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Abstract. We present a computational modeling approach for imitation of the time-domain
optical coherence tomography (OCT) images of biotissues. The developed modeling technique
is based on the implementation of the Leontovich–Fock equation into the wave Monte Carlo
(MC) method. We discuss the benefits of the developed computational model in comparison
to the conventional MC method based on the modeling of OCT images of a nevus. The devel-
oped model takes into account diffraction on bulk-absorbing microstructures and allows con-
sideration of the influence of the amplitude–phase profile of the wave beam on the quality of the
OCT images. The selection of optical parameters of modeling medium, used for simulation of
optical radiation propagation in biotissues, is based on the results obtained experimentally by
OCT. The developed computational model can be used for imitation of the light waves propa-
gation both in time-domain and spectral-domain OCTapproaches. © 2020 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.59.6.061626]
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1 Introduction

The time-domain optical coherence tomography (OCT) is based on the interference of low-
coherent optical radiation backscattered from medium inhomogeneities with the reference beam
and is used extensively for structural and functional imaging of biological tissues.1 The inter-
pretation of the OCT images and quantitative assessment of the structural and optical parameters
of turbid scattering biological tissues requires the development of realistic computational models
for ultimate understanding of the formation of OCT images.

Typically, for modeling of the light propagation in biological tissues and tissue-like scattering
media, including mimicking of OCT images, either a plane wave approximation2–5 or the con-
ventional Monte Carlo (MC) method6–15 is used. In fact, both of these approaches have some
disadvantages. The vector MC method takes into account the wave phenomena, such as diffrac-
tion and/or coherence, utilizing artificial methods developed outside of the original model of
radiation transfer, as the individual photon trajectories are counted independently.

Modeling of light propagation within the random medium based on the Huygens–Fresnel
principle allows considering diffraction but only for bulk inhomogeneities with sharp
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boundaries.16–21 The propagation of light within biological tissue is modeled typically by a set of
particles also known as “photon packets” (Ref. 22). The Huygens–Fresnel principle approach
has a high computational complexity since the wavefront is considered as a set of point sources,
described by differential equation.23

Using the Maxwell equations for the OCT simulations is suitable for modeling complex
(profiled) laser beams.24–29 However, it is very time-consuming, even using parallel algo-
rithms,30–32 and requires allocation of massive computer resources that significantly limits the
spatial area of interest.

An approach based on a quasioptics approximation has been developed, where stochastic
medium inhomogeneity was modeled by a set of phase screens with a random spatial distribution
of the phase incursion.33 A model of optical wave radiation propagation in a biotissue based on
the Leontovich–Fock stochastic equation also referred to as a quasi-optics approximation was
proposed.34 The advantage of the model is that it provides an effective numerical implementa-
tion. Applying this approach for the simulation of OCT images of biological tissues requires
a generalization of the model for the case of a partially coherent beam. The latter can be imple-
mented as a set of statistical tests, where each optical wave with a given random phase distri-
bution at the entrance to the medium propagates independently, and finally, their superposition is
counted. By analogy with the conventional MC, this approach is known as the wave MC.35

To imitate OCT signal formation by MC, it is necessary to calculate the propagation of the
backward wave reflected from the boundaries of structural inhomogeneities localized within the
medium. The combination of the wave MC method and the wave equation in the quasioptics
approximation potentially makes it possible to simulate with reasonable computing resource
requirements of the wave beams with a complex amplitude–phase profile and to take into account
diffraction. In the current paper, utilizing the Leontovich–Fock stochastic parabolic equation, we
introduce a new wave MC-based model for simulation of the time-domain OCT signals and 2D
images.

2 Approach to Modeling of Biological Tissue Visualization Structure
by the OCT Method

2.1 Model of Optical Radiation Propagation in Biological Tissue

Let us denote the electric field of an optical wave in the following form:

EQ-TARGET;temp:intralink-;e001;116;332Eðr; tÞ ¼ ψðr; tÞeiω0t; (1)

where ω0 ¼ k0c is the carrier (central) frequency. Then, the corresponding Helmholtz equation
for a randomly inhomogeneous medium is calculated as

EQ-TARGET;temp:intralink-;e002;116;278Δψðr; tÞ þ k20ψðr; tÞ ¼ −k20ðhεi þ δεÞψðr; tÞ; (2)

where δε is the dielectric permeability fluctuations ε and Δ ≡ ∇2 is the Laplace operator. Further,
time dependence further will be omitted.

Taken into account that ψðrÞ is presented as ψðrÞ ¼ UðrÞeik0z, Eq. (2) in a quasioptics
approximation takes the form:

EQ-TARGET;temp:intralink-;e003;116;1992ik0
∂
∂z

Uðr⊥; zÞ þ Δ⊥Uðr⊥; zÞ ¼ −k20ðhεi þ δεÞUðr⊥; zÞ: (3)

Assuming that ∇hεi ¼ 0, Eq. (3) can be simplified as

EQ-TARGET;temp:intralink-;e004;116;147

∂
∂z

Ũðr⊥; z; tÞ ¼
i
4
Δ⊥Ũ þ iñðr⊥; zÞŨ; (4)

where ñðr⊥; zÞ ≡ k0LRñc is the normalized complex refractive index of a medium; ñc ¼ nþ δñ
is the complex refractive index of the medium, where the real part represents the phase incursion,
and the imaginary one characterizes absorption, δñ is the medium refractive index fluctuations;
LR ¼ k0R2

0∕2 is the Rayleigh length equal to half the distance at which a collimated beam
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with a Gaussian shape of the intensity distribution in the cross-section doubles in diameter; R0 is
the initial radius of the beam; k0 ¼ 2π∕λ0 is the wavenumber at the central wavelength λ0; r⊥ →
r⊥∕R0 is dimensionless transverse coordinate; z → z∕LR is the dimensionless coordinate along
the beam propagation direction; ∇⊥ is the Nabla operator, which includes differentiation only
over transverse coordinates; Ũðr⊥; z; tÞ ¼ Ãðr⊥; z; tÞeiφ̃ðr⊥;z;tÞ is the slowly changing complex
amplitude of the light field normalized to its maximum initial value; Ãðr⊥; z; tÞ and φ̃ðr⊥; z; tÞ
are, respectively, amplitude and phase. Hereinafter, the wave symbol denotes a random function.

Let us describe the phase φ̃ðtÞ by a random function with the Lorentzian shape of the
spectrum fluctuations:36

EQ-TARGET;temp:intralink-;e005;116;625hφ̃ðt − τÞφ̃ðtÞi ¼ Dφe−τ∕Tcorr ; (5)

where Tcorr defines the temporal coherence of the optical wave radiation and determines the
longitudinal resolution in OCT; and Dφ is the phase fluctuation dispersion.

The field amplitude is defined as follows:

EQ-TARGET;temp:intralink-;sec2.1;116;557Ãðr⊥; tÞ ¼ Aðr⊥; tÞ þ δÃðr⊥; tÞ:

Similar to Eq. (5), the amplitude fluctuations δÃðtÞ are described as follows:

EQ-TARGET;temp:intralink-;sec2.1;116;512hδÃðt − τÞδÃðtÞi ¼ DAe−τ∕Tcorr ;

where DA is the amplitude fluctuation dispersion (usually, DA ≪ 1), hδAðtÞi ¼ 0.
The phase ~φ can be found from the Leontovich–Fock equation:

EQ-TARGET;temp:intralink-;e006;116;456∂zφ̃ ¼ −∂z ImðlnðŨÞÞ ¼ ñðr⊥; zÞ þ
∇2

⊥jÃj
4jÃj : (6)

The simulation of time-domain OCT images of biotissue was carried out based on
Eqs. (4)–(6) for a set of realizations of random optical waves with given characteristics at the
entrance to the medium. Then, the interference of reference wave and the superposition of the
waves backreflected/scattered from structural inhomogeneities of the biological tissue during
an observation time T are counted as follows:

EQ-TARGET;temp:intralink-;e007;116;348Ioctðr⊥; LÞ ¼
Z
T
dthÃscðr⊥; tÞÃ0ðr⊥; t − n0L∕cÞReðeiðφ̃scðtÞ−φ̃ðt−n0L∕cÞÞÞi∕T; (7)

where ~Asc and φ̃scðtÞ are the amplitude and phase of the optical wave backscattered from the
tissue; ~A0 is the amplitude of the source light field; L is the difference of the interferometer arms
lengths (a variable parameter that determines the position of the observed layer in the medium in
the time-domain OCT); c is the speed of light; and n0 is the refractive index of air.

2.2 Model of Randomly Inhomogeneous Medium

We use the following designations:

EQ-TARGET;temp:intralink-;sec2.2;116;206hδñðrÞδñðr − δrÞi ¼ CðδrÞ ¼
Z
Vk

e−ikδrCðkÞdk:

where r ¼ r⊥ þ z · ~ez, where ~ez is the Cartesian coordinate system unit vector and CðkÞ is
defined in the frame of the phenomenological model:37

EQ-TARGET;temp:intralink-;e008;116;139CðkÞ ¼ C0

1

ð1þ l2cjkj2ÞDf∕2
: (8)

The medium model parameters include the correlation radius lc, the magnitude Df of refrac-
tive index fluctuations, and the dispersion of refractive index fluctuations C0. Setting these
parameters determines the type of biological tissue.38–43
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Here and following, we use the following notation for triple integrals:

EQ-TARGET;temp:intralink-;sec2.2;116;723

Z
Vk

fðkÞdk ≡
Z

∞

−∞

Z
∞

−∞

Z
∞

−∞
fðkx; ky; kzÞdkx dky dkz:

The “volume” V is defined in a corresponding 3D real number space.
Let us establish a link between the statistical characteristics of the medium parameters and the

parameters of the scattering indicatrix in the radiation transfer equation (RTE), which is a typical
base of the conventional MC approach.

Let us designate the two-point statistical moment (average of the product of the optical wave
amplitudes in two spatial points r1 and r2), i.e., to the second-order coherence function as
follows:

EQ-TARGET;temp:intralink-;sec2.2;116;595Γ2ðR; δrÞ ¼ hUðRþ δrÞU�ðR − δrÞiδε:

Here, R ¼ ðr1 þ r2Þ∕2; δr ¼ ðr1 − r2Þ∕2). Differentiating Γ2 on ∇R∇δr, we get

EQ-TARGET;temp:intralink-;e009;116;552∇R∇δrΓ2 ¼
1

2
k20hδεðRþ δrÞUðRþ δrÞU�ðR− δrÞ− δεðR− δrÞUðRþ δrÞU�ðR− δrÞiδε: (9)

Taking into account that δε is the random isotropic homogeneous Gaussian distribution, and
integrating Eq. (9) in parts, we obtain

EQ-TARGET;temp:intralink-;sec2.2;116;486i∇R∇δrΓ2 ¼ k20ðhδεðR − δrÞδεðRþ δrÞiÞΓ2:

Presenting the function Γ2 by Wigner function:

EQ-TARGET;temp:intralink-;sec2.2;116;442JðR; kÞ ¼
Z
Vr

Γ2ðR; δrÞe−ikδrdδr;

which gives us the following:

EQ-TARGET;temp:intralink-;e010;116;386k∇RJðR; kÞ ¼
Z
Vk

Θðk − k 0ÞJðR; k 0Þdk 0; (10)

where Θðk − k 0Þ ¼ k20∫ Vr
e−iðk−k 0ÞδrhδεðR − δrÞδεðRþ δrÞidδr ¼ k2

0

4
Cðk − k 0Þ.

Further, assuming that the Wigner function J localized inside a sphere jkj ¼ k0. Thus,

EQ-TARGET;temp:intralink-;e011;116;311JðR; kÞ ≈ δðjkj − k0ÞIJðR; kÞ; (11)

where IJðR; kÞ is the brightness function. By denoting s ≡ k∕k0, omit further the dependence of
IJðR; sk0Þ on k0, and multiplying Eq. (10) on jkj2djkj and integrating, we obtain

EQ-TARGET;temp:intralink-;e012;116;256s∇RIJðR; sÞ ¼
k20
4

Z
S 02

�Z
∞

0

Cðsjkj − s 0k0Þjkj2djkj
�
IJðR; s 0Þds 0: (12)

Comparing Eq. (12) with the RTE,40

EQ-TARGET;temp:intralink-;e013;116;198s∇RIJðR; sÞ ¼
μsc
4π

Z
S 02

pðs; s 0ÞIJðR; s 0Þds 0; (13)

we can conclude that

EQ-TARGET;temp:intralink-;e014;116;143

μsc
4π

pðs; s 0Þ ¼ k20
4

Z
∞

0

Cðsjkj − s 0k0Þjkj2djkj; (14)

where μsc is the scattering cross-section, pðs; s 0Þ is the scattering phase function described by
Heney–Greenstein formula:44
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EQ-TARGET;temp:intralink-;e015;116;735pðs; s 0Þ ¼ 1 − g2

½1þ g2 − g cosðθÞ�3∕2 ; (15)

where s · s 0 ¼ cosðθÞ is the scalar product of unit the vectors, and g is the anisotropy scattering
parameter. This function is often used in MC simulation of optical radiation propagation in
tissue. From a theoretical point of view, the constraints of the Heney–Greenstein formula are
associated with a discrepancy for anisotropic media, but, in practice, this approach reproduces
the experimental data well enough.45

Substituting Eq. (14) with Eq. (8):

EQ-TARGET;temp:intralink-;e016;116;627pðs; s 0Þ ¼ k20π
μsc

Z
∞

0

C0

ð1þ ðlck0Þ2ðjkj2 − 2 cosðθÞ þ 1ÞÞDf∕2
jkj2djkj: (16)

Using Eqs. (14)–(16), μsc is expressed through C0, lc, Df, and g as

EQ-TARGET;temp:intralink-;e017;116;568μsc ¼
k20πð1þ g2 − gÞ3∕2

1 − g2

Z
∞

0

C0

½1þ ðlck0Þ2ðjkj2 − 1Þ�Df∕2
jkj2djkj: (17)

This equation allows us to link medium parameters for the conventional MC and wave MC
simulation and comparative analysis.

The reflection coefficient (reflectivity) of the layer with thickness δz is determined as follows:

EQ-TARGET;temp:intralink-;sec2.2;116;486R̃ðr⊥; zÞ ¼
∂zñδz
2ñ

:

Note that this parameter characterizes the relationship between the amplitudes of the forward
propagated Ã and backscattered optical waves Ãsc: Ãsc ¼ Ã

p
R̃.

3 Numerical Simulation

3.1 Numerical Simulation Algorithm

The splitting into physical processes approach was used for the numerical solution of
Eqs. (4)–(6): at each step along the propagation direction, at first, the problem of free propagation
is solved; then, the diffraction step alternates with the step of propagation through the phase
screen describing the spatial distribution of the refractive index of the medium. Let us rewrite
Eq. (4) in an operator form:

EQ-TARGET;temp:intralink-;sec3.1;116;291

∂
∂z

Ũ ¼ ½D̂þ T̂�Ũ;

where D̂ ¼ i
4
∇2

⊥ is the operator of the diffraction, T̂ ¼ iñðr⊥; zÞ is the operator of passing the
phase screen with propagation distance hz ¼ δz.

The optical wave transformation during the step δz along the propagation direction is
represented as

EQ-TARGET;temp:intralink-;e018;116;198Ũðzþ δzÞ ¼ eδzD̂∕2ðeδzT̂ðeδzD̂∕2ðeδzT̂∕2ŨðzÞÞÞÞ: (18)

The numerical scheme [Eq. (18)] is not completely conservative, and that can cause errors for
strongly inhomogeneous media.46 Therefore, a completely conservative numerical scheme had
also been established.47,48 In the framework of model media studied, both numerical schemes
gave matching results.

The size of the skin inhomogeneities is of micron scale, and the diameter of the initial beam
was selected of the 1 mm order. The depth of penetration of the optical wave into the biological
tissue can be up to several hundred microns. To avoid the influence of boundary effects and take
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into account the low-frequency spatial modes, which could appear during the wave propagation,
the number of grid nodes was chosen as 4096 × 4096 × 1024.

To speed up the calculations, we also used a slit-like beam transversal shape. The numerical
scheme described in Ref. 49 was used to implement parallel computing. To do it, the spatial grid
was decomposed according to one of the coordinates (along the coordinate of the narrow part of
the slit beam) and, using the parallel version of the fast Fourier transform, the step of calculating
the diffraction and the step of passing the phase screen through pointwise multiplication of arrays
at each node were carried out. Figure 1 shows a block diagram of the computational algorithm.

The spatial distribution of the refractive index fluctuations was calculated, as shown in
Ref. 37:

EQ-TARGET;temp:intralink-;e019;116;370δñ ¼ Re
h
F̂−1

�
Rand

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðkÞ∕ð8πNxNyNzÞ

q �i
þ Im

h
F̂−1

�
Rand

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðkÞ∕ð8πNxNyNzÞ

q �i
: (19)

Here, F̂ describes the fast Fourier transform operator; Rand is the random number generated for
normal distribution with zero mean and unit variance; and Nx, Ny, Nz are the voxel numbers
along the corresponding axes of the Cartesian coordinate system.

3.2 Implementation Examples

To compare the simulation results of recording the characteristics of biological tissue with a wave
and particle OCT methods, we used a skin model with nevus,4,5,12,50,51 which is used extensively
in various modeling studies utilizing conventional MC. The relationship between the parameters
of the microscopic model of a randomly inhomogeneous medium [Eq. (8)] and the scattering
indicatrix used by the corpuscular MC was established according to Eq. (17) (see Fig. 2).

Figure 3 shows the results of the numerical simulation of biological tissue OCT visualization
based on the skin with the nevus model presented in Fig. 2.

In the space area near coordinates (0.3, 0.5), a relatively bright structure is visible at the
“basal layer–nevus–dermis” border, which is connected most likely with the optical wave focus-
ing on the boundary between the granular and basal layers. The same structure is visible in the
image obtained by the corpuscular MC method but with strong distortions compared to the wave
method. The corpuscular MC simulation of a photon trajectory was conducted until the photon
had been arrived at the plane of detector or absorbed. Dolganova et al.12 used the total number of
trajectories equal to 107. Evidently, MC simulations had been conducted on a very rough mesh.
It seems that this is the main reason of the artifacts mentioned already.

Fig. 1 Block diagram of calculation of an optical beam transformation for the step δz along the
direction propagation, according to Eq. (18). The scheme corresponds to a case of four computa-
tional nodes.
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Figure 4 shows the results of the numerical simulation of biological tissue OCT visualization
using Bessel optical wave beams, which are diffracted minimally, using the model of skin with
the nevus.

Figure 5(c) shows the diffraction spreading of the optical wave beam.52 The quality of bio-
logical tissue OCT visualization using the Bessel optical wave beam with a transverse profile
J0ð20jr⊥jÞ is lower than for the case of the Bessel optical wave beam with a transverse pro-
file J0ð6jr⊥jÞ.

Figure 5 shows an example of tissue OCT visualization for the case of the skin model shown
in Fig. 2 in the absence of layer V (nevus).

The speckle noise was shown to increase under optical wave beam propagation in the tissue.
It coincides, for example, with experimental results for a medium with suspensions of polysty-
rene microspheres.6 The speckle image distortion is enhanced for optical wave beams with
a more complicated transverse profile. The ability to evaluate such effects is a fundamental
advantage of the proposed approach. It can be suitable for the optimization of an experimental
implementation of the OCT.53

Fig. 2 A skin with a nevus model12,49,50 (scales X and Y are normalized to 1 mm): (a) spatial
distribution of media parameters: area I (upper stratum corneum): n ¼ 1.54, μsc ¼ 35 mm−1,
μa ¼ 0.02 mm−1, g ¼ 0.9; C0 ¼ 0.047, l c ¼ 1.5 μm, Df ¼ 3.9; area II (epidermis, granular layer):
n ¼ 1.34, μsc ¼ 5 mm−1, μa ¼ 0.015 mm−1, g ¼ 0.95; C0 ¼ 0.021, l c ¼ 3.2 μm, Df ¼ 3.5; area III
(epidermis, basal layer): n ¼ 1.4, μsc ¼ 12 mm−1, μa ¼ 0.02 mm−1, g ¼ 0.85; C0 ¼ 0.034,
l c ¼ 1.05 μm, Df ¼ 3.7; area IV (dermis): n ¼ 1.39, μsc ¼ 12 mm−1, μa ¼ 0.1 mm−1, g ¼ 0.9;
C0 ¼ 0.033, l c ¼ 1.6 μm, Df ¼ 3.8; area V (nevus): n ¼ 1.38, μsc ¼ 7 mm−1, μa ¼ 0.013 mm−1,
g ¼ 0.8; C0 ¼ 0.02, l c ¼ 0.8 μm, Df ¼ 3.6. (b) An example of the spatial distribution of the
ReðñcÞ implementation for the above parameter values (C0, Df , and l c ). On the sidebar: an exam-
ple of the implementation of the spatial distribution of the refractive index calculated following
Eq. (19).
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Fig. 3 The results of the numerical simulation of biological tissue OCT visualization based on the
skin with the nevus model (Fig. 2; X and Y scales are normalized to 1 mm): (a) the implementation
of the corpuscular MC method12; (b) the a of the MC wave method using a slit optical wave beam
with a Gaussian profile with transverse dimensions of 1000 and 50 μm, the coherence length
is 10 μm.

Fig. 4 The results of the numerical simulation of biological tissue OCT visualization based on the
skin with the nevus model using Bessel optical wave beams with soft nullification on the edges of
the mesh by super-Gaussian function (X and Y scales are normalized to 1 mm): (a) the transverse
profiles of Bessel optical wave beam beams at the entrance to the medium; (b) the implementation
of the MC wave method using the Bessel optical wave beam with a transverse profile J0ð20jr⊥jÞ,
the coherence length is 10 μm; and (c) the implementation of the MC wave method using the
Bessel optical wave beam with a transverse profile J0ð6jr⊥jÞ, the coherence length is 10 μm.
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4 Summary and Conclusion

We introduce a computational modeling approach specially developed for mimicking the time-
domain OCT images of biotissues. The developed modeling technique is based on the imple-
mentation of the Leontovich–Fock equation into the wave MC method. The selection of optical
parameters of modeling medium, used for simulation of optical radiation propagation in bio-
tissues, is based on the results obtained experimentally by OCT. The developed computational
modeling approach allows one to take into account diffraction effects on bulk, absorbing objects
and the influence of the amplitude–phase profile of the wave beam on the quality of OCT
imaging. The limitations of the approach are associated, first of all, with the conditions of appli-
cability of the parabolic equation used. The accuracy of the latter is determined by the value of
the numerical aperture, which should be much less than unity within the framework of the qua-
sioptics approximation. Secondly, the presented results were obtained without multiple scatter-
ing. The speed of the numerical implementation essentially depends on the available computing
resources and the optimization of the numerical scheme. Simulation of the time-domain OCT
images presented in the current version of the MC model on a computer with 24 processors
takes 3 to 4 h. The developed computational model can be used for imitation of the light waves
propagation both in time-domain and spectral-domain OCT approaches.

Fig. 5 The results of the numerical simulation of biological tissue OCT visualization based on the
skin model without the nevus (see Fig. 2; X and Y scales are normalized to 1 mm): (a) the imple-
mentation of the corpuscular MC method, the coherence length is 10 μm50; (b) the implementation
of the MC wave method using a slit optical wave beam with a Gaussian profile with transverse
dimensions of 1000 and 50 μm, the coherence length is 10 μm; (c) the implementation of the MC
wave method using a Bessel optical wave beam with a transverse profile J0ð20jr⊥jÞ, the coher-
ence length is 10 μm; and (d) the implementation of the MC wave method using a Bessel optical
wave beam with a transverse profile J0ð6jr⊥jÞ, the coherence length is 10 μm.
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