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Abstract 

Key objectives in off-highway vehicular powertrain development are fuel efficiency and 

environmental protection. As a result palliative measures are made to reduce parasitic frictional 

losses, whilst sustaining machine operational performance and reliability. A potential key 

contributor to the overall power loss is the rotation of disengaged wet multi-plate pack brake 

friction. Despite the numerous advantages of wet brake pack design, during high speed 

manoeuvre in highway travel or at start-up conditions significant frictional power losses occur. 

The addition of recessed grooves on the brake friction lining is used to dissipate heat during 

engagement. These complicate the prediction of performance of the system, particularly when 

disengaged. To characterise the losses produced by these components, a combined numerical and 

experimental approach is required. This paper presents a Reynolds-based numerical model 

including the effect of fluid inertia and squeeze film transience for prediction of performance of 

wet brake systems. Model predictions are compared with very detailed combined Navier-Stokes 

and Raleigh-Plesset fluid dynamics analysis to ascertain its degree of conformity to 

representative physical operating conditions, as well the use of a developed experimental rig. The 

combined numerical and experimental approach is used to predict significant losses produced 

during various operating conditions. It is shown that cavitation becomes significant at low 

temperatures due to micro-hydrodynamic action, enhanced by high fluid viscosity. The 

magnitude of the losses for these components under various operating conditions is presented. 

The combined numerical-experimental study of wet multi-plate brakes of off-highway vehicles 

with cavitation flow dynamics has not hitherto been reported in literature. 
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Nomenclature 

c Denotes the circumferential direction 

cr  Denotes the cavitation reformation boundary 

Err Error in the pressure convergence criterion  

h Local plate separation/film thickness  

I Inertial force 

M Mass flow rate 

𝑛 Number of spherical cavitation bubbles per unit volume 

𝑁 Number of frictional surfaces 

𝑝 Pressure 

𝑝𝑎 Atmospheric pressure 

𝑝𝑣 Vapour pressure 

𝑟 Denotes the radial direction 

𝑟𝑏 Bubble radius 

𝑟𝑖 Inner radius of the annular friction plate 

𝑟𝑚 Effective radius 

𝑟𝑜 Outer radius of the annular friction plate  

𝑅𝑐 Source term related to the collapse of vapour bubbles 

𝑅𝑒 Source term related to the growth of vapour bubbles  

t Time 
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�⃗�  Velocity vector for the vapour phase 

W Sliding speed in radial direction 

Greek Letters 

𝛼 Vapour volume fraction 

Δ𝑖𝑗 Kronecker delta 

η Lubricant dynamic viscosity 

ρ Lubricant density 

σ Cavitation number 

𝜔 Angular velocity 

τ Viscous shear stress 

 

Introduction 

There is widespread use of off-highway vehicles in agriculture, construction and mining 

industries. Traditionally, these industries have prized these vehicles for their performance and 

reliability. In recent years the increasing cost of fuel has necessitated further optimisation of their 

powertrain system. Therefore, reduction of frictional power losses is a key objective in off-

highway powertrain development. This also results in reduction of environmentally harmful 

emissions.  One of the components targeted for improvement is the wet brake system whose 

design should also be affine to low wear, improved braking capacity and driveability [1].  

The early design and development of wet disk brakes is focused mostly upon its reliability, 

braking capacity and driver experience [1-3]. Various wet brake designs were investigated for 

wear, Noise Vibration and Harshness (NVH) and frictional performance during engagement 

using system level test rigs and full vehicle testing [1]. Anleitner [2] used an experimental 

approach to investigate the failure mode of the interfacial friction lining material as a function of 

brake engagement. A transient thermomechanical model was created by Zagrodzki [3] in order to 
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investigate the influence of thermal deformations on the contact area and locally generated 

contact pressures during engagement. It was concluded that the friction lining materials with 

lower elastic moduli would reduce the unwanted thermo-mechanical phenomena. 

Investigations of power loss produced by a disengaged wet brake and clutch packs have also been 

conducted [4-8]. A simple equation to predict drag torque in wet clutches under fully laminar 

flow was provided by Kitabayashi et al [4] as: 

𝑇 = 
𝑁𝜂𝜋(𝑟𝑜

2−𝑟𝑖
2)𝜔𝑟𝑚

2

ℎ
          (1) 

However, this equation only takes into account contact separation of a pair of clutch plates, 

whereas the majority of clutch systems comprise multi-pair friction plates with complex groove 

patterns to aid heat transfer from their contacts. The same model was used for modelling simple 

wet clutch geometries and extended to consider the effect of cavitation [4]. A model, based upon 

Reynolds equation, including lubricant inertial flow was used by Pahlovy et al [5] to investigate 

the influence of various radial groove designs on the efficiency of wet clutch packs. Another 

study investigating wet clutch packs was presented by Razzaque and Kato [6], comprising a 

computational fluid dynamic model to include the effect of lubricant squeeze film effect during 

engagement. With separations between the clutch plates exceeding thin diminutive films, the 

fluid inertial effect becomes important. Furthermore, under transient conditions the squeeze film 

effect should also be taken into account. Inclusion of squeeze effect ensures the continuity of 

transient effect of changes upon plates’ separations and can in fact enhance the load carrying 

capacity of the contact as has been shown in many load bearing applications, such as in bearings, 

gears, rings and seals [7-9].  

In recent years a significant body of work has been reported for investigation of cavitation in wet 

clutch pack systems, commonly employed in motorbikes and automotive applications. A 

combined numerical-experimental analysis was conducted by Takagi et al [10] observing the 

cavitation phenomenon in wet clutch packs. Good conformance was obtained between the 

experimental results and a computational fluid dynamics model. A similar study was conducted 

by Pahlovy et al [11] who also measured the lubricant film pressures at the inner and the outer 

edges of the annular plates.  
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The current study deviates for the cases reported in [10, 11] as the friction plate geometry is 

significantly larger in the case of off-highway vehicles and the lubricant for the clutch pack is 

commonly fed along the central shaft, whereas that for a brake disc lubricant is supplied through 

disc immersion into a sump of oil. 

There have been various investigations of multi-disc-wet brake heat transfer, NVH and wear 

during engagement. There has also been some work on wet clutch losses during disengaged 

condition. However, a dearth of work exists regarding the extent to which the disengaged wet 

brake packs contribute to off-highway vehicle inefficiency. The braking torque requirement of 

these components creates significant differences in the component geometry when compared with 

wet clutch losses discussed in the literature. The influence of temperature on cavitation due to 

pressure perturbations caused by the cooling channel geometry and enhanced by high viscosity is 

also investigated. A combined numerical and experimental approach to contribute in this area of 

work is presented here. The drag losses and vapour volume fraction at various operating 

conditions are presented. The Navier-Stokes model considers the effect of lubricant churning and 

formation of foam.  The findings and the approach expounded here has not hitherto been reported 

in literature.  

 

Disengaged Wet Brake Contact 

In a disengaged wet brake pack a difference in relative angular velocity can exist between the 

annular friction and the separator plates. In situ lubricant is supplied to the gap between the plates 

through their immersion into a sump and through centrifugal force due to their rotation. The 

supplied lubricant serves to dissipate the heat generated by contact friction during the instances of 

engagement of the brake plates.  The lubricant also serves the differential gearing, housed within 

the same casing. Radial grooves pressed onto the friction lining allow lubricant flow even during 

full engagement (figure 1). The lubricant and the relative angular velocity of plate pairs, when 

disengaged, cause parasitic hydrodynamic losses.  
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Figure 1: Friction plate design 

A component-level test rig is developed in order to investigate the viscous frictional losses 

produced in contact of friction-separator plate pairs (figure 2). The test rig is driven by a motor, 

through a twin-pulley system, rotating a shaft upon which the friction plate resides. A torque 

transducer is connected in series between a torque limiting coupling and the friction plate. A 

flexible coupling connects the transducer to the input shaft in order to allow any minor 

misalignment. The driven shaft is rotated in a custom-built sump. Deep groove ball bearings 

support the shaft and are interference fitted to the sump housing structure with end caps and 

locking plates. The separator stator plates are separated relative to each other by fixed spacers at 

three clamped locations. The separator plate pairs are allowed to float axially and assume an 

equilibrium position with respect to the friction plate due to the generated hydrodynamic 

pressures. 
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Figure 2. Component level test rig 

To isolate the frictional torque generated at the friction-separator plate conjunction, the bearing 

and shaft losses are initially determined before the brake plates are assembled. The test rig is then 

assembled and run under dry sump conditions at 500 rpm for 10 minutes in order to ensure that 

the bearings have reached thermal equilibrium. Measurements are then taken with a speed sweep 

in the range 0-1000 rpm to obtain the generated resistive torque due to the ancillary components 

as a function of rotational speed. 

The sump is then filled to the level of the bottom of the inner shaft radius, submerging the lower 

portion of the friction-separator plate contact. The lubricant in the sump is then heated to the 

desired operating temperature of interest, replicating the real world conditions of off-highway 

applications. The test rig is accelerated until the required operating speed is reached and then held 

constant at a constant speed in order to ensure consistent torque measurements. By subtracting 

the torque due the ancillary components from the total measured torque that attributed to the 

generated friction of separator plate conjunction can be determined. The simultaneous 

measurement of angular velocity allows the determination of power loss. 
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Numerical Model 

Hydrodynamics 

The numerical model uses Reynolds equation with the inclusion of lubricant inertial flow and 

squeeze film effect to determine the frictional power loss of the disengaged friction plate:  

𝜕

𝜕𝑐
(ℎ3 𝜕𝑝

𝜕𝑐
) +

𝜕

𝜕𝑟
(ℎ3 𝜕𝑝

𝜕𝑟
) − 6𝜂(𝑈1 + 𝑈2)

𝜕ℎ

𝜕𝑐
− 12𝜂

𝜕ℎ

𝜕𝑡
= −2𝜌ℎ

𝜕ℎ

𝜕𝑐
(
𝜕𝐼𝑐𝑐

𝜕𝑐
+

𝜕𝐼𝑐𝑟

𝜕𝑟
) − 2𝜌ℎ

𝜕ℎ

𝜕𝑟
(
𝜕𝐼𝑐𝑟

𝜕𝑐
+

𝜕𝐼𝑟𝑟

𝜕𝑟
) − 𝜌ℎ2 (

𝜕2𝐼𝑐𝑐

𝜕𝑐2 + 2
𝜕2𝐼𝑐𝑟

𝜕𝑐𝜕𝑟
+

𝜕2𝐼𝑟𝑟

𝜕𝑟2 −
𝜕2ℎ

𝜕𝑡2) − 12ℎ (𝑈1
𝜕𝜂

𝜕𝑐
+ 𝑊1

𝜕𝜂

𝜕𝑟
) + 2ℎ [

𝜕ℎ

𝜕𝑐
(𝜏𝑃ℎ

𝑐𝑎 − 𝜏𝑃0
𝑐𝑎) +

𝜕ℎ

𝜕𝑟
(𝜏𝑃ℎ

𝑎𝑟 − 𝜏𝑃ℎ
𝑎𝑟)] + ℎ2 [

𝜕

𝜕𝑐
(𝜏𝑃ℎ

𝑐𝑟 − 𝜏𝑃0
𝑐𝑟) +

𝜕

𝜕𝑟
(𝜏𝑃ℎ

𝑎𝑟 − 𝜏𝑃ℎ
𝑎𝑟)]     (2) 

where ρ is the lubricant density, I is its inertial and τ is the shear stress. r denotes the radial 

direction, c the circumferential direction, h is the local separation of the plates, p is pressure, η is 

the lubricant dynamic viscosity and U is the relative sliding speed. 

A polar coordinate mesh density of 120X960 nodes in the radial and circumferential directions is 

used.  

Boundary conditions 

Since the geometry of the patterned sections of the brake plate have rotational symmetry every 60 

degrees in circumferential direction, the computational time is reduced through application of 

periodic boundary conditions in the circumferential direction as:  

𝑝(0, 𝑟) = 𝑝 (
𝜋

3
, 𝑟)          (3) 

The inner and outer radii of the meshed area are set to the atmospheric pressure which is a close 

approximation of the operating vehicle axle conditions. 

𝑝(𝑐, 𝑟𝑖) = 𝑝(𝑐, 𝑟𝑜) = 𝑝𝑎         (4) 

Cavitation is taken into account through use of Swift-Stieber (Reynolds) lubricant film rupture 

and reformation boundary conditions. Principle of mass flow continuity is maintained in the 

cavitated region by estimating the lubricant volume fraction and assuming the residual non-

lubricant volume to be gaseous flow at atmospheric pressure. Within the cavitated region, 
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pressure-induced flow is assumed to diminish with a diminished pressure gradient at the 

reformation point, so that: 

𝑑𝑝

𝑑𝑐
(𝑐𝑟 , 𝑟) = 0           (5) 

Solution procedure  

The developed numerical model applies a discretised Reynolds equation with the inclusion of 

lubricant inertia and squeeze film transience to the input measured brake geometry. Convergence 

of the iterative pressure loop is undertaken, such that the error between successive iterations is 

achieved through diminution by three orders of magnitude from any initial assumption, using 

Gauss-Seidel point successive over relaxation iterations. Areas of cavitation correspond to 

diminished pressure gradient with liquid lubricant film rupture. The lubricant transport in these 

regions is determined through principle of mass flow conservation. The convergence criterion is: 

𝐸𝑟𝑟 =
∑ ∑ |𝑝𝑖,𝑗

𝑛 −𝑝𝑖,𝑗
𝑜 |

𝐽
𝑗=0

𝐼
𝑖=0

∑ ∑ 𝑝𝑖,𝑗
𝑛𝐽

𝑗=0
𝐼
𝑖=0

         (6) 

Where 𝑝𝑜 and 𝑝𝑛 are the pressures from a previous and the current iteration steps respectively.  

Friction and Power Loss 

The resistive frictional torque comprises pressure-induced Poiseuille flow, Couette flow as well 

as fluid inertial flow. Thus, the nodal friction is calculated as: 

𝐹𝑁 =
𝜂.𝑑𝑐.𝑑𝑟.𝑈

ℎ
+

𝑑𝑝

𝑑𝑐
. ℎ.

𝑑𝑐.𝑑𝑟

2
+

𝑑𝑐.𝑑𝑟.ℎ.𝜌.𝑀𝑟.𝑑𝑀𝑐

𝑑𝑟
       (7) 

For nodal areas within the cavitated regions, the wetted area is calculated through mass 

conservation, and the nodal friction becomes: 

𝐹𝑁 =
𝜂.𝑑𝑐.𝑑𝑟.𝑈Π𝑐𝑎𝑣

ℎ
+

𝑑𝑐.𝑑𝑟.ℎ.𝜌.𝑀𝑟.𝑑𝑀𝑐

𝑑𝑟
        (8) 

where Π𝑐𝑎𝑣 is the ratio of fluid volume to the total nodal volume. 

Friction torque is then calculated as the sum of the nodal friction contributions multiplied by their 

radial positions. The resultant power loss becomes: 
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𝑃𝐿 = 2𝜋𝑇𝑁𝑟𝑝𝑠           (9) 

Navier-Stokes Model 

The Reynolds solution has the advantage of time-efficient computation, but it does not take into 

account the pressure into the depth of the lubricant film, which is important in the case of thicker 

films in disengaged plate pairs. Furthermore, cavitation may occur within the full film region of 

gaps of larger thickness as well as multi-layered flow characteristics of the lubricant through the 

contact as shown by Shahmohamadi et al [12, 13] in the case of diminutive films of piston 

compression ring-cylinder liner contact and those of big-end bearings of internal combustion 

engines, subjected to contact separation. Therefore, it is essential to carry out a flow analysis 

based on Navier-Stokes equations for two-phase flow through the contact. Such an analysis is 

computationally intensive with respect to the above expounded approach, but can be used as a 

method of ascertaining the extent of its validity.   

Governing equations  

Conservation of mass and momenta are obtained through use of Navier-Stokes equations, where 

the subscript 𝑣 denotes the vapour phase and 𝑙 the liquid phase [14]: 

𝐷𝜌𝑙,𝑣

𝐷𝑡
+ 𝜌𝑙,𝑣∇. �⃗� 𝑙,𝑣 = 0          (10) 

𝜌𝑙,𝑣
𝐷�⃗⃗� 𝑙,𝑣

𝐷𝑡
= −∇𝑝𝑙,𝑣 + ∇. (𝜏�̅�𝑗)         (11) 

The viscous shear stress tensor 𝜏�̅�𝑗 is:  
























 V

x

u

x

u
ij

i

j

j

i
ij


.

3

2
         (12) 

where, 𝜂 is the lubricant dynamic viscosity, Δ𝑖𝑗 is the Kronecker delta and �⃗�  the velocity vector: 

𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤�̂� in the three orthogonal Cartesian frame of reference: (𝑥, 𝑦, 𝑧). 

Cavitation model 

The converging-diverging geometry of the grooved features pressed onto the friction lining may 

promote cavitation within the contact. During testing it was observed that the lubricant in the 
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sump is rapidly churned and aerated. In figure 3 the rotating disk can clearly be seen to cause the 

suspension of numerous micro-scale bubbles in the oil sump. To consider cavitation in a fluid 

containing a large number of spherical bubbles in suspension, Schnerr and Sauer [15] proposed a 

model which is used in the current analysis. The model assumes that the growth of vapour 

cavitation bubbles is initiated through heterogeneous nucleation. 

 

Figure 3: Image of sump with aerated oil 

The liquid vapour mass transfer can be written as: 

𝑅 = 𝑅𝑒 − 𝑅𝑐           (13) 

where 𝑅𝑒 and 𝑅𝑐 are the mass transfer due to bubble growth and collapse. This can be expressed 

as: 

If: 𝑝 ≤ 𝑝𝑣, then: 𝑅𝑒 =
𝑃𝑣𝑃𝑙

𝜌
𝛼(1 − 𝛼)

3

𝑟𝑏
√

2

3

(𝑝𝑣−𝑝)

𝜌𝑙
 

Else, when: 𝑝 > 𝑝𝑣, then: 𝑅𝑐 =
𝑃𝑣𝑃𝑙

𝜌
𝛼(1 − 𝛼)

3

𝑟𝑏
√

2

3

(𝑝−𝑝𝑣)

𝜌𝑙
 

The total mass transfer is governed by the vapour transport equation as: 
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𝑅 =
𝜕(𝜌𝑣𝛼)

𝜕𝑡
+ ∇(𝜌𝑣�⃗� 𝑣𝛼)         (14) 

where 𝛼 is the vapour volume fraction:  

𝛼 =
4

3
𝜋𝑛𝑟𝑏

3

1+
4

3
𝜋𝑟𝑏

3
           (15) 

where the number of spherical bubbles per unit volume and vapour pressure are assumed to be 

𝑛 = 1013 and 80 𝑘𝑃𝑎 respectively. The bubble dynamics; growth and collapse is accounted for 

by the Rayleigh-Plesset equation. A no-slip boundary condition is assumed between the disparate 

phases. 

Boundary conditions 

To reduce the mesh size and thus the analysis time a periodic boundary condition at the repeating 

edges is imposed. At the internal edge of the contact an inlet pressure is applied and the outlet 

pressure occurs at the external contact radius. The grooved friction plate face has an angular 

velocity about the centre of rotation. The flat separator plate is a considered as a stationary wall. 

The boundary conditions are shown in Figure 4 and are in-line with similar studies by Razzaque 

and Razzaque and Kato [6] and Cho et al [16]. 

 

Figure 4: Boundary conditions for Navier-Stokes analysis 



 

13 

 

Meshing 

The geometry is spatially discretised using a mesh primarily comprising hexahedral elements. A 

tetrahedral mesh type is used at the complex groove intersections in the centre of the contact 

geometry. The mesh consists of 8x10
6
 elements. The mesh at the periodic boundaries is required 

to be identically matched. A mesh dependency study is conducted using the conditions and 

parameters described in tables 1 and 2. 

Solution procedure 

A multi-phase mixture model [17] with a pressure-based solver using Semi-Implicit Method for 

Pressure-Linked Equations (SIMPLE) algorithm for velocity and pressure coupling is employed. 

For the spatial discretisation of momenta a second order upwind solver is used to minimise any 

discretisation errors. 

Results 

The bespoke friction-separator plate test rig is run under the conditions described in table 1. The 

lower temperature is representative of a typical start-up condition (20°C), the highest temperature 

is 70°C, comparable to the axle casing bulk oil temperature. It should be noted that the 

temperature range specified is fairly conservative as the off-highway vehicles are often required 

to operate under extreme environmental conditions. A speed of 926 rpm is chosen as it represents 

the relative rotational velocity between the friction and separator plates, typical of on-highway 

travel of these vehicles. The test rig measurements are simulated with the developed numerical 

models for comparative purposes. A typical transmission fluid is used, the rheological data for 

which is provided in table 2. 

Table 1: Conjunctional geometric data 

Inner Diameter 160 mm 

Outer Diameter 220 mm 

Rotation speed 926 rpm 

Minimum Separation 200 µm 

Temperature range 20°C-70°C 

Groove depth 500 µm 

Groove pattern Cross radial grooves (figure1) 
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Table 2: Lubricant rheological data 

Lubricant Dynamic Viscosity  7.7 cP (at 100°C) 

45.3 cP (at 40°C) 

Lubricant Density  880 kgm
-3

 (at 100°C) 

 

 

(a) 

 

(b) 



 

15 

 

Figure 5: Experimental measurements and numerical predictions for (a)- torque and (b)- and 

power loss of the brake pair at various operating temperatures 

 

At higher temperatures with lower lubricant viscosity there is close agreement between the 

experimental and both methods of numerical analyses for frictional torque and Power loss 

(figures 5a and 5b). At the lower temperatures predictions of the Reynolds-based analysis 

diverges from the experimental measurements. However, the Navier-Stokes predictions are closer 

to the experimental measurements. At constant angular velocity and plates’ separation the 

pressure fluctuations increase with higher lubricant viscosity. This is shown by the results of the 

Reynolds-based model at various temperatures (figure 6). Pressure perturbations occur at the 

edges of the grooves. This phenomenon is known as micro-hydrodynamics which leads to 

increased load carrying capacity of the contact. It is increasingly utilised in texturing of 

contacting surfaces as shown by Morris et al [18]. However, in the case of grooved brake friction 

discs the main purpose is to transfer the heat away from the contact by facilitating lubricant flow.  

It is thought that cavitation is induced by increased pressure perturbations, which is not 

sufficiently addressed by the Reynolds-based model. 

 

(a) 
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(b) 

 

(c) 

Figure 6: Pressure distributions calculated with the Reynolds-based model at various 

temperatures (a) 50°C (b) 75°C and (c) 100°C 

The results in figure 5 show that at lower lubricant viscosities the pressure perturbations, induced 

by groove geometry, are reduced and the Reynolds-based model is a suitable time efficient tool 

for analysis. For investigation of start-up conditions a full solution of Navier-Stokes with 

cavitation model is required to accurately represent the contact conjunction. The result can be 

explained with the use of the dimensionless cavitation number (𝜎), where a smaller value of σ 

indicates an increased propensity of the flow to cavitate: 

𝜎 =
𝑝𝑟−𝑝𝑣
1
2
𝜌𝑣2            (16) 

At lower temperatures, the lubricant viscosity increases and pressure perturbations are 

exacerbated. As a result the diverging regions of the flow experience lower generated pressures. 

The cavitation number shows that as fluid pressure decreases, there is an increased likelihood of 

the flow to cavitate.  

The volume fraction predicted in the Navier-Stokes model is shown in figure 7. As expected the 

results indicate the influence of cavitation becomes significant at lower temperatures. The results 

help to explain the lower frictional torque observed in the experiment as the shear in the cavitated 

regions is significantly reduced compared with the fully wetted regions.  
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Figure 7: Predicted vapour volume fraction from Navier-Stokes under various thermal conditions 

The frictional power loss for a dual 5 friction plate brake pack at high speed in highway travel is 

predicted by extrapolating the results from the experimental test rig and the Navier-Stokes model 

(figure 8). The frictional power loss during the start-up conditions is shown to be in the region of 

20 kW. Although this is a significant power loss, even higher losses would be expected during 

extreme low temperature climatic conditions under which off-highway vehicles are required to 

start up and operate. At thermal equilibrium, when a steady running temperature is achieved, the 

viscous drag is shown to be approximately 4.5 kW. Whilst this is much lower than the start-up 

condition, it is nevertheless quite significant level and likely to be sustained for extended periods 

of on highway travel. 
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Figure 8: Predicted power loss for a 10 friction disk clutch pack cold start-up (25°C) and running 

temperature (75°C). 

 

Conclusions 

The disengaged wet brake system has been shown to produce significant viscous losses during 

various operating conditions. Under start-up conditions, it is predicted that the disengaged losses 

under high speed on highway operation would be in the region of 20kW. The significance of the 

braking losses for these components has not hitherto been reported in literature. These losses 

were identified using a combined numerical-experimental approach. The validated numerical 

models can now be applied to various brake friction lining patterns and operational parameters in 

order to optimise the design to minimise the power losses. The time-efficient Reynolds model is, 

however, only suitable for predictive analysis at lower lubricant viscosity, meaning higher 

operating conditions. In order to model the brake pack during start-up conditions a multi-phase 

mixture model, taking into account the effect of generated pressure perturbations and cavitation is 

required. Another key finding, not hitherto presented in literature, is the oil foam formation 

included in the Navier-Stokes model shows a significant effect on the onset of cavitation and drag 

loss at low temperatures. It is shown that this occurs as the result of increased pressure 

perturbations induced by the cooling channel geometry. Since, start up and other higher lubricant 
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viscosity operating conditions represent only a small portion of the duty cycle, the developed 

Reynolds model represents an effective means for wet brake optimisation. 
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