set of strategies.280

Definition 13 (Agent (best) guarantee). Let 〈A,C, d,O, v, (≺a)a∈A〉 be a game

where the ≺a are strict weak orders.

∀a ∈ A,∀γ ∈ C∗,∀s : d−1(a)→ C, ga(γ, s) :=

{o ∈ O | ∃p ∈ P (s|γCω ) ∩ γCω, v(p) -a o}

Ga(γ) :=
⋂
s ga(γ, s)

We write ga(s) and Ga instead of ga(γ, s) and Ga(γ) when γ is the empty word.

We are now able to state the second existence result for subgame perfect

equilibrium. Apart from the use of guarantees in the statement, a core difference

is that Theorem 14 requires a finite set of actions, whereas Theorem 11 instead

needs a finite set of outcomes. In particular, the strength of the two theorems285

is incomparable. Conditions 3,4 in Theorem 14 again constitute a determinacy

requirement for the sets of plays yielding particular outcomes. Condition 2 is a

technical condition stating that if a player can keep improving their guarantee

along a path by changing strategies, then the outcome obtained on this path

is included in all these guarantees. It can be seen as a very weak continuity290

assumption, which suffices to make out iterative construction of strategies well-

behaved.

Theorem 14. Let 〈{a, b}, C,O, d, v, {≺,≺−1}〉 be a two-player antagonistic

game, where C is finite. Let Γ ⊆ P(Cω) and assume the following.

1. ≺ is a strict weak order.295
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2. For every p ∈ Cω, sequence (sn)n∈N of strategies for X ∈ {a, b}, and

increasing ϕ : N → N, if d(p<ϕ(n)) = X and gX(p<ϕ(n+1), sn+1) (

gX(p<ϕ(n), sn) for all n ∈ N, then v(p) ∈ ∩n∈NgX(p<ϕ(n), sn).

3. For every --extremal interval I and γ ∈ C∗, we have
(
v−1[I] ∩ γCω

)
∈ Γ.

4. The game 〈C,D,W 〉 is determined for all W ∈ Γ, D ⊆ C∗.300

Then the game 〈{a, b}, C,O, d, v, {≺,≺−1}〉 has a subgame perfect equilibrium.

Moreover, for every p as in Condition 2, one of the players controls only finitely

many nodes on p, and after that her opponent plays as prescribed by p in every

SPE.

We now proceed to state existence results for Nash equilibria in multi-player305

games. Theorem 15 gives a very general (and technical) sufficient condition.

Theorem 16 weakens and simplifies this sufficient condition to establish a char-

acterization of NE existence in the original game as well as in some derived

games. In Theorem 15, Conditions 2,3 again constrain the distribution of out-

comes to determined sets. Condition 4 corresponds to Condition 2 in Theorem310

14. Condition 5 states that each player has a strategy to realize their guarantee

– these strategies are then used as the starting point for constructing a Nash

equilibrium, by adding punishment for any deviators to it. Theorem 16 includes

a way to construct such strategies if they are not already given.

Theorem 15. Let 〈A,C,O, d, v, (≺a)a∈A〉 be a game, let Γ ⊆ P(Cω), and315

assume the following.

1. The ≺a are strict weak orders.

2. The game 〈C,D,W 〉 is determined for all W ∈ Γ, D ⊆ C∗.

3. For every a ∈ A and -a-terminal interval I and γ ∈ C∗, we have
(
v−1[I] ∩ γCω

)
∈

Γ.320

4. For every play p ∈ Cω and increasing sequence ϕ : N→ N, if d(p<ϕ(n)) = a

andGa(p<ϕ(n+1)) ( Ga(p<ϕ(n)) for all n ∈ N, then v(p) ∈ ∩n∈NGa(p<ϕ(n)).

5. For all γ ∈ Cω, there exists s such that ga(γ, s) = Ga(γ).

Then the game 〈A,C,O, d, v, (≺a)a∈A〉 has a Nash equilibrium.
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Theorem 16 below is a simpler version of Theorem 15 that does only involve325

primitive notions from the definition of a game. Especially, it does not refer

to the notion of guarantee. Via a necessary and sufficient condition, it shows

how essential the feature of Example 10 is for the existence of Nash equilibrium.

By pruning, we refer to choosing a subtree of the original game tree, and then

working with the game restricted to this subtree. In other words, for each330

history we may prohibit certain actions to the agents.

Theorem 16. Let g be a 〈A,C,O, d, v, (≺a)a∈A〉 be a game where the ≺a are

strict weak orders and v is Borel-measurable. The following are equivalent.

1. For every X ∈ A and (pn)n∈N sequence of plays in Cω converging to some

p, and increasing ϕ : N → N, if for all n ∈ N we have d(p<ϕ(n)) = X,335

p<ϕ(n) = pn<ϕ(n), pϕ(n) 6= pnϕ(n), and v(pn) ≺X v(pn+1), then v(pn) ≺X
v(p) for all n ∈ N.

2. Every finite-branching game derived from the original game by pruning

has an NE.

However, the modification of Example 10 below shows that the conditions of340

Theorem 16 are not necessary for the mere existence of Nash equilibria in one

specific game.
a

2 a

2
3

a

n
n+1

0

3.4. Proofs

Regarding the notion of guarantee, Lemma 2.4. from [4] still holds without345

major changes in the proofs, so we do not display it, but we collect some more

useful facts in Observation 17 below.
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Observation 17. Let 〈A,C,O, d, v, (≺a)a∈A〉, let a ∈ A, assume that ≺a is a

strict weak order, and let γ ∈ C∗.

1. d(γ) 6= a ⇒ Ga(γ) = ∪c∈CGa(γ · c)350

2. d(γ) = a ⇒ Ga(γ) = ∩c∈CGa(γ · c)

3. d(γ) = a ∧ |C| <∞ ⇒ ∃c ∈ C, Ga(γ) = Ga(γ · c)

Proof. For example, for 2. note thatGa(γ) = ∩sga(γ, s) = ∩c∈C∩s(γ)=cga(γ, s) =

∩c∈C ∩s ga(γ · c, s)

= ∩c∈CGa(γ · c).355

This section’s proofs of existence of equilibria rely on each player having

a (minimax-style) optimal strategy if all other players team up against her.

Lemma 18 below provides a sufficient condition for such strategies to exist, i.e.

for the best guarantee to be witnessed.

Lemma 18. Let 〈A,C,O, d, v, (≺a)a∈A〉 be a game where C is finite, let a ∈ A,360

and let us assume the following.

1. ≺a is a strict weak order.

2. For every play p ∈ Cω, increasing ϕ : N → N, and sequence (sn)n∈N of

strategies for Player a, if ga(p<ϕ(n+1), sn+1) ( ga(p<ϕ(n), sn) for all n ∈ N,

then v(p) ∈ ∩n∈Nga(p<ϕ(n), sn).365

Then for all γ ∈ C∗ there exists s ∈ Sa such that ga(γ, s) = Ga(γ).

Proof. W.l.o.g. we only prove that there exists s ∈ Sa such that ga(s) = Ga,

i.e. where the γ from the claim is the empty word. Let s0 : d−1(a) → C be a

strategy for Player a and let us build inductively a sequence (sn)n∈N of strategies

for Player a, as follows, where Case 3. implicitly invokes Observation 17.370

• Let sn+1|C<n := sn|C<n .

• For all γ ∈ Cn\d−1(a), let sn+1|γC∗ := sn|γC∗ .

• For all γ ∈ Cn ∩ d−1(a),

1. if ga(γ, sn) ⊆ Ga then let sn+1|γC∗ := sn|γC∗ ,

15



2. if Ga ( ga(γ, sn) and there exists µ : d−1(a) ∩ γC∗ → C such that375

ga(γ, µ) ⊆ Ga, let sn+1|γC∗ := µ,

3. otherwise4 let sn+1(γ) := c such that Ga(γ · c) = Ga(γ), and let

sn+1|γCC∗ := sn|γCC∗ .

Let s be the limit strategy of the sequence (sn)n∈N and first note that, using

Observation 17, one can prove by induction on γ that Ga(γ) ⊆ Ga for every380

γ ∈ C∗ that is compatible with s. Next, let p ∈ P (s) be a path compatible with

s. If p has a prefix γ that fell into Cases 1. or 2. during the recursive construction

above, then v(p) ∈ Ga, so let us now assume that Case 3. applies at every node

p<n ∈ d−1(a). If such nodes are finitely many, let p<n be the deepest one, so

d(pn+1+k) 6= a for all k ∈ N, and v(p) ∈ ga(pn+1, t) for all strategies t for a, so385

v(p) ∈ Ga(p<n+1) =
⋂
t ga(p<n+1, t). So v(p) ∈ Ga since Ga = Ga(p<n+1) by

Case 3. Let us now assume that such nodes are infinitely many. If Ga(p<n) (

Ga for some p<n ∈ d−1(a), there exists µ : d−1(a) ∩ p<nC∗ → C such that

Ga(p<n) ⊆ ga(p<n, µ) ( Ga since Ga(p<n) =
⋂
t ga(p<n, t) by definition, which

would mean that Case 1. or 2. applies; so Ga(p<n) = Ga for all p<n ∈ d−1(a),390

and subsequently for all n. Also, the best guarantee is never witnessed (through

Case 2.) at any node p<n ∈ d−1(a), and subsequently for all n. If v(p) /∈ Ga,

the previous two remarks allow us to build inductively a sequence (tn)n∈N of

strategies for a such that v(p) /∈ ga(p<0, t0) and ga(p<n+1, tn+1) ( ga(p<n, tn)

for all n ∈ N, which would imply v(p) ∈ ∩n∈Nga(p<n, tn) by assumption of the395

lemma, contradiction.

Whereas Lemma 18 provides us with an optimal strategy for each history, we

ultimately want a single strategy that is optimal everywhere. This is provided

by 19, which as Condition 3 starts with the conclusion in Lemma 18. Note that

Condition 2 in Lemma 19 is weaker than that in Lemma 18, and that finiteness400

of C is used in Lemma 18 only. It is the main reason why Lemmas 18 and 19

4Note that due to the properties of a strict weak order, the sets of the form ga(γ, s) and

Ga(γ) are linearly ordered by inclusion ⊆. Thus, Ga ( ga(γ, sn) holds in this case, too.
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are not merged.

Lemma 19. Let 〈A,C,O, d, v, (≺a)a∈A〉 be a game, let a ∈ A, and let us assume

the following.

1. ≺a is a strict weak order.405

2. For every play p ∈ Cω and increasing ϕ : N → N, if d(p<ϕ(n)) = a and

Ga(p<ϕ(n+1)) ( Ga(p<ϕ(n)) for all n ∈ N, then v(p) ∈ ∩n∈NGa(p<ϕ(n)).

3. For all γ ∈ C∗ there exists s ∈ Sa such that ga(γ, s) = Ga(γ).

Then there exists s such that ga(γ, s) = Ga(γ) for all γ ∈ C∗.

Proof. We proceed similarly as in the proof of Lemma 18. Let s0 be a strategy410

for Player a and let us build inductively a sequence (sn)n∈N of strategies for

Player a. The recursive definition below is different from the one in the proof of

Lemma 18 in three respects: the three occurrences of Ga in Cases 1. and 2. are

replaced with Ga(γ). Case 3. is deleted since it never applies by assumption.

Finally, two inclusions are replaced with equalities.415

• Let sn+1|C<n := sn|C<n

• For all γ ∈ Cn\d−1(a), let sn+1|γC∗ := sn|γC∗ .

• For all γ ∈ Cn ∩ d−1(a),

1. if ga(γ, sn) = Ga(γ) then let sn+1|γC∗ := sn|γC∗ ,

2. if Ga(γ) ( ga(γ, sn), let sn+1|γC∗ := µ where µ : d−1(a) ∩ γC∗ → C420

is such that ga(γ, µ) = Ga(γ).

Let s be the limit strategy of the sequence (sn)n∈N and first note that, using

Observation 17, one can prove by induction on γ that Ga(γ) ⊆ Ga for every

γ ∈ C∗ that is compatible with s. Next, let p ∈ P (s) be a path compatible

with s. Due to the uniformity of the recursive definition, it suffices to show that425

v(p) ∈ Ga to prove the full statement.

If Case 2. applies only finitely many times in the construction of s, the

sequence (sn|{γ∈C∗ | p∈γCω})n∈N is eventually constant, so v(p) ∈ ga(p<n, sn) =
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Ga(p<n) ⊆ Ga for some n. Otherwise, there exists an increasing function ϕ :

N → N with d(p<ϕ(n)) = a and Ga(p<ϕ(n+1)) ( Ga(p<ϕ(n)) for all n ∈ N, so430

v(p) ∈ ∩n∈NGa(p<ϕ(n)) ⊆ Ga(p<ϕ(0)) ⊆ Ga.

Lemma 20. Let 〈{a, b}, C,O, d, v, {≺,≺−1}〉 be a two-player game. Let Γ ⊆

P(Cω) and assume the following.

1. ≺ is a strict weak order.

2. For every play p ∈ Cω and increasing sequence ϕ : N→ N, if d(p<ϕ(n)) = a435

andGa(p<ϕ(n+1)) ( Ga(p<ϕ(n)) for all n ∈ N, then v(p) ∈ ∩n∈NGa(p<ϕ(n)).

3. For all γ ∈ Cω, there exists s such that ga(γ, s) = Ga(γ) (resp. gb(γ, s) =

Gb(γ)).

4. For all non-empty closed E ⊆ Cω, there are --extremal elements in v[E].

5. For every --extremal interval I and γ ∈ C∗, we have
(
v−1[I] ∩ γCω

)
∈ Γ.440

6. The game 〈C,D,W 〉 is determined for all W ∈ Γ, D ⊆ C∗.

Then the game 〈{a, b}, C,O, d, v, {≺,≺−1}〉 has a subgame perfect equilibrium.

Proof. By invoking Lemma 19 once for Player a and once for Player b, let us

build a strategy profile s : C∗ → C, such that gX(γ, sX) = GX(γ) for all

γ ∈ C∗ and X ∈ {a, b}. Let γ ∈ C∗ and let us prove that Ga(γ) ∩ Gb(γ) =445

{min<(Ga(γ))} = {max<(Gb(γ))}. Consider the game 〈C,D,W 〉 (as in Def-

inition 5) where the winning set is defined by W := {α ∈ γCω | v(α) ∈

Ga(γ)\{min<(Ga(γ))}} and where Player a owns exactly the nodes in D :=

(C∗ \ γC∗) ∪ (d−1({a}) ∩ γC∗). By Assumption 5 the set W is in Γ, so by

Assumption 6 the game 〈C,D,W 〉 is determined. By definition of the best450

guarantee, Player a has no winning strategy for this game, so Player b has a

winning strategy, which means that Gb(γ) ⊆ {min<(Ga(γ))} ∪O\Ga(γ). Since

Ga(γ) ∩ Gb(γ) must be non-empty, otherwise the two guarantees are contra-

dictory, Ga(γ) ∩ Gb(γ) = {min<(Ga(γ))}. This means that the subprofile of s

rooted at γ induces the outcome min<(Ga(γ)) (which equals max<(Gb(γ)) by455

symmetry), and it is optimal for both players.

We now have the ingredients to prove our theorems:
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Proof of Theorem 14. By application of Lemma 20. (Note that Condition 2

of Theorem 14 implies both Condition 2 of Lemma 18 and Condition 2 of

Lemma 19.) Condition 3 is proved by Lemma 18. For Condition 4, let E be a460

non-empty closed subset of Cω, and let T be the tree such that [T ] = E. Con-

sider the game where Player a plays alone on T . Since Player a can maximise

her best guarantee by Lemma 18, and since all her guarantees are singletons,

v[E] has a ≺-maximum. Likewise, it has a ≺-minimum, by considering Player

b.465

Proof of Theorem 11. by Lemma 20 where Conditions 2, 3, and 4 hold by finite-

ness of O.

Proof of Theorem 15. Since the proof is similar to that of Theorem 2.9 in [4],

we rephrase and give it a more intuitive flavour. Let σ be a strategy profile

where every player is using a witness to Lemma 19. Let p be the induced play.470

We now turn σ into a Nash equilibrium with p as induced play by use of threats.

More specifically, at each node p<n we let the players other than a := d(p<n)

threaten Player a that if she deviates from p exactly at p<n, they will team up

against her at every subsequent position γ after p<n other than those extending

the prescribed p<n+1.475

We claim that if they team up, they can prevent Player a from getting

better outcome than v(p) by deviating to γ, which will suffice. Let us build

a win/lose game 〈C,D,W 〉, with Player a against her threatening opponents

gathered as a meta-player, and where the winning set for Player a is defined

by W = v−1[I] ∩ γCω, where I := {o ∈ O | v(p) ≺a o}, and D is defined480

by D = d−1({a}) ∪ (C∗ \ γC∗). This game is determined by Assumptions 2

and 3, and Player a loses it, otherwise her winning strategy would guarantee

that v(p) /∈ Ga(p<n) and thus contradict the choice of p. Therefore the threat

of the opponents of Player a is effective.

Proof of Theorem 16. Let us first prove 1.⇒ 2. by invoking Theorem 15. More485

specifically, let T be a finite-branching, infinite subtree of Cω and consider the
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restriction of the original game to T . Conditions 3 and 2 follow from Borel

measurability and [1]. Condition 5 comes from Lemma 18 (actually a straight-

forward extension of Lemma 18 to trees with finite-yet-unbounded branching),

and Condition 4 follows directly from the assumption.490

For 2. ⇒ 1., let X ∈ {a, b} and let (pn)n∈N → p ∈ Cω and increasing

ϕ : N → N such that for all n ∈ N we have d(p<ϕ(n)) = X, p<ϕ(n) = pn<ϕ(n),

pϕ(n) 6= pnϕ(n), and v(pn) ≺X v(pn+1). Let T be the tree made of the prefixes of

p and the pn. Since the game induced by T has an NE and its tree structure is

similar to Example 10, v(pn) ≺X v(p) must hold for all n ∈ N.495

3.5. Further discussion

For further comparison, the preparatory work before [4, Theorem 2.9] con-

siders strict well-orders only; then [4, Theorem 2.9] considers strict well-founded

orders, since linear extensions of these make it possible to invoke the special,

linear case, knowing that any Nash equilibrium for these extensions is still a500

Nash equilibrium for the original preferences. However, let us explain why The-

orem 15 assumes that preferences are strict weak orders, instead of more general

strict partial orders. In the preparatory work before both results, the algorithm

that builds a play step by step makes decisions based on the guarantees that

the subgames offer. If the guarantees of one player were not ordered by a strict505

weak order, the player might eventually regret a previous decision, in the same

way that backward induction on partially ordered preferences may not yield a

Nash equilibrium (see e.g., [25] for a concrete example or page 3 of [26] for a

generic one). So the algorithm has to run on strict weak orders. (In [4, Theorem

2.9] it even runs on strict linear orders.)510

If we wanted to consider strict partial orders and extend them linearly for the

algorithm to work, we would potentially run into two problems: first, there may

not exist any linear extension preserving Condition 4. Second, assumptions 2

and 3 of Theorem 15 make sure that the win/lose games associated with the -a-

terminal intervals are determined, which is a requirement for the proof to work.515

If the preferences were not strict weak orders, we might think of replacing the
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condition on terminal intervals by a condition on the upper-closed sets and then

extend the preferences linearly for the algorithm to work, but in the special case

where the preference of one player were the empty relation, every subset would

be an upper-closed set and its preimage by v would be in the pointclass with520

nice closure property, by assumption. If, in addition, each outcome is mapped

to at most one play, it implies that each subset of Cω is in the pointclass, so

Theorem 15 could be used with the axiom of determinacy only, but not with,

e.g., Borel determinacy. On the contrary, [4, Theorem 2.9, Assumption 3] is not

an issue since there are only countably many outcomes in that setting.525

The results in this section are generally not constructive – but neither is

Nash’s theorem in [27], cf. [28, 29]. The extent of non-constructivity is investi-

gated in [30].

The condition on the payoff functions used in Theorems 15, 16 seems to

merit further investigation. This was that for any sequence (pi)i∈N converging530

to p in Cω, we find that ∀i ∈ N v(pi) ≺ v(pi+1) implies ∀i ∈ N v(pi) ≺ v(p).

This is a weaker condition than continuity of the function where the upper

order topology is used on the codomain, which still seems to be strong enough

to formulate some results. In a sense, it is a weakening of continuity that is

orthogonal to Borel-measurability. As an example, a result by Gregoriades535

(reported in [31]) shows that any function of this type from Baire space to the

countable ordinals has to be bounded.

4. On the existence of Pareto-optimal NE and secure equilibria

4.1. On the existence of Pareto-optimal NE

In this section we investigate very general classes of games that guarantee540

existence of Nash equilibria, and such that there exists an NE that is Pareto-

optimal among all the profiles of the game (not just Pareto-optimal among all

Nash equilibria). In the following, we shall assume that any outcome is realizable

to avoid unnecessary case-distinctions.
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We recall that we call Γ ⊆ P(Cω) a determined pointclass, if the game545

〈C,D,W 〉 is determined for all W ∈ Γ, D ⊆ C∗. Given some preferences

(≺a)a∈A on outcomes O, we say that a function f : Cω → O is Γ-measurable,

if for any a ∈ A and o ∈ O we find that f−1({o′ ∈ O | o′ ≺ o}) ∈ Γ.

Theorem 21. We fix a non-empty set of players A and a non-empty set of

outcomes O. Let Γ ⊆ P(Cω) be a determined pointclass. Then the following550

are equivalent for every family (≺a)a∈A of linear preferences:

1. The inverse of the preferences are well-founded and ∀a, b ∈ A,∀x, y, z ∈

O,¬(z ≺a y ≺a x ∧ x ≺b z ≺b y).

2. Every finite sequential game (built from A, O, (≺a)a∈A) with three leaves

has a Pareto-optimal NE.555

3. Every infinite sequential game (built from A, O, (≺a)a∈A) with a Γ-

measurable outcome function has a Pareto-optimal NE.

Note that the forbidden pattern in Theorem 21 is the pattern used in the

Solan-Vieille counterexample [23] for the existence of subgame-perfect strategies.

It was further investigated in this context in [32]. The same pattern is the560

forbidden one in a result about the existence of positional weak SPE in [33], or

the sufficient and necessary one in a result about dynamics convergence in finite

games in [34].

Lemma 22. Let Γ be a determined pointclass. Then every infinite sequential

two-player game with a Γ-measurable outcome function, outcomes {y, x1, . . . , xn}565

and preferences y ≺a x1 ≺a . . . ≺a xn and y ≺b xn ≺b . . . ≺b x1, has a Pareto-

optimal NE.

Proof. By assumption that every outcome is realizable, there is some path p

through the game yielding a payoff that is not y. For each vertex along this path,

by determinacy either the opponent can enforce the outcome y, or the controller570

can enforce some upper interval. As long as the opponent can enforce y, he can

force the controller to play along the chosen path by threaten punishment by

y for deviation. If we ever reach a vertex where the controller (w.l.o.g. a) can
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enforce {x1, . . . , xn}, there will be some minimal upper set {xi, . . . , xn} (from

her perspective) that she can enforce. By determinacy, again, the opponent can575

enforce {y, x1, . . . , xi}. We then let both players play their enforcing strategy

from this node onwards.

The constructed partial strategies can be extended in an arbitrary way to

yield a Nash equilibrium with another outcome than y, and these are all Pareto-

optimal.580

Proof of Theorem 21.

3.⇒ 2. Clear.

2.⇒ 1. By contraposition, let us assume that z ≺a y ≺a x and x ≺b z ≺b y,

and note that the game below has only one NE yielding outcome z.

b

a

x y

z

585

1.⇒ 3. By [32, Lemma 4] the second assumption in 1. implies that there exists

a partition {Oi}i∈I of O and a linear order < over I such that i < j implies

x <a y for all a ∈ A and x ∈ Oi and y ∈ Oj , and such that <b|Oi
=<a|Oi

or <b|Oi
=<a|−1Oi

for all a, b ∈ A. By the well-foundedness assumption, I

has a <-maximum m.590

Fix some a ∈ A, let {x1, . . . , xn} := Om (again, by well-foundedness, each

slice is finite) such that xn <a · · · <a x1, let A0 := {b ∈ A| <b |Om
=<a

|Om
}, let A1 := A\A0, and let y /∈ Om. Let us derive a new game on the

same tree: each vertex of the original game owned by b ∈ A is now owned

by A0 if b ∈ A0 and by A1 otherwise. Each play of the original game that595

induces an outcome outside of Om induces y in the derived game. The new

preferences are y <A0
xn <A0

· · · <A0
x1 and y <A1

x1 <A1
· · · <A1

xn.

By Lemma 22, the derived game has a Pareto-optimal NE (which cannot

yield y, as this is the only non-Pareto-optimal outcome). It is also a

Pareto-optimal NE for the original game.600
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The situation for non-linear orders is less clear. Certainly, whenever some

linearization avoids the forbidden pattern from Theorem 21 (1.), there will be

a Pareto-optimal NE (as being Pareto-optimal w.r.t. the linearization implies

being Pareto-optimal w.r.t. the original preferences). However, we do not know605

whether partial preferences such that any linearization has the forbidden pattern

is enough to enable absence of Pareto-optimal NE. Two examples that could

potentially play a similar role to the generic counterexample in Theorem 21

(2.→ 1.) follow:

Example 23. We consider a finite two-player game with outcomes {x, y, z, α, β, γ},610

preferences γ ≺a y ≺a x and z ≺a β ≺a α and x ≺b z ≺b y and α ≺b γ ≺b β

and game tree:

b

a

x y α β

z γ

The preferences avoid the forbidden pattern from Theorem 21 (1.); but the

pattern is present in any linear extension. In the Nash equilibria of the game,615

player b is choosing either z or γ; and player a is choosing x or α. In particular,

the potential equilibrium outcomes are z and γ – precisely those outcomes that

are not Pareto-optimal (because every player prefers y to z and β to γ).

Example 24. We consider a finite two-player game with outcomes {x, y, z, t},

preferences t, z ≺a x, y and x ≺b z ≺b y ≺b t and game tree:620

b

a

b

t y

x

z

The preferences are strict weak orders and avoid the forbidden pattern from

Theorem 21 (1.); but the pattern is present in any linear extension. The only
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equilibrium outcome is z, despite everyone preferring y (5).

A related notion to Pareto-optimal Nash equilibria are the strong Nash equi-625

libria introduced by Aumann [35]. These are the strategy profile where no

coalition of players can deviate in a manner than benefits all of them. A charac-

terization of the games admitting strong Nash equilibria has been elusive so far,

though some recent progress was made by Nessah and Tian [36] in the setting

of games in normal form.630

In fact, Theorem 21 remains true if Pareto-optimal Nash equilibrium is re-

placed by strong Nash equilibrium6: The counterexample showing that the con-

dition on the preferences is necessary also fails to be strong Nash equilibrium,

since the coalition of both players can profitably deviate from z to y. Con-

versely, if the condition on the preferences are satisfied, then the outcomes can635

be sorted into layers in a way that all players agree on the preferences between

layers, and all players either have one particular linear order of the outcomes

inside each layer or its opposite. We can safely merge all players that agree on

their preferences inside the best possible layer into a single player. A Pareto-

optimal Nash equilibrium in the resulting game is a strong Nash equilibrium in640

the original game.

4.2. On the existence of secure equilibria

This subsection shows that the construction of the malevolent preferences

preserves several order-theoretic properties of the preferences. These preserva-

tion results allow us to invoke existence theorems for NE for the malevolent645

preferences (Definition 9) and thus to prove existence of secure equilibria in

several general settings. Most of the previous work on the existence of secure

equilibria was focused on very specific classes of games (e.g. [16, 37, 14]), with

5It may be an interesting remark that in this game every player would benefit, if b could

not choose t at his second move.
6We are grateful to a referee of a previous version for raising the question we are answering

here.
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the exception of [38]. We show that the second main theorem of [38] can be ob-

tained as a corollary with our methods, and provide some more general existence650

results (Corollaries 29, 31, 33).

Consider some preferences (≺a)a∈A, and let (≺′a)a∈A be the induced malev-

olent preferences used to define secure equilibria.

Lemma 25. If the (≺a)a∈A are strict weak orders, the (≺′a)a∈A are irreflexive

and transitive.655

Proof. Irreflexivity is easy to check since ≺a is a strict weak order for all a ∈ A,

so let us focus on transitivity. Let a ∈ A and x, y, z ∈ O be such that x ≺′a
y ≺′a z. If x ≺a z then x ≺′a z and we are done, so let us assume that z -a x.

Clearly, x ≺′a y ≺′a z implies x -a y -a z, so x ∼a y ∼a z. Since for all b ∈ A

we have y -b x and z -b y, we findz -b x. Moreover there exists c ∈ A such660

that y ≺c x, so z ≺c x. Therefore x ≺′a z.

However, the malevolent construction does not preserve strict weak orders,

as is shown by the following example where the first components are for player

a: (0, 2, 0) ≺a (0, 1, 0), whereas (0, 0, 1) is comparable with neither (0, 1, 0) nor

(0, 2, 0) as far as player a is concerned. Fortunately, there are results of existence665

of NE that do not assume strict weak order preferences, namely:

Theorem 26 ([4, Theorem 3.2.]). Let A be a non-empty set of players, C a

set of actions with at least 2 elements, let O be a non-empty countable set of

outcomes. For each a ∈ A, let ≺a be a binary relation on O. Then the following

are equivalent:670

1. All ≺−1a are well-founded.

2. For any assignment of players d : C∗ → A and any (quasi)-Borel measur-

able outcome function v : Cω → O the game 〈A,C, d,O, v, (≺a)a∈A〉 has

a Nash equilibrium.

We can immediately rediscover [38, Theorem 2]:675

26



Corollary 27. Let g be a 〈A,C,O, d, v, (≺a)a∈A〉 be a game where the ≺a are

strict weak orders, O is finite and v is Borel-measurable. Then g has a secure

equilibrium.

Proof. Let us derive g′ from g by using the malevolent preferences ≺′a. They are

strict partial orders by Lemma 25, so by Theorem 26 g′ has a Nash equilibrium.680

What makes it difficult to generalize Corollary 27 to infinite-range outcome

functions is that even if all the ≺a have well-founded inverses, it may no longer

be the case for the malevolent ≺′a. Indeed, consider the payoff pairs (0, 1
n+1 )

for all n ∈ N. We circumvent this issue in three different ways below. First685

we use a well-known special case of well-foundedness: a well-quasi order is a

well-founded order with no infinite anti-chains. (Where an anti-chain is a set of

elements that are pairwise non-comparable.)

Lemma 28. Let (≺a)a∈A be strict weak orders. If their inverses are well-quasi

orders, so are the inverses of the ≺′a.690

Proof. Let us first agree to write x ∼′a y to denote ¬(x ≺′a y) ∧ ¬(y ≺′a x) even

though ≺′a may not be a strict weak order. For all x, y, if x ∼′a y then x ∼a y,

by definition of ≺′a. So the ≺′a have no infinite anti-chains. Since every linear

extension of a well-quasi order is a well-order, the ≺′a have no infinite ascending

chains.695

Corollary 29 below does not exploit Lemma 28 fully: It only uses the well-

foundedness part of its conclusion.

Corollary 29. Let (≺a)a∈A be strict weak orders whose inverses are well-quasi

orders. All games with the (≺a)a∈A and Borel-measurable outcome functions

have secure equilibria.700

Proof. By Lemma 28 and Theorem 26.

Lemma 30 below weakens the assumption by allowing infinite anti-chains.

27



Lemma 30. Let (≺a)a∈A be strict weak orders such that no antichain of some

≺a is an infinite descending chain of ∪b∈A ≺b. If the ≺a have no infinite as-

cending chains, neither have the ≺′a.705

Proof. Towards a contradiction let x0 ≺′a x1 ≺′a x2 . . . be an infinite chain. By

well-foundedness of ≺−1a , there exists k such that xn ∼a xk for all n ≥ k. So for

all n ≥ k we have xn+1 ≺bn xn for some bn, contradiction.

Corollary 31 below invokes Lemma 30. Its assumptions refer to the pref-

erences collectively (as one big relation), which may not sound as usual as a710

conjunction of individual conditions. However, note that the malevolent prefer-

ences already combine the original preferences, by definition.

Corollary 31. Let (≺a)a∈A be strict weak orders such that no antichain of

some ≺a is an infinite descending chain of ∪b∈A ≺b. If the ≺a have no infinite

ascending chains, games with the ≺a and Borel measurable outcome functions715

have secure equilibria.

Proof. By Lemma 30 and Theorem 26.

If one is willing to work with a finite number of players, one can further

weaken the assumption on the descending chains (compared to Lemma 30),

into a conjunction of individual conditions on the preferences. We thus obtain720

a better preservation result in Lemma 32 below.

Lemma 32. Let A be finite and let (≺a)a∈A be strict weak orders. Let us

assume that

1. no ≺a has infinite ascending chains, and

2. no antichain of some ≺a is an infinite descending chain of some ≺b.725

Then the ≺′a satisfy the same two assumptions.

Proof. Let us prove the two properties in the same order.

1. Towards a contradiction let x0 ≺′a x1 ≺′a x2 . . . be an infinite chain. By

well-foundedness of ≺−1a , there exists k such that xn ∼a xk for all n ≥ k.
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So for all n ≥ k we have xn+1 -b xk for all b and xn+1 ≺bn xn for some730

bn. By finiteness of A, there exists b ∈ A and a subsequence bϕ(n) such

that bϕ(n) = b for all n. So xϕ(n+1) ≺b xϕ(n) for all n, contradiction.

2. Towards a contradiction let x0 �′b x1 �′b x2 . . . be such that xi ∼′a xj for

all i, j. Therefore xi ∼a xj for all i, j, and by the second property only

finitely many of the xn+1 ≺′b xn come from xn+1 ≺b xn. So, for all n there735

exists cn such that xn+1 ≺cn xn. By finiteness of A, this contradicts the

second property.

It would not be possible to just drop the assumption that the players are

finitely many from Lemma 32, as is shown by the following example: Let (un)n∈N740

be a family of infinite binary sequences such that the first n+ 1 members of un

are 0’s, and the rest are 1’s. For instance, u2 = 000111111 . . .Take each un as

a payoff tuple for infinitely many players. All chains the corresponding order

have at most two elements, so there are definitely no infinite chains. However,

un ≺′1 un+1 for all n, where ≺1 is the preference of the first player, who always745

receives payoff 0.

Similarly to Corollary 29, the preservation Lemma 32 makes it easy to prove

another result of existence of secure equilibria.

Corollary 33. Let A be finite and (≺a)a∈A be strict weak orders such that

no ≺a has infinite ascending chains, and no anti-chain of some ≺a is an infinite750

descending chain of some ≺b. Then every game with preferences (≺a)a∈A and

with Borel-measurable outcome function has a secure equilibrium.

Proof. By Lemma 32 the malevolent preferences have no infinite ascending

chains, so we conclude by Theorem 26.

We would like to generalize further the existence of secure equilibria even755

in the presence of infinite ascending chains in the preferences, as in and by

invoking Theorem 16. However, the malevolent construction does not preserve
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strict weak orders, as is shown in the beginning of the section, so we would need

to extend our NE existence result beforehand.

5. Corollaries on real-valued payoff functions760

We shall briefly discuss corollaries about games with real-valued payoff func-

tions, which we obtain from our main theorems. In some cases, this requires

to make statements about ε-Nash equilibria or ε-subgame perfect equilibria in-

stead of Nash equilibria or subgame-perfect equilibria to satisfy the criteria of

the theorems.765

Theorem 15 has a corollary pertaining to sequential games with real-valued

payoffs. Recall that a payoff-function P : {0, 1}N → R is called upper semi-

continuous, if whenever (pn)n∈N is a converging sequence of plays, then P (limi∈N p
i) ≥

lim supi∈N P (pi). In particular, Condition 4 in Theorem 15 is always satisfied

for the preferences obtained from upper semi-continuous payoff functions.770

Corollary 34. Sequential games with countably many players, finitely many

choices and upper-semicontinuous payoff functions have Nash equilibria.

A rather simple argument allows us to transfer existence theorems for equilib-

ria in games with Borel-measurable valuations to Borel-measurable real-valued

payoff functions with upper bound, if one is willing to replace the original no-775

tions by their ε-counterparts. If v : S → (−∞, 0]ω is the Borel-measurable

payoff function (with a component for each of the countably many players),

then for every positive real ε we define vε : S → Nω by v−1ε ((ik)k∈N) :=

v−1 (]− (i1 + 1)ε, i1ε]×]− (i2 + 1)ε, i2ε]× . . .). Then any vε is again a Borel

measurable valuation (as a product of countably many intervals is Π0
2). Further-780

more, we define the preferences ≺n for the n-th player by (ik)k∈N ≺n (jk)k∈N

iff in < jn. Now every Nash equilibrium of the resulting game is a ε-Nash

equilibrium of the original game, and every subgame perfect equilibrium of the

resulting game is a ε-subgame perfect equilibrium of the original game.
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Corollary 35. 7 Sequential games with countably many players and Borel-785

measurable upper-bounded payoff functions admit ε-Nash equilibria.

Proof. By combining the statement of Theorem 16 with the argument above.

We can invoke Theorem 16 as the preferences ≺n do not have any infinite

ascending chains at all.

From Theorem 11 we obtain the following:790

Corollary 36. An antagonistic game with a Borel-measurable bounded payoff

function has an ε-subgame perfect equilibrium.

In a game with payoff functions (pa)a∈A, let us call an outcome v ε-Pareto

optimal, if there is no realizable outcome v′ and player a0 such that pa0(v′) ≥

pa0(v)+ε and for any a, pa(v′) ≥ pa(v). Then from Theorem 21 we can conclude:795

Corollary 37. Sequential games with countably many players and Borel-measurable

upper-bounded payoff functions (pa)a∈A such that there are no two players

a and b and three outcomes x, y, z such that pa(x) > pa(y) > pa(z) and

pb(y) > pb(z) > pb(x) admit ε-Pareto optimal ε-Nash equilibria.

Related work concerning games with finitely many players includes [18,800

Corollary 4.2] showing that games with continuous payoff functions have sub-

game perfect equilibria, [8, Theorem 2.1] showing that upper-semicontinuous

payoff functions yield ε-subgame perfect equilibria8, [7, Theorem 2.3]9 showing

that also lower-semicontinuous payoff functions yield ε-subgame perfect equilib-

ria.805

7In his survey [39], Mertens sketches an observation by himself and Neyman that one

may use Borel determinacy to directly obtain the special case of this result for finitely many

players and bounded payoffs.
8In [3] we had raised the question whether this result generalizes to countably many players.

A positive answer was since given by Flesch and Predtetchinski [40].
9As shown in [7, Subsection 4.3], there are games with countably many players and lower-

semicontinuous payoff functions without ε-subgame perfect equilibria.
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For a game with ∆0
2-measurable payoff functions avoiding the preference

pattern from the Solan-Vieille counterexample [23], it is shown in [32, Corollary

2] that the game has a Pareto-optimal subgame perfect equilibrium.
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