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1 Introduction

Duality symmetries play a fundamental role in String Theory since they provide a pow-

erful tool for investigating the structure of the target spacetime from the string point of

view by relating, in the usual sigma-model approach, backgrounds which otherwise would

be considered different. The Abelian T-duality [1–3] (where T stands for Target-space) is

a well-known example of them. It is a distinctive symmetry of strings since, differently

from particles, one-dimensional objects can wrap d non-contractible cycles. This implies

the presence of winding modes wa (a = 1, . . . , d) that have to be added to the ordinary

momentum modes pa which take integer values along compact dimensions. On a d-torus

T d, the Abelian T-duality is an O(d, d;Z) string symmetry under, roughly speaking, the

mapping of the radii of the compact dimensions into their inverse, together with the ex-

change of momentum and winding modes: in this way it establishes a connection between

two apparently different but dual target spacetimes. From the sigma model point of view,

the necessary condition to work out a dual to some background was, initially, that the

latter possess an Abelian group of isometries [4–6] excluding in this way many physically

relevant classical string vacua from being considered.
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After the work in ref. [7], it was understood that T-duality symmetries could also

be associated with the non-Abelian isometries of the target manifold and, subsequently,

the notion of Abelian and non-Abelian T-duality was extended to the one of Poisson-Lie

T-duality [8–10]. Briefly, the term Abelian T-duality refers to the presence of global Abelian

isometries in the target spaces of both the paired sigma models; non-Abelian T-duality

refers to the existence of a global Abelian isometry on the target space of one of the two

sigma-models and of a global non-Abelian isometry on the other. Finally, the Poisson Lie

T-duality generalizes the previous definitions to all the other cases, including the one of a

pair of sigma models both having non-Abelian isometries in their target spaces.

Beyond the string world-sheet action, a category of models that reveal themselves to be

very helpful in understanding the above mentioned T-dualities is provided by sigma models

whose target configuration space is a Lie group G with g its Lie algebra. These are the

so-called Principal Chiral Models (PCM). Studying these models has led to abandoning

the requirement of the existence of isometries for the target space as the condition for the

existence of dual counterparts. Indeed, the relevant structure in this case reveals to be

the one of Drinfel’d double for G together with the well-established notion of Poisson-Lie

symmetries [11–14]. The Drinfel’d double of a Lie group G is defined as a Lie group D,

with dimension twice the one of G, such that its Lie algebra d can be decomposed into a

pair of maximally isotropic sub-algebras, g, g̃ with respect to a non-degenerate invariant

bilinear form on d, with g, g̃, respectively the Lie algebra of G and its dual algebra.1

The dual algebra is endowed with a Lie bracket which has to be compatible with existing

structures, in a precise sense which will be clarified below. Any such triple, (d, g, g̃), is

referred to as a Manin triple. By exponentiation of g̃ one gets the dual Lie group G̃

such that locally D ' G × G̃. The simplest example is the cotangent bundle of any d-

dimensional Lie group G, T ∗G ' G n Rd, which we shall call the classical double, with

trivial Lie bracket for the dual algebra g̃ ' Rd. For every decomposition of the Drinfel’d

double D into dually related subgroups G, G̃, it is possible to define a couple of PCM’s

having as target configuration space either of the two subgroups. Hence, every PCM has

its dual counterpart for which the role of G and its dual G̃ is interchanged. The set of

all decompositions of d into maximally isotropic subspaces (not necessarily subalgebras),

plays the role of the modular space of sigma models mutually connected by an O(d, d)

transformation. In particular, for the manifest Abelian T-duality of the string model on

the d-torus, the Drinfel’d double is D = U(1)2d and its modular space, is in one-to-one

correspondence with O(d, d;Z) [10].

In this paper, we are going to show that the target phase space of the SU(2) PCM can

actually be replaced by the Drinfel’d double of SU(2), namely the group SL(2,C), without

modifying the dynamics. This observation, based on previous work by Rajeev [15, 16], is

the main motivation for our interest in the model, since it allows to discuss Poisson-Lie

T-duality, a generalization of Abelian T-duality, in a situation where it is a true symmetry

of the undeformed dynamics. Later on we shall discuss more in detail this important point.

1An isotropic subspace of the Lie algebra d is such that the bilinear form evaluated on any couple of

vectors lying in that subspace vanishes; maximally isotropic means that the subspace cannot be enlarged

while preserving the property of isotropy.
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Non-linear sigma models have been investigated in relation to Poisson-Lie duality, with

or without reference to string theory, by many authors (see for example [17–27] and ref.s

therein). A closer approach to the one which will be pursued in the paper has been adopted

in [28, 29].

Another motivation for analyzing sigma models having as target phase-space a Drin-

fel’d double Lie group D, consists in the fact that it allows to establish some connections

with Generalized Geometry (GG), by virtue of the fact that tangent and cotangent vector

fields of the group manifold G may be respectively related to the span of the Lie algebra g

and its dual, g̃. (Let us briefly recall that GG [30–32] contains, roughly speaking, two main

ingredients — the first consists in replacing the tangent bundle T of a manifold M with

T ⊕T ∗, a bundle with the same base space M but fibers given by the direct sum of tangent

and cotangent spaces, and the second in replacing the Lie bracket among sections of T ,

that is vector fields, with the Courant bracket which involves vector fields and one-forms.)

Moreover, Doubled Geometry (DG) may play a role in describing the generalized dynamics

on the tangent bundle TD ' D× d, which we shall do in order to describe within a single

action both dually related models. Both GG and DG have revealed to be very suitable in

describing the geometry of Double Field Theory (DFT) [33–37]. DFT provides a proposal

to incorporate the Abelian T-duality of a compactified string on a d-torus T d in a (G, B)-

background as a manifest symmetry of the string effective field theory. More precisely,

DFT is supposed to be an O(d, d;Z) manifest spacetime effective field theory that should

derive from a manifestly T-dual invariant formulation of a string world-sheet action in

which T-duality is made manifest. Such a formulation was proposed in ref.s [3, 38, 39] and

later developed in ref.s [40–47] (see more recent works in [48–53]). This string action has to

contain information about windings and therefore it is based on two sets of coordinates: the

usual string coordinates xa(σ, τ) in the target space, having the momenta pa as conjugate,

and the dual coordinates, x̃a(σ, τ) having the winding modes as conjugate momenta. In

this way the O(d, d;Z) duality results to be a manifest symmetry of the world-sheet action

even paying the price of loosing the manifest covariance in the world-sheet two dimensions.

A doubling of all the N spacetime degrees of freedom in the low-energy effective action

first occurred in ref.s [54–57] where a manifestly O(N,N ;R) effective action in the target

space was obtained, and such symmetry was realized linearly, loosing this time the manifest

Lorentz invariance in the target space. In order to understand the role of Doubled and

Generalized Geometry in a simpler context, the doubling of degrees of freedom has been

analyzed in the context of finite-dimensional dynamical systems, such as the dynamics of a

charged particle in presence of a uniform distribution of magnetic monopoles, in ref.s [58–

60], where the doubling is justified by the otherwise violated Jacobi identity for the algebra

of observables.2 Moreover, it is worth mentioning that the occurrence of auxiliary degrees

of freedom is also typical of other geometric theories, such as those based on Noncommuta-

tive Geometry. Noncommutative gauge theories require that the gauge group be enlarged

(see for example [66] for a review). The differential calculus itself may be bigger than

2Violation of Jacobi identity can be related to the violation of associativity of the star product of the

quantized theory [61]. See refs. [62–65] in relation to the problem of finding an associative star product for

the electron-monopole system and related problems.
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in the commutative case (see [67, 68] for an example in three dimensions and [69] for an

application to two-dimensional gauge theory). Renormalizability of noncommutative field

theories entails the introduction of auxiliary parameters, such as for the Grosse-Wulkenhaar

model [70], or the translation-invariant model [71, 72]. Last but not least, noncommutative

extensions of Palatini-Holst theory of gravity imply the doubling of the tetrad degrees of

freedom, leading to a bi-tetrad theory of gravity, with the manifestation of new duality

symmetries [73, 74].

It should be clear that models whose carrier space of the dynamics is the manifold

of a Lie group can be very helpful in better understanding T-duality and doubling of the

degrees of freedom. The latter are naturally described in the framework outlined above, by

generalizing the dynamics originally defined on G to a dynamics on the Drinfel’d double

D, through the introduction of a natural parent action; T-duality is naturally provided by

the exchange of the two partner groups G and G̃. The formulation of Double Field Theory

on group manifolds, including its relation with Poisson-Lie symmetries, has been studied

in ref.s [75, 76]. For recent results see ref.s [77, 78].

This is the second of a series of two papers. In the first one [79], we have studied the

three-dimensional isotropic rigid rotator (IRR) that provides the simplest one-dimensional

sigma model having R as a source space and the group manifold SU(2) as target configu-

ration space. We have then introduced a model with target space the dual group SB(2,C)

and considered the symmetry properties of the two models within an extended model on

the Drinfel’d double SL(2,C), formulated in terms of a parent action. In particular, we

have emphasized how a natural para-Hermitian structure emerges on the Drinfel’d double

and can be used to provide a doubled formalism for the pair of theories. The IRR model

is too simple to exhibit symmetry under duality transformation, being a 0 + 1 field theory

but it has paved the way for a genuine 1+1 field theory, the SU(2) Principal Chiral Model

which, while being modeled on the IRR system, certainly exhibits interesting properties

under duality transformations: therefore, the SU(2) Principal Chiral Model is the topic of

this second paper.

More precisely, we elaborate on an old intuition due to S.G. Rajeev which dates back

to the 80’s [15, 16] where the principal SU(2) chiral model is shown to exhibit a whole

one-parameter family of alternative Hamiltonians and alternative Poisson algebras, all

equivalent from the point of view of the dynamics [also see ref. [80] where the construction is

extended to the Wess-Zumino Witten model, and ref. [81] where the integrability is analyzed

in terms of Lax pairs]. The model is described in the Hamiltonian approach by a pair of

fields J i(t, σ), Ii(t, σ), the so-called currents, which are valued in the phase space T∗SU(2),

that we shall refer to as the target phase space. Let us briefly recall that, topologically,

T∗SU(2) is the manifold S3 × R3, while, as a group, it is the semidirect product of SU(2)

with the Abelian group R3. As a Poisson manifold it is known to be symplectomorphic

to the group SL(2, C),3 which should come with no surprise since the two have the same

topology. Last but not least, T∗SU(2) and SL(2,C) are both Drinfel’d doubles of the group

SU(2) [11–14]. The former, which we shall call classical double, is the trivial one, with

Abelian algebra of momenta and can be obtained from the latter via group contraction.

3when endowed with appropriate Poisson brackets [82].
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The many different geometric structures which are compatible with the manifold S3×
R3 will play a crucial role all over the paper. To start with, the whole construction relies

on the generalization of the affine algebra of currents, associated with the semi-direct sum

su(2)(R) n a(R), being a(R) an Abelian Lie algebra, to a fully semi-simple Kac-Moody

algebra which is either su(2)(R)⊕ su(2)(R) or sl(2,C)(R). Here by g(R) we shall indicate

the affine algebra associated to the Lie algebra g. Interestingly, this construction can be

understood in terms of Born Geometry [83–87], which we shortly review and adapt to our

model. By slightly generalizing the Poisson Kac-Moody algebra with the introduction of a

second parameter, and performing an O(3, 3) transformation over the target phase space,

we show that a family of sigma models with target configuration space the group manifold

of SB(2,C) is obtained, which deserves the name of T-dual models. Moreover, the vanishing

value of one of the two parameters corresponds to the original SU(2) PCM with canonical

splitting of its current algebra, whereas the vanishing of the remaining parameter correctly

reproduces the dual current algebra sb(2, C)(R) n a(R), but the Hamiltonian exhibits a

singular behaviour which is yet to be understood.

Let us stress here that the one-parameter family of Hamiltonian models, re-proposed in

eqs. (3.19)–(3.22), but already contained in [15, 16, 80], yields an equivalent description of

the standard dynamics of the PCM. Namely, for each value of τ the dynamics is one and the

same, up to rescaling the fields by appropriate factors of τ . In this sense, it is different from

the deformations introduced in ref. [88], which are true deformations of the dynamics. We

prove explicitly that the same result holds for the two-parameter generalization represented

by the algebra (4.1)–(4.3), upon rescaling and linear transforming (I,K)→ (I, J).

The paper is organized as follows.

In section 2 the results obtained in ref. [79] are reviewed for the isotropic rigid rotator

thought of as a dynamical model over the group manifold SU(2) with a dual partner defined

on the dual group SB(2,C). The two groups appear in the Iwasawa decomposition of the

Drinfel’d double SL(2,C) whose structure is recalled together with the one of its Lie algebra

sl(2,C) ' su(2) on sb(2,C).

In section 3 the generalization of the dynamics of the rigid rotor to the SU(2) Prin-

cipal Chiral Model is described in the Lagrangian and Hamiltonian approach, with the

introduction of the Poisson algebra of currents, which is the affine algebra su(2)(R)na(R).

The existence of a whole one-parameter family of alternative Hamiltonians with a fully

semi-simple affine algebra sl(2,C)(R) is discussed and its interpretation in terms of Born

geometries is analyzed.

In section 4 a family of T-dual models is introduced in the Hamiltonian formalism and

it is shown that the target configuration space for the latter is the group manifold SB(2,C).

In subsection 4.1 a different perspective is adopted. Analogously to what has been done

for the Isotropic Rigid Rotator, a natural Lagrangian model is constructed directly on the

dual group SB(2,C) and its relation to the dual models introduced previously is analyzed.

Finally, in the spirit of Double Field Theory, in order to build a model where the

symmetries exhibited by the dynamics are manifest, a parent action is constructed in

section 5 having as target configuration space the Drinfel’d double SL(2,C), hence doubling

– 5 –
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the degrees of freedom. From it, either of the dual partner models can be recovered, by

gauging one of its global symmetries.

Conclusions and Outlook are reported in the final section 6. An appendix follows

where the current algebras for all models considered are explicitly derived.

2 The Isotropic Rigid Rotator

In this section we shortly review the results obtained in ref. [79] for the isotropic rigid

rotator as a dynamical model over the group manifold of SU(2), and its dual model having

as configuration space the group manifold of the Lie-Poisson dual of SU(2), the group

SB(2,C). Moreover, we briefly recall the Drinfel’d double structure of the group SL(2,C)

and the bialgebra nature of its Lie algebra sl(2,C) ' su(2) on sb(2,C).

The classical action which describes the dynamics can be chosen to be:

S0 = −1

4

∫
R

Tr
(
φ∗[g−1dg] ∧ ∗

H
φ∗[g−1dg]

)
= −1

4

∫
R

Tr

(
g−1dg

dt

)2

dt (2.1)

with φ : t ∈ R→ g ∈ SU(2), ∗
H

the Hodge star operator on the source space R, ∗
H
dt = 1, Tr

the trace over the Lie algebra and g−1dg the Maurer-Cartan left-invariant one-form on the

group manifold. With an abuse of notation, the pull-back map φ∗ will be omitted since

now on.

Therefore the model can be regarded as a (0+1)-dimensional, group valued, field theory.

In order to motivate the interest for such a model, it is worth anticipating here that,

with g : R1,1 → SU(2) and R1,1 the Minkowski spacetime, the action (2.1) generalizes to

the one describing the Principal Chiral Model, that is to say, a non-linear sigma model

with target space the group manifold of SU(2).

By choosing the parametrization g = y0σ0 + iyiσi, with (y0)2 +
∑

i(y
i)2 = 1 and σ0

the identity matrix, σi Pauli matrices and the inverse relations

yi = − i
2

Tr gσi, y0 =
1

2
Tr gσ0, i = 1, . . . , 3 ,

one has:

g−1ġ = i(y0ẏi − yiẏ0 + εjk
iyj ẏk)σi := iQ̇iσi (2.2)

being

Q̇i = y0ẏi − yiẏ0 + εjk
iyj ẏk (2.3)

the left generalized velocities.4 The Lagrangian then reads as:

L0 =
1

2
(y0ẏj − yj ẏ0 + εkl

jykẏl)(y0ẏr − yrẏ0 + εpq
rypẏq)δir :=

1

2
Q̇jQ̇rδjr. (2.4)

This yields the following equations of motion:

LΓQ̇
i = 0, or equivalently LΓ

(
g−1dg

dt

)
= 0 (2.5)

with LΓ the Lie derivative with respect to Γ = d
dt .

4Had we chosen to work with the right-invariant Maurer-Cartan one-form we would have introduced

right generalized velocities.
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The cotangent bundle (left) coordinates are represented by (Qi, Ii) with Ii being the

left conjugate momenta:

Ii =
∂L0

∂Q̇i
= δijQ̇

j . (2.6)

The Hamiltonian is thus H0 = 1
2IiIjδ

ij with Poisson brackets (see ref. [79] for details)

given by:

{yi, yj} = 0 (2.7)

{Ii, Ij} = εij
kIk (2.8)

{yi, Ij} = δijy
0 + εjk

iyk or {g, Ij} = igσjg (2.9)

which lead to the dynamics described by the following equations:

İi = 0, g−1ġ = iIiδ
ijσj . (2.10)

The fiber coordinates Ii are associated with the angular momentum components and the

base space coordinates g ≡ (y0, yi) to the orientation of the rotator.

As well-known, Ii are constants of the motion, while g undergoes a uniform precession.

Remarks:

• As a group T∗SU(2) is the semi-direct product SU(2)nR3 with Lie algebra su(2)nR3

and Lie brackets given by:

[Li, Lj ] = εij
kLk [Ti, Tj ] = 0 [Li, Tj ] = εij

kTk .

Here Li, Ti, i = 1, 2, 3 generate respectively the algebra su(2) and the algebra R3.

• The non-trivial Poisson brackets (2.7)–(2.9) are the Kirillov-Souriau-Konstant (KSK)

brackets on the dual algebra g̃.

Starting from these remarks, in ref. [89] the carrier space of the dynamics has been gener-

alized to SL(2,C), the non-trivial Drinfel’d double of SU(2), which, roughly speaking, can

be obtained by deforming the Abelian subgroup R3 of the semi-direct product above, and

a similar generalization has been proposed for the Principal Chiral Model [15, 16] and the

Wess-Zumino-Witten Model [80].

The algebra sl(2,C) is usually described in terms of the generators ei = σi/2, bi = iei,

i = 1, 2, 3, with Lie brackets

[ei, ej ] = iεij
kek, [ei, bj ] = iεij

kbk, [bi, bj ] = −iεijkek . (2.11)

It is equipped with two non-degenerate invariant scalar products:

〈u, v〉 = 2Im(Tr(uv)) ∀u, v ∈ sl(2,C) (2.12)

and

(u, v) = 2Re(Tr(uv)) ∀u, v ∈ sl(2,C). (2.13)

– 7 –
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With respect to the first one (the Cartan-Killing metric), one has two maximal isotropic

subspaces, spanned by {ei}, and the linear combination

ẽi = bi − εij3ej . (2.14)

Indeed the following relations hold:

〈ei, ej〉 =
〈
ẽi, ẽj

〉
= 0 and

〈
ei, ẽ

j
〉

= δji . (2.15)

The generators {ei}, {ẽi} span two non-commuting subalgebras of sl(2,C) with Lie brack-

ets:

[ei, ej ] = iεij
kek, [ẽi, ej ] = iεjk

iẽk + iekf
ki
j , [ẽi, ẽj ] = if ijkẽ

k. (2.16)

In particular, {ẽi} span the Lie algebra of SB(2,C), the dual group of SU(2) with

f ijk = εijlεl3k. (2.17)

Each algebra acts on the other one non-trivially by coadjoint action, as it can be read from

eq. (2.16) and therefore we denote the total algebra by sl(2,C) = su(2) on sb(2,C), with on
generalizing the semi-direct sum.

Summarizing:

• sl(2,C) can be endowed with a Lie bialgebra structure;

• the role of su(2) and its dual algebra can be interchanged.

The triple (sl(2,C), su(2), sb(2,C)) is called a Manin triple.

The construction can be generalized to any Lie group G. Given d = g on g̃, the group

D with Lie algebra d is the Drinfel’d double and G, G̃ are dual groups. For f ijk = 0 D →
T ∗G, while for cij

k = 0 D → T ∗G̃, with cij
k the structure constants of g and f ijk the

structure constants of g̃. Therefore D generalizes both the cotangent bundle of G and of G̃.

The bialgebra structure induces Poisson structures on the group manifold of the double

D which generalize both those of T ∗G and of T ∗G̃ and reproduce the KSK brackets on

coadjoint orbits of G, G̃ when f ijk = 0, cij
k = 0 respectively. For γ ∈ D and being

r = λẽi ⊗ ei with λ ∈ R the classical Yang-Baxter matrix, the brackets

{γ1, γ2} = −γ1γ2r
∗ − rγ1γ2 (2.18)

where γ1 = γ ⊗ 1, γ2 = 1⊗ γ2, r∗ = −λei ⊗ ẽi, can be shown to define a Poisson structure

on the group manifold [13, 90]. The group D equipped with this Poisson bracket is also

called the Heisenberg double of G.

By writing γ as γ = g̃g, with g̃ ∈ G̃, g ∈ G, it can be shown that these brackets are

compatible with the following ones:

{g̃1, g̃2} = −[r, g̃1g̃2] (2.19)

{g̃1, g2} = −g̃1rg2 {g1, g̃2} = −g̃2r
∗g1 (2.20)

{g1, g2} = [r∗, g1g2], (2.21)

– 8 –
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where (2.19) and (2.21) are the Sklyanin brackets [91, 92]. Let us now specify to the

example at hand with G = SU(2) and G̃ = SB(2,C). One can choose for the latter the

parametrization g̃ = 2(u0e
0 + iuiẽ

i) with u2
0 − u2

3 = 1 and ẽ0 = 1/2, ẽi being generators of

the Lie algebra sb(2,C), which is going to be specified below. By expanding g̃ as a function

of the parameter λ, g̃(λ) = 1 + iλIie
i +O(λ2), while keeping g = y0σ0 + iyiσi, one obtains,

in the limit λ→ 0:

{Ii, Ij} = εkijIk

{Ii, y0} = iyjδij {Ii, yj} = iy0δji − ε
j
iky

k

{y0, yj} = {yi, yj} = 0 +O(λ)

which reproduce correctly the canonical Poisson brackets on the cotangent bundle of SU(2).

Consider now r∗ as an independent solution of the Yang-Baxter equation r∗ → ρ = µek⊗ek

with µ ∈ R and expand g ∈ SU(2) as a function of the parameter µ, g = 1+ iµĨiei+O(µ2)

while keeping g̃ in its original parametrization. By repeating the same analysis as above,

one gets back the canonical Poisson structure on T∗SB(2, C), with position coordinates

and momenta now interchanged. In particular we note that:

{Ĩi, Ĩj} = f ijkĨ
k . (2.22)

Furthermore, it is possible to consider a different Poisson structure on the double [13],

given by:

{γ1, γ2} =
λ

2
[γ1(r∗ − r)γ2 − γ2(r∗ − r)γ1] . (2.23)

This is the one that correctly dualizes the bialgebra structure on d when evaluated at the

identity of the group D. Indeed, by expanding γ ∈ D as γ = 1 + iλIiẽ
i + iλĨiei and

rescaling r, r∗ by the same parameter λ, one can show that:

{Ii, Ij} = εij
kIk; {Ĩi, Ĩj} = f ijkĨ

k (2.24)

{Ii, Ĩj} = −f jkiIk − Ĩkεkij (2.25)

which are the Poisson brackets induced by the Lie bi-algebra structure of the double. One

can see that the fiber coordinates Ii and Ĩj play a symmetric role. Moreover, since the

fiber coordinate Ĩi appears in the expansion of g, it can also be thought of as the fiber

coordinate of the tangent bundle TSU(2), so that the couple (Ii, Ĩ
i) identifies the fiber

coordinate of the generalized bundle T ⊕ T ∗ over SU(2).

2.1 The dual model

Let us now go back to the two scalar products in the Lie bialgebra, (2.12)–(2.13). With

respect to the second scalar product, one has another splitting:

(ei, ej) = −(bi, bj) = δij , (ei, bj) = 0 (2.26)

with maximal isotropic subspaces: f±i = 1√
2
(ei ± bi). The following doubled notation can

be introduced:

eI =

(
ei
ẽi

)
, ei ∈ su(2), ẽi ∈ sb(2,C) . (2.27)
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The first scalar product then becomes:

〈eI , eJ〉 = ηIJ =

(
0 δji
δij 0

)
(2.28)

which is O(3, 3) invariant by construction.

The second scalar product yields:

(eI , eJ) =

(
δij εip3δ

pj

δipεjp3 δ
ij − εik3δklε

jl3

)
. (2.29)

With C+, C− being the two subspaces spanned by {ei}, {bi} respectively, one can notice

that the splitting d = C+ ⊕ C− defines a positive definite metric on d via:

H = ( , )C+ − ( , )C− . (2.30)

It is immediate to check that the metric H, that will be indicated since now on by double

round brackets:

((ei, ej)) := (ei, ej); ((bi, bj)) := −(bi, bj); ((ei, bj)) := (ei, bj) = 0

satisfies

HT ηH = η ,

namely H is a pseudo-orthogonal O(3, 3) metric. The sum αη + βH is a non-degenerate

metric for a suitable choice of the parameters α, β. Notice that the latter can be rewritten as

((u, v)) = 2Re Tr [u†v] (2.31)

showing that it is in general not invariant.

In ref. [79] a dynamical model has been introduced on the cotangent bundle of the

dual group T∗SB(2,C), with action given by:

S̃0 = −1

4

∫
R
T r[φ∗(g̃−1dg̃) ∧ ∗

H
φ∗(g̃−1dg̃)] (2.32)

with φ : t ∈ R→ g̃ ∈ SB(2,C), φ∗ the pull-back map, g̃ = 2(u0ẽ
0 + iuiẽ

i), and u2
0−u2

3 = 1.

T r was chosen to be the non-degenerate product (2.30) T r := (( , )), which is however only

invariant under left SB(2,C) action [79]. The latter defines a non-degenerate left-invariant

metric over the fibers,

hij := δij + εik3δklε
jl3 (2.33)

so that the Lagrangian can be rewritten as:

L̃0 =
1

2
˙̃Qih

ij ˙̃Qj (2.34)

with ˙̃Qi = u0u̇i−uiu̇0 +f jkiuj u̇k being the left tangent bundle coordinates defined through

the Maurer-Cartan form:

g̃−1 ˙̃g = ˙̃Qiẽ
i. (2.35)
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In analogy with the case of the rigid rotor, the equations of motion are easily retrieved:

LΓ
˙̃Qjh

ji − ˙̃Qp
˙̃Qqf

ip
k h

qk = 0 (2.36)

where LΓ is the Lie derivative with respect to Γ = d
dt .

Left momenta living on the cotangent bundle are introduced through a Legendre trans-

form:

Ĩi =
∂L̃0

∂ ˙̃Qi

= hij ˙̃Qj (2.37)

H̃0 =
1

2
Ĩihij Ĩ

j (2.38)

with

hij = (δij −
1

2
εik3δ

klεjl3) (2.39)

the inverse metric. By means of the Poisson brackets (see ref. [79] for details):

{ui, uj} = 0 (2.40)

{Ĩi, Ĩj} = f ijkĨ
k (2.41)

{ui, Ĩj} = δji u0 − f jkiuk (2.42)

one obtains the Hamiltonian dynamics

˙̃Ij = f jklĨ
lĨrhrk (2.43)

expressing that the Hamiltonian is not invariant under right SB(2,C) action. By introduc-

ing right momenta we would get instead İ
j

= 0, consistently with the invariance of the

Hamiltonian under left action.

The Poisson brackets of both models, reported in eqs. (2.7)–(2.9) and (2.40)(2.42), have

the structure of a semi-direct product. Moreover the Poisson brackets for the momenta can

be retrieved by the Poisson-Lie bracket of the dual group (resp. eq. (2.19) for the Poisson

bracket of the SU(2) momenta, eq. (2.21) for the Poisson bracket of the SB(2,C) momenta).

It is therefore natural to describe this structure as a kind of Poisson-Lie duality and look

for a generalized model over the group manifold of the double group, which encodes both

models once suitably constrained.

2.2 The generalized action

In ref. [79] a generalized action with doubled degrees of freedom has been introduced in

the form:

S =

∫
k1

〈
γ−1dγ ∧ ∗

H
γ−1dγ

〉
+ k2((γ−1dγ ∧ ∗

H
γ−1dγ)) (2.44)

with γ ∈ SL(2,C), eI = (ei, ẽ
i), γ−1dγ = Q̇IeIdt ≡ (Aiei + Biẽ

i)dt the left-invariant

Maurer-Cartan one-form on SL(2,C) pulled-back to R and (Ai, Bi) fiber coordinates of

TSL(2,C). They are obtained by means of the scalar product (2.12) according to:

Ai = 2Im Tr (γ−1γ̇ẽi); Bi = 2Im Tr (γ−1γ̇ei). (2.45)
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Upon introducing k = k1/k2, the Lagrangian can be rewritten in terms of the left general-

ized coordinates Q̇I as follows:

L =
1

2
(k ηIJ +HIJ)Q̇IQ̇J (2.46)

with

kηIJ +HIJ =

(
δij (kδip + εip3)δpj

δip(kδpj − εjp3) δij + εik3δklε
jl3

)
. (2.47)

The equations of motion are:

LΓQ̇
I(k ηIJ + HIJ)− Q̇P Q̇QCIP

K(k ηQK + HQK) = 0 (2.48)

where CIP
K are the structure constants of sl(2,C). The matrix kηIJ +HIJ is non-singular

provided k2 6= 1, which is going to be assumed from now on. In the doubled description

introduced above, the left generalized momenta are represented by:

PI =
∂L

∂Q̇I
= (kηIJ + HIJ)Q̇J . (2.49)

The Hamiltonian reads then as:

Ĥ = (PIQ̇
I − L)P =

1

2
[(kη + H)−1]IJPIPJ (2.50)

with

[(kη +H)−1]IJ =
1

1− k2

(
δij + εil3δlkε

jk3 −(εip3 + kδip)δpj
(εip3 − kδip)δpj δij

)
.

In terms of the components Ii, Ĩ
j of PI the Hamiltonian can be rewritten as:

Ĥ =
1

2(1− k2)

(
(δij + εil3δlkε

jk3)IiIj + δij Ĩ
iĨj − 2(εip3 + kδip)δpjIiĨ

j
)

(2.51)

with Poisson brackets (see ref. [79] for a derivation)

{Ii, Ij} = εij
kIk (2.52)

{Ĩi, Ĩj} = f ijkĨ
k (2.53)

{Ii, Ĩj} = εil
j Ĩ l − Ilf lj i {Ĩi, Ij} = −εjliĨ l + Ilf

li
j (2.54)

while the Poisson brackets between momenta and configuration space variables g, g̃ are

unchanged with respect to T∗SU(2),T∗SB(2,C).

In order to derive Hamilton equations, it is sufficient to write in compact form:

{PI ,PJ} = CIJ
KPK

with CIJ
K the SL(2,C) structure constants as specified above in eqs. (2.52)–(2.54). We

have then:

d

dt
PI = {PI , Ĥ} = [(η + kH)−1]JK{PI ,PJ}PK = [(η + kH)−1]JKCIJ

LPLPK

which is not zero, consistently with (2.48).
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Summarizing,

• we have obtained a dynamical model with doubled coordinates and generalized mo-

menta;

• the Hamiltonian dynamics is dictated by Poisson brackets for the generalized mo-

menta which reproduce the bialgebra structure of sl(2,C).

These brackets can be obtained from the following Poisson structure on the double, first

introduced in ref. [13]:

{γ1, γ2} =
λ

2
[γ1(r∗ − r)γ2 − γ2(r∗ − r)γ1] . (2.55)

This is the one that correctly dualizes the bialgebra structure on d when evaluated at the

identity of the group D. To this, let us expand γ ∈ D as γ = 1+ iλIiẽ
i+ iλĨiei and rescale

r, r∗ by the same parameter λ. It is straightforward to obtain, on the l.h.s. of eq. (2.55),

the following expression:

{γ1, γ2} = −λ2
(
{Ii, Ij}ẽi ⊗ ẽj + {Ĩi, Ĩj}ei ⊗ ej + {Ii, Ĩj}(ẽi ⊗ ej − ej ⊗ ẽi)

)
while, on the r.h.s. of the same equation, one gets:

−λ2
(
Isε

s
ij ẽ

i ⊗ ẽj + Ĩsf ijs ei ⊗ ej + Isf
sj
i (ẽi ⊗ ej − ej ⊗ ẽi) + Ĩsεjsi(ẽ

r ⊗ ej − ej ⊗ ẽi)
)
.

By equating the two results, one reproduces the Poisson algebra (2.52)–(2.54), which is the

wanted result.

Upon using the compact notation I = iIie
i∗, Ĩ = iĨiẽ∗i , with ei

∗
, ẽ∗i respectively repre-

senting the dual bases of ei, ẽ
i, one can rewrite the Poisson algebra as follows:

{I + Ĩ , J + J̃} = {I, J} − {J, Ĩ}+ {I, J̃}+ {Ĩ , J̃}, (2.56)

which is argued in ref. [79] to represent a Poisson realization of a C-bracket for the gener-

alized bundle T ⊕ T ∗ over SU(2). We refer to ref. [79] for details.

In order to complete the analysis, let us look at the Lie algebra of Hamiltonian vector

fields associated with the momenta I, Ĩ. Hamiltonian vector fields are defined in terms of

Poisson brackets in the standard way:

Xf ≡ {· , f} (2.57)

so that, by indicating with Xi = {· , Ii}, X̃i = {· , Ĩi} the Hamiltonian vector field as-

sociated with Ii, Ĩ
i respectively, one has, after using the Jacobi identity, the following

Lie algebra:

[Xi, Xj ] = {{· , Ij}, Ii} − {{· , Ii}, Ij} = {· , {Ii, Ij}} = εij
k{· , Ik} = εij

kXk (2.58)

[X̃i, X̃j ] = {{· , Ĩj}, Ĩi} − {{· , Ĩi}, Ĩi} = {· , {Ĩi, Ĩj}} = f ijk{· , Ĩk} = f ijkX̃
k (2.59)

[Xi, X̃
j ] = {{· , Ĩj}, Ii} − {{· , Ii}, Ĩj} = {· , {Ii, Ĩj}} = −fijk{· , Ik} − {· , Ĩk}εkij

= −fijkXk − X̃kεki
j (2.60)
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namely:

[X + X̃, Y + Ỹ ] = [X,Y ] + LX Ỹ − LY X̃ + [X̃, Ỹ ]

which shows that C-brackets can be obtained as derived brackets, in analogy with the ideas

of ref.s [93, 94], with the remarkable difference that, in this case, they are derived from the

canonical Poisson brackets of the dynamics.

In order to get back one of the two models with half degrees of freedom one has to

impose constraints. This has been realized in ref. [79] by gauging the global symmetries of

the generalized action, namely the SU(2) or SB(2,C) global invariance. The same procedure

will be adopted for the chiral model below, therefore we refer again to ref. [79] for details

about the gauging of the generalized model described above.

3 The Principal Chiral Model

A Principal Chiral Model is a two-dimensional field theory with target configuration space

given by a Lie group G and source space given by the two-dimensional spacetime R1,1

endowed with the metric sαβ = diag(1,−1).

The SU(2) Principal Chiral Model represents a natural generalization to field theory

of the dynamics of the IRR, as described above. Indeed, the action functional is formally

the same, while the field variables are defined on two-dimensional spacetime taking values

on the group manifold of SU(2). The possibility of introducing a one-parameter family

of Hamiltonian descriptions with modified Poisson brackets, yielding the same equations

of motion, was already illustrated in ref.s [15, 16, 80, 81]. We are going to follow that

approach in order to show that it naturally yields a family of dually related models. The

duality transformations which we shall find will be shown to be of Poisson-Lie type.

In the Lagrangian approach the action may be written in terms of fields φ : (t, σ) ∈
R1,1 → g ∈ SU(2) and Lie algebra valued left-invariant one-forms whose pull-back to R1,1

may be written as

φ∗(g−1dg) = (g−1∂tg) dt+ (g−1∂σg) dσ (3.1)

so to have:

S =
1

4

∫
R2

Tr [φ∗(g−1dg) ∧ ∗
H
φ∗(g−1dg)] (3.2)

where trace is understood as the scalar product in the Lie algebra su(2), and the Hodge

star operator acting as ∗
H

dt = dσ, ∗
H

dσ = dt,5 yielding:

S =
1

4

∫
R2

dtdσ Tr
[
{(g−1∂tg)2 − (g−1∂σg)2

]
(3.3)

which is to be compared with (2.1) for the IRR dynamics. A remarkable property of the

model is that its Euler-Lagrange equations

∂t(g
−1∂tg)− ∂σ(g−1∂σg) = 0 (3.4)

5We adopt the convention ε01 = 1.
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may be rewritten in terms of an equivalent system of two first order partial differential

equations, introducing the so called currents, as it is customary in the framework of inte-

grable systems:

Ai = Tr (g−1∂tg)ei, J i = Tr (g−1∂σg)ei, (3.5)

namely, g−1∂tg = 2Aiei, g
−1∂σg = 2J iei, with Tr eiej = 1

2δij . The Lagrangian becomes:

L =
1

2

∫
R

dσ(AiδijA
j − J iδijJ j) (3.6)

with

∂tA = ∂σJ, (3.7)

∂tJ = ∂σA− [A, J ]. (3.8)

The existence of a g ∈ SU(2) that admits the expression of the currents in the form (3.5)

is guaranteed by eq. (3.8), that can be read as an integrability condition. Moreover, if the

usual boundary condition for a physical field is imposed:

lim
σ→±∞

g(σ) = 1, (3.9)

one has that g is uniquely determined from (3.5).6 At fixed t, all the elements g satis-

fying the boundary condition (3.9) form an infinite dimensional Lie group SU(2)(R) ≡
Map(R, SU(2)), given by smooth maps g : σ ∈ R → g(σ) ∈ SU(2) which are constant at

infinity [15, 16]. This is a slight generalization of the definition of loop group which is the

group of smooth maps from S1 to SU(2).

At fixed time, the currents J and A take values in the Lie algebra su(2)(R), defined

as the algebra of functions from R to su(2) that are sufficiently fast decreasing at infinity

to be square-integrable. Again, this definition generalizes the one of loop algebra g(S1),

which, for g a semi-simple Lie algebra, are known as Kac-Moody algebras.

The analogy with particle dynamics on Lie groups can be pushed further, by regarding

the carrier space of the dynamics as the tangent bundle of SU(2)(R). Therefore the tangent

bundle description of the dynamics can be given in terms of (J,A), with A being the left

generalized velocities and J playing the role of left configuration space coordinates.

Infinitesimal generators of the Lie algebra su(2)(R) can be obtained by considering the

vector fields which generate the finite-dimensional Lie algebra su(2) and replacing ordinary

derivatives with functional derivatives, thus yielding

Xi(σ) = Xa
i (σ)

δ

δga(σ)
, (3.10)

and their Lie bracket is

[Xi(σ), Xj(σ
′)] = c k

ij Xk(σ)δ(σ − σ′), (3.11)

where σ, σ′ ∈ R. This Lie bracket is C∞(R)-linear and su(2)(R) ' su(2)⊗ C∞(R).

6Note [15, 16] that if we had chosen space to be a circle, (3.8) would not imply (3.5). The solution to

these equations will not be periodic in general. If (A, J) is viewed as a connection, (3.8) says that it is flat.

But in order for a flat connection to be ‘pure gauge’ as in (3.5), it is necessary also for the parallel transport

operator around a homotopically non-trivial curve (holonomy) to be equal to the identity.
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Notice that the real line R can be replaced by any smooth manifold M . The Lie

algebras g(M) = Map(M, g) are the so called current algebras.

3.1 The Hamiltonian formulation

Let us briefly review the standard Hamiltonian approach which can be found for example

in [95, 96]. Having recalled in previous section that the target space where the Lagrangian

dynamics takes place is the tangent bundle TSU(2), we shall see in present section that in

the Hamiltonian framework the target phase space is naturally given by T∗SU(2). In order

to introduce the canonical formalism, the canonical momenta are defined as:

Ii =
δL

δ (g−1∂tg)i
= δij(g

−1∂tg)j = δijA
j . (3.12)

Thus, the Hamiltonian can be written as:

H =
1

2

∫
R

dσ(IiIjδ
ij + J iJ jδij), (3.13)

while the equal-time Poisson brackets [95, 96] can be checked to be (see appendix A for a

pedagogical derivation)

{Ii(σ), Ij(σ
′)} = εij

kIk(σ)δ(σ − σ′), (3.14)

{Ii(σ), J j(σ′)} = εki
jJk(σ)δ(σ − σ′)− δji δ

′(σ − σ′), (3.15)

{J i(σ), J j(σ′)} = 0, (3.16)

yielding the equations of motion for the momenta:

∂tIj(σ) = {H, Ij(σ)} = ∂σJ
kδkj(σ), (3.17)

where we have used the antisymmetry of the structure constants and the integration by

parts. In a similar way, we get the remaining equations:

∂tJ
j(σ) = {H,J j(σ)} = ∂σIkδ

kj(σ)− ε jlkIlJk(σ). (3.18)

The brackets (3.14)–(3.16) show that I and J span the infinite-dimensional current algebra

c1. In particular, the I’s are the generators of the affine Lie algebra su(2)(R), while the J ’s

span an Abelian algebra a(R), so that c1 is the semi-direct sum c1 = su(2)(R) n a(R).

As noticed before, if one extends the analogy with the Lagrangian description of particle

dynamics on Lie groups to the Hamiltonian setting, the target phase space of the dynamics

can be recognized to be the cotangent bundle of SU(2), with the currents (J i, Ii) playing

the role of conjugate variables and I the left generalized momenta, while J keeping the

role of left configuration space coordinates.

A remarkable result due to Rajeev [15, 16] consists in the fact that an equivalent

description of the dynamics can be given in terms of a new one-parameter family of Poisson
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algebras and modified Hamiltonians. Upon introducing a parameter τ , real or imaginary,

the deformed brackets read as:

{Ii(σ), Ij(σ
′)} = (1− τ2)εij

kIk(σ)δ(σ − σ′), (3.19)

{Ii(σ), J j(σ′)} = (1− τ2)Jk(σ)εki
jδ(σ − σ′)− (1− τ2)2δji δ

′(σ − σ′), (3.20)

{J i(σ), J j(σ′)} = (1− τ2)τ2εijkIk(σ)δ(σ − σ′). (3.21)

The modified Hamiltonian reads in turn as:

Hτ =
1

2(1− τ2)2

∫
R

dσ (IiIjδ
ij + J iJ jδij), (3.22)

and, in the limit τ → 0, the algebra and the Hamiltonian reduce to the original ones.

Notice that the factor (1− τ2) is never zero for imaginary τ .

The new brackets correspond to the infinite-dimensional Lie algebra c2 which, for

imaginary τ , our choice from now on, can be easily recognized to be isomorphic to the

current algebra modeled on the Lorentz algebra sl(2,C), that is c2 ' sl(2,C)(R).7 The Lie

algebra c1 can be recovered in the limit τ → 0.

The new equations of motion read then as:

∂tIj(σ) = {Hτ , Ij(σ)} = ∂σJ
kδkj (3.23)

∂tJ
j(σ) = {Hτ , J

j(σ)} = ∂σIkδ
kj − ε jlkIlJk, (3.24)

which coincide with eqs. (3.17), (3.18). Let us notice here that the same deformed alge-

bra, namely the affine Lie algebra of SL(2,C) or SO(4), according to τ being imaginary

or real, has been considered in [88] with the main difference that in the latter case the

author gets a true deformation of the dynamics, whereas in our case we have an alternative

description of one and the same dynamics. As anticipated in the introduction, this should

not be surprising, since the cotangent space T∗SU(2) and the phase space SL(2;C) are

symplectomorphic.

Let us rescale the fields according to

I

(1− τ2)
→ I

J

(1− τ2)
→ J (3.25)

so that the Poisson algebra becomes

{Ii(σ), Ij(σ
′)} = εij

kIk(σ)δ(σ − σ′), (3.26)

{Ii(σ), J j(σ′)} = Jk(σ)εki
jδ(σ − σ′)− δji δ

′(σ − σ′), (3.27)

{J i(σ), J j(σ′)} = τ2εijkIk(σ)δ(σ − σ′) (3.28)

while the rescaled Hamiltonian becomes identical to the undeformed one (3.13). Once

identified the Lie algebra here described by the deformed Poisson brackets, one can define

7For real τ it is instead isomorphic to the algebra so(4)(R). The latter case is the one analyzed in detail

in [15, 16, 80, 81] with respect to quantization and integrability. Here we stick to imaginary τ , this being

the choice which unveils the double group structure.
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new generators which make it easier to recognize the bi-algebra structure on it. As in the

finite dimensional case, we keep the generators of su(2)(R) unmodified and consider the

linear combination:

Ki(σ) = J i(σ)− iτεli3Il(σ). (3.29)

From the deformed Poisson brackets (3.26)–(3.28) it is possible to derive the Poisson brack-

ets of the new generators:

{Ki(σ),Kj(σ′)} = iτεijlεl3kK
k(σ′) δ(σ − σ′) (3.30)

showing that the K’s span the sb(2,C)(R) Lie algebra, with structure constants f ijk =

εijlεl3k, while for the mixed Poisson brackets one finds:

{Ii(σ),Kj(σ′)} = {Ii(σ), J j(σ′)− iτεjl3Il(σ′)}

=
(
Kk(σ′)εki

j − iτIk(σ′)εkjsεs3i
)
δ(σ − σ′)− δji δ

′(σ − σ′) (3.31)

where we recognize again the structure constants of the Lie algebra sb(2,C), εkjsεs3i = fkji.

Notice that, in deriving the Poisson algebra above one has to use the Jacobi identity for

the structure constants of SU(2) with one index equal to 3

εqs3εsji + εis3εqjs + εjs3εiqs = 0

yielding

f qij = εqisεjs3 = −εqs3εsj
i − εis3ε

q
js. (3.32)

In this way, the Lie algebra c2 ≡ sl(2,C)(R) has been expressed as c2 = su(2)(R) on
sb(2,C)(R), up to a central extension with central charge equal to −1, i.e. just like the

affine algebra associated with the Drinfel’d double of the Lie algebra su(2) considered at

the beginning.

To summarize, upon rewriting the alternative Hamiltonian (3.22) in terms of the new

generators, the SU(2) chiral model is completely described by the one-parameter family of

Hamiltonian functions

Hτ =
1

2

∫
R

dσ
[
IsIl

(
δsi δ

l
j − τ2εsi3ε

l
j3

)
δij +KiKjδij + 2iτεsl3IsK

qδlq

]
(3.33)

with Poisson brackets given by:

{Ii(σ), Ij(σ
′)} = εij

kIk(σ)δ(σ − σ′) (3.34)

{Ki(σ),Kj(σ′)} = iτf ijkK
k(σ′)δ(σ − σ′) (3.35)

{Ii(σ),Kj(σ′)} =
(
Kk(σ′)εki

j + iτf jkiIk(σ
′)
)
δ(σ − σ′)− δji δ

′(σ − σ′) (3.36)

yielding the interesting result that the Principal Chiral Model with compact target space

may be described in terms of a non-compact current algebra. This result can be traced

back to the fact that the cotangent bundle of the group SU(2) is symplectomorphic to the

group SL(2,C). We shall see in the next section that this is not the case for the cotangent

bundle of the dual group of SU(2).
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Remarkably, the Hamiltonian (3.33) may be rewritten in terms of a Riemannian metric

which we choose to denote as an inverse metric, Hτ−1, for reasons that will be clear in a

moment. By introducing:

Hτ−1 =

(
hij(τ) iτεip3δpj
iτδipε

jp3 δij

)
(3.37)

where it has been defined, for future convenience:

hij(τ) = δij − τ2εia3δabε
jb3 (3.38)

one has indeed:

Hτ =
1

2

∫
R

dσ
[
IsIl(Hτ−1)sl +KsK l(Hτ−1)sl +KsIl(Hτ−1)s

l
+ IsK

l(Hτ−1)sl

]
. (3.39)

Let us observe that the metric Hτ−1 coincides with the inverse of H defined in (2.30) for

τ = −i, while hij(τ) →
τ=±i

hij of eq. (2.33). Moreover one has:

hij(τ) = δij +
τ2

1− τ2
εia3δ

abεjb3 (3.40)

with hij(τ) the inverse metric of hij(τ). In terms of the compact notation IJ = (Ij ,K
j),

one can rewrite the Hamiltonian as:

Hτ =
1

2

∫
R

dσ IL(H−1
τ )LMIM . (3.41)

Thus, summarizing the results of this section, we have a whole family of models,

labelled by the parameter τ , which are related (and indeed equivalent) to the standard

SU(2) chiral model by the linear transformation (3.29), which can be checked to be a

O(3, 3) transformation. This transformation is a symmetry of the dynamics because it

maps solutions into solutions.

3.1.1 Poisson-Lie structure

The PCM, in the formulation given by the Hamiltonian in eq. (3.39), together with the Pois-

son algebra (3.34)–(3.36), is a Poisson-Lie sigma-model according to the following analysis.

Keeping in mind that Ki, Ii are coordinate functions for the target phase space of the

model, SU(2) n g̃, with Ki base coordinates and Ii fiber coordinates, we associate to Ki

the Hamiltonian vector fields (2.57)

XKi := {·,Ki} (3.42)

spanning the fibers which are isomorphic to the vector space R3. Because of the non-trivial

Poisson bracket (3.35), the latter becomes a non-Abelian algebra according to the following

(cfr. eqs. (2.58)–(2.60)):

[XKi , XKj ] = X{Ki,Kj} = iτf ijk XKk . (3.43)

– 19 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
0

Hence, we obtain the dual Lie algebra sb(2,C), and in the limit τ → 0 we recover the

Abelian structure of the starting model over T∗SU(2). A dual formulation of this property

can be given in terms of the Hamiltonian vector fields associated with the currents Ii, say

Xi. By repeating the analysis above, they can be seen to close the Lie algebra of su(2),

hence, they can be regarded as one-forms over the dual Lie algebra, which has become

non-Abelian, according to the computation above. We have then:

dXi(X̃
j , X̃k) = −Xi([X̃

j , X̃k]) = −f jk
i (3.44)

reproducing, in this way, the commonly used definition of Poisson-Lie structure.

3.1.2 A family of Born geometries

We have just seen in section 3.1 how the deformation of the Poisson algebra c1 = su(2)(R)na

into c2 = sl(2,C) induces an alternative formulation of the Hamiltonian dynamics of the

Principal Chiral Model with target space SU(2). In this formulation we have seen the

Riemannian metric H−1
τ (3.37) emerging in the definition of the alternative Hamiltonian

Hτ (3.39).

In order to understand the geometric meaning of such metric, let us take a step back

to the original Hamiltonian H (3.13). We can write the undeformed Hamiltonian as

H =
1

2

∫
R

dσ II (H−1
0 )IJ IJ , (3.45)

where II = (Ii, J
i) are components of the current 1-form on T∗SU(2) and

(H−1
0 )

IJ
=

(
δij 0

0 δij

)
(3.46)

is a Riemannian metric on T∗SU(2). In other words, the Hamiltonian description of the

Principal Chiral Model on SU(2) naturally involves the Riemannian metric H−1
0 on the

cotangent bundle.

Interestingly, the metric (3.46) can be interpreted as one of the structures defining a

left-invariant Born geometry on T∗SU(2). In the present case the transformation defin-

ing a Born geometry, as detailed below, acts as an O(3, 3) transformation of the target

phase T∗SU(2).

The concept of Born reciprocity giving rise to Born geometries has been first intro-

duced, up to our knowledge, by Freidel and collaborators in [83], in order to provide a

new point of view on string theory in which spacetime is a derived dynamical concept. We

shall see that the family of models which we have described in the previous section can be

related with such interpretation, with the phase space of the chiral model regarded as dy-

namical. Born reciprocity is thus implemented as a choice of a Lagrangian submanifold of

the phase space, in our case governed by the parameter τ , and amounts to a generalization

of T-duality. In this approach the phase space of the model can be understood in terms

of dynamical bi-Lagrangian manifolds whose geometric structure is an example of a Born
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geometry. Let us notice that, in our case, such a bi-Lagrangian manifold happens to be a

Drinfel’d double as well, with an interesting overlap between the two structures.

To this, let us start by recalling that T∗SU(2) is a Drinfel’d double with Lie algebra

su(2) n R3. Such Lie algebra has a natural (symmetric, non-degenerate) pairing 〈· , ·〉
such that su(2) and R3 are maximally isotropic subspaces with respect to it. Moreover,

su(2)nR3 can be seen as a split vector space su(2)⊕R3, thus it can be naturally endowed

with a para-complex structure κ, i.e. κ ∈ End(su(2) n R3) such that κ2 = 1 with su(2)

eigenspace of κ associated with the eigenvalue +1 and R3 eigenspace associated with the

eigenvalue −1. The structures 〈· , ·〉 and κ satisfy a compatibility condition

〈κ(ξ), ψ〉 = −〈κ(ψ), ξ〉 , ∀ξ, ψ ∈ su(2) nR3,

which defines a two-form ω on su(2) n R3. Summarizing, (〈· , ·〉 , κ) related by the above

compatibility condition define a para-Hermitian structure on su(2) nR3.

Since T (T∗SU(2)) ∼= T∗SU(2)× (su(2)nR3), we may read the structures (〈· , ·〉 , κ) as

defined pointwise on T∗SU(2), giving, respectively, a left-invariant O(3, 3) metric η and an

endomorphism κ of T (T∗SU(2)) such that κ2 = 1 which has TSU(2) (eigenvalue +1) and

TR3 (eigenvalue −1) as eigenbundles8 (with a slight abuse of notation for κ). Again, one

has a so-called fundamental two-form ω = ηκ on T∗SU(2) coming from the compatibility

of η and κ.

In order to understand the relation between the left-invariant para-Hermitian structure

(η, κ) and the Riemannian metric (3.46), let us consider the (global) basis {αi, ϕi} of left-

invariant 1-forms on T∗SU(2) with dual left-invariant vector fields {Xi, Y
i}. Then, the

para-Hermitian structure (η, κ) on T∗SU(2) can be written as

η = αi ⊗ ϕi + ϕi ⊗ θi , (3.47)

κ = Xi ⊗ αi − Y i ⊗ ϕi . (3.48)

The fundamental two-form then reads as:

ω = ηκ = ϕi ∧ αi (3.49)

and the Riemannian metric (3.46) is written as

H0 = δijϕi ⊗ ϕj + δijα
i ⊗ αj .

Note that the left-invariant Riemannian metric H0 is the unique left-invariant metric such

that left-invariant vector fields are orthonormal. So its appearance in the Hamiltonian is

8One may also say that π : T∗SU(2) → SU(2) is foliated by SU(2) and R3. Note that, in this case,

the foliation R3 can be also seen as given by the canonical vertical subbundle V = ker(dπ) of T (T∗SU(2))

defined as the kernel of dπ : T (T∗SU(2))→ TSU(2). The other foliation may be obtained by a choice of the

horizontal distribution such that horizontal vectors are left-invariant with respect to SU(2), i.e. splitting

the canonical short exact sequence

0→ V → T (T∗SU(2))→ π?(TSU(2))→ 0

with the proper horizontal lift of left-invariant vector fields. A para-complex structure is naturally associated

with such splitting.
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completely natural in the context of Lie groups. Therefore, from the above expressions it

is easy to verify that:

η−1H0 = H−1
0 η ω−1H0 = −H−1

0 ω.

These are the defining relations for the Born structure (η, κ,H0) on T∗SU(2). This is the

canonical Born geometry induced by the Drinfel’d double structure, see [83, 87] for details.

The deformed Hamiltonian Hτ also gives a Riemannian metric on T∗SU(2) and we

shall see that such metric Hτ is a B-transformation of the metric H0.

Let us consider the τ -dependent B-transformation

eB(τ) =

(
1 iτB

0 1

)
∈ O(3, 3) (3.50)

such that the components of the tensor B are given by Bij = εij3

The Riemannian metric Hτ , inverse of (3.37), is obtained by the B-transformation

acting on H0:

Hτ =
(
e−B(τ)

)tH0e
B(τ), (3.51)

i.e. it has components:

(Hτ )IJ =

(
δij iτδipε

jp3

iτεip3δpj δ
ij − τ2εis3δslε

jl3

)
. (3.52)

Furthermore, the left-invariant para-Hermitian structure (η, κ) is transformed under

eB(τ). In particular, the only structure which changes under such transformation is the

para-complex structure κ, i.e.

κτ = eB(τ)κe−B(τ) (3.53)

with κτ still compatible with η, so that the fundamental two-form becomes ωτ = ηκτ . In

matrix form, the new almost para-Hermitian structure reads as:

κτ =

(
1 2iτB

0 1

)
η =

(
0 1

1 0

)
ωτ =

(
0 1

1 2iτηB

)
(3.54)

where ηB ∈ Γ(∧2T ∗R3). Note that the new almost para-Hermitian structure still has

TSU(2) as eigenbundle while TR3 is transformed in a non-involutive distribution Vτ whose

sections are generated by vector fields in the form Ȳ i = Y i+ iτεij3Xj . We can easily check

that the metric Hτ gives a Born structure on T∗SU(2) together with (η, κτ ), for each value

of the parameter τ .

We finally show that the deformed current algebra defined in eqs. (3.34)–(3.36) is

obtained via the same B-transformation of the Poisson current algebra of the fields J i, Ii.

The latter can be stated in terms of the Poisson bivector field:

Λ =

∫
dσdσ′ ΛIJ(σ, σ′)XI(σ) ∧XJ(σ′) (3.55)
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with

Λij(σ, σ
′) = εij

kIkδ(σ − σ′) (3.56)

Λij(σ, σ′) = 0 (3.57)

Λi
j(σ, σ′) = Jk(σ)εki

jδ(σ − σ′)− δij∂σδ(σ − σ′) (3.58)

Λij(σ, σ
′) = −Jk(σ)εkj

iδ(σ − σ′) + δij∂σδ(σ − σ′) . (3.59)

Thus, the B-transformed Poisson structure reads as:

Λ′τ = eB(τ)Λ(e−B(τ))t (3.60)

namely

Λ′τ
IJ

=

(
δij iτB

ij

0 δi
j

)(
0 Λjk

Λj
k Λjk

)(
δk
l 0

−iτBkl δkl

)
(3.61)

so that we may read the B-transformation eB(τ) as a Poisson map between Λ and Λ′τ , both

bivector fields on T∗SU(2). Note that Λ is the Poisson structure on T∗SU(2) obtained

from the canonical (left-invariant) symplectic structure, as shown in appendix A. If we

simultaneously rotate the fields according to(
J ′i

I ′i

)
=

(
δij iτB

ij

0 δi
j

)(
J j

Ij

)
(3.62)

which is nothing but the O(3, 3) transformation (3.29), we reproduce the current algebra

of the fields I, K, i.e. (3.34), (3.35) and (3.36), upon identifying J ′ with K.

Finally, performing the transformations (3.51), (3.62) on the Hamiltonian (3.45) we

recover the expression (3.41).

Therefore we can conclude by saying that the family of equivalent Hamiltonian de-

scriptions of the SU(2) PCM, first found in [15, 16], can be understood in terms of a

one-parameter family of Born geometries for the target phase space T ∗S3, corresponding,

for each choice of the parameter τ , to a specific splitting of phase space, with the value

τ = 0 the canonical splitting.

4 Poisson-Lie dual models

From the Hamiltonian formulation of the SU(2) chiral model we have seen that it is possible

to describe the dynamics in terms of the centrally extended current algebra c2 = sl(2,C)(R).

Therefore, as we have done for the rigid rotor, we shall look for a model whose target space

is the dual group of SU(2). As previously anticipated, we shall see that the duality relation

between the two models defined on the manifold of Poisson-Lie dual groups, is much more

natural in the context of field theory. To this, it is worth recalling that the model described

above is a Poisson-Lie sigma model, as we have shown in section 3.1.1.

Let us consider the Poisson algebra c2 (with central extension), represented by

eqs. (3.34)–(3.36) and let us introduce another imaginary parameter α in such a way to
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make the role of the subalgebras su(2)(R) and sb(2,C)(R) symmetric. We consider namely

the two-parameters generalization of the algebra (3.34)–(3.36)

{Ii(σ), Ij(σ
′)} = iα εij

kIk(σ)δ(σ − σ′) (4.1)

{Ki(σ),Kj(σ′)} = iτf ijkK
k(σ′)δ(σ − σ′) (4.2)

{Ii(σ),Kj(σ′)} =
(
iαKk(σ′)εki

j + iτf jkiIk(σ
′)
)
δ(σ − σ′)− δji δ

′(σ − σ′) (4.3)

which, in the limit iτ → 0, reproduces the semi-direct sum su(2)(R) n a, while the limit

iα→ 0 yields sb(2,C)(R)n a. For all non zero values of the two parameters, the algebra is

isomorphic to c2, and, upon suitably rescaling the fields, one gets a two-parameter family

of models, all equivalent to the Principal Chiral Model.

Since the result might appear surprising at a first sight, let us show in detail how

it works, by slightly generalizing the procedure of subsection 3.1. The goal is to show

that the dynamics that is derived from the algebra (4.1)–(4.3), together with a suitable

Hamiltonian, is equivalent to the dynamics that follows from eqs. (3.14)–(3.16) with the

Hamiltonian (3.13). As an intermediate step, one has to rescale the fields I andK as follows:

Īj =
Ij
iα

K̄j = iαKj (4.4)

which yield

{Īi(σ), Īj(σ
′)} = εij

kĪk(σ)δ(σ − σ′) (4.5)

{K̄i(σ), K̄j(σ′)} = (iτ iα)f ijkK̄
k(σ′)δ(σ − σ′) (4.6)

{Īi(σ), K̄j(σ′)} =
(
K̄k(σ′)εki

j + (iτ iα)f jkiĪk(σ
′)
)
δ(σ − σ′)− δji δ

′(σ − σ′). (4.7)

The latter is identical to the algebra (3.34)–(3.36), upon introducing τ̄ , s.t. iτ̄ = iτ iα.

Then we rescale and rotate the fields, analogously to what has been previously done,

according to:

Îi = (1− α2τ2)
Ii
iα

Ĵ i = (1− α2τ2)(iαKi + iτεli3Il) (4.8)

so that the latter obey the Poisson algebra

{Îi(σ), Îj(σ
′)} = (1− α2τ2)εij

kĪk(σ)δ(σ − σ′), (4.9)

{Îi(σ), Ĵ j(σ′)} = (1− α2τ2)Jk(σ)εki
jδ(σ − σ′)− (1− α2τ2)2δji δ

′(σ − σ′), (4.10)

{Ĵ i(σ), Ĵ j(σ′)} = (1− α2τ2)τ2εijkÎk(σ)δ(σ − σ′) (4.11)

that, together with the modified Hamiltonian

Hτ,α =
1

2(1− α2τ2)2

∫
R

dσ (ÎiÎjδ
ij + Ĵ iĴ jδij) (4.12)

can be checked to yield the equations of motion

∂tÎj(σ) = {Hτ,α, Îj(σ)} = ∂σĴ
kδkj (4.13)

∂tĴ
j(σ) = {Hτ,αJ

j(σ)} = ∂σIkδ
kj − ε jlkIlJk, (4.14)
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namely, the undeformed dynamics of the PCM as in eqs. (3.17), (3.18). In the limit

iτ̄ → 0, the algebra and the Hamiltonian reduce to the original ones. Notice that the

factor 1− α2τ2 = 1− τ̄2 is never zero for imaginary τ̄ .

Once we have shown how to recast the two-parameter algebra (4.1)–(4.3) in the

form (4.9)–(4.11), it is useful to express the Hamiltonian (4.12) in terms of the fields

I,K. We get:

Hτ,α =
1

2

∫
R

dσ
[
IsIl(Hτ,α−1)sl +KsK l(Hτ,α−1)sl +KsIl(Hτ,α−1)s

l
+ IsK

l(Hτ,α−1)sl

]
,

(4.15)

with

Hτ,α−1 =

(
hij(τ̄)
(iα)2

iτ̄ εip3δpj

iτ̄ δipε
jp3 (iα)2δij

)
(4.16)

and iτ̄ previously defined. In terms of the compact notation IJ = (Ij ,K
j), one can rewrite

the Hamiltonian as:

Hτα =
1

2

∫
R

dσ IL(H−1
τ,α)LMIM . (4.17)

Since the role of I and K is now symmetric, we can perform an O(3, 3) transformation

which exchanges the momenta Ii with the fields Ki, thus obtaining a new two-parameter

family of models, which legitimately deserve to be called duals to the PCM.

The O(3, 3) transformation

K̃(σ) = I(σ), Ĩ(σ) = K(σ) (4.18)

yields, when applied to the Hamiltonian (3.39), the new Hamiltonian

H̃τ,α =
1

2

∫
R

dσ
[
K̃s(Hτ,α−1)slK̃l + Ĩs(Hτ,α−1)slĨ

l + 2i(Hτ,α−1)
s

lK̃sĨ
l
]

(4.19)

with Poisson algebra:

{K̃i(σ), K̃j(σ
′)} = iα εij

kK̃k(σ)δ(σ − σ′) (4.20)

{Ĩi(σ), Ĩj(σ′)} = iτf ijkĨ
k(σ′)δ(σ − σ′) (4.21)

{K̃i(σ), Ĩj(σ′)} =
(
iαĨk(σ′)εki

j + iτf jkiK̃k(σ
′)
)
δ(σ − σ′)− δji δ

′(σ − σ′) . (4.22)

The Hamiltonian can be recast into the form

H̃τ =
1

2

∫
R

dσ ĨI (Hτ,α)IJ ĨJ , (4.23)

with ĨJ = (Ĩj , K̃j).

From the Poisson algebra (4.20)–(4.22) we observe that the new family of models,

which we call DPCM (Dual Principal Chiral Models), has target configuration space the

group manifold of SB(2,C), spanned by the fields K̃i, and momenta Ĩi which span the

fibers of the target phase space.

In strict analogy with what we have found previously, we could repeat step by step

the analysis performed in section 3.1.1 and conclude that the DPCM are Poisson-Lie sigma
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models according to the definition we have given. Moreover, the two families are dual to

each other by construction.

To conclude this section, let us observe that, in the limit α → 0 the dual current

algebra collapses to the semidirect sum sb(2,C)(R) n a, but the Hamiltonian (4.23) be-

comes singular.

In the next section we will approach the problem from a Lagrangian perspective,

starting directly with a natural action defined on the Poisson-Lie dual of SU(2).

4.1 The Lagrangian approach

Following the approach that we have already used for the rigid rotor, it is natural, within

the Lagrangian approach, to introduce fields g̃ : (t, σ) → SB(2,C) and one-forms valued

in the Lie algebra sb(2,C), in terms of which a natural Lagrangian can be defined on the

Lie-Poisson dual to SU(2). The Hamiltonian will then be obtained by Legendre transform,

together with a Poisson algebra which, not surprisingly, will result to be isomorphic to

c3 = sb(2,C)(R)n a. This new Hamiltonian will be related to the two-parameter family of

dual models introduced above, through a B-transformation.

Let us look at the Lagrangian approach in some detail.

The action of the proposed model is a straightforward extension of the one in eq. (2.32)

to fields φ̃ : (t, σ) ∈ R1,1 → g̃ ∈ SB(2,C), with Lie algebra valued left-invariant one-forms

g̃−1dg̃ whose pull-back to R1,1 is given by:

φ̃∗(g̃−1dg̃) = (g̃−1∂tg̃)iẽ
i dt+ (g̃−1∂σ g̃)iẽ

i dσ. (4.24)

We have then:

S̃ =
1

2

∫
R1,1

T r
[
φ∗(g̃−1dg̃) ∧ ∗

H
φ∗(g̃−1dg̃)

]
, (4.25)

where, as in the finite-dimensional case, T r stands for the non-degenerate product in the Lie

algebra sb(2,C), given by (2.30), and the Hodge star operator acts as ∗
H

dt = dσ, ∗
H

dσ = dt,

yielding

S̃ =
1

2

∫
R2

dtdσ
[
(g̃−1∂tg̃)i(g̃

−1∂tg̃)j − (g̃−1∂σg)i(g̃
−1∂σg)j

]
hij . (4.26)

As for the finite-dimensional case, the action functional is invariant under left SB(2,C)

action. The Euler-Lagrange equations

hij
(
∂t(g̃

−1∂tg̃)j − ∂σ(g̃−1∂σ g̃)j
)

= LX̃iL̃ (4.27)

with X̃i(σ) the left-invariant vector fields over the group manifold and L̃ the Lagrangian,

may be rewritten in terms of an equivalent system of two first order partial differential

equations, introducing, as for the SU(2) principal model, the currents:9

Ãi = (g̃−1∂tg̃)i, J̃i = (g̃−1∂σ g̃)i. (4.28)

9No factor two is needed here because T r(ẽiẽj) = δij .
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The Lagrangian becomes then:

L̃ =
1

2

∫
R

dσ(Ãih
ijÃj − J̃ihij J̃k) (4.29)

and the equations of motion read:

hij(∂tÃj − ∂σJ̃j) = f silh
lj(ÃsÃj − J̃sJ̃j), (4.30)

∂tJ̃ = ∂σÃ− [Ã, J̃ ], (4.31)

being the latter a condition for the existence of g̃ ∈ SB(2,C) that admits the expression of

the currents in the form (4.28). At fixed t, all elements g̃ satisfying the boundary condition

lim
σ→±∞

g(σ) = 1 form the infinite-dimensional Lie group SB(2,C)(R) ≡ Map(R, SB(2,C)),

given by smooth maps g̃ : σ ∈ R→ g̃(σ) ∈ SB(2,C) which are constant at infinity.

At fixed time, the currents J̃ and Ã take values in the Lie algebra sb(2,C)(R) of

functions from R to sb(2,C) that are sufficiently fast decreasing at infinity to be square-

integrable. Therefore the tangent bundle description of the dual dynamics can be given

in terms of (J̃ , Ã), with Ã the left generalized velocities, while J̃ playing the role of left

configuration space coordinates.

4.1.1 The Hamiltonian description

Upon introducing left momenta

Ĩi =
δL̃

δ (g̃−1∂tg̃)i
= (g̃−1∂tg̃)jh

ij = Ãjh
ij (4.32)

and inverting for the generalized velocities, one obtains the Hamiltonian:

H̃ =
1

2

∫
R

dσĨiĨjhij + J̃iJ̃jh
ij =

1

2

∫
R

dσĨI(K̃−1
0 )IJ ĨJ (4.33)

with

K̃0 =

(
h ij 0

0 hij

)
(4.34)

and ĨJ = (Ĩj , J̃j), while the equal-time Poisson brackets can be derived in the usual way

from the action functional (see appendix A) to be

{Ĩi(σ), Ĩj(σ′)} = f ijkĨ
k(σ)δ(σ − σ′), (4.35)

{Ĩi(σ), J̃j(σ
′)} = J̃k(σ)fkijδ(σ − σ′)− δijδ′(σ − σ′), (4.36)

{J̃i(σ), J̃j(σ
′)} = 0 (4.37)

yielding the equations of motion

∂tĨ
i(σ) = ĨsĨrf jish

rj − J̃rJ̃sf sijhrj + δij h
rj ∂σJ̃r (4.38)

∂tJ̃i(σ) =
(
ĨsJ̃kf

kj
i + δji ∂σ Ĩ

s
)
hsj . (4.39)
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The Poisson brackets (4.35)–(4.37) realize the current algebra c3 = sb(2,C)(R) n a, which

we have already regarded as the limit iα→ 0 of the algebra (3.34)–(3.36).

Similarly to the SU(2) PCM, the currents (J̃ , Ĩ) may be identified with cotangent

space left coordinates for T∗SB(2,C)(R). However, differently from T∗SU(2), T∗SB(2,C)

is not symplectomorphic to SL(2,C), the two spaces being topologically different to start

with. Therefore, certainly the model cannot be given an equivalent description in terms

of an SL(2,C)(R) algebra. Indeed, it will be shown, in the next section, that the SB(2,C)

PCM Hamiltonian obtained here through Legendre transform can be related to the DPCM

models previously found, through a B-transformation, but not its Poisson algebra.

4.1.2 Dual Born geometry

Following the same approach as in section 3.1.2, let us recall that a left-invariant para-

Hermitian structure (η̃, κ̃) can be defined on T∗SB(2,C), as discussed for T∗SU(2), starting

from its Lie algebra sb(2,C) n R3. Thus κ̃ comes from the splitting of sb(2,C) n R3 as

a vector space and η̃ is obtained from the duality pairing. The fundamental two-form of

such structure is denoted by ω̃.

According to what has been done in section 3.1.2, let us start from the metric K̃0. It

is easily verified that it is Riemannian, with determinant equal to 1 and such that

K̃T0 η̃K̃0 = η̃ . (4.40)

We consider the β-dependent B-transformation

eB(β) =

(
1 iβB

0 1

)
∈ O(3, 3) (4.41)

with Bij = εij3 as before and β an imaginary parameter.

The Riemannian metric K̃β , can be obtained by the B-transformation acting on K̃0:

K̃β =
(
e−B(β)

)tK̃0e
B(β), (4.42)

yielding

(K̃β)IJ =

(
hij 2iβεil3δlj

2iβδilε
jl3 δij − εil3δlkεjk3(2β2 + 1

2)

)
. (4.43)

Furthermore, the left-invariant para-Hermitian structure (η̃, κ̃) is transformed under

eB(β) with

κ̃β = eB(β)κ̃e−B(β) (4.44)

still compatible with η̃, so that the fundamental two-form becomes ω̃β = η̃κ̃β . In matrix

form, the new almost para-Hermitian structure reads as:

κβ =

(
1 2iβB

0 1

)
η =

(
0 1

1 0

)
ωβ =

(
0 1

1 2iβηB

)
(4.45)
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where ηB ∈ Γ(∧2T ∗R3). The new almost para-Hermitian structure still has TSB(2,C) as

eigenbundle while TR3 is transformed in a non-involutive distribution Vβ whose sections

are generated by vector fields in the form Ȳ i = Y i + iβεij3Xj .

Let us compare these findings with the dual models constructed in the previous section.

We find that the metric (4.43) is equal to Hτ,α−1 in eq. (4.16), for the following values of

the parameters

β = ± i
2
, τ̄ = ±i, α = ±i. (4.46)

In terms of the new metric one thus obtains:

H̃β =
1

2

∫
R

dσĨI(K̃−1
β )IJ ĨJ (4.47)

which, for the choice of the parameters (4.46), reproduces the Hamiltonian (4.23) that we

have obtained by duality from the PCM SU(2) model.

Notice however that, while the Poisson algebra of the dual models constructed in sec-

tion 4 is the full affine algebra of sl(2,C), here we only have a contraction of such an algebra,

or in general a different algebra, after rotating the fields with the B-transformation (4.41).

Summarizing our findings, the natural SB(2,C) PCM model constructed in the La-

grangian approach, has an Hamiltonian formulation given by the Hamiltonian (4.33) and

the Poisson algebra (4.35)–(4.37). On the other hand, the models which we have obtained

in section 4 by performing a T-duality transformation of target space, namely an O(3, 3)

rotation, are described by the Hamiltonians (4.23) and Poisson algebra (4.20)–(4.22). The

relation between the two, if any, is still unclear to us.

5 Double principal chiral model

In the previous section we have succeeded in describing the Principal Chiral Modelof SU(2)

in terms of currents whose Poisson brackets furnish a realization of the affine algebra of

the group SL(2,C), hence exhibiting a larger symmetry than the original Lagrangian ap-

proach. Moreover, we have defined a natural model on the dual group of SU(2) and we

have exhibited a transformation which relates the Riemannian metrics of the two mod-

els. It is therefore legitimate to look for a Lagrangian and an action with a manifest

SL(2,C) symmetry.

5.1 The Lagrangian formalism

This is achieved by extending the SL(2,C) action for the Isotropic Rigid Rotor reviewed

in section 2.2 to field theory. Hence, let us consider the group valued field:

Φ : R1,1 → γ ∈ SL(2,C)

and let us introduce the left-invariant Maurer-Cartan one-form γ−1dγ whose pull-back to

R1,1 reads as:

Φ∗(γ−1dγ) = γ−1∂tγdt+ γ−1∂σγdσ (5.1)
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which takes values in the Lie algebra sl(2,C). As previously, we shall not specify the pull-

back from now on, unless necessary. Hence, upon using the Lie algebra basis eI = (ei, ẽ
i)

as in section 2.2, one has:

γ−1∂tγ = Q̇IeI , (5.2)

γ−1∂σγ = Q′IeI , (5.3)

with Q̇I ,Q′I , left generalized coordinates, respectively given by:

Q̇I = Tr
(
γ−1∂tγeI

)
, Q′I = Tr

(
γ−1∂σγeI

)
(5.4)

with Tr the Cartan-Killing metric of sl(2,C). Moreover, as already done in eqs. (2.45), we

can use the product (2.12) to project the fiber coordinates along the bialgebra summands

su(2) and sb(2,C), according to

Q̇i(σ, t) = 2Im Tr (γ−1∂tγẽ
i); ˙̃Qi(σ, t) = 2Im Tr (γ−1∂tγei) (5.5)

Q′i(σ, t) = 2Im Tr (γ−1∂σγẽ
i); Q̃′i(σ, t) = 2Im Tr (γ−1∂σγei). (5.6)

The Hodge operator applied to the Maurer-Cartan one-form (5.1) exchanges the currents

Q̇I and Q′I so to give:

∗H Φ∗[γ−1dγ] = γ−1∂tγdσ + γ−1∂σγdt . (5.7)

We therefore postulate the following action functional:

S =

∫
R2

k1 〈Φ∗[γ−1dγ] ∧ ∗
H

Φ∗[γ−1dγ]〉+ k2((Φ∗[γ−1dγ] ∧ ∗
H

Φ∗[γ−1dγ])) (5.8)

which is the natural extension to field theory of the action introduced for the rigid rotor

in eq. (2.44). Upon introducing k = k1/k2, the Lagrangian is rewritten in terms of the left

generalized coordinates

L =
1

2

∫
R

dσ (k η +H)IJ

(
Q̇IQ̇J −Q′IQ′J

)
(5.9)

with

(k η +H)IJ =

(
δij kδji + ε j3i

kδij − εij3 (δij + εik3ε
j
l3δ

kl)

)
. (5.10)

Recall that η (Lorentzian) and H (Riemannian) are the left-invariant metrics on SL(2,C)

induced, respectively, by the pairings 2ImTr() and 2ReTr() on sl(2,C). They are two of

the structures defining a Born geometry on SL(2,C).

The Euler-Lagrange equation for the Lagrangian density (5.9) are:

∂t
∂L

∂Q̇J
+ ∂σ

∂L

∂Q′J
= (k η +H)IJ

(
∂tQ̇

J − ∂σQ′J
)

= LXJ
L (5.11)

with XJ the left-invariant vector fields on the group manifold of SL(2,C). Before passing

to the Hamiltonian description, let us stress that the generalized action describes a kind

of non-linear sigma model with target space SL(2,C), hence with doubled dimension with

respect to the previous models. Because the model only contains the currents Q̇J ,Q′J , as

previously we can read the latter as the tangent space coordinates of TSL(2,C)(R).
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5.2 The Hamiltonian formalism

According to the remark made at the end of the previous subsection, the Hamiltonian

model will be interpreted as a model over the cotangent space T ∗SL(2,C)(R). In order to

obtain the Hamiltonian of the system, the canonical momentum is computed:

II = (Ii, Ĩ
i) =

δL

δQ̇I
= (k η +H)IJQ̇

J . (5.12)

Let us recall that the matrix (k η +H)IJ is invertible for k2 6= 1 and its inverse is

[(k η +H)−1]IJ =
1

2
(1− k2)−1

(
δij + εil3ε

j
k3δ

lk −εij3 − kδij
εi
j3 − kδji δij

)
.

Therefore, the Legendre transform of (5.9), obtained by inverting (5.12), gives:

H =
1

2

∫
R

dσ
(
[(k η +H)−1]IJIIIJ + (k η +H)IJJ

IJJ
)
, (5.13)

whereas we have for the Poisson brackets (see appendix A)

{II(σ′), IJ(σ′′)} = CIJ
KIKδ(σ

′ − σ′′) (5.14)

{II(σ′),JJ(σ′′)} = CKI
JJKδ(σ′ − σ′′)− δJI δ′(σ′ − σ′′) (5.15)

{JI(σ′),JJ(σ′′)} = 0 (5.16)

and we have renamed Q′I → JI . The equations of motion read then as:

İJ =
{
IM [k η +H)−1]LK IK − JL[(k η +H)−1]LK JK

}
CJL

M

+ ∂σJ
L[(k η +H)−1]LJ (5.17)

5.3 Recovering the Chiral Model on TSU(2)

Let us prove that we can recover the action on of the Principal Chiral Model on TSU(2)

with an appropriate gauging of the global symmetries of the generalized action.

Let us recall that

Φ∗(γdγ) = (γ−1∂tγ)IeIdt+ (γ−1∂σγ)IeIdσ (5.18)

can be projected along the two Lie algebras according to

γ−1∂tγ = Aiei + Ãiẽ
i (5.19)

γ−1∂σγ = Biei + B̃iẽ
i (5.20)

with

Ai = 2Im Tr γ−1∂tγẽ
i Ãi = 2Im Tr γ−1∂tγtei (5.21)

Bi = 2Im Tr γ−1∂σγẽ
i B̃i = 2Im Tr γ−1∂σγtei (5.22)
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We notice that, fixing the decomposition γ = g̃g, with g̃ ∈ SB(2,C) and g ∈ SU(2), for any

element γ ∈ SL(2,C), the action (5.8) has manifest global symmetry under left action of

SB(2,C), called SB(2,C)L, and SU(2)R, the right action of SU(2). We let the SB(2,C)L
symmetry become local, so we can introduce the connection one-form C = Ciẽ

i on the

principal bundle R1,1 × SB(2,C) → R1,1 so that its pull-back (along any section) to R1,1

reads Cti ẽ
idt + Cσi ẽ

idσ, which takes values in the Lie algebra sb(2,C). Hence we modify

the left-invariant one-form with the covariant derivative D = d + C:

Φ∗(γ−1Dγ) = Φ∗(γ−1dγ) + Φ∗(γ−1Cγ) = (γ−1∂tγ + γ−1Ctγ)dt+ (γ−1∂σγ + γ−1Cσγ)dt

(5.23)

and define

γ−1∂tγ + γ−1Ctγ = Uiẽ
i +W iei (5.24)

where

Ui = Ai + Ctj 2Im Tr (γ−1ẽjγei) (5.25)

W i = Ai + Ctj 2Im Tr (γ−1ẽjγẽi) (5.26)

and similarly

γ−1∂σγ + γ−1Cσγ = V iei + Ziẽ
i (5.27)

with

V i = Bi + Cσj 2Im Tr (γ−1ẽjγẽi) (5.28)

Zi = Bi + Cσj 2Im Tr (γ−1ẽjγei). (5.29)

In terms of the new degrees of freedom the generalized action (5.8), with the gauge con-

nection added, reads as:

SC =
1

2

∫
R2

[
δijW

iW j+2(kδji +εj3i )W iUj+h
ijUiUj−δijV iV j+2(kδji +εj3i )V iZj+h

ijZiZj

]
(5.30)

On performing the following transformations

Ŵ i = W i + (kδij − εis3)Us (5.31)

V̂ i = V i + (kδij − εis3)Zs (5.32)

while Ui, Zi remaining unchanged, one gets for SC the following expression:

SC =
1

2

∫
R2

[
δij(Ŵ

iŴ j − V̂ iV̂ j) + (1− k2)δij(UiUj − ZiZj)
]

dσdt (5.33)

The Wick-rotated generating functional of the gauged theory reads then as:

ZC =

∫
DgDg̃DCtDCσe−SE

C , (5.34)
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with SEC the Euclidean gauge action, and we can trade the integration over Ct, Cσ by an

integration over the fields Ui, Zi

ZC =

∫
DgDg̃ det

(
δCti
δUj

)
det

(
δCσi
δZj

)
e−

1
2

∫
R2 dtdσδij(Ŵ iŴ j+V̂ iV̂ j)

×
∫
DUi e−

1
2

∫
R2 dtdσ(1−k2)δijUiUj

∫
DZi e−

1
2

∫
R2 dtdσ(1−k2)δijZiZj . (5.35)

For −1 ≤ k ≤ 1 the last two functional integrals can be performed yielding:∫
DUi e−

1
2

∫
R2 dtdσ(1−k2)δijUiUj =

∫
DZi e−

1
2

∫
R2 dtdσ(1−k2)δijZiZj =

(
2π

1− k2

) 3
2

(5.36)

Similarly, the Jacobian determinants appearing in (5.35) are constant, because the gauge

transformation only involves constant matrices (see [79] for details). Therefore, up to a

regularization factor which has to be introduced to take care of the volume integration over

the group SB(2,C), we are left with

Z =

∫
Dg e−

1
2

∫
R2 dtdσδij(Ŵ iŴ j+V̂ iV̂ j). (5.37)

Upon observing that the transformations (5.31), (5.32) give a redefinition of the fields W i,

V i as Ŵ i, V̂ i still su(2)-valued, the partition function (5.37) clearly involves the Action of

the Principal Chiral Model on the group SU(2). Indeed, we can write the exponent of the

derived partition function as

S =
1

2

∫
R2

Tr(g′−1dg′ ∧ ∗g′−1dg′), (5.38)

with g′ ∈ SU(2), so we explicitly have the derivation of the model on SU(2). Gauging the

other symmetry, we obtain the model on SB(2,C) as we discussed for the Isotropic Rigid

Rotor, see [79] for details.

6 Conclusions and outlook

An alternative parametrization of the SU(2) Principal Chiral Model found in refs. [15, 16],

shows that the PCM, in its Hamiltonian formulation, can be given an equivalent description

in terms of currents which span a target phase space isomorphic to the group manifold of

SL(2,C). Their Poisson algebra can be given the structure of the centrally extended affine

algebra sl(2,C)(R). Following a previous paper of the authors, [79], the model is here

studied as a higher dimensional generalization of the Isotropic Rigid Rotor dynamics with

the aim of further deepening its remarkable geometric structures.

The standard Hamiltonian formulation of the SU(2) PCM model exploits the fact

that the dynamics is fully described by fields, the currents, which span T∗SU(2) as target

phase space and act as infinitesimal generators of an affine algebra which is the semi-

direct sum su(2)(R)⊕̇a(R). We speculate on the fact that, as a Lie group, T∗SU(2) is

the trivial Drinfel’d double of the group SU(2), which we have called the classical double.
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The latter gives rise to a fully nontrivial Drinfel’d double, the group SL(2,C), when the

Abelian subalgebra of the semidirect sum is deformed to that of SB(2,C). By exploiting

this property, we first review in detail the derivation of a whole family of equivalent PCM

models described in terms of current algebra of the group SL(2,C), we thus show that

they can actually be interpreted in terms of Born geometries related by B-transformations.

We then perform O(3, 3) transformations of such a family and find a parametric family of

T-dual PCM models, with target configuration space the group SB(2,C), the Poisson-Lie

dual of SU(2) in the Iwasawa decomposition of the Drinfel’d double SL(2,C). Poisson-Lie

symmetries are discussed. Then, a natural Lagrangian model has been constructed directly

on the dual group SB(2,C). Its relation to the dual models previously introduced is still

unclear to us and needs further analysis. Finally we have introduced a double PCM with

the group manifold of SL(2,C) as its target configuration space and TSL(2,C) as the target

tangent space. The degrees of freedom are thus doubled. We have shown, performing a

gauging of its symmetries, that both the Lagrangian models, with SU(2) and SB(2,C)

target configuration spaces, can be retrieved.

A further extension of this model can be given adding a Wess-Zumino term [97].

This could provide a deeper insight, among other things, on the geometric structures of

String Theory on AdS3, the study of which is interesting from the point of view of the

AdS/CFT correspondence since it enables to study the correspondence beyond the gravity

approximation [98–100].

Last but not least, all what we have learnt from this model could be further extended

to the world-sheet string action. In this case, a manifestly O(d, d)-invariant action may be

written, considering that the configuration space is no longer a Lie group, but a differen-

tiable manifold. It would be interesting to follow this way, in which O(d, d)-invariance is

implemented writing a doubled string action, as discussed for Principal Chiral Models, and

then performing the low energy limit. This limit result should reproduce all the results so

far obtained in Double Field Theory.
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A Poisson brackets

In this appendix we derive the current algebras (3.14)–(3.16), (4.35)–(4.37), (5.14)–(5.16)

from the canonical one-form obtained by the relevant action functional.
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Let us start with the standard formulation of the principal SU(2) chiral model, whose

action is given by (3.3). As for the rigid rotor, we choose the parametrization

φ : σ ∈ R→ g(σ) = 2(y0(σ)e0 + iyi(σ)ei) (A.1)

with
∑

µ y
µyµ = 1 Upon defining I = − i

2Iie
i∗ with ei

∗
(ej) = δij , and recalling that g−1dg =

2iαkek, we have for the canonical one-form

Θ =

∫
R
< I|g−1dg >=

∫
R
Ii(σ)αi(σ) (A.2)

so that

Ω =

∫
R

dIi(σ) ∧ αi(σ) + Ii(σ)εjk
iαj(σ) ∧ αk(σ) (A.3)

with αi(σ) = [y0dyi − yidy0 + εjk
iyjdyk](σ) the left-invariant one-forms on the group

manifold, in the chosen parametrization. The Poisson structure is thus

Λ =

∫
R

dσ

(
Xi(σ) ∧ δ

δIi(σ)
+ εjk

iIi
δ

δIj(σ)
∧ δ

δIk(σ)

)
(A.4)

with Xi(σ) the left-invariant vector fields which are dual to the one-forms αi(σ), that is,

in the chosen parametrization

Xi(σ) = y0 δ

δyi(σ)
− yi δ

δy0(σ)
+ εij

kyj(σ)
δ

δyk(σ)
(A.5)

We thus obtain

{Ii(σ′), Ijσ′′}= εij
kIk(σ

′)δ(σ′−σ′′)
{yi(σ′), Ij(σ′′)}= [δijy

0(σ′)+εjk
i yk(σ′)]δ(σ′−σ′′) or {g(σ′), Ij(σ

′′)}= 2ig(σ′)ejδ(σ
′−σ′′)

{y0(σ′), Ij(σ
′′)}=−yj(σ′)δ(σ′−σ′′)

{yµ(σ′),yν(σ′′)}= 0 or {g(σ′),g(σ′′)}= 0 (A.6)

On using J i(σ) = −i Tr (g−1∂σg)ei = y0∂σy
i − yi∂σy0 + εjk

iyj∂σy
k we compute

{J i(σ′), Ij(σ′′)} = Tr ei{g−1∂σ′g, Ij(σ
′′)}

= −i Tr ei[−g−1{g(σ′), Ij(σ
′′)}g−1∂σ′g + g−1{∂σ′g, Ij(σ′′)}] (A.7)

which can be seen to give (3.15) because of the second of the brackets (A.6). Analogously

we can compute

{J i(σ′), J j(σ′′)} = { Tr eig
−1∂σ′g, Tr ejg

−1∂σ′′g} = 0 (A.8)

because group variables have zero Poisson brackets according to the last of eqs. (A.6).

An analogous computation can be performed for the Poisson brackets of the chiral

model on the Poisson-Lie dual group SB(2,C). The action functional for the model is

represented by (4.25). As in section 2.1 we choose the parametrization

φ̃ : σ ∈ R→ g̃(σ) = 2(u0(σ)ẽ0 + iui(σ)ẽi) (A.9)
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with (u0)2 − (u3)2 = 1. On introducing Ĩ = −iĨiẽ∗i , with ẽ∗i (ẽ
j) = δji and recalling that

g̃−1dg̃ = iα̃j ẽ
j We have for the canonical one-form

Θ̃ =

∫
R
< Ĩ|g̃−1dg̃ >=

∫
R
Ĩi(σ)α̃i (A.10)

so that

Ω̃ =

∫
R

dĨi(σ) ∧ α̃i(σ) + Ĩi(σ)f jkiα̃j(σ) ∧ α̃k(σ) (A.11)

with α̃i(σ) = 2[u0dui − uidu0 + f jkiujduk](σ) the left-invariant one-forms on the group

manifold, in the chosen parametrization. The Poisson structure is thus

Λ̃ =

∫
R
X̃i(σ) ∧ δ

δĨi(σ)
+ f jkiĨ

i δ

δĨj(σ)
∧ δ

δĨk(σ)
(A.12)

with X̃i(σ) the left-invariant vector fields which are dual to the one-forms, that is, in the

chosen parametrization

X̃i(σ) =
1

2

(
u0 δ

δui(σ)
− ui δ

δu0(σ)
− f ikjuj(σ)

δ

δuk(σ)

)
(A.13)

We thus obtain

{Ĩi(σ′), Ĩjσ′′}= f ijkĨ
k(σ′)δ(σ′−σ′′)

{ui(σ′), Ĩj(σ′′)}=
1

2
[δiju0(σ′)+f ijku

k(σ′)]δ(σ′−σ′′) or {g̃(σ′), Ĩj(σ′′)}= 2g̃(σ′)ẽjδ(σ′−σ′′)

{u0(σ′), Ĩj(σ′′)}=−1

2
uj(σ′)δ(σ′−σ′′)

{uµ(σ′),uν(σ′′)}= 0 or {g̃(σ′), g̃(σ′′)}= 0 (A.14)

On using J̃i(σ) = 〈g̃−1∂σ g̃, ei〉 = u0∂σu
i − ui∂σu0 + f ikju

j∂σu
k we compute

{J̃i(σ′), Ĩjσ′′} = 2Im Tr ei{g̃−1∂σ′ g̃, Ĩ
j(σ′′)}

= 2Im Tr ei[−g̃−1(σ′){g̃(σ′), Ĩj(σ′′}g̃−1(σ′)∂σ′ g̃ + g̃−1{∂σ′ g̃, Ĩj}] (A.15)

which can be seen to give (4.36) because of the second of the brackets (A.14). Similarly

we can compute

{J̃ i(σ′), J̃ jσ′′} = {2Im Tr eig̃
−1∂σ′ g̃, 2Im Tr ej g̃

−1∂σ′′ g̃} (A.16)

where the latter is zero because group variables have zero Poisson brackets according to

last of eqs. (A.14).

Finally, we derive the Poisson brackets (5.14)–(5.16) for the sl(2,C)(R) current algebra.

Upon defining I = −1
2IIe

I∗ with eI
∗
(eI) = δIJ , and recalling that γ−1dγ = 2ζKeK , with

ζK the SL(2,C) left-invariant one-forms, we have for the canonical one-form

ΘD =

∫
R
< I|γ−1dγ >=

∫
R
II(σ)ζI(σ) (A.17)
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so that

ΩD =

∫
R

dII(σ) ∧ ζI(σ) + II(σ)CJK
IζJ(σ) ∧ ζK(σ) (A.18)

The Poisson structure is thus

ΛD =

∫
R

dσ

(
XI(σ) ∧ δ

δII(σ)
+ CJK

III(σ)
δ

δIJ(σ)
∧ δ

δIK(σ)

)
(A.19)

with XI(σ) the left-invariant vector fields which are dual to the one-forms ζI(σ).

We thus compute the Poisson brackets. For the sake of simplicity, we do not choose

any parametrization for SL(2,C). A similar computation can be analogously carried on for

the Poisson brackets on SU(2) and SB(2,C), since we always deal with matrix Lie groups.

The first Poisson bracket is straightforward

{II(σ′), IJ(σ′′)} = ΛD(dII(σ
′), dIJ(σ′′)) = CIJ

KIK(σ′)δ(σ′ − σ′′) . (A.20)

In order to derive the remaining brackets, we compute

{γ(σ′), IJ(σ′′)} = ΛD(dγ(σ′), dIJ(σ′′))

= XJ(σ′′)(γ(σ′)γ−1(σ′)dγ(σ′)) (A.21)

= 2γ(σ′)eJδ(σ
′ − σ′′).

Notice that we could have performed the same calculation for the groups SU(2) and

SB(2,C) where the analogous result was instead obtained by choosing explicitly a

parametrization. The above calculation can be carried on for any matrix Lie group. Finally,

{γ(σ′), γ(σ′′)} = 0 (A.22)

because there are no terms in ΛD involving the wedge product of two left-invariant vector

fields. On using JI(σ) = Tr (γ−1∂σγ)eI , we compute

{JI(σ′), IJ(σ′′)} = Tr eI{γ−1∂σ′γ, IJ(σ′′)}
= Tr eI [−γ−1{γ(σ′), IJ(σ′′)}γ−1∂σ′γ + γ−1{∂σ′γ, IJ(σ′′)}] (A.23)

which can be seen to give (5.15) because of the Poisson brackets (A.21). Analogously we

can compute

{JI(σ′),JJ(σ′′)} = { Tr eIγ
−1∂σ′γ, Tr eJγ

−1∂σ′′γ} = 0 , (A.24)

which gives (5.16) because group variables have zero Poisson brackets according to

eq. (A.22).
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