
 

n-point QCD two-loop amplitude

David C. Dunbar, Warren B. Perkins , and Joseph M.W. Strong
College of Science, Swansea University, Swansea, SA2 8PP, United Kingdom

(Received 14 February 2020; accepted 16 March 2020; published 2 April 2020)

We present an explicit expression for a particular n-gluon two-loop scattering partial amplitude.
Specifically we present an analytic form for the single-trace Nc-independent color partial amplitude for the
case where all external gluons have positive helicity.
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I. INTRODUCTION

Computing scattering amplitudes is a key technology in
producing theoretical predictions to test at colliders and
other experiments. With increasing experimental data there
is an insatiable demand for more and more accurate
theoretical predictions [1,2], particularly for gauge theory
amplitudes. Amplitudes are also of more formal interest in
that they exhibit the full symmetries of the theory.
Unfortunately, these are not easy to generate although
great progress has been made in the last few years.
In a Yang-Mills gauge theory an n-gluon amplitude may

be expanded in the gauge coupling constant,

An ¼ gn−2
X
l≥0

alAðlÞ
n ð1:1Þ

where a ¼ g2e−γEϵ=ð4πÞ2−ϵ. In SUðNcÞ and UðNcÞ gauge
theories a loop amplitude can be further expanded in terms
of color structures, Cλ,

AðlÞ
n ¼

X
λ

AðlÞ
n∶λC

λ; ð1:2Þ

separating the color and kinematics of the amplitude. The
color structures Cλ may be organized in terms of powers
of Nc.
There has been much progress in computing leading

(tree, l ¼ 0) and “next-to-leading-order,” (one loop, l ¼ 1)
amplitudes. For “next-to-next-to-leading order” progress
has been considerable in theories with highly extended
supersymmetry, both at the integrated [3] and integrand
level [4]. However for pure gauge theory progress has been
restricted to amplitudes with a small number of external

legs. Specifically full results are only available analytically
for four gluons [5,6], and to all orders in dimensional
regularization [7]. For five external gluons progress has
focused upon dividing the full amplitude into its different
color and helicity partial amplitudes. The first amplitude to
be computed at five points was the leading in color part
of the amplitude with all positive-helicity external gluons
(the all-plus amplitude) which was computed using
d-dimensional unitarity methods [8,9] and was sub-
sequently presented in a very elegant and compact form
[10]. In Ref. [11], it was shown how four-dimensional
unitarity techniques could be used to regenerate the five-
point leading in color amplitude. The leading in color five-
point amplitudes have been computed for the remaining
helicities [12,13]. Full color amplitudes are significantly
more complicated requiring a larger class of master
integrals incorporating nonplanar integrals [14,15]. In
Ref. [16] the first full color five-point amplitude was
presented in QCD for the case of all-plus helicities.
Beyond five points, only the leading in color all-plus
amplitudes for six and seven points are known [17,18].
In this article, we present a conjecture for a very specific

color partial two-loop amplitude which is valid for an
arbitrary number of legs. Again, it will be the case where all
external gluons have positive helicity, this being the most
symmetric combination. The specific color structure is in
many ways the most subleading term where there are no
factors of Nc and a single trace of the color matrices. From
a very different viewpoint, this partial amplitude arises in
open string theory from the nonplanar two-loop orientable
surface. Although it is very specific (and probably the least
important phenomenologically) this hopefully will provide
a useful multileg two-loop expression from which to study
the structure and properties of amplitudes.

II. COLOR STRUCTURES OF AMPLITUDES

For completeness we review some aspects of tree and
loop amplitudes which wewill refer to later. An n-point tree
amplitude can be expanded in a color trace basis as

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 076001 (2020)

2470-0010=2020=101(7)=076001(10) 076001-1 Published by the American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/305109543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-4434-8178
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.076001&domain=pdf&date_stamp=2020-04-02
https://doi.org/10.1103/PhysRevD.101.076001
https://doi.org/10.1103/PhysRevD.101.076001
https://doi.org/10.1103/PhysRevD.101.076001
https://doi.org/10.1103/PhysRevD.101.076001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Að0Þ
n ð1;2;3;…;nÞ¼

X
Sn=Zn

Tr½Ta1 � ��Tan �Að0Þ
n ða1;a2;…;anÞ:

ð2:1Þ

This separates the color and kinematic structures. The

partial amplitudes Að0Þ
n ða1; a2;…; anÞ are cyclically sym-

metric but not fully crossing symmetric; they are however
fully gauge invariant. The sum over permutations is over
the ðn − 1Þ! permutations of ð1; 2;…; nÞ up to this cyclic
symmetry (this is not the only expansion; others exist [19]
which may be more efficient for some purposes). This color
decomposition is valid for both UðNcÞ and SUðNcÞ gauge
theories. If any of the external particles in the UðNcÞ case
are Uð1Þ particles then the amplitude must vanish. This
imposes decoupling identities among the partial amplitudes
[20]. For example setting leg 1 to be Uð1Þ and extracting
the coefficient of Tr½T2T3 � � �Tn� implies that

Að0Þ
n ð1; 2; 3;…; nÞ þ Að0Þ

n ð2; 1; 3;…; nÞ
þ � � �Að0Þ

n ð2;…; 1; nÞ ¼ 0: ð2:2Þ

The one-loop n-point amplitude can be expanded as [20]

Að1Þ
n ð1; 2; 3;…; nÞ
¼

X
Sn=Zn

NcTr½Ta1 � � �Tan �Að1Þ
n∶1ða1; a2;…; anÞ

þ
X½n=2�þ1

r¼2

X
Sn=ðZr−1×Znþ1−rÞ

Tr½Ta1 � � �Tar−1 �

× Tr½Tbr � � �Tbn �Að1Þ
n∶rða1;…; ar−1; br;…; bnÞ: ð2:3Þ

The Að1Þ
n∶2 are absent (or zero) in the SUðNcÞ case. For n

even and r − 1 ¼ n=2 there is an extra Z2 in the summation

to ensure each color structure only appears once. The

partial amplitudes Að1Þ
n∶rða1;…; ar−1; br;…; bnÞ are cycli-

cally symmetric in the sets fa1;…; ar−1g and fbr;…; bng
and obey a “flip” symmetry,

Að1Þ
n∶rð1; 2;…; ðr − 1Þ; r;…; nÞ
¼ ð−1ÞnAð1Þ

n∶rðr − 1;…; 2; 1; n;…; rÞ: ð2:4Þ

Decoupling identities again impose relationships amongst
the partial amplitudes. For example setting leg 1 to be Uð1Þ
and extracting the coefficient of Tr½T2T3 � � �Tn� implies

Að1Þ
n∶2ð1; 2; 3;…; nÞ þ Að1Þ

n∶1ð1; 2; 3;…; nÞ
þ Að1Þ

n∶1ð2; 1; 3;…; nÞ þ � � �Að1Þ
n∶1ð2;…; 1; nÞ ¼ 0 ð2:5Þ

and consequently Að1Þ
n∶2 can be expressed as a sum of (n − 1)

of the Að1Þ
n∶1. By repeated application of the decoupling

identities all the Að1Þ
n∶r can be expressed as sums over the

Að1Þ
n∶1 [20],

Að1Þ
n∶rð1; 2;…; r − 1; r; rþ 1;…; nÞ
¼ ð−1Þr−1

X
σ∈OPfᾱgfβg

Að1Þ
n∶1ðσÞ ð2:6Þ

where fᾱg≡ fr; r − 1;…; 1g and fβg≡ fr; rþ 1;…;
n − 1; ng. The set OPfS1gfS2g is the set of all mergers
of S1 and S2 which preserves the order of S1 and S2 within
the merged list. Consequently, at one loop only the leading
order in color term need be computed. Unfortunately this
feature does not persist beyond one loop.
A general two-loop amplitude may be expanded in a

color trace basis as

Að2Þ
n ð1; 2;…; nÞ ¼ N2

c

X
Sn=Zn

TrðTa1Ta2 � � �TanÞAð2Þ
n∶1ða1; a2;…; anÞ

þ Nc

X½n=2�þ1

r¼2

X
Sn=ðZr−1×Znþ1−rÞ

TrðTa1Ta2 � � �Tar−1ÞTrðTbr � � �TbnÞAð2Þ
n∶rða1; a2;…; ar−1; br;…; bnÞ

þ
X½n=3�
s¼1

X½ðn−sÞ=2�

t¼s

X
Sn=ðZs×Zt×Zn−s−tÞ

TrðTa1 � � �TasÞTrðTbsþ1 � � �TbsþtÞTrðTcsþtþ1 � � �TcnÞ

× Að2Þ
n∶s;tða1;…; as; bsþ1;…; bsþt; csþtþ1;…; cnÞ þ

X
Sn=Zn

TrðTa1Ta2 � � �TanÞAð2Þ
n∶1Bða1; a2;…; anÞ:

ð2:7Þ

Again, for n even and r − 1 ¼ n=2 there is an extra Z2 in the summation to ensure each color structure only appears once.
In the s, t summations there is an extra Z2 when exactly two of s, t and n − s − t are equal and an extra S3 when all three
are equal.
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The focus of this article is the Að2Þ
n∶1B term. Decoupling

identities do not relate the Að2Þ
n∶1B to the other terms but

do impose an identity analogous to that for the tree
amplitude (2.2),

Að2Þ
n∶1Bð1; 2; 3;…; nÞ þ Að2Þ

n∶1Bð2; 1; 3;…; nÞ
þ � � �Að2Þ

n∶1Bð2;…; 1; nÞ ¼ 0: ð2:8Þ

In itself this does not specify Að2Þ
n∶1B completely. There are

further relations among the Að2Þ
n∶α beyond the decoupling

identities [21,22] which may be obtained by recursive

methods. These relate Að2Þ
n∶α to other partial amplitudes and

at five points allow Að2Þ
5∶1B to be expressed in terms of the

Að2Þ
5∶1 and Að2Þ

5∶3. However, beyond five points only Að2Þ
6∶1 and

Að2Þ
7∶1 are currently known.

III. A STRING THEORY INTERLUDE

The partial amplitude Að2Þ
n∶1B has an interesting source in

open string theory. String theory contains massless gauge
bosons as part of its spectrum of states and much can be
gleaned from the string theory organization of the scatter-
ing amplitudes. An open string has end points with the
quantum numbers of quarks and antiquarks (Chan-Paton
factors). The state thus lies in the adjoint ofUðNcÞ. A string
amplitude is obtained by summing over all world sheets
linking the external states. A simple example is shown
in Fig. 1.
The surface linking the external states can be confor-

mally mapped to the surface shown with vertex operators
attached to the boundary. Each vertex operator contains an
adjoint color matrix Ta. Tracing over the color indices
naturally gives an expansion of the amplitude in terms of
color traces

A ¼
X

ðcolortracesÞ × AðαÞ ð3:1Þ

where α is the string tension. The string theory amplitude
contains contributions from an infinite number of states;
however in the infinite-string-tension limit the amplitude

reduces to that of field theory. The color structure survives
this limit.
A typical surface contributing at two loops is shown in

Fig. 2. This has three boundaries to which gauge boson
vertex operators may be attached. If no gauge bosons are
attached a factor of Nc is generated by summing over the
colors the boundary may have. Populating this surface by
vertex operators generates the expansion of Eq. (2.7) except

for the single-trace term Að2Þ
n∶1B. This arises from a different

category of surface. If we consider the surface shown in
Fig. 3 with the edges identified as shown then the surface is
a two-loop surface which is nonplanar but nonetheless is
oriented and has a single boundary. Attaching gauge
bosons to the edge gives the single-trace term and is, in

string theory, the source of Að2Þ
n∶1B.

IV. THE ALL-PLUS AMPLITUDES

We are now in a position to look at the specific amplitude
where all gluons have the same helicity. This particular
amplitude vanishes at tree level:

Að0Þ
n ð1þ; 2þ;…; nþÞ ¼ 0: ð4:1Þ

Consequently, the one-loop amplitude is rational (to order
ε0 in the dimensional regularisation parameter) and the
two-loop amplitudes will have a simpler singular structure
in ε.

FIG. 2. A typical surface with three boundaries. Vertex oper-
ators can be attached to any of the boundaries.

FIG. 1. In open string theory, the surface linking external open
string states may be mapped to a disc where the external states are
vertex operators lying on the boundary.

FIG. 3. This surface with edges A − B and C −D identified is
an oriented surface with a single edge. In string theory attaching
vector bosons to the edge of this surface generates the sub-
subleading single-trace color term.
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The leading in color one-loop partial amplitude has an all-n expression [23]1

Að1Þ
n∶1ð1þ; 2þ;…; nþÞ ¼ −

i
3

1

h1 2ih2 3i � � � hn 1i
X

1≤i<j<k<l≤n
tr−½ijkl� þOðεÞ: ð4:2Þ

This expression is order ε0 but all-ε expressions exist for the first few amplitudes in this series [24]. In this expression,

tr−½ijkl�≡ tr

�ð1 − γ5Þ
2

=ki=kj=kk=kl

�
¼ 1

2
trð=ki=kj=kk=klÞ −

1

2
ϵði; j; k; lÞ ¼ hi ji½j k�hk li½l i�: ð4:3Þ

and ϵði; j; k; lÞ ¼ trþ½ijkl� − tr−½ijkl�. This amplitude has the same denominator as the Parke-Taylor amplitude. This
combination will reappear in many places so we define

CPTða1; a2; a3;…; anÞ≡ 1

ha1 a2iha2 a3i � � � han a1i
≡ 1

Cyða1; a2; a3;…; anÞ
: ð4:4Þ

The numerator of Eq. (4.2) can be split into trace terms and ϵ pieces (originally called En and On in Ref. [23]). Specifically
for the five-point amplitude,

Að1Þ
5∶1ð1þ; 2þ; 3þ; 4þ; 5þÞ ¼ −

i
3

s12s23 þ s23s34 þ s34s45 þ s45s51 þ s51s12 þ ϵð1; 2; 3; 4Þ
h1 2ih2 3ih3 4ih4 5ih5 1i þOðεÞ: ð4:5Þ

The ϵ part of Eq. (4.2) will reappear later in a two-loop amplitude. The expression (4.2) was first conjectured by studying
collinear limits starting with n ¼ 5 and later proven correct using off-shell recursion [25].
In Ref. [26], we presented compact expressions for the subleading terms

Að1Þ
n∶2ð1þ; 2þ; 3þ;…; nþÞ ¼ −i

1

h2 3ih3 4i � � � hn 2i
X

2≤i<j≤n
½1 i�hi ji½j 1�

¼ −i
P

2≤i<j≤n½1 i�hi ji½j 1�
Cyð2; 3;…; nÞ ð4:6Þ

and for r ≥ 3

Að1Þ
n∶rð1þ; 2þ;…; r − 1þ; rþ;…; nþÞ ¼ −2i

ðK2
1���r−1Þ2

ðh1 2ih2 3i � � � hðr − 1Þ1iÞðhrðrþ 1Þi � � � hn riÞ

¼ −2i
ðK2

1���r−1Þ2
Cyð1; 2;…; r − 1ÞCyðr; rþ 1;…; nÞ : ð4:7Þ

These expressions are remarkably simple given the number of terms arising in the naive application of Eq. (2.6).
At two loops, the all-plus amplitude has been computed for four and five points, its relative simplicity making it the first

target in computations. At two loops the all-plus amplitude contains “infrared” (IR) and “ultraviolet” (UV) infinities
together with finite polylogarithmic and rational terms. The IR singular structure of a color partial amplitude is determined
by general theorems [27]. Consequently we can split the amplitude into a term containing both the IR and UV divergences,

Uð2Þ
n∶λ, and finite terms Fð2Þ

n∶λ,

Að2Þ
n∶λ ¼ Uð2Þ

n∶λ þ Fð2Þ
n∶λ þOðεÞ ð4:8Þ

(Fð2Þ
n∶λ is the “infrared finite hard” function of Ref. [16]).

1Here a null momentum is represented as a pair of two component spinors pμ ¼ σμα _αλ
αλ̄ _α. We are using a spinor helicity formalism

with the usual spinor products habi ¼ ϵαβλ
α
aλ

β
b and ½ab� ¼ −ϵ _α _βλ̄

_α
aλ̄

_β
b. Also sab ¼ ðka þ kbÞ2 ¼ habi½ba� ¼ hajbja� and

Kab���r ¼ ka þ kb � � � þ kr.
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As the all-plus tree amplitude vanishes, Uð2Þ
n∶λ simplifies

considerably and is only 1=ε2. In general an amplitude has
UV divergences, collinear IR divergences and soft IR
divergences. As the tree amplitude vanishes, both the
UV divergences and collinear IR divergences are propor-
tional to n and cancel leaving only the soft IR singular
terms [28].
The leading IR singularity for the n-point two-loop

amplitude is [29]

−
s−εab
ε2

faijfbik ×Að1Þ
n ðj; k;…; nÞ ð4:9Þ

whereAð1Þ
n is the full-color one-loop amplitude. We wish to

disentangle this simple equation into the color-ordered
partial amplitudes. This was done for all two-loop color

amplitudes in Ref. [26]: we reproduce the result for Að2Þ
n∶1B

here. If we define

Ii;j ≡ −
s−εij
ε2

ð4:10Þ

and

Ik½S1; S2� ¼ Ik½fa1; a2 � � � arg; fb1; b2; � � � bsg�
≡ ðIa1;bs þ Ib1;ar − Ia1;b1 − Iar;bsÞ ð4:11Þ

then

Uð2Þ
n∶1BðSÞ ¼

X
QðSÞ

Að1Þ
n∶rþ1ðS01; S02Þ × Ik½S01; S02�; ð4:12Þ

where QðSÞ is the set of all distinct pairs of lists satisfying
S01 ⊕ S02 ∈ CðSÞwhere the size of S0i is greater than one and
the set CðSÞ is the set of cyclic permutations of S. For
example

Qðf1; 2; 3; 4; 5gÞ ¼
�
ðf1; 2g; f3; 4; 5gÞ; ðf2; 3g; f4; 5; 1gÞ; ðf3; 4g; f5; 1; 2gÞ; ðf4; 5g; f1; 2; 3gÞ; ðf5; 1g; f2; 3; 4gÞ

�
:

ð4:13Þ

In Eq. (4.12), the Að1Þ
n∶rþ1 are the all-ε forms of the one-loop

amplitude which can be specified by Eq. (2.6). These are
only available in functional form for n ≤ 6.

Given the general expressions for Uð2Þ
n∶λ, the challenge is

to compute the finite parts of the amplitude: Fð2Þ
n∶λ. This

finite remainder function Fð2Þ
n∶λ can be further split into

polylogarithmic and rational pieces,

Fð2Þ
n∶λ ¼ Pð2Þ

n∶λ þ Rð2Þ
n∶λ: ð4:14Þ

We calculate the polylogarithmic piece using four-
dimensional unitarity and the rational term using the
factorization properties of the amplitude which we will
discuss in the following section.

V. FACTORIZATION PROPERTIES OF Að2Þ
n∶1B

In this section we make some comments regarding the
singularity structure of the sub-subleading amplitudes:

Að2Þ
n∶1B and Að2Þ

n∶s;t. In general amplitudes have
(a) multiparticle poles,
(b) double complex poles,
(c) complex poles, and
(d) collinear poles.
We will demonstrate that An∶1B is lacking the first two

and that only the last is determined by general theorems.
Fortunately this will be sufficient to generate a form for the
rational functions.

As the all-plus amplitude vanishes at tree level, multi-
particle poles can only arise if the amplitude factorizes into
two one-loop factors,

A1−loopð� � � ; Kλ
i Þ ×

1

K2
×A1−loopð� � � ;−K−λ

i Þ: ð5:1Þ

This is nonzero with one amplitude being the single minus
one-loop amplitude and the other the all-plus. Both of these
are rational. Only the subleading amplitudes from each of
the one-loop factors will contribute to the N0

c term and the
color terms must be of the form

∼TrðiS1ÞTrðS2Þ × TrðiS3ÞTrðS4Þ ð5:2Þ

where we sum over the color matrix Ti and we have
suppressed the explicit color matrices for the lists of legs Si.
The S1 and S3 may be null and if both are null, we obtain a
factor of Nc. Otherwise we obtain

TrðS1S3ÞTrðS2ÞTrðS4Þ: ð5:3Þ

So there are (one-loop)-(one-loop) factorizations in Að2Þ
n∶s;t

but not in Að2Þ
n∶1B. Therefore A

ð2Þ
n∶1B has no 1=K2 terms. The

presence of the single minus amplitude within a limit would
make it difficult to find an all-n expression.
Amplitudes also contain double poles in complex

momentum. These arise from diagrams such as that shown
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in Fig. 4 where one factor arises from the explicit pole and
the other from the loop integral. The color structure of the
double pole diagram therefore contains

faikfbijfkjmJðm; � � �Þ: ð5:4Þ

We can turn this into color traces and evaluate:

ðTr½aki� − Tr½kai�ÞðTr½bji� − Tr½jbi�ÞðTr½kjm� − Tr½kmj�Þ
¼ NcTr½bam� − NcTr½abm�:

Hence there is no N0
c contribution and Að2Þ

n∶1B is free of
double poles.
Unfortunately, the single poles are not as simple as one

might imagine. For example, at five points the potential
factorization

Að2Þ
5∶1B → Að0

3 ðaþ; bþ; K−Þ × 1

sab
× Að2Þ

4 ðKþ; � � �Þ ð5:5Þ

vanishes since Að2Þ
4 ð1þ; 2þ; 3þ; 4þÞ ¼ 0; nonetheless Að2Þ

5∶1B
in Eq. (7.2) has poles in ha bi. These single poles arise from
nonfactoring terms as computed in Refs. [26,30] where the
double and single poles were determined for the n ¼ 5 and
n ¼ 6 cases.
Finally let us consider collinear limits. If adjacent legs a

and b become collinear with ka ¼ zK and kb ¼ ð1 − zÞK,
then we expect

Að2Þ
n∶1Bð� � � ; aþ; bþ; � � �Þ
→ Sþþ

− ða; b; KÞAð2Þ
n−1∶1Bð� � � ; Kþ; � � �Þ ð5:6Þ

where

Sþþ
− ða; b; KÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zð1 − zÞp ha bi : ð5:7Þ

The amplitude has no collinear singularity if a and b are not
adjacent. Demanding the correct collinear behavior was
sufficient to generate the conjecture for the one-loop all-
plus amplitude.

VI. POLYLOGARITHMIC TERMS

In Refs. [11,17,18,31] it was demonstrated that for the
leading in color partial amplitude the IR-infinite terms and
the polylogarithmic terms may be generated using four-
dimensional unitarity cuts [32,33]. In particular quadruple
cuts [34] could be used to compute the coefficients of
functions which were essentially the finite parts of one-loop
box functions.

The expression for the Pð2Þ
n∶λ for the all-plus color

amplitudes is [31] of the form

Pð2Þ
n∶λ ¼

X
i

ciF2mi ð6:1Þ

where ci are rational functions and

F2m½S; T; K2
2; K

2
4� ¼ Li2

�
1 −

K2
2

S

�
þ Li2

�
1 −

K2
2

T

�

þ Li2

�
1 −

K2
4

S

�
þ Li2

�
1 −

K2
4

T

�

− Li2

�
1 −

K2
2K

2
4

ST

�
þ 1

2
ln2

�
S
T

�
:

ð6:2Þ

The F2m are the combination of polylogs which appear
in the two-mass box with the orientation of Fig. 5 with
S ¼ ðK2 þ kaÞ2 and T ¼ ðK2 þ kbÞ2. In the specific case
where K2

2 ¼ 0,

F2m½S; T; 0; K2
4� ¼ Li2

�
1 −

K2
4

S

�
þ Li2

�
1 −

K2
4

T

�

þ 1

2
ln2

�
S
T

�
þ π2

6
: ð6:3Þ

FIG. 4. Contributions to amplitudes giving a double pole with
color indices shown.

FIG. 5. Four-dimensional cuts of the two-loop all-plus am-
plitude involving an all-plus one-loop vertex (indicated by
filled circle). K2 may be null but K4 must contain at least two
external legs.
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For Að2Þ
n∶1Bð1þ;…; nþÞ we will need specific combinations which we label

Fða; b; S2; S4Þ ¼ F2m½K2
aS2

; K2
S2b

; K2
S2
; K2

S4
� ð6:4Þ

where S2 are the set of external legs within K2 and S4 are the set of legs within K4. With this we have

Pð2Þ
n∶1B ¼ −2i

X
a<b

� X
ðUi

1
∶Ui

2
Þ∈Spl2ðUabÞ

X
ðVj

1
∶Vj

2
Þ∈Spl2ðVabÞ

cða; b;Ui
1; V

j
1; U

i
2; V

j
2ÞFða; b;Ui

1 ∪ Vj
1;U

i
2 ∪ Vj

2Þ

þ
X

ðUi
1
∶Ui

2
Þ∈Spl2ðUabÞ

X
ðVj

1
∶Vj

2
Þ∈Spl2ðVabÞ

cða; b;Ui
2; V

j
2; V

j
1; U

i
1ÞFða; b;Vj

2 ∪ Ui
2;U

i
1 ∪ Vj

1Þ

−
X

ðVi
1
∶Vi

2
∶Vi

3
Þ∈Spl3ðVabÞ

cða; b;Uab; Vi
2; V

i
1; V

i
3ÞFða; b;Uab ∪ Vi

2;V
i
1 ∪ Vi

3Þ

−
X

ðUi
1
∶Ui

2
∶Ui

3
Þ∈Spl3ðUabÞ

cða; b;Ui
2; Vab; Ui

3; U
i
1ÞFða; b;Ui

2 ∪ Vab;Ui
3 ∪ Ui

1Þ
�

ð6:5Þ

where

cða; b; A1; A2; B1; B2Þ
≡ hajKB2

KB1
jbi2CPTðaA1bA2ÞCPTðbB1ÞCPTðB2aÞ

ð6:6Þ

provided the Bi and A1 ∪ A2 are not null.2 Also,

Uab ¼ faþ 1; aþ 2;…; b − 1g and

Vab ¼ fbþ 1; bþ 2;…; n; 1;…; a − 1g ð6:7Þ

i.e., the list f1; 2;…ng is split, after cycling to begin with a,

f1; 2;…; ng → fa;U; b; Vg: ð6:8Þ

Spl2 is the set of splits of a list into two lists maintaining list
order. So if U ¼ fu1; u2; � � � urg then

Spl2ðUÞ¼fUig;Ui¼ðfu1;� ��uig;fuiþ1;…;urgÞ ð6:9Þ

and similarly Spl3ðUÞ is the set of three lists obtained by
splitting U into three lists while maintaining order.
The above expression is quite complex but simplifies

significantly for small numbers of legs. The sets Uab and
Vab get split into two or three subsets which then get
recombined into the sets of legs forming K2 and K4. For
small n many of the summations become trivial.
In Ref. [35] the one-loop all-plus amplitude was shown

to be conformally invariant. In doing so the one-loop
amplitude was rewritten to make the conformal symmetry
manifest by writing the amplitude (4.2) as a sum of “Ckmn”

terms each of which is individually conformally invariant.
Writing the amplitude in terms of the Ckmn terms occurs in
a string theory based approach [36,37].
The coefficients cða; b; A1; A2; B1; B2Þ are similar in

structure although not identical to the Ckmn. They are
however also conformally invariant. We have verified that
the conformal operator kα _α annihilates these. Specifically,3

kα _αcða; b; A1; A2; B1; B2Þ

≡
�Xn

i¼1

∂2

∂λiα∂λ̄i_α
�
cða; b; A1; A2; B1; B2Þ ¼ 0: ð6:10Þ

The conformal invariance of the coefficient of the poly-
logarithms was noted for the five-point amplitude
in Ref. [35].

VII. EXPLICIT FORMULA OF Rð2Þ
n∶1B

The four-point amplitude Rð2Þ
4∶1B has been calculated in

Refs. [5,6] as part of the full four-point computation and
was found to vanish:

Rð2Þ
4∶1Bð1þ; 2þ; 3þ; 4þÞ ¼ 0: ð7:1Þ

The five-point amplitude has been computed. In

Ref. [16], the five-point amplitudes Að2Þ
5∶1 and Að2Þ

5∶3 were
computed explicitly. Using the results of Ref. [22] this

implies a form of Að2Þ
5∶1B. In Ref. [26] the Að2Þ

5∶r were

2For clarity we have suppressed list notation, so that
CPTðbB1Þ ¼ CPTðb; B11; B12;…; B1rÞ etc.

3The λiα and λ̄i_α are not independent variables but satisfyP
i λ

i
αλ̄

i
_α ¼ 0. We can either eliminate the dependant variables

before applying the kα _α operator or include a δðPi λ
i
αλ̄

i
_αÞ

function. We have chosen the former route and checked
Eq. (6.10) at explicit kinematic points.
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recomputed using augmented recursion [18,38] and four-dimensional unitarity and Að2Þ
5∶1B was computed directly in a simple

form. The explicit form is

Rð2Þ
5∶1Bð1þ; 2þ; 3þ; 4þ; 5þÞ ¼ 2iϵð1; 2; 3; 4Þ

X
Z5ð1;2;3;4;5Þ

CPTð1; 2; 5; 3; 4Þ

¼ 2iϵð1; 2; 3; 4ÞðCPTð1; 2; 5; 3; 4Þ þ CPTð2; 3; 1; 4; 5Þ þ CPTð3; 4; 2; 5; 1Þ
þ CPTð4; 5; 3; 1; 2Þ þ CPTð5; 1; 4; 2; 3ÞÞ: ð7:2Þ

Since the summation is over the five cyclic permutations of the legs (1,2,3,4,5) this expression is manifestly cyclically
symmetric. However it is far from unique since the Parke-Taylor factors CPT are not all linearly independent. Since they
are manifestly cyclic symmetric there are clearly ðn − 1Þ! terms. They also satisfy identities identical to the decoupling
identity for tree amplitudes which can be used to reduce these to a basis of ðn − 2Þ! independent terms. Specifically we
can rewrite

X
ða2;a3;·;anÞ∈Pð2;3;…;nÞ

αiCPTð1; a2; a3;…; anÞ ¼
X

ða2;a3;·;an−1Þ∈Pð2;3;…;n−1Þ
α0iCPTð1; a2; a3;…; an−1; nÞ: ð7:3Þ

If we choose to rewrite Rð2Þ
n∶1B in terms of this reduced set, cyclic symmetry will not be manifest but there is the advantage of

working with a basis rather than a spanning set. For the five-point amplitude we then have

Rð2Þ
5∶1Bð1þ;2þ;3þ;4þ;5þÞ ¼ 2iϵð1;2;3;4Þð−CPTð1;2;3;4;5Þ þ 2ðCPTð1;3;4;2;5Þ þCPTð1;4;3;2;5Þ þCPTð1;4;2;3;5ÞÞÞ:

ð7:4Þ

This can be split into two parts

Rð2Þ
5∶1Bð1þ; 2þ; 3þ; 4þ; 5þÞ ¼ Rð2Þ

5∶1B1
ð1þ; 2þ; 3þ; 4þ; 5þÞ þ Rð2Þ

5∶1B2
ð1þ; 2þ; 3þ; 4þ; 5þÞ ð7:5Þ

where

Rð2Þ
5∶1B1

ð1þ; 2þ; 3þ; 4þ; 5þÞ ¼ −2iϵð1; 2; 3; 4ÞCPTð1; 2; 3; 4; 5Þ;
Rð2Þ
5∶1B2

ð1þ; 2þ; 3þ; 4þ; 5þÞ ¼ 4iϵð1; 2; 3; 4ÞðCPTð1; 3; 4; 2; 5Þ þ CPTð1; 4; 3; 2; 5Þ þ CPTð1; 4; 2; 3; 5ÞÞ: ð7:6Þ

The term Rð2Þ
5∶1B1

is reminiscent of the one-loop expression which allows us to propose the n-point expression

Rð2Þ
n∶1B1

ð1þ; 2þ;…; nþÞ ¼ −2iCPTð1; 2;…; n − 1; nÞ ×
X

1≤i<j<k<l≤n
ϵði; j; k; lÞ: ð7:7Þ

The expression for Rð2Þ
6∶1B2

has 14 terms,

Rð2Þ
6∶1B2

ð1þ; 2þ; 3þ; 4þ; 5þ; 6þÞ ¼ 4i

�
ϵð3; 4; 5; 6Þ

Cyð1; 2; 4; 5; 3; 6Þ þ
ϵð3; 4; 5; 6Þ

Cyð1; 2; 5; 3; 4; 6Þ þ
ϵð3; 4; 5; 6Þ

Cyð1; 2; 5; 4; 3; 6Þ

þ ϵð1; 2; 3; 4Þ
Cyð1; 3; 4; 2; 5; 6Þ −

ϵð1; 2; 3; 6Þ
Cyð1; 3; 4; 5; 2; 6Þ þ

ϵð1; 2; 3; 4Þ
Cyð1; 4; 2; 3; 5; 6Þ −

ϵð1; 3; 4; 6Þ
Cyð1; 4; 2; 5; 3; 6Þ

þ ϵð1; 2; 3; 4Þ
Cyð1; 4; 3; 2; 5; 6Þ þ

ϵð1; 2; 4; 6Þ
Cyð1; 4; 3; 5; 2; 6Þ −

ϵð1; 3; 4; 6Þ
Cyð1; 4; 5; 2; 3; 6Þ þ

ϵð1; 2; 4; 6Þ
Cyð1; 4; 5; 3; 2; 6Þ

−
ϵð1; 4; 5; 6Þ

Cyð1; 5; 2; 3; 4; 6Þ þ
ϵð1; 3; 5; 6Þ

Cyð1; 5; 2; 4; 3; 6Þ þ
ϵð1; 3; 5; 6Þ

Cyð1; 5; 4; 2; 3; 6Þ −
ϵð1; 2; 5; 6Þ

Cyð1; 5; 4; 3; 2; 6Þ
�
:

ð7:8Þ
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This expression was first constructed by demanding that it satisfy the correct collinear limits and subsequently verified
using augmented recursion techniques [30].
While this is the minimal expression, it is not the best for generalizing. Defining

ϵðfa1; a2;…; amg; b; c; fd1; d2;…; dpgÞ≡
Xm
i¼1

Xp
j¼1

ϵðai; b; c; djÞ; ð7:9Þ

we can replace ϵð3; 4; 5; 6Þ by ϵðf1; 2g; 4; 3; 6Þ etc. which makes the pattern clearer.
Then by demanding the correct collinear limits we are led to the expression

Rð2Þ
n∶1B2

ð1þ; 2þ;…; nþÞ ¼ 4i
Xn−4
r¼1

Xn
s¼rþ4

Xs−2
i¼rþ1

Xs−1
j¼iþ1

ϵðf1;…; rg; j; i; fs;…; ngÞð−1Þi−jþ1 ×
X

α∈Sr;s;i;j

CPTðfαSr;s;i;jgÞ: ð7:10Þ

To define Sr;s;i;j we divide the list of indices,

f1; 2; 3;…; ng ¼ f1;…; r; rþ 1;…; i − 1; i; iþ 1;…; j − 1; j; jþ 1;…; s − 1; s;…; ng
≡ f1; � � � r; g ⊕ S1 ⊕ fig ⊕ S2 ⊕ fjg ⊕ S3 ⊕ fs;…; ng ð7:11Þ

with

S1 ¼ frþ 1;…; i − 1g; S2 ¼ fiþ 1;…; j − 1g; S3 ¼ fjþ 1;…; s − 1g: ð7:12Þ

The sets Si may be null. Then

Sr;s;i;j ¼ MerðS1; S̄2; S3Þ ð7:13Þ

where S̄2 is the reverse of S2 andMerðS1; S̄2; S3Þ is the set of all mergers of the three sets which respect the ordering within
the Si and

αSr;s;i;j ¼ f1;…; rg ⊕ fjg ⊕ α ⊕ fig ⊕ fs;…; ng: ð7:14Þ

The expression for Rð2Þ
n∶1B2

presumably has other realizations; however within the chosen basis the coefficients
of the CPT are uniquely given. The expression has the correct collinear limit of legs n − 1 and n but does not
have manifest cyclic symmetry; however we have checked to a large number of external legs (up to 14) that
the expression is cyclically symmetric, that it has all the correct collinear limits and it has the correct flip

properties. The Rð2Þ
n∶1B1

and Rð2Þ
n∶1B2

do not individually satisfy the decoupling identity; however the combination

Rð2Þ
n∶1B1

þ Rð2Þ
n∶1B2

does.

The term Rð2Þ
n∶1B1

can be rewritten in a form which looks more similar to Rð2Þ
n∶1B2

by manipulating the tensors

Rð2Þ
n∶1B1

ð1þ; 2þ;…; nþÞ ¼ −2iCPTð1; 2;…; nÞ ×
X

1≤i<j<k<l≤n
ϵði; j; k; lÞ ¼ −2iCPTð1; 2;…; nÞ

×
Xn−4
r¼1

Xn
s¼rþ4

ϵðf1; 2;…; rg; rþ 1; s − 1; fs; sþ 1;…; ngÞ: ð7:15Þ

Although the coefficients of the polylogarithms are annihilated by the conformal operator kα _α we can confirm

kα _αðRð2Þ
n∶1B1

ð1þ; 2þ;…; nþÞ þ Rð2Þ
n∶1B2

ð1þ; 2þ;…; nþÞÞ ≠ 0: ð7:16Þ
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VIII. CONCLUSIONS

We have presented an ansatz for a very specific color
amplitude at two loops which is valid for an arbitrary
number of external legs. Although we are short of a proof of
the ansatz it satisfies consistency conditions and factoriza-
tions which suggest it is correct. All-n formulas provide a
very useful laboratory for testing conjectures and behavior.
For example, it was recently shown in Ref. [35] that the
one-loop all-plus amplitude is conformally invariant; how-

ever the all-n expression allows us to check that Rð2Þ
n∶1B is not

conformally invariant although the coefficients of the
polylogarithms are. The all-plus amplitude at one loop is

very special and has relations to amplitudes in other
theories. In particular the N ¼ 4 maximally helicity-
violating amplitude is related to it by a dimension shift
of integral functions [24] and also the one-loop amplitude
coincides with that of self-dual Yang-Mills theory [39,40].
It would be very interesting to see if any of these or similar
properties extend to two loops and beyond.
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