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Rank histograms are a popular way to assess the reliability of ensemble
forecasting systems. If the ensemble forecasting system is reliable, the
rank histogram should be flat, “up to statistical fluctuations”. There are
two long noted challenges to this approach. Firstly, uniformity of the
overall distribution is implied by but does not imply reliability; ideally
the distribution of the ranks should be uniform even conditionally on
different forecast scenarios. Secondly, the ranks are serially dependent
in general, precluding the use of standard goodness–of–fit tests to assess
the uniformity of rank distributions without any further precautions. The
present paper deals with both these issues by drawing together the concept
of stratified rank histograms, which have been developed to deal with the
first issue, with ideas that exploit the reliability condition to manage the
serial correlations, thus dealing with the second issue. As a result, tests for
uniformity of stratified rank histograms are presented that are valid under
serial correlations.

Key Words: Ensemble Forecasts; Reliability; Forecast Evaluation; Rank Histograms; Serial Dependence;

Statistical methods
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1. Introduction1

To an increasing degree, dynamical forecasting systems for the2

atmosphere and the ocean are issuing ensemble forecasts, in an3

attempt to convey a range of future scenarios of the system4

under concern together with their respective likelihood. There5

exists by now a large body of work concerned with assessing6

the quality and skill of ensemble forecasting system, providing7

both methodological insight as well as practical tools. Several8

statistical properties of ensemble forecasting systems have9

been identified as desirable; see for instance Bröcker (2009,10

2012); Weigel (2011). An important one is reliability, which11

means (roughly speaking) that at any point tn in time,12

the ensemble members X1(n), . . . , XK(n) and the verification13

Y (n) can be considered as having been drawn independently14

from an underlying (or latent) forecast distribution. (A formal15

definition will be given in Section 2.)16

Reliability of ensemble forecasts has been considered in a17

number of publications; a popular tool to assess reliability18

are rank histograms (see e.g. Anderson 1996; Hamill and19

Colucci 1997; Talagrand et al. 1997; Hamill 2001). Assuming20

that the verifications are real numbers, one determines the21

rank R(n) of the verification Y (n) among the ensemble22

members X1(n), . . . , XK(n) (where n is the time). If the23

ensemble forecasting system is reliable, the ranks are uniformly 24

distributed, whence a reliable ensemble forecasting system 25

should produce a “more or less” uniform rank histogram, that 26

is up to random fluctuations. 27

As has been emphasised by several authors (Hamill and 28

Colucci 1997, 1998; Bröcker 2008; Siegert et al. 2012), 29

uniform rank distribution is only a necessary but not a 30

sufficient criterion for reliability. Potentially more powerful 31

tests result if the verification–forecasts pairs are stratified, 32

that is, divided into subsets corresponding to different 33

forecasting situations (roughly speaking). Given reliability, 34

even individual histograms for the separate strata should 35

exhibit a uniform distribution. 36

Irrespective of whether stratified or unstratified histograms 37

are used, a rigorous testing methodology needs to take into 38

account that a rank histogram will never be precisely flat even 39

for a reliable forecasting system, and the random deviations 40

from flatness need to be analysed quantitatively. As has been 41

noted by several authors (Wilks 2010; Pinson et al. 2010; 42

Siegert et al. 2017; Bröcker 2018), a problem with forecast 43

assessment in general is that the verification–forecast pairs (or 44

in our case the ranks) are generally not independent, which 45

renders this analysis very difficult. In particular, classical 46

goodness–of-fit tests are not applicable to the flatness of 47
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2 J. Bröcker, Z. Ben Bouallègue

rank histograms (stratified or unstratified) since the ranks are48

serially dependent.49

The purpose of the present paper is to extend the50

approach taken in Bröcker (2018), which addresses this51

problem in the context of unstratified rank histograms,52

and extend it to stratified rank histograms. The approach53

rests on the observation that a reliable ensemble X(n) =54

(X1(n), . . . , XK(n)) provides (an approximation to) the55

distribution of Y (n), given what information was available to56

the forecaster at the initialisation time of the forecast X(n)57

(usually at time n− T , where T is the lead time). This can be58

harnessed to at least constrain the correlation structure of the59

ranks to some extent. The result of the presented analysis is60

a generalised χ2–test for the (joint) flatness of stratified rank61

histograms and thus for the reliability of ensemble forecasts,62

extending the results in Bröcker (2018).63

In Section 2 we present the mathematical setup and64

provide a definition of reliability for ensemble forecasting65

systems in mathematical terms. The concept of stratification is66

explained in Section 3, while Section 4 presents a methodology67

to statistically test stratified rank histograms for flatness;68

Theorem 1 provides the asymptotic distribution of the test69

statistic under reliability and minimal additional assumptions.70

Section 5 discusses the main steps to perform the test in71

an algorithmic fasion. Numerical examples are presented in72

Section 6, discussing data from an operational ensemble73

forecasting system; Section 7 concludes. Several mathematical74

details are presented in the Appendices.75

2. Setup, notation and the definition of reliability76

We start with fixing some general notation. The general77

setup will be very similar to the one in Bröcker (2018). The78

verifications are modelled as a sequence {Y (n), n = 1, . . . , N}79

of random variables with values in the real numbers, with the80

index n representing the time. The corresponding ensembles81

{X(n), n = 1, . . . , N} are modelled as a sequence of random82

variables, where for each time instant n the ensemble is given83

by a vector X(n) = (X1(n), . . . , XK−1(n)) of K − 1 ensemble84

members, where each ensemble member Xk(n) is again a real85

number.∗ The rank R(n) of the verification Y (n) with respect86

to the ensemble X(n) is defined as one plus the number of87

ensemble members X1(n), . . . , XK−1(n) that are smaller than88

or equal to Y (n).89

A desirable property of forecasting systems is reliability,90

which means roughly speaking that for each time n,91

each individual ensemble member Xk(n), k = 1, . . . ,K − 192

as well as the corresponding verification Y (n) are drawn93

independently from the same underlying distribution. To make94

this precise, for every time instant n = 1, . . . , N we let Fn95

be the information available to the forecaster for producing96

the ensemble forecast X(n), that is to say, at the time this97

ensemble forecast is issued. Further, let98

pn(A) := P(Y (n) ∈ A|Fn) (1)

be the conditional distribution of Y (n) given the information99

Fn for all n = 1, . . . , N and any set A on the real line.† Then100

the forecasting system is reliable if101

P(Y (n) ∈ A0, X1(n) ∈ A1, . . . , XK−1(n) ∈ AK−1|Fn)

= pn(A0) · . . . · pn(AK−1)
(H0)

∗Using K − 1 rather than K ensemble members will simplify subsequent
notation.
†Strictly speaking for any measurable set A on the real line.

for all times n = 1, . . . , N and any selection of subsets 102

A0, . . . , AK−1 of the real line. The condition (H0) constitutes 103

the null hypothesis for which tests will be presented. An 104

equivalent formulation is: For all times n = 1, . . . , N , 105

i. the distribution of each ensemble member Xk(n), 106

conditional on Fn, is equal to the distribution of the 107

verification Y (n), conditional on Fn, and 108

ii. the ensemble members and the verification 109

Y (n), X1(n), . . . , XK−1(n), conditional on Fn, are 110

independent from one another.‡ 111

We will impose an additional assumption which is usually 112

not stated as part of the reliability condition but which is 113

evidently satisfied in most applications where forecasts are 114

made with a certain lead time T . This means that for any 115

n the forecast X(n) is prepared a certain number T of time 116

steps previously, implying that at that point the forecaster 117

knows the verifications Y (m) and ensembles X(m) for m = 118

1, . . . , n− T . In other words, we assume that 119

For any n = 1, 2, . . ., the forecast information Fn
contains the verifications and ensembles Y (m) and

X(m) for m = 1, . . . , n− T .

(2)

This assumption will be crucial later on. Note however that 120

this assumption does not form part of our null hypothesis 121

as we are not aiming to test against any alternatives to this 122

assumption. 123

3. Stratification of ensemble forecasts 124

As we will see below, reliability implies that the ranks 125

{R(n), n = 1, 2, . . .} have a uniform distribution (over the 126

numbers 1, . . . ,K) but we will see much more, namely that 127

the distribution is uniform conditionally on Fn. In broad 128

terms this means that if the entire data set is divided into 129

subsets that correspond to different forecasting scenarios, 130

the ranks within each subset are expected to exhibit a 131

uniform distribution. Dividing the data into subsets that 132

correspond to different forecasting scenarios will be referred to 133

as stratification in the following. The fact that the ranks are 134

uniform within each stratum is a much stronger property than 135

being unconditionally uniform and ought to be exploited for 136

a reliability test. There are various ways to stratify the data, 137

that is, to distinguish between different forecasting scenarios. 138

Here are a few examples: 139

• If the ensembles are generated by perturbing an 140

analysis (which in turn has been obtained through 141

data assimilation), then that analysis could be used to 142

identify different forecasting situations, and the data 143

could be stratified along the analysis. 144

• Stratification could be performed directly along 145

observations which are available at forecast time. 146

These could either be observations used to verify 147

previous forecasts, or other observations (of different 148

meteorological quantities for instance). 149

• The ensemble forecasts could be stratified along another 150

deterministic forecast generated in tandem with the 151

ensemble, such as the high resolution forecast at the 152

European Centre for Medium Range Weather Forecasts. 153

‡It turns out that the entire analysis in the present paper remains valid
if “independence” in this statement is replaced by the weaker condition
of “exchangeability” (Bröcker and Kantz 2011).

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls



Stratified rank histograms under serial dependence 3

To describe the idea in mathematical terms, we assume a154

sequence {S(n), n = 1, . . . , N} of random variables with values155

in the finite set {1, . . . , L} where S(n) indicates the relevant156

stratum (out of L different possibilities) at time n. In the157

examples above, S(n) would be known at forecast time and158

hence be completely determined by the information in Fn; we159

will call stratifications of this kind external stratifications.160

An alternative possibility might come to mind, namely161

calculating S(n) as a function of the ensemble X(n) =162

(X1(n), . . . , XK−1(n)). Such a function would have to be163

symmetric as the ordering of the ensemble member does not164

carry any significant information. This approach has problems165

though; as was shown in Siegert et al. (2012), stratifying along166

a symmetric function of the ensemble alone does not give flat167

rank histograms.168

The trick to avoid that difficulty is to include the verification169

in the stratification function. We consider a symmetric170

function171

s : RK → {1, . . . , L} (3)

where L ∈ N, and define the random variables {S(n), n =172

1, 2, . . .} through173

S(n) = s(Y (n),X(n)) (4)

for n = 1, 2, . . .. Possible choices for s are coarse grained174

versions of the mean or the median. A stratification of this175

form will be called internal. In the following, the stratification176

might be either external or internal. This will only make a177

difference with regards to the theory. In practice, external and178

internal stratifications can be used in exactly the same way.179

4. A generalised χ2–test for flatness of stratified180

rank histograms181

It is now possible to show from Equation (H0) that for each182

n fixed, the random variables R(n) and S(n) are independent,183

and that R(n) has a uniform distribution (see Appendix A).184

If we denote by Nk,l the number of times n for which185

R(n) = k and S(n) = l where k = 1, . . . ,K; l = 1, . . . , L and186

define N•,l :=
∑K
k=1Nk,l (which is the no. of times n for187

which S(n) = l), then by Equation (21) we expect that up188

to “sampling variations”, we have189

Nk,l ∼=
1

K
N•,l. (5)

If, in addition, the pairs (R(n), S(n)), n = 1, 2, . . . were190

temporally independent, the random variables191

dk,l =
Nk,l − 1

KN•,l√
1
KN•,l

, (6)

which basically quantify the error in (5), are asymptotically192

normal with mean zero and a covariance matrix given193

by an orthogonal projector onto a (K − 1)L–dimensional194

subspace (see for instance Mood et al. 1974, for a discussion195

of classical χ2–tests). It follows that the test statistic196

t =
∑
k,l

d2
k,l (7)

has a χ–square distribution with (K − 1)L degrees of freedom.197

This fact forms the basis of the classical goodness–of–fit test.198

In practice though the pairs (R(n), S(n)), n = 1, 2, . . .199

are not temporally independent, but using the reliability200

condition (H0) again, now in combination with condition (2)201

it is possible to obtain strong decorrelation properties of the 202

ranks (see Eq. 23 in Appendix A). It turns out that we also 203

need the rank–stratification pairs (R(n), S(n)), n = 1, 2, . . . 204

to be a stationary and ergodic sequence. Stationarity of a 205

random sequence a(1), a(2), . . . means that for any m, the joint 206

distribution of (a(n), . . . , a(n+m)) does not depend on n or, 207

roughly speaking, is invariant with respect to temporal shifts. 208

A stationary sequence is ergodic if any average of the form 209

1

N

N∑
n=1

φ(a(n), . . . , a(n+m)) (m fixed) (8)

converges to E[φ(a(n), . . . , a(n+m))] as N →∞. Note that 210

by stationarity, this quantity does not depend on n. As 211

ergodicity usually presumes stationarity, we will take “ergodic” 212

to mean “stationary and ergodic”. Ergodicity is the only 213

extraneous assumption we need to add in order to prove 214

Theorem 1. We note that the rank–stratification pairs 215

(R(n), S(n)), n = 1, 2, . . . might be a stationary and ergodic 216

sequence even though the original verification–forecast pairs 217

are not. Suppose for instance that the verification–forecast 218

pairs are ergodic “up to” a common deterministic signal 219

u(n), n = 1, 2, . . . (a climatic trend for instance), in the sense 220

that subtracting this signal from the verification and all 221

ensemble members would render the verification–forecast pairs 222

ergodic. Note that subtracting the signal does not change 223

the ranks, and by choosing a stratification function that does 224

not change either when subtracting the same value from the 225

verification and all ensemble members, we can make sure that 226

the rank–stratification pairs do not depend on this signal 227

and are thus ergodic. For instance if s(x) depends only on 228

differences xi − xj , i, j = 1, . . . ,K, it will have the required 229

property. The assumption of ergodicity might seem strong, 230

in view of the fact that the relevant data is subject to 231

periodic components (seasonal or diurnal cycles) as well as 232

long term trends such as climate change. A closer analysis 233

reveals that periodic cycles do not present a problem to our 234

methodology if they are much shorter than the overall length 235

of the data set. This is not the case for the seasonal cycle 236

which is one reason why our numerical examples consider 237

data from the winter season only. The only way of dealing 238

with seasonal cycles, it seems, is on a case by case basis. 239

In the same way, there is very little that can be said in 240

general if the data contains fundamental non–stationarities, 241

for instance as a result of climate change (on a time scale 242

comparable to the size of the data archive). It has to be 243

kept in mind though that any statistical forecast evaluation 244

method will require some form of stationarity at least, so the 245

concerns here in fact applies to statistical forecast evaluation 246

as a whole. If non–stationarities are present, we lose the 247

link between expected forecast performance in the future and 248

average forecast performance in the past, a link on which 249

statistical forecast evaluation fundamentally rests. 250

Like the classical goodness–of–fit test, the test proposed 251

here uses a test statistic which will be a modification of t in 252

Eq. 7. Again, the asymptotic distribution of the test statistic 253

will be χ2 with a certain number of degrees of freedom; this is 254

essentially the statement of Theorem 1 below. 255

Before stating the theorem, we will try and elucidate the 256

main ideas of the theorem and its proof. It follows from our 257

assumptions that the dk,l, k = 1, . . .K, l = 1, . . . , L still satisfy 258

a central limit theorem. In principle, the covariance of the dk,l 259

could be used to normalise these random variables, in order 260

that the sum of their squares again yields a χ2–distributed 261

quantity. In contrast to the situation with independent ranks 262

though, the asymptotic covariance of these random variables 263

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls



4 J. Bröcker, Z. Ben Bouallègue

is no longer known. This problem is addressed by estimating264

the covariance matrix of the dk,l from the data and using this265

estimate instead of the true covariance matrix. The feasibility266

of this approach of course requires proof.267

The reader might wonder how one might possibly estimate268

all the required covariances in a real world problem; if we269

consider for instance an ensemble forecasting system with270

50 ensemble members and we want to investiage three strata,271

the dk,l comprise 153 random variables already, implying in272

excess of 11,000 covariances to be estimated. In order to273

reduce that number, we reduce the information taken from274

each histogram; rather than using the full histogram with its275

K entries, we project it onto a few elements of RK which276

we call contrasts. The effect is that, in statistical terms, the277

test looses power (the probability of correctly identifying an278

unreliable forecasting system), but there is better control over279

the test size (i.e. the significance level is closer to the actual280

probability of errorneously rejecting a reliable forecasting281

system as unreliable).282

Mathematically speaking, the idea is to choose K–283

dimensional vectors w(1), . . . ,w(µ), the contrasts, and284

consider the random variables285

νm,l =

K∑
k=1

w
(m)
k Nk,l, (9)

for m = 1, . . . , µ and l = 1, . . . , L. By taking µ < K (i.e. fewer286

contrasts than histogram bars), we obtain a reduction of the287

dimensionality of the problem. We shall see later that having288

this option is necessary in practice.289

When choosing contrasts, one should avoid “constant”290

contrasts, that is, contrasts with all components being the291

same. Indeed, if for instance w(1) is such a contrast (with all292

components being one, say), then ν1,l = N•,l which is simply293

the number of samples in stratum l and does not contain any294

information about the histogram. Thus we define a contrast to295

be a vector w ∈ RK so that
∑K
k=1 wk = 0. Further, we take296

the contrasts w(1), . . . ,w(µ) to be orthogonal and normalised.297

Such a set can have at most K − 1 contrasts, so we must have298

µ < K. Orthogonality of the contrasts would imply that the299

νm,l are asymptotically independent if the rank–stratification300

pairs were independent (see Jolliffe and Primo 2008, for a301

thorough analysis in that situation). But even in the general302

case it seems advisable to use orthogonal contrasts in order303

that the νm,l provide complementary information. A practical304

way to compute contrasts (with some control on their shape)305

will be provided in Section 5.1.306

Our assumptions will entail that asymptotically (for large307

N) the quantities308

ζm,l :=
νm,l√
N

(10)

are jointly (in m, l) normally distributed with mean zero and309

some covariance tensor Υm,l,m′,l′ . This covariance will be310

needed later but is unknown in general, and therefore has to311

be estimated. An estimator Υ̂ will be discussed in Section 5,312

Equation (17). The feasibility of this estimator is again due313

to the strong decorrelation property of the ranks (implied by314

condition (2) and Eq. 20), and the assumption that the pairs315

{(R(n), S(n))} form a stationary and ergodic sequence.316

With the inverse Υ̂−1 of Υ̂ defined so as to satisfy317 ∑
m′,l′

Υ̂−1
m,l,m′,l′Υ̂m′,l′,m′′,l′′ = δm,m′′δl,l′′ , (11)

the proposed test statistic is318

t̃ :=
∑

m,l,m′,l′

Υ̂−1
m,l,m′,l′ζm,lζm′,l′ , (12)

where in the sum the indices m,m′ run from 1 to µ, and 319

the indices l, l′ run from 1 to L. Using this test statistic 320

is motivated by the fact (already hinted at above) that if 321

the ζm,l were indeed normally distributed with mean zero 322

and covariance tensor Υ, then the random variable t̃ in 323

Equation (12) (with Υ in place of Υ̂) would have a χ2– 324

distribution with µ · L degrees of freedom, as is easily seen. 325

Our theorem states that under the imposed conditions, this is 326

still the case asymptotically for large N . 327

Theorem 1 Suppose that the ensemble forecasting system 328

is reliable (i.e. condition H0 holds), condition (2) is satisfied, 329

and {(R(n), S(n)), n = 1, 2, . . .} is ergodic. Then the statistic 330

t̃ has, asymptotically for large N , a χ2–distribution with µ · L 331

degrees of freedom. 332

For a proof, see Appendix C. By rejecting the 333

hypothesis (H0) when t̃ > θ and otherwise accepting, we 334

obtain a test for reliability which according to Theorem 1 335

is of size Φ(θ) (asymptotically for large N), where Φ is the 336

cumulative distribution function of the χ–square distribution 337

with L · µ degrees of freedom. 338

Unfortunately, very little of generality can be said 339

about the power of the test. The alternative hypothesis 340

comprises all probability distributions that do not satisfy the 341

hypothesis (H0), and given the multitude of these there is little 342

hope that the presented (or in fact any) test develops nontrivial 343

power against all conceivable alternatives. Furthermore, there 344

does not seem to be an obvious candidate of a restricted 345

alternative hypothesis (or deviation from reliability) that is 346

sufficiently ubiquitous in order to warrant closer investigation 347

and, at the same time, sufficiently specific so as to allow us 348

to make statements about the power. Therefore, as far as we 349

can see a systematic power study would require considering a 350

large number of possibly relevant situations, which is beyond 351

the scope of the present paper. 352

5. Description of algorithms 353

In this section, we will list the necessary steps to calculate t̃ and 354

perform the test, although this information could in principle 355

be gathered from Section 3 (with the exception of the estimator 356

for Υ in Equation (17) below). An algorithm to calculate 357

contrasts will also be provided. We still assume that for each 358

n, the verification Y (n) is a real number and the ensemble 359

X(n) = (X1(n), . . . , XK−1(n)) is a K − 1–dimensional vector, 360

that is, an element of RK−1; so there are K − 1 ensemble 361

members. We let 362

s : RK → {1, . . . , L} (13)

be a symmetric function (with values in the set {1, . . . , L}). 363

Further, {R(n), n = 1, 2, . . .} are the ranks and {S(n), n = 364

1, 2, . . .} the strata defined as S(n) = s(Y (n),X(n)) for n = 365

1, 2, . . ., in case internal stratification is used. Otherwise, let 366

S(n), n = 1, 2, . . . be indicators of the external strata. 367

5.1. Creating a set of contrasts 368

We describe an algorithm to create a set {w(m) ∈ RK ,m = 369

1, . . . µ} of contrasts, where necessarily µ < K. 370

I. Let V be a matrix of dimension K × (µ+ 1) with rank 371

(µ+ 1) (i.e. the columns are linearly independent) and 372

the first column being a constant vector (i.e. all entries 373

are the same and not zero). An example for such a 374

matrix (which gives quite interpretable results) is 375

Vk,l =

(
k

K + 1
− 1

2

)l−1

(14)

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls



Stratified rank histograms under serial dependence 5

II. Let Q,R be matrices of dimension K × (µ+ 1) and376

(µ+ 1)× (µ+ 1), respectively, so that377

(a) the columns of Q are normalised and mutually378

orthogonal;379

(b) R is right upper triangular;380

(c) V = QR.381

Such matrices can be found by applying a Gram–382

Schmidt procedure to the columns of V or equivalently383

through a QR–decomposition of V.384

III. Now ignore the first column of Q which will have385

constant entries; the remaining µ columns form the386

desired contrasts.387

Figure 1 shows three contrasts for the case of K = 8. These388

were obtained by applying the described procedure to the389

matrix in Equation (14) with K = 8 and µ = 3.390

5.2. Implementing the generalised χ2–test of Theorem 1391

We assume that ensembles and verifications have been392

converted to ranks {R(n), n = 1, . . . , N} and strata {S(n), n =393

1, . . . , N}. Contrasts {w(m),m = 1, . . . , µ} have also been394

chosen with µ < K. The lead time is assumed to be T .395

I. Calculate Zm,l(n) for m = 1, . . . , µ, l = 1, . . . , L and396

n = 1, . . . , N according to397

Zm,l(n) = δS(n),l ·w
(m)
R(n)

, (15)

where here and in the following we define δk,l = 1 if k = l398

and zero otherwise.399

II. Calculate ζm,l for m = 1, . . . , µ and l = 1, . . . , L400

according to401

ζm,l =
1√
N

N∑
n=1

Zm,l(n). (16)

(Note that this indeed gives the same as Eq. 10.)402

III. Estimate the covariance Υ by403

Υ̂m,l,m′,l′ :=
1

N

N∑
n=1

Zm,l(n)Zm′,l′(n)

+
1

N

N∑
n=1

T−1∑
k=1

{
Zm,l(n)Zm′,l′(n+ k) + Zm,l(n+ k)Zm′,l′(n)

}
.

(17)

Note that Υ̂ is by construction symmetric, that is404

Υ̂m,l,m′,l′ = Υ̂m′,l′,m,l. Therefore, it is sufficient to405

calculate Υ̂m,l,m′,l′ for (m, l) either equal to or larger406

than (m′, l′) in lexicographic ordering, that is (m, l) >407

(m′, l′) if either m > m′ or m = m′, l > l′.408

IV. Find the inverse Υ̂−1 of Υ̂ (in the sense of Eq. 11) and409

calculate the test statistic410

t̃ =
∑

m,l,m′,l′

Υ̂−1
l,m,l′,m′ ζm,l ζm′,l′ . (18)

V. Compare t̃ to a χ–square distribution with L · µ degrees411

of freedom. That is, let Φ be the cumulative distribution412

function of the χ–square distribution with L · µ degrees413

of freedom, then the p–value of our data is given by414

p = 1− Φ(t̃).415

A python package franz (Bröcker 2019) has been implemented416

which provides the described reliability tests as well as417

methods for computing contrasts. In addition, franz contains418

tests for reliability of other types of forecasts.419

6. Numerical Experiments 420

In this section, we aim to demonstrate how stratified 421

rank histograms can help diagnosing conditional biases and 422

assessing reliability. The examples below are meant to 423

illustrate the interpretation of different shapes of histograms 424

and the use of different types of stratification. We will 425

be using forecasts from the European Centre for Medium 426

Range Weather Forecasts; however, this study should not be 427

considered as a comprehensive analysis of the reliability for 428

this forecasting system for 2 m temperature. 429

Results for both stratified as well as unstratified tests will 430

be reported. We stress that there is not necessarily a strict 431

relation between the p–values for these tests. When applied 432

to exactly the same data, the p–values for stratified tests 433

might be either higher or lower than for unstratified tests. This 434

might seem odd since a flat unstratified histogram represents 435

a weaker form of reliability than a flat set of stratified 436

histograms. It has to be kept in mind though that the stratified 437

test requires the estimation of more parameters and thus more 438

data might be needed until there is significant evidence to 439

reject the null hypothesis. 440

6.1. Data 441

Ensemble forecasts of 2 m temperature serve as a basis for 442

the illustration of the methodology and concepts presented in 443

this paper. The dataset comprises observations from SYNOP 444

stations and the corresponding nearest grid point forecasts 445

from the operational ensemble prediction system (ENS) based 446

on the Integrated Forecast System (IFS) of the European 447

Centre for Medium-Range Weather Forecasts. The focus in 448

on a forecast horizon of 5 days, with forecasts valid once 449

per day at 12 UTC. This means that we are working with a 450

lead time of T = 5. The ensemble comprises 50 members. The 451

assessment of the ensemble forecast is performed separately for 452

different locations distributed over the European continent . 453

Fig. 2 shows the six SYNOP stations selected for this exercise: 454

Salla in Finland (i), Sankt Peter-Ording in Germany (ii), 455

Cork in Ireland (iii), Beauvais in France (iv), Slatina in 456

Romania (v), and Monte Real in Portugal (vi). We consider 457

four consecutive winters (Dec. 2015–Feb. 2016 to Dec. 2018– 458

Feb. 2019) in order to have consistent datasets in terms 459

of weather conditions as well as samples of reasonable 460

sizes (with 361 measurements at each location, including 461

reported missing values). As a pre-processing step, forecasts 462

are adjusted first by applying an orographic correction that 463

accounts for systematic mismatch between station height 464

and the orography in the model. This adjustment ∆T is 465

linear with the height difference ∆z between station and 466

model representation and given by ∆T = −0.0065 K m−1 ∆z. 467

Secondly, raw forecasts provide information on a grid whereas 468

observations are point measurements. This scale mismatch 469

leads to representativeness error in the forecast that are easy 470

to correct for in a simplistic way. The raw ensemble spread, 471

associated with a forecast valid at the model-resolution scale 472

(∼ 18 km), can be inflated in order to capture the temperature 473

uncertainty at smaller spatial scale. The method followed here 474

consists in adding to each member a draw from a centred 475

Gaussian distribution with standard deviation 476

σpert := 0.4 + 0.3
∣∣∆e

∣∣1/4, (19)

where ∆e is the altitude difference between station and model 477

representation. This formula is derived from the analysis of 478

2 m temperature measurements of a high-density observation 479
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network over Europe following the same methodology as480

in Ben Bouallègue et al. (2020).481

Bias correction and spread correction are both applied482

to correct for representativeness error in the observations.483

So it does not aim at providing a reliable forecast but484

rather at making a fairer comparison between forecasts and485

verifications. The model in Eq (19) is valid for forecast on486

a grid with a resolution of 18 km. No further pre– or487

postprocessing was applied to either forecasts or verifications.488

6.2. Experiments489

Results are shown for the six selected stations with location490

as shown in Fig. 2. Figs. 3 to 8 correspond to these491

six locations, respectively. The panels in each figure show492

the stratified rank histogram (top panel), an unstratified493

rank histogram for the complete dataset (middle panel)494

and the corresponding covariance matrix Υ (bottom panel).495

For illustrative purposes, we applied two different types of496

stratification: an internal stratification based on the mean over497

all members and observations, and an external using the 10498

m wind forecast valid at the verification time. Both strata499

were tested for each station but only one will be presented500

here for illustration purposes. Each stratification subdivides501

the observation–forecast pairs into three strata, with each502

stratum containing about a third of all instances. Further, two503

orthogonal contrasts were used , generated as in Section 5.1,504

Equation (14). These look basically as the linear and U–505

shaped contrasts in Figure 1, except that the linear contrasts506

is decreasing rather than increasing. With regards to choosing507

the number of contrasts µ and the number of strata L, it508

needs to be kept in mind that the size of the covariance Υ is509

(L · µ)2, and thus the number of parameters to be estimated510

is roughly (L · µ)2/2 as the covariance matrix is symmetric.511

We have N data points but there is dependency among them.512

It follows from the previous discussion however that N/T can513

be used as rough estimate for the effective sample size; this514

is clearly a very pessimistic estimate as it assumes we throw515

away a fraction T−1
T of the data. We thus arrive at TL2µ2

2N as516

a rough estimate for the relative error in the estimator for the517

covariance matrix. In our experiments, we have N = 361 and518

T = 5 and we choose L = 2 and µ = 3, which gives an error519

of about 25%. This might seem large but keeping in mind520

that this is a very pessimistic estimate, we decided this to be521

acceptable. For the unstratified histograms we have used two522

contrasts as well for comparison, even though according to the523

previous considerations there are fewer covariance parameters524

to be estimated for unstratified histograms so in principle,525

more contrasts could be used.526

The correlation Υ is shown in the third panel, with527

the field with coordinates (c1 + 2(s1 − 1), c2 + 2(s2 − 1))528

corresponding to the entry Υc1,s1,c2,s2 . The sample size as well529

as the p-value of the reliability statistical test (to four decimal530

places) are indicated on the top of the plots in each case. Along531

with the stratified rank histograms, we also indicate the mean532

value of the stratum for each of the three categories.533

(i) Salla534

Results for Salla are presented in Fig. 3. The L-shape of535

the rank histogram indicates that the forecast is positively536

biased (Fig. 3.b). Stratification based on the mean forecast537

and observed temperature reveals a conditional bias: over-538

forecasting occurs only in low temperature conditions539

(Fig. 3.a) Not surprisingly, the p–values of the reliability tests540

before as well as after stratification are close to zero. We also541

see a particularly strong correlation between the two contrasts 542

in the histograms corresponding to low temperature (bottom 543

left in Fig. 3.c). This correlation can be explained directly with 544

the shape of the histogram. We are using a linearly decreasing 545

contrast and a U–shaped contrast; multiplying these gives 546

positive values if the value of the rank is small, and negative 547

values if the rank is large. As the histogram is tilted to the left, 548

small values of the rank are more numerous which implies that 549

the correlation sum is dominated by positive terms, resulting 550

in a positive correlation. Even though here the correlations are 551

estimated not by a complete double sum but by a sum over 552

pairs up to temporal lag L (see Eq. 17), we still expect to see 553

that effect. 554

(ii) Sankt Peter–Ording 555

In Fig. 4.b, the unstratified rank histogram is noisy but 556

appears overall quite flat. The reliability test is passed with 557

a p-value of 7%. The test is also successful after stratification 558

with a p-value greater than 10% in that case. Results in Fig. 4.a 559

and 4.c are based on an internal stratification. When a wind- 560

based stratification is applied, the p–values of the reliablity 561

test is close to 30% (not shown). In Fig. 4.c, as expected, the 562

covariance matrix is mainly dominated by the diagonal terms. 563

(iii) Cork 564

In Fig. 5, the inverted–U–shape of the rank histogram 565

indicates over-dispersiveness of the ensemble forecast at 566

day 5 for this station. Reliability test fails both in the 567

stratified and unstratified cases. Over-dispersiveness is not 568

a common characteristic of ensemble forecasts for weather 569

surface variables. The interpretation of these results could 570

point to a model deficiency or could lead to question the 571

post-processing step described above. Aiming at accounting 572

for representativeness uncertainty, the spread correction in 573

Eq. (19) is based on the analysis of temperature spatial 574

variability over different seasons and many stations over 575

Europe. So the model is probably too simplistic to describe 576

accurately representativeness uncertainty over winter months 577

at Cork station. But is representativeness uncertainty over- 578

estimated in that case or is the ensemble anyway overdispersive 579

at day 5 for this location and time of the year? The 580

stratification histograms in Fig. 5.a tends to indicate that 581

over-dispersiveness is mainly associated with warm conditions, 582

so related to model limitations. This conclusion is supported 583

by a maximum value in the covariance matrix (Fig. 5.c) 584

reached for warm temperature conditions and the 2nd contrast 585

corresponding to the U-shape (top right corner). 586

(iv) Beauvais 587

In Fig. 6, reliability of 2 m temperature ensemble forecasts at 588

Beauvais is investigated. Focusing on the unstratified results, 589

the rank histogram appears flat and the reliability test is 590

successfully passed with a p-value around 23%. However, 591

reliability is rejected under stratification, with the p-value 592

being close to 1%. This is not the case when 10 m wind 593

forecasts are used as a stratum: the test is passed with a p-value 594

of 15% (not shown). In Fig. 6, stratified rank histograms based 595

on the mean forecast and observed temperature reveal that the 596

forecast could suffer from a conditional bias: a negative bias 597

in warm-temperature conditions. This finding is corroborated 598

by the analysis of the covariance matrix in Fig. 6.c which 599

shows an anticorrelation between the histograms with the two 600

contrasts for the last stratification category. Again, this is 601

easily explained given the shape of the histogram as in the 602
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Salla example, except that now the histogram is tilted to603

the right. High values of the rank are now more numerous604

so that the U–shaped contrast gives positive values while the605

linear contrast tends to give negative values. This implies that606

the correlation sum between them is dominated by negative607

contributions, resulting in a negative correlation.608

(v) Slatina609

In Fig. 7.b, the histogram has a U-shape typical of under-610

dispersive ensemble forecasts. Stratification is this time based611

on 10 m wind speed forecast at day 5. The reliability tests612

fail both in the stratified and unstratified cases. In Fig. 7.a,613

a negative bias dominates the shape of the rank histogram614

when focusing on low wind conditions (top panel). Conversely,615

a slight positive bias seems associated with intermediate to616

high wind conditions. In Fig. 7.c, anti-correlation between617

histograms with the two different contrasts is more important618

for the low wind condition category. So the related negative619

bias could be seen as the main forecat issue for this location.620

(vi) Monte Real621

The shape of the histogram in Fig. 8.b can be described as622

a half inverted–U–shape. The larger population for higher623

ranks indicates the tendency of a negative bias in the624

ensemble forecast. While the positive bias in Salla is sharp,625

the negative bias appears here more gradual and diffuse.626

Stratification is performed using 10 m wind forecasts and627

shows that under-forecasting affects the ensemble for all wind628

conditions. Reliability tests fail with p–values below 1% in629

both cases. Similarly, internal stratification based on the630

mean temperature does not provide further indications about631

which weather conditions could favour the forecast bias. The632

covariance matrix in Fig. 8.c looks also more complex than633

in the previous examples. Further diagnostic of the ensemble634

reliability at that location could be performed using different,635

potentially more informative stratification.636

7. Conclusions and outlook637

The rank histogram, a widely used tool to assess the reliability638

of ensemble forecasting systems, was revisited. The rigorous639

statistical interpretation of rank histograms suffers from two640

long noted problems, which have been addressed in this work.641

Firstly, even for a completely reliable forecasting system, the642

rank histogram will show statistical deviations from flatness,643

but for a quantitative assessment the distribution of these644

fluctuations is required (at least asymptotically). Analysing645

this distribution is rendered difficult by the fact that the ranks,646

in general, are not independent but exhibit serial correlations.647

Secondly, uniformity of the overall distribution is necessary but648

not sufficient for reliability; ideally the distribution of the ranks649

should be uniform conditionally on different forecast scenarios.650

The present paper deals with both these issues successfully651

under conditions that are arguably satisfied in a wide652

range of applications. The proposed test effectively performs653

a generalised goodness–of-fit statistic jointly for a set of654

histograms, each of which represents a subset of the data,655

referred to as a stratum. Stratification may be performed656

either along an external variable or along criteria which involve657

the ensemble and the verification in a suitable way.658

The asymptotic distribution of the test statistic is derived659

rigorously under the null hypothesis plus minimal additional660

assumptions; firstly, the sequence of verification–forecast pairs661

needs to be ergodic, and secondly, past verification–forecast662

pairs need to be available to the forecaster with a certain663

temporal lag T which we refer to as the lead time. Under 664

these circumstances the ranks will show temporal dependence 665

but only up to T time steps into the past, an observation which 666

turns out to be crucial for our analysis. 667

Six data sets were analysed using the methodology 668

presented. Each data set comprises 2 m temperature forecasts 669

from the operational ensemble prediction system of the 670

European Centre for Medium Range Weather Forecasts for 671

certain stations over Europe as well as the corresponding 672

verifications. For all of these stations, the stratified 673

rank histograms and the associated tests reveal interesting 674

diagnostic detail which is not available from the unstratified 675

histograms. In the case of Beauvais and Slatina (iv and v), 676

we see conditional biases in the stratified histograms that get 677

confounded in the unstratified histograms, to the extent that 678

the forecasting system appears to be underdispersive in the 679

case of Slatina or even reliable in the case of Beauvais. For the 680

presented examples the stratified tests will reject the null if 681

the unstratified tests do, implying that there is no indication 682

of the stratified test loosing power. We note that in the case 683

of Cork and Monte Real, (iii and vi), the p–values for the 684

stratified tests are higher than for the unstratified ones, but 685

all of these numbers are very small and far away from any 686

meaningful significance level. Furthermore, in the case of Salla 687

and Cork (i and iii), the defects visible in the unstratified 688

histogram seem to originate in a single stratum. For Salla the 689

unstratified histogram suggest a warm bias of the forecasts 690

while the stratified histogram indicates that this bias appears 691

only under cold conditions; for Cork the underdispersiveness 692

of the unstratified histogram seems in fact restricted to warm 693

conditions, only. 694

We stress, however, that the question as to which stratum 695

or strata cause a rejection of reliability is difficult to answer 696

or even pose meaningfully. Each stratum could be tested 697

individually by simply discarding all instances of the data 698

that are not in that stratum. The interpretation though is 699

hampered by the fact that the strata are not independent and 700

it is therefore difficult to adjust for multiple testing. This is 701

an inevitable consequence of the more complex dependence 702

structure of the problem. Answering under which stratum 703

reliability fails might be possible if the covariance shows a clear 704

block structure as then the strata contribute independently to 705

the statistic; we leave this as a problem for future research. 706
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A. An important identity regarding the 710

distribution of R(n) and S(n) 711

In this appendix, we will show that for any k = 1, . . . ,K and 712

any n = 1, . . . , N we have 713

P(R(n) = k|S(n),Fn) =
1

K
. (20)

This implies that 714

P(R(n) = k|S(n)) =
1

K
, (21)

meaning that for each n fixed, the random variables R(n) 715

and S(n) are independent and that R(n) has a uniform 716

distribution. 717

We introduce the shorthand X̄(n) = (Y (n),X(n)) and note 718

that reliability (i.e. Eq. H0) implies that the distribution 719
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of X̄(n), conditionally on Fn is symmetric. To prove720

Equation (20), it is sufficient to show that this distribution721

remains symmetric if S(n) is included in the conditions. (If722

external stratification is used, then S(n) is part of Fn by723

definition so there is nothing to show.) We recall that the724

function s : RK → {1, . . . , L} which defines the stratification is725

symmetric. Let π be an arbitrary permutation of K elements,726

A ∈ Fn, and B ⊂ RK a measurable set. Then we have727

P({X̄(n) ∈ B} ∩ {s(X̄(n)) = l} ∩A)

= P({π(X̄(n)) ∈ B} ∩ {s ◦ π(X̄(n)) = l} ∩A)

= P({π(X̄(n)) ∈ B} ∩ {s(X̄(n)) = l} ∩A),

(22)

where the first equality is due to the distribution of X(n)728

being symmetric conditionally on Fn, and the second due to729

s being symmetric. By standard probability calculus, Equa-730

tion (22) implies P({X̄(n) ∈ B}|S(n),Fn) = P({π(X̄(n)) ∈731

B}|S(n),Fn), which means that the distribution of X̄(n),732

conditionally on Fn and S(n), is symmetric. This implies733

Equation (20). Equation (21) follows from Equation (20) and734

the tower property of the conditional expectation.735

An important consequence of Equation (20) emerges in736

combination with condition (2). Taking the expectation of737

Equation (20) conditionally on S(n) and {(R(m), S(m)),m =738

1, . . . , n− T}, we can invoke the tower property (thanks to739

condition (2)) and obtain740

P(R(n) = k|S(n), {(R(m), S(m)),m = 1, . . . , n− T}) =
1

K
.

(23)

This relation will be important later on.741

B. Covariance estimator742

In this appendix, we discuss an estimator for Υ, the covariance743

matrix of 1√
N

∑N
n=1 Z(n) in the limit N →∞, where Z(n) =744

(Zm,l(n))m,l; otherwise, notation and definitions are as in745

Sec. 2. We start with defining the (matrix valued) covariance746

function747

γ(k) := E(Z(n)Z(n+ k)T ), (24)

noting that since {Z(n), n = 1, 2, . . .} is stationary there is no748

dependence on n. Furthermore, γ is well defined for negative749

k, too, and in fact γ(−k) = γ(k)T . An elementary calculation750

then gives751

Υ =
∑
k∈Z

γ(k), (25)

provided the sum converges. But thanks to Equation (23), we752

have γ(l) = 0 if l ≥ T , meaning that the sum in Equation (25)753

contains only finitely many nonzero terms, namely for |k| <754

T . These terms can be estimated by empirical averages755

(i.e. averages over time), that is756

γN (k) =
1

N

N∑
n=1

Z(n)Z(n+ k)T , (26)

which converges to γ(k) for N →∞, due to the condition that757

{(R(n), S(n))} are ergodic. By replacing γ(k) in Equation (25)758

with the estimators γN (k), we obtain the estimator Υ̂ for Υ759

given in Equation (17).760

C. Proof of the theorem (sketch)761

In this appendix, we justify a joint Central Limit Theorem762

for d = (d1, . . . , dK−1), where dk = 1√
N

∑N
n=1 Zk(n). By a763

classical argument known as the Cramér–Wold device in764

probability theory (see for instance van der Vaart 2000, 765

pg.16) it is sufficient to establish a central limit theorem for 766

δN := 1√
N

∑N
n=1 Λ(n) where Λ(n) := λλλTZ(n) for any vector 767

λλλ ∈ RK−1, thereby reducing the problem from a vector valued 768

to a single valued Central Limit Theorem. Our assumptions 769

and the discussion in the previous appendices entail that 770

{Λ(n), n = 1, 2, . . .} is a stationary and ergodic process with 771

the property that if k ≥ T and n ≥ m, then 772

E(Λ(n+ k)|Λ(n), . . . ,Λ(m)) = 0. (27)

It can be shown that the process {Λ(n)} can be extended 773

to negative times, and that Equation (27) still holds in the 774

limit m→ −∞. As a result, the conditions of Theorem 4.18 775

in van der Vaart (2010) are satisfied and we can conclude 776

that the distribution of δN is asymptotically normal. In 777

summary, we obtain the required joint Central Limit Theorem 778

for (d1, . . . , dK−1). 779
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Jochen Bröcker. franz; a python library for statistical 802

assessment of forecasts. GitHub repository, 2019. URL 803

https://github.com/eirikbloodaxe/franz. 804
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Figure 1. The figure shows three contrasts for the case of K = 8. These
were obtained by applying the procedure described in Section 5.1 to the
matrix in Equation (14) with K = 8 and µ = 3. (Lines connecting the
points are merely for guidance.)
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Figure 2. Distribution of the selected stations, i: Salla (Finland),
ii: Sankt Peter-Ording (Germany), iii: Cork (Ireland), iv: Beauvais
(France), v: Slatina (Romania), vi: Monte Real (Portugal)
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Figure 3. Stratified rank histogram (a), rank histogram (b),
and corresponding covariance matrix Υ (c) for Salla (Finnland).
Stratification is based on averaged forecast and observed 2 m
temperature. The average of this quantity across the stratum is indicated
in the corresponding sub–panel of (a). The p–value of the reliability test
as well as the sample size (number of forecast-observation pairs) are
indicated above the left and middle panels. The unstratified histogram
shows a warm forecast bias; The stratified histogram indicates that this
is confined to cold conditions.
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Figure 4. Same as Fig. 3 but for Sankt Peter-Ording (DE). There is no clear indication to reject reliability.
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Figure 5. Same as Fig. 3 but for Cork (IE). The forecast overdispersion
shown by the unstratified histogram appears to be genuine but probably
confined to warm conditions.
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Figure 6. Same as Fig. 3 but for Beauvais (FR). The unstratified
analysis provides no evidence to reject reliability, but the stratified
histogram indicates conditional bias in different directions under cold
vs warm conditions, and therefore evidence to reject reliability.

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls
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Figure 7. Same as Fig. 3 but for Slatina (RO). Stratification is based on
forecast 10 m wind speed. This time the unstratified analysis indicates
a lack of spread, but as for Beauvais, the stratified histogram indicates
conditional bias in different directions under cold vs warm conditions as
evidence to reject reliability, rather than problems with spread.
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Figure 8. Same as Fig. 7 but for Monte Real (PT). The unstratified
histogram shows a cold bias of the forecast which is also present under
stratification in all conditions.
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