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ABSTRACT 

Background: Schools typically have high diurnal fluctuation in electricity demand, with peak loads during 
daylight hours, which could be adequately met through harnessing solar renewable resources. This study 
demonstrates the strength of techno-economic assessment in selection and optimization of a grid-
connected hybrid renewable energy system (HRES), utilizing local renewable resources to fulfil the 
daytime electricity demand for a school in northwest Indonesia. 

Methods: Three different scenarios are developed for optimizing the HRES configurations, comprising of 
PV panels, Wind turbine, Battery and Inverter. The following optimization parameters are used—one, 
technological performance of the HRES, in terms of their energy output to fulfil the energy deficit; two, 
economic performance of the HRES, in terms of their net present cost (NPC) and payback periods.  

Results: A clear trade-off is noted between the level of complexity of the three HRES, their renewable 
electricity generation potentials, NPC and payback periods. Scenario II, comprising of Solar PV and 
Inverter only, is found to be the most feasible and cost-effective HRES, with the optimized configuration of 
245 kW PV capacity and 184 kW inverter having the lowest initial capital cost of US$ 51,686 and a payback 
time of 4 years to meet the school’s annual electricity load of 114,654 kWh. Its NPC is US$ −138,017 at the 
20th year of installation. The negative value in year 20 is achieved through the sale of 40% of the renewable 
energy back to the grid. 

Conclusions: Techno-economic assessment can provide useful decision support in designing HRES relying 
on solar energy to serve predominantly daytime school electricity requirements in tropical countries. 
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INTRODUCTION 

The Indonesian government has set target to sustainably harness energy by increasing the share of new 
and renewable resources in primary energy supply to reach 23% by 2025 and 31% by 2050 [1,2]. However, 
while the last decade has seen rapid growth in renewable energy generation in many parts of the world 
[3], the grid supply in Indonesia, and more widely in South-east Asia, still heavily relies on conventional 
fossil-based electricity generation [1,4]. The majority of the Indonesian people are still not fully aware of 
the bountiful solar resources which can be harnessed for sustainable energy generation [5]. This is 
contradictory to the fact that increased heat stress among the local population has reduced the Indonesian 
annual GDP by 6%, attributed mainly to physiological impacts and reduced labor productivity owing to its 
close proximity to the Equator [6].  

The statistical data of the state-owned electricity company of Indonesia shows that in 2016 only 12.16% 
of the overall electricity was generated from renewable energy sources, of which the majority was from 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/305109377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

 

hydro and geothermal energy [7]. Solar and wind power in total only contribute to mere 0.02% of the entire 
electricity generation, despite having an average daily solar radiation of 4.80 kWh/m2 [8]. However, only 
0.038% of this resource is converted into electrical energy at the moment. The typical average wind speed 
in the country ranges between 3 and 6 m/s, however, only 0.005% of this resource was used into the 
national energy mix in 2016 (Table 1) [9].  

Table 1. Renewable energy resource utilization potential in Indonesia [9]. 

Energy Source Resources Installed Capacity Utilization (%) 
Hydro 94,476 MW 5024 MW 5.30% 

Geothermal 29,544 MW 1403.5 MW 4.80% 
Bioenergy 32,000 MW 1740.4 MW 5.40% 

Solar 4.80 kWh/m2/day 78.5 MW 0.038% 
Wind 3–6 m/s 3.1 MW 0.005% 

Marine and Tidal 61 GW 3.1 MW 0.005% 

Aceh is the most westerly province of the Indonesian archipelago. According to the Indonesian 
Renewable Energy Department of Mining and Energy this province has the potential for geothermal, wind, 
hydro, solar and wind power of 340 MW, 6600 MW, 7881 MW and 894 MW respectively [10]. This makes a 
hybrid renewable energy system (HRES) a viable solution for generation of electrical energy in maximizing 
the electricity production while minimizing the consumption of fossil fuel [11]. 

Schools, having their activities largely limited to daylight hours, offer a unique opportunity to deploy 
renewable energy system dependent on daylight hours to meet the majority of their electricity demand 
profile [12]. However, performance assessment of a renewable energy system (RES) for a school unit in 
Turkey showed that the electricity generation solely from renewables was not sufficient to compensate the 
overall energy demand of the school [13]. Off-grid application of solar and wind power generation with 
diesel generator and battery backup was found to fully meet the energy demand of a rural school in 
Morocco at an optimized energy cost of about 1.12 $/kWh [14]. Analysis of a grid-connected photovoltaic 
system for a school in Wellington, New Zealand, reported that the power generated from the system 
escalated only during the summer time [15]. Another study mainly focused on optimization of several 
HRES components to compensate for the heating and electricity demand of a school building in South 
Korea [12]. A study assessing the viability of HRES in a school building in Greece found that the installation 
could provide mitigation of climate change, resources protection, costs reduction, and energy saving [16].  

Techno-economic assessment is widely applied in determining the viability of energy technologies at 
affordable costs. However, so far the assessments-of HRES configurations, for both grid-connected and off-
grid applications, have been mainly restricted to optimal sizing of the system components under local 
conditions [17–20] and little consideration has been given to optimizing the design of the system altogether, 
suiting the local conditions (demand profile and renewable supply). This study mainly focuses on the 
techno-economic feasibility of a grid-connected HRES in compensating the daytime electricity demand for 
a school building in Banda Aceh, Indonesia, exploring potential options for minimizing its NPC and 
payback period. The case study utilizes actual data for electricity consumption at the school alongside the 
seasonal profiles of renewable resource availability. Three HRES configurations are assessed, first two 
respectively powered by wind + PV and PV only, with no battery backup, and the third configuration 
powered by PV only with a battery backup. It demonstrates the suitability of an optimized HRES in meeting 
the electricity demands of the school, predominantly over day time, through direct use of renewable 
electricity from PV using inverters, avoiding the need for battery storage. The following optimization 
parameters are used—one, technological performance of the HRES, in terms of their energy output to fulfil 



 
 

 

the energy deficit; two, economic performance of the HRES, in terms of their net present cost (NPC) and 
payback periods. NPC includes initial capital expenditure, operation, maintenance and component 
replacement costs (if any), as well as the revenue from sale to the grid, thereby shortening the payback 
period. Although the scope of this study is limited to a particular school located in Banda Aceh, Indonesia, 
the outcome is extendable to similar facilities with predominant daytime electricity demands. 
 

MATERIALS AND METHODS 

Case Study 

Site description 

A school building in the city center of Banda Aceh in the Aceh province in northwest tip of Indonesia is 
selected as the case study, located 7 m above sea level at 5.55° N and 95.35° E (Figure 1). The site was hit by 
the devastating tsunami in 2004; over 90% of the region neighboring the school is electrified, but largely 
supplied with a mix of diesel and hydro power plants, with approximately 98% of electricity originating 
from fossil fuel combustion [7]. However, the region has approximately 4.1 kWh/m2 average daily solar 
radiation [2], providing huge potential for a grid-connected renewable energy system. 

 

Figure 1. Location of Fatih Bilingual School in Banda Aceh, Indonesia. Shown in the inset is the 
geographical location of the study site in the global context (Google Maps, 2017). 

Electricity demand profile 

The daily electricity consumption profile is generated using the real load profile data for the 2016 
academic calendar year of Fatih Bilingual School. Furthermore, the estimation of hourly electricity 
consumption has been established by comparing the real data of three consecutive monthly electricity bills 
of the school. Based on this, the following five variants of the daily electricity use profiles have been 
obtained, accounting for the different activity types and seasonal loads (Figure 2)—Variant 1: General 
school active days; Variant 2: Weekly meeting and conference; Variant 3: Weekly extra-curricular activity; 
Variant 4: The seasonal school holidays; Variant 5: Sunday and bank holidays. 



 
 

 

 

Figure 2. The five variants of the daily electricity consumption profiles of the school. 

The operating hours of the school spans from 07:30 to 16:30 during the weekdays and from 07:30 until 
14:00 on Saturdays. Furthermore, there is no school activity during the nights. The monthly total energy 
demand of the school is presented in Figure 3. According to the electricity demand profile, the lowest load 
requirement is observed in the month of January, June and July. This is attributed to the seasonal holidays 
over this period when the school is not active. During the rest of the year, the power consumption of the 
school is generally the same. The minimum and the maximum monthly energy requirement for the 
teaching process in the school are 6669 kWh and 10,925 kWh respectively. It is assumed the majority of 
this basal load is attributed to typical HVAC space cooling energy demands over predominantly warmer 
months in modern buildings in Indonesia [21]. 

 

Figure 3. Monthly electricity demand of the school. 

Renewable resource availability 

Most of the previous studies have used freely accessible research databases on renewable resources 
from their respective governmental or national weather databases [12,16,22,23]; the National Institute of 
Water and Atmospheric (NIWA) research solar-view tool from New Zealand for estimating the solar 
radiation [15]; the US National Renewable Energy Laboratory (NREL) solar radiation and wind resources 
databases for comparison; RETScreen Expert and Design Builder software data [13]. The following data 
sources have been used in this study. 

Solar irradiance: The Global Horizontal Irradiation (GHI) data in HOMER Pro, based on NREL’s typical 
meteorological year (TMY3) profile derived from the 1961–1990 to 1991–2005 National Solar Radiation 
Database, has been used to generate the monthly averaged solar irradiance profile for the city of Banda 



 
 

 

Aceh (based on latitude and longitude) (Figure 4) [24]. GHI is considered appropriate for estimating PV 
power outputs as it is the sum of beam radiation (also called direct normal irradiance or DNI), diffuse 
irradiance, and ground-reflected radiation. Based on the data, the location is found to have a fairly 
constant solar irradiance profile throughout the year, which is owing to its location near the equator. 
However, there is slight decrease in the magnitude of solar irradiance in the last 3 months of the year, 
attributed to the onset of the rainy period over these months. 

 

Figure 4. Solar irradiance profile in Banda Aceh (source: Homer Pro [24]). 

 
Wind speed: The monthly average wind speed profile at the school location has been estimated using 

the hourly wind speed data obtained from the NREL database for the city of Banda Aceh (Figure 5). 

 

Figure 5. Wind profile in Banda Aceh (source: Homer Pro [24]). 

 

Energy system component specification and pricing  

The hardware spec for the different HRES components used in this study and their initial capital costs 
are shown in Table 2. The lifespan of the energy generating hardware components (PV and wind turbine) 
is assumed to be 20 years that of the inverter as 15 years and the battery life is assumed to be 10 years. The 
selected PV module has maximum power of 250 W, efficiency of 15% and the annual operational & 
maintenance cost of US$ 100 [25]. A relatively smaller size single wind turbine is considered for installation 
at the school with the maximum power output of 10 kW, rotor diameter and tower height of 5.5 m and 15 
m, respectively [26]. 
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Table 2. Summary of HRES component specification, capacity and pricing. 

Category Solar PV Wind turbine Grid-connected Solar 

Inverter 

Battery 

Brand Surya Greentek 

[25] 

Evance R9000 [26] iMars M Series [27] VRLA Aki Kering Solar Cell 

[28] 

Capacity 250 W 

Panel dimensions 

Length: 1.64 m 

Breadth: 0.99 m 

Width: 0.04 m 

10 kW 

Rotor diameter: 5.5 m 

Hub height: 15 m 

Cut-in speed: 2.5 ms−1 

Cut-off speed: 25 ms−1 

5 kW 12 V, 120 Ah 

Efficiency (%) 15 - 95 1800 cycles, DOD: 30% 

Lifetime (years) 20 20 15 5 

Unit price per kW (US$) 840 40 099 165 140/battery 

O&M cost (US$/year) 100 200 - 10 

Replacement cost (US$) 840 40,099 165 140/battery 

All the solar panels have been assumed to be installed on building rooftops facing due north and tilted 
at 5° to the horizontal to allow for draining of rain water. The key consideration in determining 
appropriate rooftop location for citing the solar panels is their non-obstruction from shadows throughout 
the daylight period. It was considered that only one wind turbine could be installed, given the small fetch 
offered by the built-up space in the school premises.  

Energy pricing 

The Feed-in-tariff introduced by the Minister of Energy and Mineral Resources (MEMR) vide regulation 
No. 50/2017 on power purchase for a range of renewable energy generator is applied to this study. 
Accordingly, the selling price of electricity from the grid has been set to the national average production 
cost in Indonesia (US$ 0.12 per kWh) [7]. Therefore, the price of buying electricity from the grid is set to be 
equal to the selling price. In other words, the excess power generated by HRES in the school is assumed to 
be sold to the grid at the same unit price of US$ 0.12 per kWh. 

 

Modelling Methods 

The Hybrid Optimization of Multiple Energy Resources (HOMER Pro®) model, developed by the National 
Renewable Energy Laboratory [29], is used to assess the techno-economic feasibility of the proposed HRES 
to be installed at the school. The modelling method followed the suggested approach in the literature 
[22,30,31], requiring several input parameters in terms of the wind and solar resources, energy demand, 
system components, and the specified cost of each component.  



 
 

 

 

Figure 6. Schematic of the modelled configuration—(a) Scenario I; (b) Scenario II; (c) Scenario III.  

HRES model scenarios 

The following three scenarios, each with unique sizing of the HRES components, have been modelled 
to evaluate their techno-economic performances. Scenario I—Figure 6a shows the components of the grid-
connected HRES, comprising of Solar PV, Wind Turbine, and Inverter. This kind of configuration is 
expected to generate additional revenue through sale of the excess energy produced from renewables to 
the grid. The only disadvantage of this design is it has no backup to cover the power shortage, in case of 
loss of supply from renewable generation. Scenario II—Figure 6b shows the configuration for this scenario, 
comprising of Solar PV and Inverter only. It is based on the premise that the wind speed in the particular 
location is relatively insufficient to achieve the rated power output of the wind turbine. Scenario III—
Figure 6c shows the configuration for this scenario, comprising of Solar PV, Inverter and Battery as an 
additional backup. In this system the power demand can be compensated by the power stored in the 
battery when the grid is unable to provide the electricity. Moreover, the excess energy from the renewables 
can also be sold back to the grid when the battery is fully charged. This is specifically suitable for utilizing 
the battery backup in meeting the unmet loads. The drawback for this configuration is that the total cost 
is expected to be relatively high. 

Techno-economic optimization 

For each of the three scenarios, the optimum configuration, the size of the solar PV area and the number 
of wind turbines are determined using the optimization features of the HOMER Pro® software. The 
minimum and the maximum bounds for each component sizing were assigned in HOMER Optimizer with 
a Search Space, and the optimized configurations was selected on the basis of the lowest net present cost 
following [32]. The wind turbine feature was limited to a single unit owing to the restriction on the space 
available, as discussed earlier. The technological performance of the HRES in terms of their energy output 
to fulfil the energy deficit (and where applicable, to surpass in case of selling electricity back to the grid), 



 
 

 

and the economic performance (in terms of the HRES NPC and payback), have been respectively 
considered the two key optimization parameters.  

RESULTS AND DISCUSSION 

Scenario Analysis  

Each of the three modelled scenarios present unique attributes in terms of their optimum configuration 
size of the renewable energy technologies affecting their feasibility and also the total cost of the system 
over their 20-year operational life. The priority of this exercise is to find the configuration with the lowest 
total cost and the fastest payback period. Figure 7a–c respectively show weekly patterns of the electricity 
demand-supply profiles for the three scenarios. In each plot, the upper line shows the supply from the 
renewable generation and the lower line represents the load profile, generated in HOMER using real usage 
data for a typical week from Monday to Sunday (between 00:00–24:00). 

Scenario I—The simulated optimal configuration of RES design for this scenario comprises of 105 kW of 
Solar PV, a single 10 kW WT, and 66 kW Inverter. The renewable energy generation patterns for this 
scenario oscillates with daily peaks around noon and troughs around sunrise and sunset, with further 
energy generation in the late night and early hours (Figure 7a). The latter is mainly contributed from wind 
turbine. However, the early morning school electricity demand remain largely unmet, owing to shortfall 
in renewable generation from both solar and wind (Figure 7a), requiring high level of grid electricity 
purchase. By using this configuration, the initial capital cost (ICC) for the deployment and the NPC of this 
design was estimated to be US$ 91,874 and US$ −242,454 respectively. The negative sign at the NPC value 
indicates that in the 20th year there will be an income of that amount from the sale of electricity back into 
the grid. Additionally, the payback time of this design was estimated to be 9 years. In this configuration, 
88.4% of the school electricity demand is estimated to be compensated by the power from the PV. 
Additionally, the power from WT and the grid contributed only 7.81% and 3.77% of the load respectively. 
The simulation showed that the power produced by WT is inferior to that by PV, which is acceptable for 
the location, based on the availability of low wind speeds. This configuration is advantageous to be 
deployed in the school setting as it appears to meet the electricity requirements for the school during the 
peak operation time. Figure 7a shows that most of the load can be compensated by the renewable power 
(upper line) generated from the optimal configuration for this scenario (only 2.82% of the generated power 
were consumed by the school and the rest 97.2% were sold back to the grid). This corroborates the findings 
reported in a previous study [12], which stated that the RES installation at a school is suitable in accordance 
of its energy demand profile and condition of the location. 

Scenario II—This scenario maximizes the potential for solar generation while reduces the capital 
expenditure by removing the deployment of wind turbine and battery backup. However, as expected, the 
HRES power output of this scenario is relatively lower than the previous scenario and restricted to daylight 
hours (meeting 94.5% of the electricity demand, with the 5.50% fulfilled via grid purchases). Figure 7b 
shows the typical weekly energy demand profile of the school and the total electricity supply from the 
optimal configuration for this scenario. On an average, the school consumed around 30% of the total power 
generated and the remaining 70% was sold back to the grid. However, as in case of Scenario I, some portion 
of the energy requirement during early morning hours could not be met from the renewable generation 
when the solar irradiation is not quite intense. Hence, maintaining grid connectivity was considered 
essential to avoid any loss of supply during these hours. The outcome of the estimation showed that the 
amount of energy which could be sold back to the grid was directly proportional to the inverter output 
power. 



 
 

 

Scenario III—In this scenario the deficit power could be either drawn from the batteries or bought from 
the grid. Similar to the previous two scenarios, the power from renewables could not fulfil the electricity 
demand of the school in the early morning hours. However, the reliance on the grid supply was 
compensated by drawing the deficit power from the battery storage, leading to minimal grid electricity 
purchase for this scenario. Figure 7c shows how the battery system accommodates the morning time load, 
indicated by dip in the Battery energy (top black line). The use of battery was observed during the week-
days and Saturdays. However, due to the low electricity demand on Sundays, the batteries were noted to 
be fully charged and the excess power produced by the renewables were sold to the grid. 

 

Figure 7. Weekly patterns of the electricity demand-supply profiles for the three scenarios (upper line: 
renewable generation; lower line: load profile)—(a) Scenario I; (b) Scenario II; (c) Scenario III. 

Cost efficiency 

The initial capital costs, NPC values and payback periods for the optimized HRES configurations to meet 
the annual electrical load of the school of 114,654 kWh for the three scenarios, and the corresponding 
annual energy flows to the grid (purchase and sell), are shown in Table 3. It shows the tradeoffs between 
the costs and energy provision from different scenarios. Scenario I shows the highest capital costs, which 
is expected due to inclusion of wind turbine, although this design had lower number of solar panels. 
Despite having the highest amount of energy sale to the grid, this scenario still has considerable grid 
purchase of electricity owing to lack of back up for unmet loads during early morning school operations 



 
 

 

(Figure 7a). As expected, scenario II has the least payback period of 4 years, owing to the relatively lower 
initial capital costs of the hardware and considerable sale of electricity to the grid. Scenario 3 appears least 
favorable in terms of NPC, which is mainly attributed to high level of battery replacement and operation 
and maintenance costs.  
Table 3. Optimized techno-economic performance outputs for the three scenarios. 

 
Solar PV 

Capacity 

(kW) 

Wind 

Turbine 

Capacit

y 

(kW) 

No. of 12V 

Batteries 

(units) 

Inverte

r 

Capacit

y 

(kW) 

Energy 

Purchase

d 

(kWh/yea

r) 

Energy 

Sold to 

Grid 

(kWh/yea

r) 

Initial Capital 

Cost 

(US$) 

Total NPC 

(US$) 

Paybac

k 

period 

(year) 

Scenario I 105 10 - 66 16,872 318,414 91,874 −242,454 9 

Scenario II 245 - - 184 22,852 289,314 51,686 −138,017 4 

Scenario 

III 
245 - 80 55 23 308,783 62,886 −67,502 6 

It is noteworthy, the study mainly focused on renewable energy provision to meet the existing school 
energy demands, without considering further modification of the building design and passive cooling 
strategies, e.g., HVAC efficiency enhancement and/or cooling capacity enhancement through inclusion of 
innovative PV-thermal technologies, which are still undergoing R&D improvements and thereby lacking 
cost-competitiveness [21]. 

 

CONCLUSIONS 

This study demonstrates the strength of techno-economic assessment as a decision support in 
developing hybrid renewable energy system (HRES) utilizing local renewable resources to fulfil the 
daytime electricity demand for a school in northwest Indonesia. Three different scenarios are developed 
for optimizing a grid-connected HRES by maximizing the renewable energy generation potential while 
minimizing the economic impact using a combination of NPC and payback period, the latter in terms of 
revenue generation from sale of electricity to the grid. Scenario II, comprising of Solar PV and Inverter 
only, is found to be the most feasible and cost-effective HRES, with the optimized configuration of 245 kW 
PV and 184 kW inverter having the lowest initial capital cost of US$ 51,686 and the payback time of 4 years. 
However, owing to limited availability of solar irradiance in the early morning hours and no battery 
storage backup or wind generation, the electricity demand during this period could not be fulfilled by the 
renewables alone. Nevertheless, the operating time of the school suits the energy production profile of this 
optimized HRES configuration, owing to the majority of school operations involving electricity 
consumption predominantly during daylight hours. The proposed optimized configuration can serve 
electricity requirements of similar facilities with daytime demands, bypassing the need for expensive 
battery backups.  

DATA AVAILABILITY 

All data generated from the study are provided in the Figures presented.  
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