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Abstract: Total maximum allocated load (TMAL) is the maximum sum total of all the pollutant 

loading a water body can carry without surpassing the water quality criterion, which is dependent 

on hydrodynamics and water quality conditions. A coupled hydrodynamic and water quality 

model combined with field observation was used to study pollutant transport and TMAL for water 

environment management in Qinhuangdao (QHD) sea in the Bohai Sea in northeastern China for 

the first time. Temporal and spatial variations of the chemical oxygen demand (COD) concentration 

were investigated based on MIKE suite (Danish Hydraulic Institute, Hørsholm, Denmark). A 

systematic optimization approach of adjusting the upstream pollutant emission load was used to 

calculate TMAL derived from the predicted COD concentration. The pollutant emission load, TMAL, 

and pollutant reduction of Luanhe River were the largest due to the massive runoff, which was 

identified as the most influential driving factor for water environmental capacity and total carrying 

capacity of COD. The correlation analysis and Spearman coefficient indicate strong links between 

TMAL and forcing factors such as runoff, kinetic energy, and pollutant emission load. A comparison 

of total carrying capacity in 2011 and 2013 confirms that the upstream pollutant control scheme is 

an effective strategy to improve water quality along the river and coast. Although, the present model 

results suggest that a monitoring system could provide more efficient total capacity control. The 

outcome of this study establishes the theoretical foundation for coastal water environment 

management strategy in this region and worldwide. 

Keywords: water environmental capacity; total maximum allocated load; chemical oxygen demand; 

water quality model; water environment management 

 

1. Introduction 

With growing industrialization and urbanization, effluent discharge and human activities 

impose increasing pressure on coastal ecosystems and natural resources, especially in densely 

populated coastal zones [1]. Coastal water is contaminated by discharge of land-based pollutant and 

marine aquaculture, which causes increasing water pollution for residents as well as risk of 

eutrophication. Red tide and harmful algal bloom due to eutrophication are common phenomena in 

coastal regions in recent years [2–4]. Stricter limits for pollutant emissions and effective coastal 

management are vital to prevent water pollution and improve the coastal environment [5,6]. 
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In fact, the upper limit of pollutant discharging into a coastal area has been identified as the 

environmental carrying capacity by GESAMP (Joint Group of Experts on the Scientific Aspects of 

Marine Environmental Protection) [7]. The environmental capacity is a quantitative description of 

pollution accommodation capacity under the premise of no harm on the ecological system [8], which 

ensures sustainable coastal zone development [9]. The quantity of pollutant transported to the open 

sea was estimated by the water exchange rate and observations of water quality and hydrodynamics, 

and the transport quantity was determined as the environmental capacity in the 1980s [10]; however, 

this method has suffered from discontinuity of data and human factors. A numerical model was 

instead used to supplement data and simulate water quality conditions; through calibration and 

validation combined with observation data, most of the physical and biogeochemical processes in the 

coastal area were obtained [11–13]. Hence, numerical simulation has become a popular technique to 

assess environmental capacity based on optimization of the water quality simulation process [14–16]. 

Focusing on water environmental capacity, management of pollutant sources mainly relies on 

water quality as an indicator [17]. In the past decades, many water management techniques were 

examined extensively in many countries [18–20]. The Total Pollutant Load Control System (TPLCS) 

was established as part of national regulations and laws in Japan and has been applied to Tokyo Bay, 

Ise Bay, and Seto Island Sea since the 1970s [21]. The TPLCS focuses on limiting pollutant emission 

and preventing pollution discharge without certificates. Pollutants are effectively controlled by the 

TPLCS; in fact, Japan has changed since the 1960s and is no longer a larger polluter but instead is a 

clean developed country [22,23]. In America, the total maximum daily load (TMDL) has been used 

as a key measure to ensure surface water quality is up to health standards. TMDL has developed and 

improved for more than 20 years and forms a set of integrated total pollutant control strategies and 

technique systems, which are not only used in coastal areas but also in lakes and watersheds [24,25]. 

Since the total pollutant control and comprehensive treatment measures were used in European 

countries, the water qualities of the Rhine and Baltic Sea have improved markedly due to efficient 

management of industrial and sanitary wastewater emission [26,27]. The Coastal Pollution Total 

Load Control Management (CPTLCM) has been implemented to improve the coastal water 

environment in China. The total maximum allocated load (TMAL) has been used to assess the 

maximum pollutant emission under the water quality criterion described in the “National Marine 

Water Quality Criteria” (GB 3097-1997) [28,29]. 

Eutrophication is the major cause of ecological disasters such as algae bloom [30]. Chemical 

oxygen demand (COD) is the key contributing factor to eutrophication by providing a carbon source 

for phytoplankton and algae growth [31]. However, COD transport in a coastal area is complex due 

to combined action of runoff and tide [11]. The eutrophication in Qinhuangdao (QHD) in the Bohai 

Sea has increased due to increased discharge of domestic, industrial, and agricultural wastewater, 

therefore harmful algae occur more frequently [32]. Thus, COD was chosen as an indicator for TMAL 

in this study. 

QHD was voted as one of the top ten ecological cities in China and the most well-recognized 

coastal resort. As the destination city of recreational tourism, QHD is required to maintain a high 

water quality. To achieve the water quality criteria, the QHD coastal area has adopted integrated 

systematic management and development strategies covering all seagoing rivers and coastal water. 

The TMAL is mainly determined by water quality field data collected under multiple forcing 

conditions, including hydrodynamics, source discharge, and human activities [33,34]. In this study, 

a coupled hydrodynamic and water quality model combined with field observations was used to 

investigate the spatial and temporal variations of water quality in QHD for the first time, from which 

environmental capacity and total capacity control were derived through an optimization approach 

of adjusting the upstream pollutant emission. Seasonal variations of TMAL, emission load, and 

pollutants were analyzed and linked with hydrodynamic variables and correlations between TMAL, 

runoff, kinetic energy, and emission load were obtained. The comparison of water environmental 

capacity and total capacity control of pollutants over the past years indicates that the environment 

management regulations and strategies efficiently improved QHD coastal water quality. The 

objective of the present study is to better understand the driving mechanisms of water environmental 
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capacity in the coastal area of QHD. The outcome of this study should provide guidelines for robust 

coastal water environment management strategies in other coastal regions around the globe. 

2. Field Site and Model Setup 

QHD is located in the northeastern Hebei Province in China and adjacent to the Bohai Sea 

(39°24′~40°37′ N, 118°33′~119°51′ E). A large amount of recreational bathing beaches are distributed 

along the 163 km coastline of QHD, as shown in Figure 1. QHD is within the middle latitude zone 

with a humid and semi-humid continental monsoon climate of a warm temperate zone. QHD has an 

annual sunshine duration of 2700~2850 h, temperature of 8.8~11.3 °C, precipitation of 650~750 mm, 

and average evaporation of 1468.7 mm. Since the average temperature of QHD in winter is −3.7 °C, 

the rivers in QHD are frozen for about 108 days from 21 November to 31 March [35].  

 

Figure 1. (a) Location of the Bohai Sea with the offshore tidal modeling boundary from Dalian to 

Yantai and Qinhuangdao (QHD) highlighted by the square box; (b) Zoomed-in view of computational 

mesh of numerical model for QHD and 11 seagoing rivers. 

QHD has a drainage basin over 30 km2 and an annual average runoff volume of 12.6 × 108 m3. 

The interannual variation of runoff ranges from 2.5 × 108 to 41.8 × 108 m3. River flow in QHD area 

comes from a northwest to southeast direction before discharging into the Bohai Sea. Qilihai Lagoon 

collects water from four rivers and the Tanghe estuary from two rivers, which are approximated as 

one river. Thus there are 11 seagoing rivers including Luanhe River (LH), Qilihai Lagoon (QLH), 

Dapuhe River (DPH), Dongshahe River (DSH), Renzaohe River (RZH), Yanghe River (YH), Daihe 

River (DH), Xinhe River (XH), Tanghe River (TH), Xinkaihe River (XKH), and Shihe River (SH) from 

south to north, as numbered and indicated in Figure 1b. The rainfall mainly occurs during summer 

and autumn, and rarely during spring and winter, which causes significant seasonal variation of 

runoff. The annual mean runoff in 2013 ranged from 0.25 m3/s to 39.74 m3/s. 

According to the marine function zoning regulation in Hebei Province (2011–2020), QHD is 

within the scenic tourism and recreational entertainment zone and boasts one of the best bathing 

beaches in China. In addition to tourism, mariculture is also important to the local economy. It follows 

that QHD has to meet the requirements of the criterion of second category water quality [36]. The 

COD has to be less than or equal to 3.0 mg/L based on the criterion of second category water quality 

according to the “National Marine Water Quality Criteria” (GB3097-1997) [37]. 

3. Methodology 

3.1. Hydrodynamic and Water Quality Model 

TMAL was calculated based on hydrodynamic and water quality models. Field observations 

tended to be point measurements, whereas numerical simulation captured both spatial and temporal 
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variations of hydrodynamics and contamination. MIKE 21 FM (flow model) is a two-dimensional 

modeling system in MIKE suite (Release 2014), which was applied in this study to simulate the 

hydrodynamic and pollutant transport. In MIKE 21 FM coupled with the hydrodynamic model, the 

water quality model was driven by tide and runoff. Using Boussinesq approximation, hydrostatic 

pressure, and shallow water conditions, the Reynolds averaged Navier–Stokes equations were 

reduced to generalized shallow water equations using the controlling volume method. The governing 

equations of the numerical model are demonstrated in the Appendix [38]. 

The unstructured nested grid from the Bohai Sea to QHD was constructed based on World 

Geodetic System 1984 (Figure 1b). The larger mesh of the Bohai Sea took the line connecting the tide 

stations of Dalian and Yantai as the offshore boundary, whose tidal level data were from the National 

Marine Data and Information Service of China [39]. Then the larger mesh domain provided a tidal 

level boundary for smaller mesh domain of the QHD sea. The mesh of QHD has 9442 nodes and 

17,973 elements with WE span of 110 km and NS span of 120 km. The mesh size is 7 km in the open 

sea and 15 m near the coastline. The higher resolution near the coastline is necessary to resolve the 

complex coastal bathymetry and shoreline. 

The boundary conditions at 11 river mouths were set by monthly average runoff and COD 

discharge in 2013. The flood season is from June to September and the largest runoff for each river 

occurs in July or August. December to March are the dry months with less runoff. LH is the largest 

river in QHD, with runoff much larger than other rivers. The mean discharge was over 1.72 × 109 t 

from July to September with a peak value of 4.28 × 109 t in August. Bottom stress was determined by 

a quadratic friction law with a bottom roughness from 0.01 to 0.015 s/m1/3 through water depth and 

sediment diameter. 

For the water quality model, non-conservative matter such as COD was not only influenced by 

flow convection and diffusion, but also by degradation processes such as microbial assimilation and 

metabolism. The initial COD concentration was set as the historical average value of 1.3 mg/L, and 

the decay rate for degradation was 0.03/d through model calibration [11]. The horizontal dispersion 

was determined by the eddy viscosity formulation dependent on the Prandtl number which was set 

as 1 by calibration in this study [40]. 

3.2. Field Observations 

Predicted and observed water level and current were compared with each other to assess the 

performance of the hydrodynamic model. The hydrodynamic measurement work in May of 2013 was 

for other coastal projects by the Marine Environmental Monitoring Center of Hebei Province 

Qinhuangdao, China. However, measurements from July to August when the largest runoff occurs 

would be better for calibrating the model. Observations at 10 current stations (V1–V10) and 1 water 

level station (WL), as indicated in Figure 2a, provided measurements from 0:00 on 11 May to 24:00 

on 12 May and from 0:00 on 16 May to 24:00 on 17 May 2013. The water level was measured at the 

tide station near XKH estuary based on the limnimeter (DCX-22, Keller, Zug, Switzerland). For 

current observation, 10 stations with an acoustic Doppler current profiler (ADCP) were set in QHD 

coastal area, and vertical mean current speed and direction were adopted. The observed COD 

concentrations given by the sampling laboratory report of 28 observation stations (C1–C28), as shown 

in Figure 2b, were used to validate the water quality model. The water samples were collected on 11  

August 2013 and brought back to the laboratory for determination of the permanganate index 

(CODMn). The runoff was measured once a month in every seagoing river by a flowmeter in 2013; in 

the same manner, the water was sampled for determination of the dichromate index (CODCr) which 

was converted into CODMn as the river boundary. In this study, CODMn is treated as the major water 

quality research object and is uniformly called COD concentration in later sections. 
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Figure 2. (a) Locations of field observation stations V1 to V10 for velocity and WL for water level; (b) 

locations of 28 chemical oxygen demand (COD) sampling stations. 

3.3. Model Validations 

A favorable linear correlation between measured and model predicted COD concentrations 

confirmed the good agreement between the model and data. R2 was used to quantify the model–data 

agreement in the range of 0 to 1 (i.e., if R2 was close to 1, the correlation was higher). Figure 3 indicates 

good agreements between the measured and computed water level, current speed, and current 

direction. The R2 values were 0.80 and 0.87 for the computed and observed water level, 0.80 and 0.77 

for current speed, and 0.94 and 0.92 for current direction on 11–12 May and 16–17 May, respectively. 

Except for the current speed on 16–17 May, all R2 values were larger than 0.80, which indicates good 

performance of the hydrodynamic model, even though the hydrodynamic conditions in the QHD sea 

were complicated and variable due to the presence of an amphidromic point in this region. As shown 

in Figure 4, the computed and measured COD concentrations compare well. The differences between 

measured COD concentration once a day and daily average computed COD concentration were 

acceptable. The water quality model performance of COD concentration was evaluated by the root 

mean square error (RMSE) [41]. The RMSE of COD concentration was 0.17 mg/L, which indicated 

that an accurate COD concentration could be obtained from the validated TMAL model. 
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Figure 3. Linear correlation between computed and measured water level, current speed, and current 

direction on 11–12 May (upper) and 16–17 May (lower) in 2013. 

 

Figure 4. Comparison of computed and measured COD concentration at the 28 sampling stations. 

3.4. Model Results of Total Maximum Allocated Load (TMAL) 

TMAL was determined by source of pollution and water quality distribution characteristics. Due 

to significant spatial variation of water quality in the QHD sea, it was necessary to execute the 

computation of the TMAL for each river. As shown in the computational procedure of the TMAL in 

Figure 5, COD was selected as the focus of this study, and it was necessary to impose an upper limit 

of COD concentration. The COD concentration control criterion of 2.0 mg/L was empirically 

determined by the water quality criteria. Based on the model simulation of COD concentration in the 

QHD sea, the area where the criterion exceeded in estuaries was identified. If no area exceeded the 

criterion, the TMAL was treated as the good practice pollutant emission load. Otherwise computation 

of TMAL needed to be determined through an optimization process by cutting down the pollutant 

emission load. The COD discharge at each river mouth boundary was determined through trial and 

error (i.e., with a reduction of −20%, −40%, −60%, −80%, and −100% for all rivers successively). If the 

reduction proportion could not satisfy the water quality criterion, a stronger cut of COD discharge 

would be adopted until that led to zero areas exceeding the criterion. Then an adjustment process of 

COD emission load for a single river could improve the accuracy of TMAL. The pollutant emission 
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loads needed to be further decreased for rivers with relatively large pollutant discharge, meanwhile, 

the loads could be increased for less polluted rivers by ±5%, ±10%, ±15%, and ±20%. When the COD 

concentration started to exceed the control criterion, TMAL was the pollutant emission load after 

adjustments using the optimization scheme. 

 

Figure 5. Computation procedures of total maximum allocated load (TMAL) with optimization 

process based on COD concentration simulation. 

4. Model Results 

4.1. COD Transport in Qinhuangdao Sea 

A coupled hydrodynamic and water quality numerical model was validated against field 

observations. The model was used to simulate hydrodynamics and COD concentrations of the QHD 

sea in 2013, which supplemented data for large-scale distribution of COD concentration. TMAL was 

calculated based on the COD concentration distribution which was dominated by tidal current 

forcing. The variations of water level and current speed near YH estuary (39°46′ N, 119°28′ E) are 

shown in Figure 6a. The regular semi-diurnal tide shows two peaks and two minima during a daily 

tidal cycle; however, the hydrodynamics were complicated at the QHD sea, due to approximation to 

the amphidromic point and the fact that the reversal of the tidal current lagged behind the reversal 

of the water level [42]. The four typical moments of tidal current were described as maximum flood, 

flood slack, maximum ebb, and ebb slack, and the flow fields of typical moments are shown in Figure 

6b–e. The current was reciprocating flow parallel with coastline and the current direction was west-

southwest as flood tide and east-northeast as ebb tide. The current speed magnitude was relatively 

smaller with inconspicuous differences between flood tide and ebb tide. The average current speed 

was 0.13~0.3 m/s during flood tide and 0.14~0.32 m/s during ebb tide. At the moment of maximum 

flood and maximum ebb, the current speeds of the coastal area were smaller than those of open sea, 

and the current speeds near the LH estuary were relatively larger with 0.4~0.6 m/s. At the moment of 

flood slack, the current speed near YH and DH estuary was close to 0 m/s, but the current near LH 

estuary was still flood tide, and the current in the north of the QHD sea was ebb tide. At the moment 

of ebb slack, the current in the north of QHD sea was flood tide and near LH estuary was ebb tide. It 

meant that turns of tidal current were not at the same time in spatial distribution of QHD sea; the 

turns of the tidal current in the north area were in advance of the south area. 



Water 2020, 12, 1141 8 of 17 

 

 

Figure 6. (a) The variations of water level and current speed in a tidal cycle; the flow fields of (b) 

maximum flood, (c) flood slack, (d) maximum ebb, and (e) ebb slack. Abbreviations: Luanhe River 

(LH), Qilihai Lagoon (QLH), Dapuhe River (DPH), Dongshahe River (DSH), Renzaohe River (RZH), 

Yanghe River (YH), Daihe River (DH), Xinhe River (XH), Tanghe River (TH), Xinkaihe River (XKH), 

and Shihe River (SH). 

In the water quality model, the COD variation in QHD was combined with monthly 

hydrodynamic conditions and COD discharge at river boundaries. A favorable water exchange 

capacity helps to alleviate water pollutants and strong tidal stream energy indicates rapid water 

exchange [43]; therefore, the kinetic energy was derived from the current speed to analyze its 

influence on water quality distribution. 

The spatial distributions of annual average COD concentration and annual average kinetic 

energy for 2013 are shown in Figure 7a,b. The COD concentration in the nearshore was higher than 

that in the offshore and it was higher in the southwest than northeast of QHD coastal water. It is 

evident from Figure 7a that isoline of 1.8 mg/L mainly appeared at the coast next to LH and from 

DPH to DH, while in other areas, the COD concentration was less than 1.8 mg/L. Serious pollution 

concentrated along the coast between LH and DH. The annual average COD concentrations for the 

11 estuaries are shown in Figure 7c, and the COD concentrations of LH, YH, and DH estuaries were 
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larger than 3.0 mg/L and exceeded the criterion of second category water quality. The COD 

concentration of LH estuary with about 6.4 mg/L in 2013 was the highest among the seagoing rivers 

in QHD. The COD concentrations at YH and DH were 5.7 mg/L and 3.2 mg/L, respectively. The water 

quality at DPH was close to the criterion of the second category with COD concentration of 2.8 mg/L. 

While the COD concentrations of RZH and DSH were lower than 2 mg/L, due to the shorter distance 

with YH, DH, and DPH, the coastal environment from DPH to DH was severely polluted. The COD 

concentration of XKH estuary was the lowest at 1.4 mg/L which showed fewer pollutant emissions, 

and the concentrations of TH, XH, and QLH were lower than 2 mg/L. COD in QLH coastal water was 

larger than 1.6 mg/L, which was mainly polluted by adjacent estuaries. From the perspective of mean 

kinetic energy distribution (Figure 7b), the kinetic energies in the southwest and northeast of QHD 

sea and open sea were relatively larger than those in the nearshore from LH to SH. Except for LH, 

QLH, and SH, the kinetic energies in adjacent water areas were lower than 0.01 J/kg, which meant a 

weaker coastal water exchange capacity in the QHD coastal area. Although SH had a larger COD 

concentration of 2.8 mg/L in estuary, a stronger kinetic energy with 0.025 J/kg led to cleaner water in 

the adjacent sea. 

The three estuaries of LH, YH, and DH had COD concentrations over the second category water 

quality criterion and were chosen as the case study estuaries to investigate the monthly variation of 

COD concentrations, as shown in Figure 7d. Winter consists of December, January, and February in 

QHD, and as the temperature is lower than ice point, the rivers are frozen so that there is rarely any 

runoff discharge into the sea and pollutant is not liable to be carried by runoff. The COD 

concentrations of three estuaries in December were larger than those in January and February because 

rivers were just beginning to freeze in December. There were two peaks in the monthly variation for 

LH, YH, and DH. The first peak appeared in March and the second peak appeared from July to 

September. As spring was coming and temperature became warmer in March, accumulation of 

pollutant from melting ice discharged into the sea and COD concentration increased in each estuary. 

Although the COD concentration dropped down in April and May because the accumulative effect 

of pollutant was taped down during March. The precipitation during summer and autumn in QHD 

was larger than other seasons according to historical meteorological and hydrological data, so that 

there were larger amounts of water and agricultural pollution discharged during these seasons. 

Summer was from June to August and autumn was from September to November. The largest COD 

concentration occurred in July with a magnitude of 16.4 mg/L in LH, in September with a magnitude 

of 19.6 mg/L in YH, and in August with a magnitude of 5.5 mg/L in DH. Though the COD discharge 

of LH at 3.28 kg/s in July was larger than that of YH at 2.93 kg/s in September, the maximum COD 

concentration among the estuaries occurred in YH estuary in September, which was mainly due to 

the larger kinetic energy of LH estuary than that of YH estuary, as shown in Figure 7b. Therefore, the 

COD concentration in an estuary was not only controlled by emission load, but also by kinetic energy. 
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Figure 7. (a) The spatial distribution of annual average COD concentration in 2013; (b) the spatial 

distribution of annual average kinetic energy; (c) the annual average COD concentrations in 11 

estuaries in QHD sea; (d) variations of COD concentrations in LH, YH, and DH estuaries where 

annual mean COD concentration exceeds 3 mg/L.  

4.2. Water Environmental Capacity and Total Capacity Control of COD 

QHD sea is a major tourist attraction for sea baths, therefore, it needs to meet the criterion of 

second category water quality, so that the COD concentration should be less than or equal to 3.0 mg/L. 

During red tide outbreaks in Xiamen, COD concentration may exceed 2.0 mg/L [44]. In previous 

studies of environmental capacity for Luoyuan Bay and Leqing Bay, the COD concentration of 2.0 

mg/L was used as the environmental control criterion [45,46]. In QHD sea, before the red tide event 

in 2011, the COD concentrations of most field stations were lower than 2.0 mg/L, however, more than 

half of the field observed that COD concentrations became larger than 2.0 mg/L during red tide 

outbreaks. It follows that COD concentration of 2.0 mg/L was adopted as the indicating index for red 

tide outbreak [47]. Therefore, it was required to maintain COD concentration below 2.0 mg/L in QHD 

for sustainable socio-economy development and the natural environment, which satisfied the 

criterion of second category water quality at the same time. In case COD concentrations exceeded 2.0 

mg/L, it was necessary to reduce the concentration by further decreasing the pollutant discharge at 

unqualified rivers while maintaining the emission at the same level for qualified rivers. 

Through simulation of COD concentrations in estuaries and optimization processes, TMAL was 

calculated for all estuaries every month in 2013. The pollutant reduction was estimated as emission 

load minus the TMAL that corresponded to the desired total capacity control. The year-round 

emission load, TMAL, pollutant reduction, and runoff of each seagoing river in 2013 are 

demonstrated in Figure 8a. Annual mean runoff of LH was the largest at 39.74 m3/s; that of other 

rivers was lower than 5 m3/s, except for XKH and YH which had runoff of 9.53 m3/s and 5.27 m3/s 

respectively. It was shown that LH had the largest emission load of 37,817.4 t/a, TMAL of 22,221.3 t/a, 

and pollutant reduction of 17,993.3 t/a due to the largest runoff. These differences of emission load 

and TMAL followed the variation of runoff except for XKH which upstream had excellent water 
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quality and little pollutant discharge. Five rivers, SH, XKH, XH, DSH, and QLH, did not need 

contaminant discharge reduction. Ranking from largest to smallest pollutant reduction was LH, YH, 

RZH, DPH, TH, and DH, and the effluent discharge of these rivers was necessary to be controlled. 

Hydrological characteristics in QHD featured significant seasonal variations due to ephemeral 

rivers. TMAL, emission load, and pollutant reduction of QHD in 2013 were mainly controlled by 

runoff with strong seasonal variation. Since temperature of QHD in winter was below the frozen 

point, rivers were almost all covered by ice with little runoff and effluent discharge, so that January, 

February, and March were combined together as the average value to be considered. As shown in 

Figure 8b, variation of seasonal runoff characteristics revealed that small amounts of river discharge 

into the sea were observed for December to May. In summer and autumn, the runoff became larger. 

In August, the emission load became the largest with 1.9 × 104 t in 2013 with the abundant runoff of 

279 m3/s, and the emission load as well as runoff in July occupied second place. In the other months, 

the emission loads were lower than 1.0 × 104 t, especially in January to May, which were lower than 

1.0 × 103 t. It was remarkable that variation of emission load, TMAL, and runoff had the same 

tendency. In other words, runoff was the main dominant control factor for pollutant emission and 

TMAL. The total capacity control, during the rainy season from June to September had pollutant 

reduction larger than 200 t, and these months became the key months to regulate pollutant emissions. 

 

Figure 8. (a) The year-round emission load, TMAL, pollutant reduction, and runoff of 11 seagoing 

rivers in QHD sea in 2013. (b) Monthly average variations of emission load, TMAL, pollutant 

reduction, and runoff of all rivers in QHD sea during 2013. 

5. Discussion 

5.1. Correlation of TMAL with Forcing Factors 

TMAL was calculated by COD concentrations near the estuaries of QHD sea which were 

controlled by runoff, kinetic energy, and COD discharge. To conduct correlation analysis of various 

influence factors (runoff, kinetic energy, and emission load) with TMAL, variables including 

influence factors and TMAL were collected from 11 seagoing rivers every month in 2013. The linear 
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relationships were derived as shown in Figure 9a–c, which suggests that TMAL had approximately 

linear relationship with these key factors. Emission load featured a particularly high linear correlation 

with the R2 of 0.92. The R2 values of the correlation of TMAL with runoff and kinetic energy were 0.84 

and 0.72, respectively. 

Spearman and Pearson coefficients are frequently used to evaluate correlation, whereas the 

stabilization of Pearson coefficient is influenced by extremum [48]. From the box figure shown in 

Figure 9d, there were extremums in each factor, therefore the Spearman coefficient was used to 

evaluate the correlation instead of the Pearson coefficient and the Spearman values are shown in 

Table 1. The positive value showed the extent of positive correlation. The Spearman value between 

kinetic energy and runoff was the lowest at 0.84, due to that the current speed in QHD sea was mainly 

dominated by tide, terrain, and coastline instead of runoff. Similarly, the kinetic energy was mainly 

controlled by current speed rather than emission load, so that the Spearman value of kinetic energy 

with emission load was relatively small at 0.85. The Spearman value of 0.88 between kinetic energy 

and TMAL showed kinetic energy had a significant influence on TMAL. It was evident that runoff 

had a close correlation with emission load and TMAL with Spearman values at 0.96 and 0.92, 

respectively. Runoff contributed to pollutant discharge for emission load, meanwhile it could also 

accelerate pollutant dispersion and increase TMAL. Runoff became the key link between emission 

load and TMAL with Spearman value of 0.95. 

 

Figure 9. Linear correlations between (a) runoff, (b) kinetic energy, and (c) emission load and TMAL 

in 2013; (d) discrete degrees of scattered data of TMAL, runoff, kinetic energy, and emission load. 

Table 1. Spearman values between TMAL (total maximum allocated load), runoff, kinetic energy, and 

emission load. 

Factors TMAL Runoff Kinetic Energy Emission Load 

TMAL 1.00 0.92 0.88 0.95 

Runoff 0.92 1.00 0.84 0.96 

Kinetic energy 0.88 0.84 1.00 0.85 

Emission load 0.95 0.96 0.85 1.00 
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5.2. Environmental Capacity Management 

Comprehensive coastal environment and pollution treatment programs of seagoing rivers have 

been carried out by the QHD municipal government since 2012 [49]. Since March 2012, about 254 

companies with illegal pollution discharge and 25 outdated production lines have been shut down. 

Among them, 167 companies were closed permanently, and 87 companies suspended productions 

[50]. To assess the effectiveness of management projects on seagoing rives, the emission load, TMAL, 

and pollutant reduction of COD in 2011 were calculated and compared with those in 2013, as shown 

in Figure 10. The emission loads of 11 rivers in 2013 were lower than those in 2011, which indicated 

that the pollutant discharge was mitigated to a certain degree. TMALs in 2013 differed from those in 

2011 due to different hydrodynamic conditions in these years; however, TMAL of XKH in 2013 

differed from that in 2011 due to pollutant discharge variation. The TMAL of LH in 2013 was larger 

than that in 2011, mainly due to a larger annual mean runoff of LH at 45.66 m3/s in 2013 than that at 

39.74 m3/s in 2011. SH and DH no longer required pollutant reduction, and recommended pollutant 

reductions of DPH and TH decreased from 2011 to 2013. The total emission load dropped down to 

64,272 t in 2013 which was about 83% of that in 2011. Overall, the water environment improved 

significantly through upstream pollutant control. In recent years, the upstream control program such 

as the River Governor System, which allocates the supervision and management of river water 

quality to a particular person in QHD, has improved water qualities in QHD sea and adjacent bathing 

beaches to satisfy the second category water quality criterion [51]. Reduction of pollutants discharged 

into the sea from rivers is the key for coastal pollution control and marine disaster prevention. 

The environmental capacity and total capacity control of COD was investigated based on 

hydrologic and water quality field observational data collected once a month. During the model 

simulation setup, however, the data measured once a month were regarded as the monthly average 

data. Therefore, construction of monitoring stations was recommended to continuously monitor the 

discharge and water quality of seagoing rivers, which was adopted by the local government as a pilot 

project. This monitoring system could measure the water quality in the estuaries of SH, XKK, TH, 

DH, YH, RZH, DPH, and XKH, and provided sufficient and timely data for future total pollutant 

capacity control. 

 

Figure 10. Comparisons of emission load, TMAL, and pollutant reduction of 11 rivers in QHD sea 

between 2011 and 2013. 
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6. Conclusions 

Premium water quality at Qinhuangdao (QHD) sea in the Bohai Sea is necessary for recreational 

sea bathing activities, therefore, pollutant management projects have been implemented to improve 

environmental capacity in this region. In this study, a coupled hydrodynamic and water quality 

model was constructed to assess water environmental capacity in QHD sea, after model validation 

with field measurements of tide, current, and water quality. Spatial and monthly temporal variations 

of COD concentration from 11 rivers to QHD sea were investigated through model simulation for 

2013 using MIKE. Total maximum allocated load (TMAL) was derived from the predicted COD 

concentration and optimized by adjusting the pollutant emission load. 

It was found that runoff was the most influential driving factor for pollutant emission load, 

water environmental capacity, and total pollution capacity control. The seasonal variation of COD 

indicated that water quality was particularly problematic during the rainy season of summer and 

autumn when the runoff was at the peak, but less so during winter when rivers were frozen, and less 

water and pollutant were discharged into the sea. Spearman correlation coefficient results indicated 

a linear relationship between TMAL and forcing factors such as runoff, kinetic energy, and emission 

load. Comparisons of TMAL, emission load, and pollutant reduction at QHD Sea in 2011 and 2013 

indicated that the upstream pollutant control management scheme such as River Governor System 

improved coastal water quality significantly. Similar practice may be applied to other coastal areas. 

Meanwhile, based on previous investigations of environmental capacity, a continuous monitoring 

system was adopted, and a pilot project is in operation to collect a large data set to achieve more 

accurate total capacity control. 
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Appendix A. Governing Equations of Numerical Model 

The numerical models used in this study include hydrodynamic and water quality models. The 

hydrodynamic model is used to simulate circulation driven by tide and runoff. The governing 

equations of the hydrodynamic model are continuity Equation (1) and horizontal momentum 

Equations (2) and (3) as follows: 

h hu hv
hS

t x y

  
+ + =

  
 (1) 

2 2

0 0 02

a x
u s

Phu hu hvu h gh
fvh gh F hu S

t x y x x x

 

  

    
+ + = − − − − + +

     
 (2) 

2 2

0 0 02

ya
v s

Phv huv hv h gh
fuh gh F hv S

t x y y y y

 

  

    
+ + = − − − − − + +

     
 (3) 

where t  is the time; x , y  are the Cartesian co-ordinates; u , v  are the components of depth 

average current velocity in x  and y  direction; h  is the total water depth with sum of undisturbed 
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water depth d  and the water level  ; S  is the magnitude of discharge due to point sources and 

( su , sv ) is the velocity by which the water is discharged into the ambient water; f  is the Coriolis 

parameter dominated by the angular rate of revolution and the geographic latitude; g  is the 

gravitational acceleration;   and 0  are the density and reference density of water; aP  is the 

atmospheric pressure; x  and y  are components of the bottom stresses dominated by bottom 

roughness; uF  and vF  are horizontal stress terms dominated by sub-grid scale horizontal eddy 

viscosity [52]. 

The transport of pollutant variables that are present in the water column is simulated by 

advection-dispersion process based on water quality and the hydrodynamic model. The transport 

equation for water quality model is obtained as follows: 

C p s

hC huC hvC
hF hk C hC S

t x y

  
+ + = − +

  
 (4) 

where C  is the depth average concentration; CF  is the horizontal diffusion term; pk  is the linear 

decay rate; sC  is the concentration of source discharge. 
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