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Abstract

We study the limit of equilibrium payoffs, as the discount factor goes to one, in non-
zero-sum stochastic games. We first show that the set of stationary equilibrium payoffs
always converges. We then provide 2-player examples in which the whole set of equilib-
rium payoffs diverges. The construction is robust to perturbations of the payoffs, and
to the introduction of normal-form correlation.
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Introduction

Stochastic games were introduced by Shapley [21] and generalize repeated games:
the payoff functions of the players evolve from stage to stage, and depend on a
state variable observed by the players, whose evolution is affected by the players’
actions. Actions are revealed at the end of each stage. We denote by Eδ, resp. E ′δ,
the set of Nash equilibrium payoffs, resp. sequential equilibrium payoffs, of the
δ-discounted game, and we write E∞ for the set of uniform equilibrium payoffs of
the dynamic game. We focus on studying the limit, for the Hausdorff distance, of
Eδ and E ′δ as players become extremely patient, i.e. as the discount factor goes
to one.

In the particular case of a standard repeated game, the dynamic interaction
simply consists of the repetition of a given one-shot game. The standard Folk
theorems hold, with pioneering work from the seventies by Aumann and Shap-
ley [2], and Rubinstein [20]. Regarding sequential equilibrium payoffs, the Folk
theorem of Fudenberg and Maskin [8] implies that for generic payoff functions,
E ′δ converges to the set of feasible and individually rational payoffs of the one-
shot game, and Wen [28] showed how to adapt the notion of individually rational
payoffs to obtain a Folk theorem without genericity assumption. Without as-
sumptions on the payoffs, E∞ coincides with the set of feasible and individually
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Maréchal de Lattre de Tassigny, 75016 Paris. Both authors gratefully acknowledge the sup-
port of the Agence Nationale de la Recherche, under grant ANR JEUDY, ANR-10-BLAN 0112.
This work was also supported by ANR-3IA Artificial and Natural Intelligence Toulouse Institute
(first author) and by the PEPS “Jeunes Chercheurs” (second author).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Toulouse Capitole Publications

https://core.ac.uk/display/305080372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


rational payoffs of the one-shot game, and the set of Nash equilibrium payoffs Eδ
also converges to this set (see Sorin [24]). These results have been generalized in
many ways to games with imperfectly observed actions (see e.g. Abreu et al. [1],
Fudenberg and Levine [5], Fudenberg, Levine and Maskin [6], Fudenberg et al.
[7], Lehrer [12, 13, 14], or Renault and Tomala [18, 19]), but a full overview of
that literature is beyond the scope of the present paper.

In zero-sum stochastic games, Bewley and Kohlberg [3] proved the existence
of the limit of the discounted value (hence of Eδ and E ′δ) when δ goes to one. An
example from Sorin [23] shows that in the general-sum case, limδ→1Eδ and E∞
may be nonempty and disjoint. Vieille [25, 26] proved that for 2-player games
E∞ is always nonempty, that is, there exists a uniform equilibrium payoff1.

Regarding discounted equilibrium payoffs in stochastic games, several Folk
theorems have been proved under various assumptions. Dutta [4] assumes that
the set of long-run feasible payoffs is independent of the initial state, has full
dimension, and that minmax long-run payoffs do not depend on the initial state
either. Fudenberg and Yamamoto2 [9] assume that the stochastic game is irre-
ducible (all players but one can always drive the current state where they want,
possibly in many stages, with positive probability). Hörner et al. [10] general-
ize the recursive methods of [6] to compute a limit equilibrium set in stochastic
games with imperfect public monitoring, when this limit set does not depend on
the initial state (this is the case when the Markov chain induced by any Markov
strategy profile is irreducible).

All the above assumptions require that the stochastic game does not depend
too much on the initial state, and in particular rule out the existence of multiple
absorbing states3 with different equilibrium payoffs. We believe that it is also
important to study stochastic games in which the actions taken can have irre-
versible effects on future plays. This is the case in many situations, for example in
stopping games, in which players only act once and have to decide when to do so,
or when the actions represent investment decisions, or extractions of exhaustible
resources.

Regarding stochastic games with finitely many states and actions, the con-
tribution of our paper is twofold. First, we prove that the set of stationary4

equilibrium payoffs of the discounted game always converges to a nonempty set.
As a consequence, there always exists a selection of E ′δ which converges. Sec-
ondly, we show that the convergence property cannot be extended to the Nash
or sequential equilibrium payoffs sets, by providing the first examples of 2-player
stochastic games in which neither Eδ nor E ′δ converges: the limit of the equilib-

1The generalization of this result to games involving more than two players is a well-known
open question in dynamic games.

2Fudenberg and Yamamoto [9], as well as Hörner et al. [10], address the more general case
of imperfect public monitoring.

3When an absorbing state is reached, the play will remain forever in that state, no matter
the actions played.

4A stationary strategy of a player selects after every history a mixed action which only
depends on the current state.
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rium set may simply not exist in a stochastic game. Thus, it is out of reach to
prove a general Folk theorem in stochastic games, in the sense of characterizations
of limδ→1Eδ or limδ→1E

′
δ without further assumptions, such as irreducibility. Our

first example is robust to the introduction of normal-form correlation5, and our
second example is robust to small perturbations of the payoffs.

Section 1 presents the model of stochastic games and our results. Section 2 is
dedicated to the proof of the main result, and Section 3 states two open questions.

Notations : N, N∗ and R respectively denote the sets of nonnegative integers,
positive integers and real numbers. All limits of sets in the paper are taken
with respect to the Hausdorff distance between non-empty compact subsets of an
Euclidean space : d(A,B) = max{maxa∈A d(a,B),maxb∈B d(b, A)}. The notation
d(A,B) ≤ ε means that: every point in A is at most distant of ε from a point in
B, and conversely.

1 Model and results

We consider a 2-player stochastic game. Let K, I and J respectively be the finite
sets of states, actions for player 1 and actions for player 2. Let k1 in K be the
initial state, u1 and u2 be the state dependent utility functions from K × I × J
to R, and finally q be the transition function from K × I × J to ∆(K), which
is the set of probabilities over K. At every period t ≥ 1 players first learn
the current state kt ∈ K and simultaneously select actions it ∈ I and jt ∈ J .
These actions are then publicly observed, the stage payoffs are u1(kt, it, jt) for
player 1 and u2(kt, it, jt) for player 2, a new state kt+1 is selected according to the
distribution q(kt, it, jt), and the play goes to the next period. Given a discount
factor δ in [0, 1), the δ-discounted stochastic game is the infinite horizon game
where player 1 and player 2’s payoffs are respectively (1−δ)

∑∞
t=1 δ

t−1u1(kt, it, jt)
and (1− δ)

∑∞
t=1 δ

t−1u2(kt, it, jt).
We respectively denote by Eδ, E

′
δ and E ′′δ the sets of Nash equilibrium payoffs,

subgame-perfect6 equilibrium payoffs and stationary equilibrium payoffs of the δ-
discounted stochastic game. Standard fixed-point arguments show the existence
of a stationary equilibrium in this game, and we have ∅ 6= E ′′δ ⊂ E ′δ ⊂ Eδ. We are
mainly interested in the asymptotic behavior of these sets when players become
more and more patient, i.e. we focus on the existence of their limit when δ goes
to 1.

We will also briefly consider the set E∞ of uniform equilibrium7 payoffs of the

5A normal-form correlation device can send one message to each player before the game
starts.

6or equivalently here, sequential equilibrium, or equivalently perfect public equilibrium, as
defined in [6] for repeated games with perfect public monitoring and extended to stochastic
games in [9].

7Throughout the paper, we say that a vector u in R2 is a uniform equilibrium payoff if for all
ε > 0, there exists a strategy profile such that for all large enough discount factors, the profile
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stochastic game.

In the zero-sum case, Shapley [21] proved that the value vδ exists and players
have stationary optimal strategies, hence Eδ = E ′δ = E ′′δ is a singleton. Bew-
ley and Kohlberg [3] proved the convergence of vδ (hence, of Eδ and E ′δ) using
algebraic arguments. Our first result shows how the Bewley Kohlberg result ex-
tends to general-sum games. Though it stems directly from previous results of
the literature ([17] and [11]), it did not appear explicitly before.

Proposition 1.1. There exists a non-empty compact set E such that E ′′δ −−→
δ→1

E.

Notice that in the case of repeated games (a single state), E reduces to the set
of mixed Nash equilibrium payoffs of the one-shot game, hence it may not be
convex. The proof largely relies on the semi-algebraicity of the set of discount
factors and associated stationary equilibria and payoffs. As stated here, it holds
for any 2-player stochastic game with finitely many states and actions, but the
proof easily extends to the n-player case.

Proof of Proposition 1.1: Recall that a subset A of the Euclidean space RN

is said to be semi-algebraic if it is defined by a finite number of polynomial
inequalities, i.e. if A is a finite union of sets, each of these sets being defined
as the conjunction of finitely many weak or strict polynomial inequalities. The
following proposition is a direct consequence of the main theorem in [11] :

Proposition 1.2. Let (Wδ)δ∈[0,1) be a family of non-empty compact subsets of
the Euclidean space RN . Assume that {(δ, x) | δ ∈ [0, 1), x ∈ Wδ} is a bounded
semi-algebraic subset of RN+1. Then when δ goes to one, Wδ converges for the
Hausdorff distance to a non-empty compact subset W of RN .

Let now W be the set of (δ, x, y, r) ∈ [0, 1) ×
(
IRI × IRJ × IR2

)K
such that

(x, y) is a stationary equilibrium in Γδ, and r is the associated equilibrium payoff.
It is well known (see e.g. [17, Example E.7 p.63]) that W is semi-algebraic. For

δ ∈ [0, 1), let Wδ :=
{

(x, y, r) ∈
(
IRI × IRJ × IR2

)K | (δ, x, y, r) ∈ W
}

. The set

Wδ is non-empty and compact. Applying the proposition, we deduce that (Wδ)
converges when δ goes to 1. In particular, (E ′′δ ) converges. �

Remark 1.3. As a consequence, one can construct a selection of (E ′δ)δ which
converges, i.e. it is possible to select, for each discount δ, a perfect equilibrium
payoff xδ of the corresponding game in a way such that xδ has a limit when δ goes
to one.
This fact can also be easily deduced from [15, Chapter 7, Lemma 2.2] and [16,
Theorem 5], who proved the existence of a semi-algebraic selection of E ′′δ . Because

is a ε-Nash equilibrium of the discounted game with payoff ε-close to u (see [24], [15] or [26] for
related definitions).
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payoffs are bounded, this selection converges. A similar result has been used in
[22, p.685] and [25, p.74]. It can not be extended to stochastic games with compact
action spaces, as shown by a zero-sum example by Vigeral [27] where the value vδ
does not converge.

It is natural to ask if the convergence property of Theorem 1.1 also holds for
Eδ and E ′δ. We conclude this section by providing the first examples of stochastic
games where these sets of equilibrium payoffs diverge.

Theorem 1.4. The two following assertions hold:

1. There exists a 2-player stochastic game where neither Eδ nor E ′δ converges, and
which is robust to normal-form correlation.

2. There exists a 2-player stochastic game where neither Eδ nor E ′δ converges, and
which is robust to perturbations of the payoffs.

2 Proof of Theorem 1.4

To prove this theorem, we first present a simple example (Example 2.1 below)
where Eδ and E ′δ diverge, and which is robust to the introduction of normal-form
correlation. We then provide a more elaborate example (Example 2.5) which is
robust to perturbations of the payoffs.

Example 2.1. Consider the following stochastic game.

k1

k2

k3

(1/2, 0)∗

(0, 1/2)∗

T B

RL

P1

(1/2, 0) (1/2, 1/2)

P2

(1/2, 1/2)

L R
T
B

(
(1, 0) 	 (−1,−1)∗

(−1,−1)∗ (0, 1)∗

)

There are 7 states: k1 (the initial state), k2, k3 and 4 absorbing states: (1/2, 0)∗,
(0, 1/2)∗, (−1,−1)∗ and (0, 1)∗. When an absorbing state (a, b)∗ is reached, the
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game stays there forever and at each stage the payoffs to player 1 and player 2
are respectively a and b. The sets of actions are I = {T,B} for player 1 and
J = {L,R} for player 2. The transition from state k1 only depends on player
1’s action, as specified in the above figure. Similarly, the transition from state
k2 only depends on player 2’s action. If in state k3 the action profile (T, L) is
played, the vector payoff is (1, 0) and the play remains in k3. To conclude the
description, we have to specify the payoffs in states k1, k2, and k3. The payoff in
k1 is (1/2, 0) if T is played and (1/2, 1/2) if B is played. The payoff in state k2
does not depend on the actions played and is (1/2, 1/2), and the payoffs in state

k3 are simply given by the bimatrix

(
(1, 0) (−1,−1)

(−1,−1) (0, 1)

)
.

For each discount factor, it is clear that (1/2, 0) is in Eδ, and the question is
whether there are other equilibrium payoffs, for instance (1/2, 1/2).

Let’s first consider any δ in [0, 1), and a Nash equilibrium (σ, τ) of the δ-
discounted stochastic game with equilibrium payoff (x, y). Because Player 1 can
play T in the initial state, we have x ≥ 1/2. Because the sum of payoffs never
exceeds 1, we have x + y ≤ 1. Assume now that under (σ, τ), the state k3 has
positive probability to be reached, and denote by (x3, y3) the discounted payoffs
induced by (σ, τ) given that k3 is reached. We have x3 ≥ 1/2, because player 1
will not accept to play B at k1 if he obtains a payoff lower than 1/2 afterwards.
Similarly, y3 ≥ 1/2. Since x3 + y3 ≤ 1, we get x3 = y3 = 1/2, so (1/2, 1/2) is an
equilibrium payoff of the reduced stochastic game :

L R
T
B

(
(1, 0) 	 (−1,−1)∗

(−1,−1)∗ (0, 1)∗

)
.

The unique way to obtain (1/2, 1/2) as a feasible payoff in the reduced game is to
play first (T, L) for a certain number of periods N , then (B,R) at period N + 1.
Indeed, the sum of players’ stage payoffs is always not greater than 1. Thus,
if a strategy profile is such that (T, L) or (B,R) is played at some stage of the
game, then it can not achieve (1/2, 1/2). Given δ, the integer N has to satisfy
(1 − δ)

∑N
t=1 δ

t−1 = 1/2, that is δN = 1
2
. If no such integer N exists, we obtain

that (1/2, 1/2) is not an equilibrium payoff of the reduced game. Therefore, under
(σ, τ), state k3 has zero probability to be reached, which implies that x = 1/2
and y = 0.

Define ∆1 as the set of discount factors of the form δ = (1
2
)
1/N

, where N is a
positive integer, and ∆2 = [0, 1)\∆1. We have obtained:

Lemma 2.2. For all δ in ∆2, Eδ = E ′δ = {(1/2, 0)}.

Consider now δ in ∆1, and N such that δN = 1
2
. The pure strategy profiles

where : T is played at stage 1, R is played at stage 2, (T, L) is played from
stage 3 to stage N + 2, and (B,R) is played at stage N + 3, form a subgame-
perfect Nash equilibrium of the δ-discounted game with payoff (1/2, 1/2). By
mixing between T and B in k1, it is then possible to obtain any point (1/2, y),
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with 0 ≤ y ≤ 1/2, as an equilibrium payoff. No other point can be obtained,
because in every equilibrium, the vector payoff conditional on k3 being reached,
is (1/2, 1/2). We have obtained :

Lemma 2.3. For all δ in ∆1, Eδ = E ′δ = {1/2} × [0, 1/2].

Because both ∆1 and ∆2 contain discount factors arbitrarily close to 1, lemmas
2.2 and 2.3 establish that neither Eδ nor E ′δ converge.

Let us consider now normal-form correlated equilibrium payoffs, i.e. Nash
equilibrium payoffs of games where the players may initially receive private sig-
nals independent of the payoffs. For δ in ∆2, the proof of Lemma 2.2 applies
and the set of normal-form correlated equilibrium payoffs is again the singleton
{(1/2, 0)}. Consequently, the set of normal-form correlated equilibrium payoffs
can not converge when the discount factor goes to one. �

Remark 2.4. For any positive integer n, one can also consider the set of Nash
equilibrium payoffs En and subgame-perfect equilibrium payoffs E ′n of the n-period
stochastic game, where the overall payoff is defined as the arithmetic average of
the stage payoffs. When n is even, the unique way to obtain (1/2, 1/2) as a
feasible payoff in the reduced game is to play first (T, L) for n/2 stages, then
(B,R) at period n + 1. When n is odd, (1/2, 1/2) is not a feasible payoff of
the reduced game. Thus, similar arguments show that in Example 2.1, we have
En = E ′n = {1/2} × [0, 1/2] for n even, and En = E ′n = {(1/2, 0)} for n odd.
Therefore, En and E ′n also do not converge when n goes to infinity.
As for the set of uniform equilibrium payoffs, one can show that E∞ = {(1/2, 0)}.

Notice that an important feature of the reduced game at state k3 is that
there is (at most) a unique way to obtain the payoff (1/2,1/2). As soon as one
perturbs the payoffs, this property disappears, and Example 2.1 is not robust to
perturbations of the payoffs of the stochastic game.

Example 2.5. Let (a1, a2) ∈ [0, 1/2]2, (b1, b2, d1, d2) ∈ [−5,−10]4, (c1, c2) ∈
[0, 1)2. The stochastic game is represented by the following matrix:

L R
T
M
B

 (a1, a2) (b1, b2)
∗

(1, 1)∗ (c1, c2)
∗

(d1, d2)
∗ (3, 0)∗


This is an absorbing game, in which each player has only one action which does
not lead to an absorbing state. Thus, for all δ ∈ [0, 1), Eδ = E ′δ.

Let ∆1 :=
{
δ ∈ [0, 1)|∃N ∈ N∗, (1− δN)a1 + 3δN = 1

}
=

{(
1−a1
3−a1

)1/N
, N ∈ N∗

}
,

and ∆2 := [0, 1) \∆1.

Lemma 2.6. For all δ ∈ ∆1, {1} × [1/2, 1] ⊂ Eδ. For all δ ∈ ∆2,
Eδ ∩ {R× [1/2, 3/4]} is at most a singleton.
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Consider δ ∈ ∆1, and let us prove that {1} × [1/2, 1] ⊂ Eδ. Let N ∈ N∗ such
that (1− δN)a1 + 3δN = 1. Given some α ∈ [0, 1], consider the following strategy
profile: at stage 1, Player 1 plays T with probability α, and M with probability
1−α, while Player 2 plays L. Then, between stage 2 and N , players play (T, L),
and at stage N + 1, players play (B,R). This is a Nash equilibrium. Indeed, any
deviation of a player at stage 2 leads to an absorbing state with worse payoff. If
at stage 1, Player 1 deviates and plays B, he gets worse than 1. If he plays T
or M , he gets payoff 1. And for Player 2, playing R at stage 1 is not profitable.
Under this Nash equilibrium, Player 1 gets payoff 1, and Player 2 gets payoff
α(1− δN)a2 + (1−α) = 2αa2(3− a1)−1 + 1−α. Because 2a2(3− a1)−1 ∈ [0, 1/2],
we have {1} × [1/2, 1] ⊂ Eδ.

Consider now δ ∈ ∆2, and let us prove that there is at most one Nash equilib-
rium under which Player 2’s total discounted payoff lies in [1/2, 3/4]. Let (σ, τ)
be a Nash equilibrium. If Player 2 always play L, then Player 1 plays M at stage
1, and Player 2’s total discounted payoff is 0 /∈ [1/2, 3/4]. Assume now that there
exists some stage such that Player 2 plays R with positive probability, and that
at stage 1, Player 1 plays T with positive probability.
Denote by m0 the first stage where Player 2 plays R with positive probability. We
claim that for all m ∈ {2, ...,m0 − 1}, at stage m, Player 1 plays T with probabil-
ity 1. Indeed, otherwise consider the first stage m ∈ {2, ...,m0 − 1} where Player
1 plays either M or B with positive probability. At stage m, Player 2 plays L,
thus Player 1 plays B with probability 0 and M with positive probability. This
implies that the normalized continuation payoff of Player 1 from stage m is at
most 1. Because Player 1 gets a payoff strictly smaller than 1 before stage m, his
total payoff is strictly smaller than 1. Thus, playing M at stage 1 is a profitable
deviation.
Denote respectively x1, x2 and x3 the probability that at stage m0, Player 1 plays
T , M and B, and denote respectively y1 and y2 the probability that at stage m0,
Player 2 plays L and R.

Case 1. y2 = 1

At stage m0, the game is not finished, thus x3 = 1. Now we discriminate
between the two following subcases:

Subcase 1. At stage 1, Player 1 playsM with probability 0. In this subcase, the
total payoff for Player 2 is smaller than a2 ≤ 1/2. Consequently, the associated
Nash equilibrium payoff does not lie in R× [1/2, 3/4].

Subcase 2. At stage 1, Player 1 plays M with some positive probability α ∈
(0, 1]. In this subcase, at stage 1, Player 1 is indifferent between playing T and M .
Because action M gives a total payoff equal to 1, we have (1−δm0−1)a1+3δm0−1 =
1, which is a contradiction since δ lies in ∆2.

Case 2. y2 < 1
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First, note that Player 1’s total discounted payoff lies in [c1, 3]. We claim that
x3 > 0. Indeed, otherwise playing L at stage m0 would be a profitable deviation
for Player 2. Consequently, we have d1y1 + 3(1 − y1) ≥ c1. Let us prove that
x1 = 0. Indeed, if this was not the case, we would have 3y1 + b1(1 − y1) ≥ c1.
Together with the previous inequality, this implies y1(−9/b1+d1) ≥ (−3/b1+1)c1.
The left-hand side is strictly negative, while the right-hand side is non negative
: this is a contradiction, and consequently x1 = 0. Thus, at stage m0, (σ, τ)
induces a Nash equilibrium in the following one-shot game:

L R
M
B

(
(1, 1) (c1, c2)

(d1, d2) (3, 0)

)
In this game, there are two pure Nash equilibria, namely (M,L) and (B,R), and
one fully mixed Nash equilibrium, which gives payoff ((3 − c1)(1 − c1)(4 − c1 −
d1)
−1 + c1,−c2d2(1− c2− d2)). If at stage m0, players play (B,R), then the total

payoff of Player 2 is smaller than a2 ≤ 1/2. If at stage m0, players play either
(M,L) or the mixed Nash equilibrium, then m0 = 1. Indeed, otherwise Player 1
would have a profitable deviation by playing M at stage 1.

The above analysis shows that if δ ∈ ∆2, there is at most one Nash equilibrium
which gives Player 2 a total discounted payoff in [1/2, 3/4]: play the mixed Nash
equilibrium at stage 1. �

This is enough to conclude that Eδ and E ′δ do not converge as δ goes to
one. In addition, one can easily check that all arguments are robust to small
perturbations of the payoffs of the stochastic game.

Remark 2.7. In this example, the set of uniform equilibrium payoffs E∞ corre-
sponds to the three Nash equilibrium payoffs of the one-stage game (1, 1), (3, 0)
and ((3− c1)(1− c1)(4− c1 − d1)−1 + c1,−c2d2(1− c2 − d2)).

3 Open questions

1) Many Folk theorems in the literature require the limit set to have non-
empty interior. In both examples, Eδ = E ′δ has empty interior for each
discount factor. An interesting direction of research would be to investigate
whether (Eδ) and (E ′δ) converge under some interiority conditions on the
equilibrium payoff sets.

2) The examples are not robust to the introduction of an extensive-form cor-
relation device8. In example 2.1, if the players can publicly observe the

8An extensive-form correlation device can send a message to each player at each stage of the
game.
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outcome of a fair coin tossing whenever k3 is reached, they can correlate
and play (T, L) and (B,R) with probability 1/2. With such correlation
device, it is possible to obtain (1/2, 1/2) as an equilibrium payoff for all
discount factors. In addition, one can show that example 2.5 is not even
robust to the introduction of a normal-form correlation device.
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