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Rodó la piedra y otra vez como antes
la empujaré, la empujaré cuesta arriba

para verla rodar de nuevo.

Comienza la batalla que he librado mil veces
contra la piedra y Śısifo y mı́ mismo.

Piedra que nunca te detendrás en la cima:
te doy gracias por rodar cuesta abajo.

Sin este drama inútil seŕıa inútil la vida.

José Emilio Pacheco, Retorno a Śısifo.
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Introducción

La teoŕıa de conjuntos fuzzy es una generalización de la teoŕıa de conjuntos clásica. Los
conjuntos fuzzy fueron definidos en 1965, por Lofti Zadeh [50], como una forma de representar
la imprecisión en la vida diaria. Un conjunto fuzzy es una función α : X −→ [0, 1] o, de
forma más general, una función α : X −→ L, donde L es un ret́ıculo.

La topoloǵıa fuzzy es la rama de las matemáticas que ha resultado de una śıntesis de la
topoloǵıa general, con ideas, nociones, y métodos de la teoŕıa de conjuntos fuzzy. La primera
definición de un espacio topológico fuzzy se debe a C. L. Chang en [7] y posteriormente varias
extensiones, y definiciones alternativas, han surgido en la literatura. i Las MV-álgebras
fueron introducidas por C. C. Chang, en 1958, para dar una prueba algebraica de la
completitud de la lógica ∞-valuada de  Lukasiewicz (ver [5, 6]). Las MV-álgebras y las
correspondientes estructuras ampliadas (como las MV-álgebras producto o MV-álgebras
de Riesz) han sido estudiadas extensivamente en las tres últimas décadas, sobretodo por
sus conexiones naturales con estructuras algebraicas bien conocidas tales como `-grupos,
`-anillos, semianillos, espacios de Riesz, quantales, entre otros.

En este trabajo estamos interesados en un tipo particular de topoloǵıa fuzzy llamada
MV-topoloǵıa, la cual usa operaciones MV-algebraicas para generar abiertos fuzzy. Estos
espacios topológicos fuzzy, introducidos por Ciro Russo en [42], permiten generalizaciones
naturales de definiciones y resultados importantes de la topoloǵıa clásica. En este sentido,
desarrollamos algunos conceptos y resultados centrales, con el propósito de extender los
correspondientes de la topoloǵıa clásica, y al mismo tiempo siguiendo la ruta de la bien
conocida teoŕıa de espacios topológicos fuzzy. Mostramos que las MV-topoloǵıas son un tipo
de topoloǵıa fuzzy que goza de muy “buen comportamiento” matemático, en el sentido de
que la mayoŕıa de definiciones y resultados clásicos de topoloǵıa general encuentran una
extensión o adaptación natural en este marco. Entre otros resultados, también extendemos
el concepto de haz para el caso en el que el espacio base es un espacio MV-topológico, y
mostramos una respresentación por “MV-haces” para una clase de MV-álgebras.

La tesis se organiza en dos partes: la primera parte se distribuye en tres caṕıtulos de
preliminares y la segunda consta de tres caṕıtulos en los que desarrollamos los principales
tópicos de la tesis.

En el primer caṕıtulo presentamos algunos conceptos y resultados necesarios de teoŕıa
de categoŕıas. El segundo caṕıtulo contiene algunos aspectos de teoŕıa de MV-álgebras,
que serán usados a lo largo de la tesis. Y finalmente, un tercer caṕıtulo acerca de los más
importantes conceptos de topoloǵıas fuzzy que se necesitarán en lo sucesivo.



2 Contents

En la segunda parte de la tesis, estudiamos y desarrollamos una buena parte de la
teoŕıa sobre espacios MV-topológicos. En el caṕıtulo 4 presentamos los conceptos básicos
sobre MV-topoloǵıas. Inicialmente, recopilamos algunos de los resultados presentados en
el art́ıculo pionero de MV-topoloǵıas, [42]. Después, definimos conceptos básicos adicionales
como operador interior y operador clausura, espacio cociente y espacio producto, entre otros.
Estudiamos también el rol de las MV-topoloǵıas dentro de las topoloǵıas fuzzy y mostramos
que la extensión de la dualidad de Stone presentada en [42], restringida a las MV-topoloǵıas
laminadas, es precisamente las MV-álgebras de Riesz (limit cut complete).

El caṕıtulo 5 contiene algunos análogos de importantes resultados que son transversales
en el estudio de la topoloǵıa clásica, los cuales muestran, una vez más, el buen
comportamiento de las MV-topoloǵıas y prometen un próspero desarrollo de esta teoŕıa.
Mostramos un teorema tipo-Tychonoff con varias consecuencias, y la existencia de
una compactificación Stone-Čech para espacios MV-topológicos. También, caracterizamos
normalidad en espacios MV-topológicos mostrando un teorema tipo-Urysohn. Finalmente,
definimos MV-uniformidades y probamos que ellas inducen MV-topoloǵıas; además, cada
espacio MV-topológico generado por una MV-uniformidad, es completamente regular.

En el caṕıtulo 6, definimos haces sobre espacios MV-topológicos y mostramos una
representación de una clase de MV-álgebras, mediante un MV-haz sobre el espectro maximal
MV-topológico (MaxA; τA), definido en [42]. Esta representación está basada fuertemente
en la representación por haces para MV-álgebras de Georgescu-Filipoiu [18], y en los
resultados sobre MV-álgebras lexicográficas obtenidos por Diaconescu, Flaminio y Leustean
[10]. Estamos convencidos de que los haces sobre MV-espacios abren un camino para
futuros desarrollos en el estudio de propiedades globales a partir de propiedades locales
en MV-topoloǵıas.



Introduction

Fuzzy Set Theory is a generalisation of classical Set Theory. Fuzzy sets were introduced by
Lofti A. Zadeh [50], in 1965, as a mathematical way to represent vagueness in everyday life.
A fuzzy set of X is a function α : X −→ [0, 1] or, more generally, a function α : X −→ L,
where L has a lattice structure.

Fuzzy Topology is the branch of mathematics that arose from a synthesis of General
Topology with ideas, notions, and methods of Fuzzy Set Theory. In [7], C. L. Chang gave
the first definition of fuzzy topological space. Eventually, various extensions and alternative
definitions appeared in the literature.

MV-algebras were introduced by C. C. Chang, in 1958, to give an algebraic proof of the
completeness of  Lukasiewicz∞-valued propositional logic (see [5,6]). MV-algebras and their
corresponding extended structures (such as product MV-algebras or Riesz MV-algebras)
have been extensively studied in the last three decades also because of their natural
connections with well-known algebraic structures, such as `-groups, `-rings, semirings, Riesz
spaces, quantales, among others.

In this work, we are interested in a particular type of fuzzy topology, called MV-topology,
which is based on the use of MV-algebraic operations as fuzzy sets intersections and
unions. These fuzzy topological spaces, introduced by Ciro Russo in [42], allow natural
generalisations of definitions and fundamental results of classical topology. In this framework,
we developed some central concepts and results, with the purpose of extending the
classical topological correspondents while, at the same time, following the path of the
well-established theory of fuzzy topological spaces. As a matter of fact, MV-topologies are
very “well-behaved” fuzzy topologies, in the sense that most of the classical definitions and
results of General Topology find a pretty natural extension or adaptation in this framework.
Among other results, we shall also extend the concept of sheaf to the case where the
underlying space is an MV-topological one, and show a representation by MV-sheaves for a
class of MV-algebras.

The thesis is organised in two parts: the first part consists of three chapters on
preliminaries and the second one consists of three chapters in which we develop the main
topics of our work.

In the first chapter, we present some necessary concepts and results of category theory.
The second chapter contains some aspects of the theory of MV-algebras, which we will use
throughout the thesis. Finally, the third chapter is dedicated to a review of the main fuzzy
topological concepts and results which will be needed in the sequel.



4 Contents

In the second part of the thesis, we study and develop a big part of the theory of
MV-topological spaces. In Chapter 4 we present the basic concepts on MV-topologies.
The very first part comes from the first paper on MV-topologies [42], which we already
mentioned. Eventually, we define additional basic concepts such as interior and closure
operators, quotient space and product space, among others. We also study the role of
MV-topologies within the fuzzy topologies and we show that the extension of Stone Duality,
presented in [42], restricted to laminated MV-topologies, gives precisely (limit cut complete)
Riesz MV-algebras.

Chapter 5 contains some analogous to important results that are ubiquitous in classical
topology, which show once more the good behaviour of MV-topologies and encourage a
prosperous development of this theory. We show a Tychonoff-type theorem, along with
various consequences, and the existence of a Stone-Čech compactification for MV-topological
spaces. Then we characterise normality in MV-topological spaces showing a Urysohn-type
theorem. Last, we define MV-uniformities, and we prove that they are able to induce
MV-topologies and that MV-topological spaces induced by MV-uniformities are completely
regular.

In Chapter 6, we define sheaves on MV-topological spaces, and we show a representation of
a class of MV-algebras by means of MV-sheaves on the maximal MV-spectrum (MaxA; τA)
defined in [42]. Such a representation is strongly based on Filipoiu and Georgescu’s sheaf
representation for MV-algebras [18], and on the results on lexicographic MV-algebras
obtained by Diaconescu, Flaminio, and Leustean [10]. We believe that MV-sheaves open
a path for future developments in the study of global properties on MV-topologies from
local ones.



Part I

Preliminaries
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Category Theory

In this section we present some necessary topics about category theory. For more references
and further readings, the reader can see [1, 28,32,38], etc.

1.1 Categories and Functors

Definition 1.1.1. A category A consist of:

• a collection of objects that we denote by Ob(A);
• for each A,B ∈ Ob(A), a collection HomA(A,B) of maps or arrows or morphisms from
A to B;

• for each A,B,C ∈ Ob(A), a function

HomA(A,B)×HomA(B,C)−→HomA(A,C)
(f, g) 7−→ g ◦ f

called composition;
• for each A ∈ Ob(A), an element 1A ∈ HomA(A,A), called the identity on A,

satisfying the following axioms:

(i) Associativity: for each f in HomA(A,B), g in HomA(B,C) and h in HomA(C,D), we
have (h ◦ g) ◦ f = h ◦ (g ◦ f).

(ii) Identity laws: for each f in HomA(A,B), we have f ◦ 1A = f = 1B ◦ f .
(iii) The sets HomA(A,B) are pairwise disjoint.

Remark 1.1.2. (a) We will often use A ∈ A to mean A ∈ Ob(A); f : A −→ B or A
f−→ B to

mean f ∈ HomA(A,B); and gf to mean g ◦ f .
(b) If f : A −→ B is a morphism of A, we call A the domain of f (denoted by dom(f)) and

B the codomain of f (denoted by cod(f)). Observe that condition (iii) guarantees that
each morphism of A has an unique domain and an unique codomain.

Every category A has an opposite or dual category Aop, defined by reversing the arrows.
Formally, Ob(Aop) = Ob(A) and HomAop(B,A) = HomA(A,B) for all objects A and B.
Identities in Aop are the same as in A . Composition in Aop is the same as in A, but with
the arguments reversed. So, arrows A −→ B in A correspond to arrows B −→ A in Aop.
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Example 1.1.3. The following are examples of categories:

1. the category Set whose objects are sets and morphisms are functions;
2. the category Grp whose objects are groups and whose morphisms are group

homomorphisms;
3. in the same sense, the category Ring whose objects are rings and whose morphisms are

ring homomorphisms;
4. the category MV whose objects are MV-algebras and the morphisms are

homomorphisms of MV-algebras (see Chapter 2 for details);
5. the category Top whose objects are topological spaces and the morphisms are continuous

maps;
6. the category Fuz whose objects are fuzzy topological spaces and the morphisms are fuzzy

continuous maps (see Chapter 3);
7. Let (P,≤) a partially ordered set. We can see (P,≤) as a category whose objects are the

elements of P and each a, b ∈ P such that a ≤ b define an unique morphism a −→ b.
Note that Hom(a, b) is empty unless a ≤ b, in which case Hom(a, b) contains a single
element, a −→ b.

Definition 1.1.4. A morphism f : A −→ B in a category A is:

• an isomorphism if there exists a morphism g : B −→ A with gf = 1A and fg = 1B . Such
a morphism g is called the inverse of f and is, of course, an isomorphism as well that
will be denoted by f−1. If there exists an isomorphism between two objects of a category,
such objects are said to be isomorphic;

• a monomorphism if for all pairs C
h //
k
// A of morphisms such that f ◦ h = f ◦ k, it

follows that h = k (i.e., f is left-cancellable with respect to composition);

• an epimorphism if for all pairs B
h //
k
// C of morphisms such that h◦f = k◦f , it follows

that h = k (i.e., f is right-cancellable with respect to composition).

Definition 1.1.5. Let A and B be categories. A functor F : A −→ B consists of:

• a function
F :A−→ B

A 7−→F (A)

• for each A,A′ ∈ A, a function

HomA(A,A′)−→HomB(F (A), F (A′))
f 7−→ F (f)

satisfying the following axioms:

• F (f ′ ◦ f) = F (f ′) ◦ F (f) whenever A
f−→ A′

f ′−→ A′′ in A;
• F (1A) = 1F (A) whenever A ∈ A.

Functors are sometimes called covariant functors. A contravariant functor from A to A′
means a functor from Aop to A′.

We will often use the simplified notations FA and Ff rather than F (A) and F (f), and

denote the action of F on both objects and morphisms by F (A
f−→ B) = FA

Ff−→ FB.
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Definition 1.1.6. A functor F : A −→ B is called:

• an embedding if it is injective on morphisms;
• faithful if all the hom-set restrictions F : HomA(A,A′) −→ HomB(FA,FA′) are injective

and full if they are surjective;
• isomorphism dense, or essentially surjective on objects or, simply, dense provided that for

any B ∈ B there exists some A ∈ A such that FA is isomorphic to B;
• an isomorphism if there exists a functor G : B −→ A such that G ◦ F is the identity

functor of A and F ◦G is the identity functor of B. In this case, the categories A and B
are called isomorphic.

Even if there exists a definition of isomorphism between categories, there is a weaker
concept that is much more useful in practice: the one of “categorical equivalence”. Indeed, in
mathematics, two object that are isomorphic can be treated as essentially the same object,
and categories does not make exception; nonetheless, most of the categorical properties
are preserved under equivalences and equivalences are more than isomorphisms, i.e. every
isomorphism is an equivalence but not vice versa. A formal definition of this sort of “weak
isomorphism” is the following:

Definition 1.1.7. A functor F : A −→ B is called an equivalence if it is full, faithful and
isomorphism-dense. In this case, the categories A and B are said to be equivalent.

The following properties of functors are very easy to prove.

Proposition 1.1.8. Let F : A −→ B and G : B −→ C be functors.

(i) All functors preserve isomorphisms, i.e., whenever f : A −→ A′ is an isomorphism in
A, then F (f) is an isomorphism in B.

(ii) The composition G ◦ F : A −→ C defined by

(G ◦ F )(f : A −→ A′) = G(Ff) : G(FA) −→ G(FA′)

is a functor.
(iii) A functor is an embedding if and only if it is faithful and injective on objects.
(iv) A functor is an isomorphism if and only if it is full, faithful, and bijective on objects.
(v) If F and G are both isomorphisms (respectively: embeddings, faithful, full), then so is

G ◦ F .
(vi) If G ◦ F is an embedding (respectively: faithful), then so is F .

(vii) If F is surjective on objects and G ◦ F is full, then G is full.
(viii) If F is full and faithful, then for every morphism f : FA −→ FA′ in B there exists

a unique morphism g : A −→ A′ in A such that Fg = f . Furthermore, g is an
isomorphism in A if and only if f is an isomorphism in B.

(ix) If F is full and faithful, then it reflects isomorphisms; i.e., whenever g ∈ A is a
morphism such that Fg ∈ B is a isomorphism, then g is an isomorphism in A

(x) If F is an equivalence, then there exists an equivalence H : B −→ A.
(xi) If F and G are equivalences, then so is G ◦ F .

Definition 1.1.9. Let A be a category. A subcategory S of A consists of a subclass Ob(S) of
Ob(A) together with, for each S, S′ ∈ Ob(S); a subclass HomS(S, S′) of HomA(S, S′), such
that S is closed under composition and identities. It is a full subcategory if HomS(S, S′) =
HomA(S, S′) for all S, S′ ∈ Ob(S).
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For example, the category AG of the Abelian groups is a full subcategory of Grp.

Definition 1.1.10. Let X be a category. A concrete category over X is a pair (A, U), where
A is a category and U : A −→ X is a faithful functor. Sometimes U is called the forgetful (or
underlying) functor of the concrete category and X is called the base category for (A, U). A
concrete category over the category Set of sets is called a construct .

For example, any category whose objects are sets with some structure (namely: topological
spaces, groups, lattices, etc.), is a construct. The forgetful functor is the one that sends
every object into its underlying set and every morphism into itself (the latter regarded as a
morphism of sets). Moreover, many constructs can also be seen as concrete categories over
another category. For instance, the category of vectorial spaces is both a construct and a
concrete category over AG, the category of Abelian groups; in this case, the forgetful functor
does not “forget” the whole structure but only the external multiplication.

1.2 Some limits

In this section we present definitions and examples of some limits that we will use later.

Products

Definition 1.2.1. Let C be a category and X,Y ∈ C. A product of X and Y consists of an
object P and maps

P
p1

~~

p2

��
X Y

with the property that for all objects and maps

A
f1

~~

f2

��
X Y

in C, there exists a unique map f : A −→ P such that

A

f1

��

f
��

f2

��

P

p1~~ p2 ��
X Y

commutes. The maps p1 and p2 are called the projections.
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Equalizers

We say that a fork in a category consists of objects and maps

A
f−→ X

s //
t
// Y (1.1)

such that sf = tf.

Definition 1.2.2. Let C be a category and let X
s //
t
// Y be objects and maps in C . An

equalizer of s and t is an object E together with a map E
i−→ X such that

E
i−→ X

s //
t
// Y

is a fork, and with the property that for any fork (1.1), there exists a unique map f : A −→ E
such that

A
f

  
f
��
E

i // X

commutes.

Example 1.2.3. Given the functions and sets X
s //
t
// Y in Set, let

E = {x ∈ X : s(x) = t(x)}.

The object E with the inclusion map i : E −→ X is the equalizer of s an t.

1.3 Natural Transformations and Adjoint Functors

In some cases, it is possible to connect two functors between the same categories by means
of a sort of ‘map between functors’, called natural transformation.

The following definitions and notations are taken from [28].

Definition 1.3.1. Let A and B be categories and let A
F //
G
// B be functors. A natural

transformation α : F =⇒ G is a family {F (A)
αA−→ G(A)}A∈A of morphisms in B such that

for every map A
f−→ A′ in A, the square

F (A)
F (f) //

αA

��

F (A′)

αA′

��
G(A)

G(f) // G(A′)

commutes. The maps αA are called the components of α.
If all the arrows αA are isomorphisms, α is called a natural isomorphism.
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Let A and B be categories and let F,G,H : A −→ B be functors between A and B. And

let F
α

=⇒ G
β

=⇒ H be natural transformations between them, then there is a composite

natural transformation F
β◦α
=⇒ G defined by (β ◦α)A = βA ◦αA, for all A ∈ A. That is, given

two families of morphisms of B,

{F (A)
αA−→ G(A)}A∈A and {G(A)

βA−→ H(A)}A∈A,

which satisfy the condition of Definition 1.3.1, we can obtain the family

{F (A)
βA◦αA−→ H(A)}A∈A

that also satisfies the condition of Definition 1.3.1.
There is also an identity natural transformation 1F : F =⇒ F on any functor F : A −→ B

defined by (1F )A = 1F (A) for each a ∈ A.
From the above, we have that for any two categories A and B, there is a category whose

objects are the functors from A to B and whose morphisms are the natural transformations
between them. This is called the functor category from A to B, and we written as BA.

Definition 1.3.2. Let A and B be categories, A
F //
G
// B be functors, and α : F =⇒ G a

natural transformation. We say that F
α

=⇒ G is a natural isomorphism if for all A ∈ A,
αA : F (A) −→ G(A) is an isomorphism.

And we say that functors F and G are naturally isomorphic if there exists a natural
isomorphism from F to G.

Note that a natural isomorphism between functors from A to B is actually an isomorphism
in the category BA.

Definition 1.3.3. Given functors A
F //
G
// B , we say that

F (A) ∼= G(A)

naturally in A if F and G are naturally isomorphic.

Definition 1.3.4. Let A and B be categories and let A
F
$$
B

G

cc be functors between them.

We say that F is left adjoint to G, and G is right adjoint to F , and write F a G, if

HomB(F (A), B)) ∼= HomA(A,G(B)) (1.2)

naturally in A ∈ A and B ∈ B.
An adjunction between F and G is a choice of natural isomorphism (1.2).

Remark 1.3.5. We note that HomB(F (−),−) : Aop × B −→ Set such that

(A,B) 7−→ HomB(F (A), B))

and HomA(−, G(−)) : Aop × B −→ Set such that

(A,B) 7−→ HomA(A,G(B))

are functors from Aop × B to Set. Then, it makes sense the Definition 1.3.4.
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Let us better explain the naturality of the bijection (1.2): given objects A ∈ A and B ∈ B,
the correspondence (1.2) between F (A) −→ B and A −→ G(B) is denoted by a horizontal
bar, in both directions:

(F (A)
g−→ B) 7→ (A

g−→ G(B)),

(F (A)
f−→ B)←[ (A f−→ G(B)).

So f = f and g = g. We call f the transpose of f , and similarly for g. The naturality axiom
has two parts:

(F (A)
g−→ B

q−→ B′) = (A
g−→ G(B)

G(q)−→ G(B′)) (1.3)

that is, q ◦ g = G(q) ◦ g, for all g and q, and

(A′
p−→ A

f−→ G(B)) = (F (A′)
F (p)−→ F (A)

f−→ B) (1.4)

for all p and f .
Intuitively, naturality says that as A varies in A and B varies in B, the isomorphism

HomB(F (A), B)) ∼= HomA(A,G(B)) varies in a way that is compatible with all the structure
already in place. In other words, it is compatible with composition in the categories A and
B and the action of the functors F and G.

For to explain this compatibility, suppose that we have maps

F (A)
g−→ B

q−→ B′

in B. There are two things we can do with this data: either compose then take the transpose,
which produces a map q ◦ g : A −→ G(B′), or take the transpose of g then compose it with
G(q), which produces a potentially different map G(q) ◦ g : A −→ G(B′). Compatibility
means that they are equal; and that is the first naturality equation (1.3). The second is its
dual, and can be explained in a similar way.

For each A ∈ A , we have a map

(A
ηA−→ GF (A)) = (F (A)

1−→ F (A)).

Dually, for each B ∈ B, we have a map

(FG(B)
εB−→ B) = (G(B)

1−→ G(B)).

These define natural transformations

η : 1A −→ G ◦ F, ε : F ◦G −→ 1B,

called the unit and counit of the adjunction, respectively.
The following are some necessary definitions and results for Section 5.3. The reader can

find more about this in [28,32].
A set S of objects of the category C is said to generate C when to any parallel pair

h, h′ : c −→ d of arrows of C, h 6= h′ implies that there is an s ∈ S and an arrow f : s −→ c
with hf 6= h′f . This definition includes the case of a single object s generating a category C.
For example, any one-point set generates Set, the set of integers Z generates AG and Grp,
and each ring R generates R −Mod. The set of finite cyclic groups is a generator for the
category of all finite abelian groups (or, of all torsion abelian groups).
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Dually, a set Q of objects is a cogenerating set for the category C when to every parallel
pair h, h′ : a −→ b of arrows of C there is an object q ∈ Q and an arrow g : b −→ q with
gh 6= gh′. A single object q is a cogenerator when {q} is a cogenerating set. For example,
any two-point set is a cogenerator in Set.

A category C is called small-complete (usually just complete) if all small diagrams in C
have limits in C; that is, if every functor F : J −→ C, where J is a small category, has a
limit. We have that Set, Grp, AG, and many other categories of algebras are small-complete.

Let C be any category. If f : B −→ A and g : C −→ A are two monics with a common
codomain A, write f ≤ g when f factors through g; that is, when f = gh for some arrow
h (which is then necessarily also monic). When both f ≤ g and g ≤ f , write f ≡ g; this
defines an equivalence relation ≡ among the monics with codomain A, and the corresponding
equivalence classes of these monics are called the subobjects of A. It is often convenient to
say that a monic f : C −→ A is a subobject of A, that is, to identify f with the equivalence
class of all g = fk, for k : C ′ −→ C an invertible arrow.

A category C is well-powered if for each object A in C, the class of subobjects of A is small,
that is, a set.

Now, we present a version of the Special Adjoint Functor Theorem which will be useful
to ensure a type of Stone-Čech Compactification, for MV-topological spaces, in the Section
5.3.

Theorem 1.3.6 (Special Adjoint Functor Theorem (SAFT)). If C is small-complete,
well-powered, with small hom-sets, and a small cogenerating set, while A has small hom-sets,
then a functor G : C −→ A has a left adjoint if and only if it is continuous, i. e., preserves
all small limits.

There is a classic application of SAFT. Let CHTop be the category of compact Hausdorff
topological spaces, and U : CHTop −→ Top the forgetful functor. By SAFT we have that U
has a left adjoint β, turning any space into a compact Hausdorff space in a canonical way. To
prove the existence of this left adjoint and to verify the hypotheses of SAFT, are necessary
some deep theorems of topology. Given a space X, the resulting compact Hausdorff space
β(X) is called its Stone-Čech compactification.



2

MV-algebras

The MV-algebras were defined by Chang [5] as the algebraic counterpart of  Lukasiewicz
infinite-valued calculus. The following definitions and results about MV-algebras can be
found in [8, 13,35].

Definition 2.0.1. An MV-algebra is a structure (A,⊕, ∗,0) where ⊕ is a binary operation,
* is a unary operation and 0 is a constant such that the following axioms are satisfied for
any a, b ∈ A:

MV1) (A,⊕, ∗,0) is an Abelian monoid,
MV2) (a∗)∗ = a,
MV3) 0∗ ⊕ a = 0∗,
MV4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

We denote an MV-algebra (A,⊕, ∗,0) by its universe A. An MV-algebra is trivial if its
support is a singleton.

On each MV-algebra A we define the constant 1 and two derived operations � and 	 as
follows:

• 1 := 0∗

• a� b := (a∗ ⊕ b∗)∗
• a	 b := a� b∗

An MV-algebra is nontrivial if and only if 0 6= 1. The following identities are immediate
consequences of the axioms in the Definition 2.0.1:

MV5) 1∗ = 0,
MV6) a⊕ b = (a∗ � b∗)∗,
MV7) a⊕ a∗ = 1.

Axioms MV3) and MV4) can now be written as:

MV3’) a⊕ 1 = 1,
MV4’) (a	 b)⊕ b = (b	 a)⊕ a

Remark 2.0.2. We consider the * operation more binding than any other operation, and the
� operation more binding than ⊕ and 	.
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The basic concepts related to MV-algebras, such as subalgebra, homomorphism, and
congruence, are defined in the usual way, according to Universal Algebra. Moreover, it is
clear from the definition that the class of MV-algebras is equationally defined, and therefore
it forms a variety.

Let A be an MV-algebra, a ∈ A and n < ω, where ω denotes the set of all the natural
numbers. We introduce the following notations:

0a = 0, na = a⊕ (n− 1)a for any n < ω,

a0 = 1, an = a� an−1 for any n < ω.

We say that the element a has order n, and we write ord(a) = n, if n is the least natural
number such that na = 1. We say that the element a has a finite order, and we write
ord(a) <∞, if a has order n for some n < ω. If no such n exists, we say that a has infinite
order and we write ord(a) =∞.

2.1 The lattice structure of an MV-algebra

Proposition 2.1.1. Let A an MV-algebra. For any a, b ∈ A the following are equivalent:

(i) a∗ ⊕ b = 1,
(ii) a	 b = 0,

(iii) b = a⊕ b� a∗,
(iv) there is c ∈ A such that b = a⊕ c,
(v) there is d ∈ A such that a = b� d.

Definition 2.1.2. Let A be an MV-algebra. We define a binary relation ≤ on A by a ≤ b
iff a and b satisfy the above equivalent conditions (i)–(v). It is called the natural order of A.

An MV-algebra whose natural order is total is called an MV-chain.

Proposition 2.1.3. The order in the Definition 2.1.2 is a partial order, moreover it is a
lattice order and for each x, y, z ∈ A:

(i) x ∨ y = (x� y∗)⊕ y = (x	 y)⊕ y, and
(ii) x ∧ y = (x∗ ∨ y∗)∗ = x� (x∗ ⊕ y)

(iii) x ≤ y iff y∗ ≤ x∗
(iv) x ≤ y implies x⊕ z ≤ y ⊕ z and x� z ≤ y � z
(v) x� y ≤ z iff x ≤ y∗ ⊕ z

(vi) x� y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y

Proposition 2.1.4. For any x ∈ A and for any family {yi : i ∈ I} ⊆ A the following
properties hold whenever

∨
{yi : i ∈ I} and

∧
{yi : i ∈ I} exist:

(a) x�
∨
{yi : i ∈ I} =

∨
{x� yi : i ∈ I},

(b) x ∧
∨
{yi : i ∈ I} =

∨
{x ∧ yi : i ∈ I},

(c) x⊕
∨
{yi : i ∈ I} =

∨
{x⊕ yi : i ∈ I},

(d) x�
∧
{yi : i ∈ I} =

∧
{x� yi : i ∈ I},

(e) x ∨
∧
{yi : i ∈ I} =

∧
{x ∨ yi : i ∈ I},

(f) x⊕
∧
{yi : i ∈ I} =

∧
{x⊕ yi : i ∈ I}.

And if a, x1, ..., xn ∈ A for n ≥ 1 then:
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(g) a ∨ (x1 ⊕ ...⊕ xn) ≤ (a ∨ x1)⊕ ...⊕ (a ∨ xn),
(h) a ∧ (x1 ⊕ ...⊕ xn) ≤ (a ∧ x1)⊕ ...⊕ (a ∧ xn),
(i) a ∨ (x1 � ...� xn) ≥ (a ∨ x1)� ...� (a ∨ xn),
(j) a ∧ (x1 � ...� xn) ≥ (a ∧ x1)� ...� (a ∧ xn).

Some examples of MV-algebras interesting for this work, are the following:

(i) The unit interval [0, 1] with the operations given by: a⊕ b = min(1, a+ b), a∗ = 1− a,
for each a, b ∈ [0, 1], and the constant 0 is the real number zero. Besides, we have that
a � b = max(0, a + b − 1), a 	 b = max(0, a − b), a ∧ b = min(a, b), a ∨ b = max(a, b)
and the order relation is the usual in [0, 1].

(ii) For each integer n ≥ 2, the set  Ln = {0, 1
n−1 , · · · ,

n−2
n−1 , 1} is an MV-algebra with the

same operations and constant of the last example. In fact,  Ln is a subalgebra of [0, 1].
(iii) Q ∩ [0, 1] is another subalgebra of [0, 1] with the induced operations.
(iv) For each nonempty set X, the set of functions [0, 1]X is an MV-algebra with the

operations induced by the operations in the unit interval [0, 1]. That is, (f ⊕ g)(x) =
f(x) ⊕ g(x) and f∗(x) = f(x)∗ for each f, g : X −→ [0, 1], and the constant 0 is the
constant function 0 : X −→ [0, 1].

A particular inequality that holds for each MV-algebra A is the following: for all a, b, c ∈ A

a� (b⊕ c) ≤ b⊕ (a� c). (2.1)

2.2 Ideals and Homomorphisms

In this section we shall define ideals of an MV-algebra and we will see, among other things,
that every ideal of an algebra A is the zero-class of a unique congruence on A, as in the case
of rings and Boolean algebras.

First of all, we observe that, if h : A −→ B is an MV-homomorphism, then for all a, b ∈ A
we have:

1. h(1) = 1
2. h(a� b) = h(a)� h(b)
3. h(a ∧ b) = h(a) ∧ h(b)
4. h(a ∨ b) = h(a) ∨ h(b)

Note that h is also a lattices homomorphism from L(A) to L(B). In particular, h is an
increasing function.

Definition 2.2.1. An ideal of an MV-algebra A is a nonempty subset I of A satisfying the
following properties:

I1) a ≤ b and b ∈ I implies a ∈ I,
I2) a, b ∈ I implies a⊕ b ∈ I.

We denote by IdA the set of ideals of A.

An ideal is proper if it does not coincide with the entire algebra. The following are some
natural consequences of the Definition 2.2.1:

• {0} and A are ideals,
• 0 ∈ I for any ideal I of A,



18 2 MV-algebras

• An ideal I is proper if and only if 1 /∈ I,
• For each a, b elements of an ideal I, we have a� b, a ∧ b, a ∨ b, a⊕ b ∈ I,
• Given a family {Iλ}λ∈Λ of ideals of A, the intersection

⋂
λ∈Λ Iλ is also an ideal of A.

Definition 2.2.2. In an MV-algebra A, the distance function d : A×A −→ A is defined by

d(a, b) = (a� b∗)⊕ (b� a∗).

Proposition 2.2.3. For any a, b, c, e ∈ A the following properties hold:

d1) d(a, b) = (a� b∗) ∨ (b� a∗),
d2) d(a, b) = 0 iff a = b,
d3) d(a,0) = a,
d4) d(a,1) = a∗,
d5) d(a∗, b∗) = d(a, b)
d6) d(a, b) = d(b, a),
d7) d(a, c) ≤ d(a, b)⊕ d(b, c),
d8) d(a⊕ c, b⊕ e) ≤ d(a, b)⊕ d(c, e),
d9) d(a� c, b� e) ≤ d(a, b)⊕ d(c, e).

In a Boolean algebra A the distance function is

d(a, b) = (a ∧ b∗) ∨ (b ∧ a∗) = (a↔ b)∗.

In the MV-algebras [0, 1], Q ∩ [0, 1] and  Ln the distance function is

d(a, b) = |a− b|

where | | denotes the usual absolute value in [0, 1].
Thanks to the distance function, we can establish the relationship between congruences

and ideals of MV-algebras.

Lemma 2.2.4. If I is an MV-ideal of A then the relation ≡I defined by

a ≡I b iff d(a, b) ∈ I

is a congruence on A. Reciprocally, if ≡ is a congruence on A then the set

I≡ = {a ∈ A : a ≡ 0}

is an MV-ideal, and it is the unique one such that ≡I≡ is equal to ≡.

Consequently, for any MV-algebra A and any ideal I of A, we shall denote by I both the
ideal and the congruence ≡I .

Given an ideal I of an MV-algebra A, we shall always denote by A/I = {a/I : a ∈ A}
the quotient MV-algebra and by πI the canonical projection from A to A/I. It is clear that
ker(πI) = I. Therefore, in what follows, we shall call the kernel of an MV-homomorphism
h : A −→ B the set

ker(h) = h−1(0) = {a ∈ A : h(a) = 0}.
An useful property is the following:

a

I
= {(a⊕ b)� c∗ : b, c ∈ I}. (2.2)

For every subset Z ⊆ A, the intersection of all ideals I ⊇ Z is said to be the ideal generated
by Z, it will be denoted 〈Z〉 and we have the following lemma:
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Lemma 2.2.5. Let Z be a subset of an MV-algebra A. If Z = ∅ then 〈Z〉 = {0}. If Z 6= ∅,
then

〈Z〉 = {x ∈ A : x ≤ z1 ⊕ · · · ⊕ zk, for some z1, . . . , zk ∈ Z}.

In particular, for each element z ∈ A,

〈z〉 = 〈{z}〉 = {x ∈ A : x ≤ nz for some integer n ≥ 0}.

The ideal 〈z〉 is called the principal ideal generated by z. Note that 〈0〉 = {0} and 〈1〉 = A.
Further, for every ideal J of an MV-algebra A and each z ∈ A we have

〈J ∪ {z}〉 = {x ∈ A : x ≤ nz ⊕ a, for some n ≥ 0 and a ∈ J}.

In the sequel the MV-ideal generated by I ∪ J will be denoted by I ⊕ J and it is

I ⊕ J = {x ≤ a⊕ b : for some x ∈ I, y ∈ J}.

Proposition 2.2.6. [8] Let A be an MV-algebra and S ⊆ A. Then the ideal (S] generated
by S is proper if and only if, for any n < ω and for any a1, . . . , an ∈ S, a1 ⊕ · · · ⊕ an < 1.

For an ideal I of an MV-algebra A, we have that the MV-subalgebra generated by I in A
is 〈I〉 = I ∪ I∗ where I∗ = {x∗ : x ∈ I}.

Some relations between ideals and kernels of homomorphisms are summarize in the next
lemma:

Lemma 2.2.7. Let A,B be MV-algebras and h : A −→ B a homomorphism. Then the
following properties hold:

(i) For each ideal J of B, the set h−1(J) = {a ∈ A : h(a) ∈ J} is an ideal of A. Thus in
particular, ker(h) is an ideal of A. Besides ker(h) ⊆ h−1(J).

(ii) h(a) ≤ h(b) iff a� b∗ ∈ ker(h).
(iii) h is injective iff ker(h) = 0.
(iv) ker(h) 6= A iff B is nontrivial.
(v) If h is surjective and I ⊆ A is an ideal such that ker(h) ⊆ I, then h(I) is an ideal of

B.

2.3 Prime ideals

The prime and the maximal spectra of MV-algebras play an important role in some results
and concepts of this work. In this section we present definitions and results about them.

Proposition 2.3.1. If P is an MV-ideal of A, then the following properties are equivalent:

(a) For any a, b ∈ A, a� b∗ ∈ P or b� a∗ ∈ P,
(b) For any a, b ∈ A, if a ∧ b ∈ P then a ∈ P or b ∈ P,
(c) For any I, J ∈ Id(A), if I ∩ J ⊆ P then I ⊆ P or J ⊆ P .

Definition 2.3.2. (i) An ideal of A is prime if it is proper and it satisfies one of the
equivalent conditions of Proposition 2.3.1. We shall denote by SpecA the set of all the
prime ideals of A.
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(ii) An ideal M of an MV-algebra A is called maximal if it is proper and no proper ideal
of A strictly contains M , i.e., for each ideal J 6= M , if M ⊆ J then J = A. We shall
denote by MaxA the set of all the maximal ideals of A.

We have the following characterization for maximal ideals:

Proposition 2.3.3. For any proper ideal M of an MV-algebra A the following conditions
are equivalent:

(i) M is a maximal ideal of A;
(ii) for each a ∈ A, a /∈ M iff (na)∗ ∈ M (or equivalently (a∗)n ∈ M) for some integer

n ≥ 1.

Remark 2.3.4. If I and P are ideals of A such that I ⊆ P , then we have that

P ∈ SpecA iff πI(P ) ∈ Spec(A/I).

And, If I and M are ideals of A such that I ⊆M , we have that

M ∈ MaxA iff πI(M) ∈ Max(A/I).

Thus, there is a bijective correspondence between the prime (maximal, resp.) ideals of A
containing I and the prime (maximal, resp.) ideals of A/I.

Lemma 2.3.5. Any maximal ideal of an MV-algebra is a prime ideal.

Proposition 2.3.6. Any proper ideal I of any MV-algebra A is contained in a maximal
ideal M . If I is prime, M is unique.

A special type of prime ideals which we will use are the following:

Definition 2.3.7. An ideal P of an MV-algebra A is called primary if P is proper and there
is a unique maximal ideal containing it.

It is immediate of the Definition 2.3.7 and Proposition 2.3.6 that any prime ideal is a
primary ideal.

Definition 2.3.8. The intersection of the maximal ideals of A is called the radical of A. It
will be denoted by RadA.

It is easy to see that RadA is an ideal, since an intersection of ideals is also an ideal.

Lemma 2.3.9. For any a, b ∈ RadA, the following identities hold:

(a) a� b = 0
(b) a ≤ b∗

Corollary 2.3.10. (RadA,⊕,0) is an ordered cancellative monoid.

Definition 2.3.11. An element a ∈ A is called infinitesimal if a 6= 0 and na ≤ a∗ for any
n < ω.

Proposition 2.3.12. For any a ∈ A, a 6= 0, the following are equivalent:

(i) a is infinitesimal;
(ii) a ∈ RadA;
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(iii) (na)2 = 0 for every n < ω.

Corollary 2.3.13. If B is an MV-subalgebra of A, then RadB = RadA ∩B.

Definition 2.3.14. For a nonempty subset X ⊆ A, the set

X⊥ = {a ∈ A : a ∧ x = 0 for any x ∈ X}

is called the polar or the annihilator of X. If a ∈ A then the annihilator of {a} will be
simply denoted by a⊥. Thus

a⊥ = {b ∈ A : a ∧ b = 0}.

Definition 2.3.15. An ideal m of A is a minimal ideal if it is a minimal element in SpecA
ordered by inclusion. This means that m is a prime ideal and, whenever P is a prime ideal
such that P ⊆ m, we get m = P . We shall denote by MinA the set of all the minimal prime
ideals of A.

Lemma 2.3.16. Let A be an MV-algebra and P ∈ SpecA. Then the following are equivalent:

(i) P is a minimal ideal;
(ii) For any a ∈ A, a ∈ P iff there is b ∈ A \ P such that a ∧ b = 0;

(iii) P =
⋃
{b⊥ : b /∈ P}.

Let A be an MV-algebra and P a prime ideal of A. We set

OP =
⋂
{Q ∈ SpecA : Q ⊆ P}. (2.3)

We note that OP is an ideal of A and OP ⊆ P . In the following, we show some properties
of these ideals which will be useful in this work. The interested reader may refer to [17] for
more information about such ideals.

Proposition 2.3.17. [17] For each P ∈ SpecA, OP =
⋃
{a⊥ : a /∈ P}

Proposition 2.3.18. For each P ∈ SpecA, the ideal OP is primary.

Proof. We shall prove that there is a unique maximal ideal containing OP . Let MP be the
unique maximal ideal such that OP ⊆ P ⊆ MP . Suppose there exists a maximal ideal
M 6= MP and OP ⊆ M . Then there exist a ∈ M and b ∈ MP such that a ⊕ b = 1, that is
a∗ � b∗ = 0. Let m ∈ MinA with m ⊆ P , then (a∗)2 ∈ m or (b∗)2 ∈ m. If (b∗)2 ∈ m then
b ⊕ (b∗)2 = b ∨ b∗ = 1 ∈ MP , absurd. So (a∗)2 ∈ m, for all m ∈ MinA with m ⊆ P , that
is, (a∗)2 ∈ OP ⊆ M . Then a ⊕ (a∗)2 = a ∨ a∗ = 1 ∈ M , again it is absurd. Hence OP is
primary. ut

An important property of the ideals OM when M is maximal is the following (see [18]):

Proposition 2.3.19. For each MV-algebra A we have that⋂
{OM : M ∈ MaxA} = {0} (2.4)

So, each MV-algebra A can be seen as a subdirect product of the family {A/OM}M∈MaxA.
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2.4 The Spectral Topology

In this section we recall a natural topology on the set of prime ideals, SpecA. We also display
some properties of SpecA, MaxA and MinA. Let (A,⊕,∗ ,0) be an MV-algebra. For more
about this topology, the reader may refer to [13].

For any ideal I of A we define

r(I) := {P ∈ SpecA : I * P} (2.5)

If we define τ := {r(I) : I ∈ Id(A)}, we have that (SpecA, τ) is a topological space. Indeed,

(i) r({0}) = ∅,
(ii) r(A) = SpecA,
(iii) r(I ∧ J) = r(I) ∩ r(J) for all I, J ∈ Id(A),
(iv) r(

∨
{Iλ : λ ∈ Λ}) =

⋃
{r(Iλ) : λ ∈ Λ} for any {Iλ : λ ∈ Λ} ⊆ Id(A).

In the sequel τ or O(SpecA) will be referred as the spectral topology or the Zariski topology .
Other properties of the sets r(I) are the following:

• I ⊆ J iff r(I) ⊆ r(J) for any I, J ∈ Id(A),
• if X ⊆ A then {P ∈ SpecA : X * P} = r((X]).

For any a ∈ A we define
r(a) := {P ∈ SpecA : a /∈ P} (2.6)

and we have the following properties:

Lemma 2.4.1. [13]

(i) r(a) = r((a]) for any a ∈ A,
(ii) r(0) = ∅,

(iii) r(1) = SpecA,
(iv) r(a ∨ b) = r(a⊕ b) = r(a) ∪ r(b) for any a, b ∈ A,
(v) r(a ∧ b) = r(a) ∩ r(b) for any a, b ∈ A,

(vi) r(I) =
⋃
{r(a) : a ∈ I} for any I ∈ Id(A).

By properties (i) and (vi) in the last lemma we have that {r(a) : a ∈ A} is a basis for the
topology τ . We can also prove that the compact open subsets of SpecA are exactly the sets
of the form r(a) for some a ∈ A. In particular, SpecA is compact because r(1) = SpecA
(see [13]).

Let A be an MV-algebra. We have that, for each a ∈ A, the set

H(a) := {P ∈ SpecA : a ∈ OP }

is an open set of SpecA [17, Lemma 3.6].
Since MaxA,MinA ⊆ SpecA we can endow MaxA and MinA with the topology induced

by the spectral topology τ on SpecA. This means that the open sets of MaxA are

R(I) = r(I) ∩MaxA = {M ∈ MaxA : I *M}

So, for any a ∈ A and I ∈ IdA

R(a) = r(a) ∩MaxA = {M ∈ MaxA : a /∈M} and R(I) =
⋃
{R(a) : a ∈ I}
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Hence the family {R(a) : a ∈ A} is a basis for the induced topology on MaxA. The set of
opens in MaxA will be denoted by O(MaxA).

By [13, Theorem 3.6.10], we have that for any MV-algebra A the maximal ideal space,
MaxA, is a compact Hausdorff topological space with respect to the topology induced by
the spectral topology on SpecA.

Analogously, we have that the open sets of MinA are

d(I) = r(I) ∩MinA = {m ∈ MinA : I * m}.

We conclude the section recalling that also the coZariski topology on SpecA has been
considered in the literature (see, for instance, Dubuc and Poveda [16]). Such a topology has
the family {Wa : a ∈ A} where Wa = {P ∈ SpecA : a ∈ P} as a basis. In particular,
W0 = SpecA, W1 = ∅ and Wa ∩Wb = Wa⊕b.

2.5 Mundici’s Functor

There is an interesting categorical equivalence between the category of MV-algebras MV,
and the category of Abelian `-groups with strong unit LAGu, known as Mundici’s functor.
Let us see some preliminary definitions:

Definition 2.5.1. A partially ordered abelian group is an abelian group (G,+,−,0) endowed
with a partial order relation ≤ that is compatible with addition; i. e., ≤ satisfies for all
x, y, t ∈ G:

if x ≤ y then t+ x ≤ t+ y.

When the order relation is total, G is said to be a totally ordered abelian group, or o-group
for short. When the order of G defines a lattice structure, G is called a lattice-ordered abelian
group, or `-group, for short. In any `-group we have

t+ (x ∨ y) = (t+ x) ∨ (t+ y) and t+ (x ∧ y) = (t+ x) ∧ (t+ y)

The positive cone G+ of G is the set of all x ∈ G such that 0 ≤ x. If ≤ is a total order,
G = G+ ∪ −G+. For each element x of an `-group G, the positive part x+ is defined by
x+ := 0 ∨ x, the negative part x− by x− := 0 ∨ −x, and the absolute value of x is defined
as |x| := x+ + x− = x ∨ −x.

A strong (order) unit u of G is an archimedean element of G, i.e., an element 0 ≤ u ∈ G
such that for each x ∈ G there is an integer n ≥ 0 with |x| ≤ nu.

Let G and H be `-groups. A function h : G −→ H is said to be an `-group homomorphism
iff h is both a group and a lattice homomorphism; in other words, for each x, y ∈ G,
h(x − y) = h(x) − h(y), h(x ∨ y) = h(x) ∨ h(y) and h(x ∧ y) = h(x) ∧ h(y). Suppose
that 0 ≤ u ∈ G and 0 ≤ v ∈ H are strong unities of G and H, respectively, and let
h : G −→ H be an `-group homomorphism such that h(u) = v. Then h is said to be a unital
`-homomorphism.

For each `-group G, we can construct an associated MV-algebra as follows. Given u ∈ G,
u ≥ 0 (no necessarily being a strong unit of G) we have the interval

[0, u] = {x ∈ G : 0 ≤ x ≤ u} (2.7)

and define two operations on it. For each x, y ∈ [0, u],

x⊕ y := u ∧ (x+ y) and x∗ := u− x.

We denote by Γ (G, u) the structure ([0, u],⊕,∗ ,0) and we have the following results:
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Proposition 2.5.2. [8]

(1) Γ (G, u) is an MV-algebra.
(2) Let G be an `-group with strong unit u. Let A = Γ (G, u).

(i) For all a, b ∈ A, a+ b = (a⊕ b) + (a� b);
(ii) For all x1, . . . xn ∈ A, x1 ⊕ · · · ⊕ xn = u ∧ (x1 + · · ·+ xn);

(iii) The natural order of the MV-algebra A coincides with the order of [0, u] inherited
from G by restriction.

Let Γ (h) := h � [0, u] be the restriction of h with domain [0, u] and codomain [0, v]. Then
Γ (h) is an MV-algebra homomorphism from Γ (G, u) into Γ (H, v).

Let LAGu denote the category whose objects are pairs (G, u) with G an `-group and
u a distinguished strong unit of G, and whose morphisms are unital `-homomorphisms.
Then Γ is a functor from LAGu into the category MV of MV-algebras. Actually, Γ is a
categorical equivalence (i.e., a full, faithful, dense functor) between LAGu and MV (For
more, see [8, 35]).

2.6 Semisimple Algebras and Belluce-Chang Representation

In this section we recall a well-known representation theorem for semisimple MV-algebras.
Before that, let us see some definitions and results.

Definition 2.6.1. An MV-algebra A is called simple if its only proper ideal is {0}. A is
called semisimple if it is a subdirect product of simple MV-algebras.

We have that an MV-algebra A is simple if and only if it is isomorphic to a subalgebra of
[0, 1], and that A is semisimple if and only if RadA = {0}. Archimedean MV-algebras are
MV-algebras without infinitesimals. Hence, the semisimple and Archimedean MV-algebras
coincide (see [8, 13]).

We have the following representation theorem for semisimple algebras.

Theorem 2.6.2. [3, 5, 6] For any set X, the MV-algebra [0, 1]X and all of its subalgebras
are semisimple. Moreover, up to isomorphisms, all the semisimple MV-algebras are of this
type. More precisely, every semisimple MV-algebra can be embedded in the MV-algebra of
fuzzy subsets1 [0, 1]MaxA of the maximal spectrum of A.

The following is a sketch of the proof:
For any maximal ideal M the quotient algebra A/M is a simple MV-algebra and, therefore,

an Archimedean MV-chain. Then A/M is isomorphic to a subalgebra of [0, 1] and we have
this situation:

• for each M ∈ MaxA, there is the natural projection πM : A −→ A/M ;
• for each M ∈ MaxA, there exists a unique embedding ιM : A/M −→ [0, 1];
• the embedding ι : A −→ [0, 1]MaxA associates, to each a ∈ A, the fuzzy subset â of MaxA

defined by â(M) = ιM (πM (a)) = ιM (a/M) for all M ∈ MaxA.

The above construction is possible for any MV-algebra A with the only difference that
the homomorphism ι is not injective if A is not semisimple for the simple reason that ker ι
always coincides with RadA.

1The term fuzzy subset will be explained in Chapter 3.
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2.7 Local MV-algebras

The theory of local MV-algebras play an important role in the sheaf representation of a
particular class of MV-algebras that we will present in Chapter 6. In the following, we give
some definitions and results about local MV-algebras.

Definition 2.7.1. An MV-algebra A is called local if it has only one maximal ideal.

In particular, it follows that, if A is local, then RadA is the only maximal ideal of A. The
following result is a characterisation of local MV-algebras:

Proposition 2.7.2. For any MV-algebra A, the following are equivalent:

(i) For any a ∈ A, ord(a) <∞ or ord(a∗) <∞
(ii) for any a, b ∈ A, a� b = 0 implies an = 0 or bn = 0 for some n < ω;

(iii) for any a, b ∈ A, ord(a⊕ b) <∞ implies ord(a) <∞ or ord(b) <∞;
(iv) A has only one maximal ideal.

The following propositions show some relations between local MV-algebras and primary
ideals:

Proposition 2.7.3. For an MV-algebra A and a proper ideal P ⊆ A, the following are
equivalent:

(i) P is a primary ideal,
(ii) A/P is a local MV-algebra,

(iii) a� b ∈ P implies an ∈ P or bn ∈ P for some n < ω,
(iv) for any a ∈ A there exists some n < ω such that an ∈ P or (a∗)n ∈ P .

Proposition 2.7.4. For an MV-algebra A, the following are equivalent:

(i) A is local,
(ii) any proper ideal of A is primary,

(iii) {0} is a primary ideal,
(iv) RadA contains a primary ideal.

Corollary 2.7.5. The homomorphic image of a local MV-algebra is local.

A type of local MV-algebra is perfect MV-algebras.

Definition 2.7.6. An MV-algebra A is called perfect if for any a ∈ A, ord(a) = ∞ iff
ord(a∗) <∞.

Also, we have the following characterization [13].

Proposition 2.7.7. Let A be an MV-algebra. The following are equivalent:

(i) A is perfect,
(ii) A = 〈RadA〉 = RadA ∪ (RadA)∗,

(iii) A/RadA '  L2.

In the following, we display how to construct a perfect MV-algebra from an Abelian
group [13].
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Remark 2.7.8. Let Z be the Abelian `-group of integers and G an Abelian `-group. Note
that (1, 0) is a strong unit of the lexicographic product Z×lex G and let

[(0, 0), (1, 0)] = {(0, g) : g ∈ G, g ≥ 0} ∪ {(1, g) : g ∈ G, g ≤ 0}.

Set ∆(G) = [(0, 0), (1, 0)]Z×lexG the interval MV-algebra described in (2.7), then

(0, g)∗ = (1,−g) for any g ≥ 0 and (1, g)∗ = (0,−g) for any g ≤ 0.

We have that ∆(G) is a perfect MV-algebra because ord((0, g)) = ∞ for every g ≥ 0 and
ord((1, g)) = 2 for every g ≤ 0. Besides,

Rad(∆(G)) = {(0, g) : g ∈ G, g ≥ 0}.

Now, denote by PERF the full subcategory ofMV whose objects are perfect MV-algebras
and morphisms are MV-algebra homomorphisms. Denote by LAG the category whose objects
are Abelian `-groups and whose morphisms are `-group homomorphism. Let us consider the
functor

∆ : LAG −→ PERF

defined as follows.
For an Abelian `-group G, ∆(G) is the perfect MV-algebra from Remark 2.7.8; if h :

G −→ H is an `-group homomorphism, ∆(h) : (k, g) ∈ ∆(G) 7−→ (k, h(g)) ∈ ∆(H).
For any perfect MV-algebra A there exists an Abelian `-group G such that A and ∆(G)

are isomorphic MV-algebras. Moreover, ∆ is a categorical equivalence whose inverse functor
is D : PERF −→ LAG, defined as follow.

Let A be a perfect MV-algebra. We know, by Corollary 2.3.10, that (RadA,⊕,0) is a
lattice ordered cancellative monoid. We construct the generated group from RadA in the
canonical way. So, let

D(A) := Rad(A)×Rad(A)/ ∼

where ∼ is the equivalence relation given by

(a, b) ∼ (c, d) iff a+ d = b+ c.

If [a, b] and [c, d] are elements of D(A), the group operations on D(A) are given by:

[a, b] + [c, d] = [a+ c, b+ d] and − [a, b] = [b, a].

RadA can be identified with the set {[a,0] : a ∈ RadA}. The order of D(A) is defined by

[a, b] ≤ [c, d] iff [c, d]− [a, b] ∈ RadA and − [a, b] + [c, d] ∈ RadA.

Hence (D(A),+, [0, 0],≤) is an Abelian `-group and RadA is isomorphic with the positive
cone of D(A), D(A)+.

If A and B are perfect MV-algebras and f : A −→ B is an MV-algebra homomorphism,
we have the `-group homomorphism

D(f) : [a, b] ∈ D(A) 7−→ [f(a), f(b)] ∈ D(B).

Lemma 2.7.9. [13]

1) If A is a perfect MV-algebra, then A and ∆(D(A)) are isomorphic MV-algebras.
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2) If G is an Abelian `-group, then G and D(∆(G)) are isomorphic `-groups.

Theorem 2.7.10. [13] The functors ∆ and D establish a categorical equivalence between
the category PERF of perfect MV-algebras and the category LAG of Abelian `-groups.

Proof. It is a direct consequence of the Lemma 2.7.9. ut

The equivalence above is due to Di Nola and Lettieri [11]. In particular, the functor
∆ : LAG −→ PERF is usually referred to as Di Nola–Lettieri functor .

2.8 Lexicographic MV-algebras

Lexicographic MV-algebras were introduced by Diaconescu, Flaminio, and Leustean [10].
They proved that lexicographic MV-algebras are the counterpart of unital Abelian
lattice-ordered groups defined via lexicographic products. Besides, they extended Di
Nola–Lettieri equivalence to lexicographic MV-algebras.

First, we recall that an ideal I of an MV-algebra A is retractive if the canonical projection
πI : A −→ A/I is retractive, i.e., there is a morphism δI : A/I −→ A such that πI ◦ δI =
idA/I . If an ideal I of A is retractive, then A/I is isomorphic with a subalgebra of A.

Di Nola and Lettieri also obtained the following representation in terms of lexicographic
products for local MV-algebras with retractive radical.

Theorem 2.8.1. [10] If A is an MV-algebra the following are equivalent:

1) A is a local MV-algebra with retractive radical,
2) there exists an `u-subgroup (R′, 1) of (R, 1) and an `-group G such that

A ' Γ (R′ ×lex G, (1, 0)).

The following definitions and results can be found in [10].
An ideal I of an MV-algebra A is called strict if

a

I
=
b

I
implies a < b for any a, b ∈ A.

Proposition 2.8.2. In any local MV-algebra A, RadA is strict.

An ideal I of an MV-algebra A is called lexicographic if the following hold:

l1) I 6= {0},
l2) I is strict
l3) I is retractive,
l4) I is prime,
l5) ρ ≤ x ≤ ρ∗, for any ρ ∈ I and any x ∈ A \ 〈I〉.

The set of all lexicographic ideals of A is denoted by Lex Id(A).

Definition 2.8.3. An MV-algebra A is called lexicographic if Lex Id(A) 6= ∅.

Theorem 2.8.4. The following are equivalent:

1) A is a lexicographic MV-algebra,
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2) there exists an ou-group (H,u) and a non-trivial `-group G such that

A ' Γ (H ×lex G, (u, 0)).

Moreover A/I ' Γ (H,u) and 〈I〉 ' ∆(G).

This theorem says that the class of lexicographic MV-algebras is the widest class of
MV-algebras that can be represented via the Mundici’s functor, Γ , as lexicographic products
between ou-groups and non-trivial `-groups, with strong unit of the form (u, 0).

Corollary 2.8.5. If A is a lexicographic MV-algebra the following are equivalent:

(1) RadA ∈ Lex Id(A),
(2) there exists an `u-subgroup (R′, 1) of (R, 1) and a non-trivial `-group G such that

A ' Γ (R′ ×lex G, (1, 0)).

Moreover, if the above equivalent conditions are satisfied the `u-subgroup (R′, 1) of (R, 1)
and the `-group G are uniquely determined, up to isomorphism.

In [10], the authors also showed the following results which give an interesting classification
of some classes of MV-algebras:

Theorem 2.8.6.
The class of lexicographic MV-algebras is strictly included in the class of local MV-algebras.

Theorem 2.8.7.
The class of local MV-algebras with retractive radical is strictly included in the class of
lexicographic MV-algebras.

Proof. By Corollary 2.8.5 and Proposition 2.8.1. An example that the inclusion is strict can
be found in the proof of [10, Theorem 4.7]. ut

Therefore we have the following inclusions of classes of MV-algebras:

Perfect ⊂ Local with retractive radical ⊂ Lexicographic ⊂ Local.

2.9 Filipoiu–Georgescu sheaf representation

In this section, we recall the sheaf representation for MV-algebras obtained by Filipoiu and
Georgescu in [18]. This representation is a particular case of the representation of subdirect
products by sheaf spaces for universal algebras which can be found, for example, in [9]. All
the results presented here are widely considered in [18].

Let A be an MV-algebra. By proposition 2.3.19 we have that
⋂
{OM : M ∈ MaxA} = {0},

so it is possible to represent A as a subdirect product of the family {A/OM : M ∈ MaxA}.
Since for each M ∈ MaxA, OM is a primary ideal (by Proposition 2.3.18), we have that the
corresponding quotient A/OM is a local MV-algebra.

Using methods of [9], the authors Filipoiu and Georgescu define a sheaf space of
MV-algebras (EA, π,MaxA) where

EA = {( a

OM
,M) : a ∈ A,M ∈ MaxA},
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π : EA −→ MaxA is the natural projection and MaxA is endowed with Zariski topology.
They showed that the sheaf space (EA, π,MaxA) of MV-algebras is such that for each
M ∈ MaxA the stalk EM is isomorphic to the quotient A/OM .

For each a ∈ A, the associated global section will be

ã :MaxA−→ EA
M 7−→ ( a

OM
,M)

Moreover, the following hold:

• The family {ã(U) : a ∈ A,U is open in MaxA} provides a basis for the topology on EA.
• We recall that the set of global sections2 is denoted by Γ (MaxA,EA) and it is:

Γ (MaxA,EA) = {σ : MaxA −→ EA | σ is continuous and π ◦ σ = idMaxA}.

• The map a ∈ A 7−→ ã ∈ Γ (MaxA,EA) is a monomorphism of MV-algebras.
• For each σ ∈ Γ (MaxA,EA) there is an element a ∈ A such that σ = ã.

So, from the previous facts we have the following theorem

Theorem 2.9.1. Every MV-algebra A is isomorphic to the MV-algebra of all global sections
of a sheaf with local MV-algebras as stalks and MaxA as base space.

2.10 Riesz MV-algebras

In this section, we recall the definition of Riesz MV-algebras along with some properties of
such algebras which can be consulted in [14] and [15]. Riesz MV-algebras are MV-algebras
endowed with a scalar multiplication with scalars from the interval [0, i1]. Extending
Mundici’s categorical equivalence, it is possible to prove that the category of Riesz
MV-algebras with MV-algebra homomorphisms is equivalent to the one of Riesz spaces
with strong unit with unit preserving Riesz homomorphisms.

Definition 2.10.1. A Riesz MV-algebra is a structure (R, ·,⊕,∗ ,0) where (R,⊕,∗ ,0) is an
MV-algebra and the operation · : [0, 1] × R → R satisfies the following identities for any
x, y ∈ R and r, q ∈ [0, 1]:

(RMV1) r · (x� y∗) = (r · x)� (r · y)∗,
(RMV2) (r � q∗) · x = (r · x)� (q · x)∗,
(RMV3) r · (q · x) = (rq) · x,
(RMV4) 1 · x = x.

In [15, Theorem 2], the authors proved the following equivalence of the Definition 4.6.1:

Theorem 2.10.2. Let (R,⊕,∗ ,0) be an MV-algebra and · : [0, 1] × R → R be an extern
operation. Then (R, ·,⊕,∗ ,0) is a Riesz MV-algebra if and only if the following properties
are satisfied for any a, b ∈ R and r, q ∈ [0, 1]:

RMV1’) r · a� r · b = 0 and r(a⊕ b) = (r · a)⊕ (r · b) whenever a� b = 0,

2We use the usual classical notation Γ , for the set of global sections. However, we warn the
reader to pay attention in order to avoid confusion with Mundici’s functor, which is also denoted
by Γ .
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RMV2’) r · a� q · a = 0 and (r ⊕ q) · a = (r · a)⊕ (q · a) whenever r � q = 0,
RMV3) (r · q) · a = r · (q · a),
RMV4) 1 · a = a.

We write rx instead of r · x for r ∈ [0, 1] and x ∈ R. Note that rq is the real product for
any r, q ∈ [0, 1].

Example 2.10.3. The following sets are examples of Riesz MV-algebras:

(1) The MV-algebra interval [0, 1] with the scalar multiplication being the usual
multiplication of real numbers.

(2) Given the MV-algebra interval [0, 1], let

C(X) = {f : X −→ [0, 1] | f is continuous}

with all the operations defined componentwise, where X is a compact Hausdorff space
and the scalar multiplication is the natural.

(3) Let R = Γ (R×lexG, (1, 0)) where G is an Abelian `-group, R×lexG is the lexicographic
product of `-groups and the scalar multiplication is defined by r(q, x) = (rq, x) for any
r ∈ [0, 1] and (q, x) ∈ R.

Lemma 2.10.4. In any Riesz MV-algebra R, the following properties hold for any r, q ∈
[0, 1] and x, y ∈ R:

(a) 0x = 0, r0 = 0,
(b) x ≤ y implies rx ≤ ry,
(c) r ≤ q implies rx ≤ qx,
(d) rx ≤ x.

Let (R, ·,⊕,∗ ,0) be a Riesz MV-algebra. We denote by U(R) = (R,⊕,∗ ,0) its MV-algebra
reduct. If I is an ideal of U(R) then, by Lemma 2.10.4 we have that rx ∈ I whenever
r ∈ [0, 1]. Actually, the relation ≡I is a congruence in R and so the quotient R/I has
a canonical structure of Riesz MV-algebra. In fact, a Riesz MV-algebra R has the same
theory of ideals (congruences) as its reduct U(R).
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Fuzzy Topologies

The concept of fuzzy topology was introduced a few years after Zadeh’s famous paper on fuzzy
sets [50]. It was in 1968 that C. L. Chang [7], introduced the notion of fuzzy topological space
and made an attempt to develop basic topological notions for such spaces. The study of fuzzy
topology has been pursued for many years (see, for instance, [21–23,29,34,40,41,45,46]). In
defining a fuzzy topological space on a set X a fundamental role is played by the structure
used to represent the “fuzzy powerset” of X, i.e., the fuzzy version of the Boolean algebra 2X .
According to the original definition of fuzzy set, one may find natural to consider [0, 1]X as
the fuzzy powerset of X. Most of the authors in this area approached fuzzy topology using
either arbitrary lattice-valued fuzzy subsets or [0, 1]X with its natural lattice structure.
However, fuzzy topological spaces using [0, 1]X equipped with a richer algebraic structure
(e. g., continuous or left-continuous t-norms [20]) have been considered in the literature.

3.1 Fuzzy sets

In the following we present some basic definitions which can be found in [36,37,44,48].

Definition 3.1.1. Let X be a set. A fuzzy (sub)set of X is a map α : X −→ [0, 1]. In this
setting α(x) is interpreted as the degree of membership of a point x ∈ X in a fuzzy set
α, while an ordinary(or crisp) subset A ⊆ X is identified with its characteristic function
χA : X −→ 2.

Operations on fuzzy sets
Let Γ = {αi : i ∈ I} be a family of fuzzy sets in X. By the union and intersection

of this family we mean respectively its supremum
∨
Γ :=

∨
{αi : i ∈ I} and infimum∧

Γ :=
∧
{αi : i ∈ I}. The complement of α, denoted by α∗, is defined by α∗(x) = 1−α(x).

3.2 Types of Fuzzy Topological Spaces

The first definition of fuzzy topology was given by Chang [7] and he gave the following
definition:

Definition 3.2.1. [7] Let τ ⊆ [0, 1]X . The pair (X, τ) is called a fuzzy topological space or
fts, for short, iff:
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(τ1) 0,1 ∈ τ , where 0 and 1 are the constant functions, namely, 0(x) = 0 and 1(x) = 1 for
all x ∈ X.

(τ2) α ∧ β ∈ τ whenever α, β ∈ τ ; and
(τ3)

∨
i∈I αi ∈ τ for any family {αi}i∈I of elements of τ .

Every member of τ is called a τ -open fuzzy set (or simply open fuzzy set). The complement
of a τ -open fuzzy set is called a τ -closed fuzzy set (or simply closed fuzzy set).

In 1976 Lowen gave a definition of fuzzy topological space which includes Chang’s
conditions and adds all the constant functions to the family of open fuzzy sets [29].

Definition 3.2.2. [29] The pair (X, τ) is called a laminated fuzzy topological space iff:

(τ1) For all a ∈ [0, 1], the a-valued constant function a is an element of τ ;
(τ2) α ∧ β ∈ τ whenever α, β ∈ τ ; and
(τ3)

∨
i∈I αi ∈ τ for any family {αi}i∈I of elements of τ .

Given a fuzzy topological space (X, τ) (or a laminated fts), the set τ is also called a fuzzy
topology on X and the elements of τ are the open subsets of X. The set τ∗ = {α∗ | α ∈ τ}
verifies the following properties:

− 0,1 ∈ τ∗,
− for any family {ci}i∈I of elements of τ∗,

∧
i∈I ci ∈ τ∗,

− for all β1, β2 ∈ τ∗, β1 ∨ β2 ∈ τ∗.

The elements of τ∗ are called the closed subsets of X.

3.3 Base and Continuous Function

The concepts defined in this section hold both for fuzzy topological spaces than laminated
spaces. However, we will only refer to fts. First, let us see the definitions of image and inverse
image of fuzzy sets. Let X and Y be sets.

Any function f : X −→ Y naturally defines a map

f

 

: [0, 1]Y −→ [0, 1]X

α 7−→ α ◦ f. (3.1)

This map f

 

is called the preimage, via f , of the fuzzy subsets of Y . Moreover, for any
map f : X −→ Y we define also a map f→ : [0, 1]X −→ [0, 1]Y by setting, for all α ∈ [0, 1]X

and for all y ∈ Y ,

f→(α)(y) =
∨

f(x)=y

α(x). (3.2)

Clearly, if y /∈ f [X], f→(α)(y) =
∨
∅ = 0 for any α ∈ [0, 1]X . The map f→ is called the

image, via f , of the fuzzy subsets of X.

Definition 3.3.1. [7] Let (X, τX) and (Y, τY ) be two fuzzy topological spaces. A map
f : X −→ Y is said to be

• continuous if f

 

[τY ] ⊆ τX ,
• open if f→(α) ∈ τY for all α ∈ τX ,
• closed if f→(β) ∈ τ∗Y for all β ∈ τ∗X
• an homeomorphism if it is bijective and both f and f−1 are continuous.
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We use the same words of the classical case because it is trivial to verify that classical
topological spaces are fuzzy topological spaces in the sense of Chang and a map between
two classical topological spaces is continuous, open, or closed in the sense of the definition
above if and only if it has the same property in the classical sense.

It is easily seen that with the definition 3.2.1, constant functions between fuzzy topological
spaces are not necessarily continuous, while constant maps of laminated spaces are
continuous.

Definition 3.3.2. Given a fuzzy topological space (X, τ), a subset B of τ is called

(i) a base for τ if every open set of τ is a join of elements of B;
(ii) a subbase for τ if the collection of infimum of finite subfamilies of B forms a base for

(X, τ).

Fuzzy topological spaces, with continuous maps, form a category which we denote by Fuz.
In addition, the category of laminated fuzzy topological spaces and their continuous maps
(where Lowen continuity is understood precisely as in 3.3.1) is denoted by LFuz.

3.4 Some relevant functors between fuzzy and classical topologies

In [29], Lowen defined the functors ι : Fuz −→ Top and ω : Top −→ LFuz as follows.

1. ι(X, τ) = (X, ι(τ)) where ι(τ) is the initial topology on X determined by τ and the
lower limit topology on [0, 1], that is, ι(τ) is the topology generated by the subbase

B = {µ−1[(r, 1]] : µ ∈ τ, r ∈ [0, 1)} = {{x ∈ X : µ(x) > r}}µ∈τ,r∈[0,1).

It is easy to verify that if a map f : (X, τX) −→ (Y, τY ) is continuous, then the map
f : (X, ι(τX)) −→ (Y, ι(τY )) is continuous.

2. ω(X, τ) = (X,ω(τ)), with

ω(τ) =
⋃

r∈[0,1)

C(X, Ir) =
⋃

r∈[0,1)

{f : X −→ Ir | f is continuous},

where Ir = (r, 1]. Note that ω(τ) is the set of all lower semicontinuous functions1 from
(X, τ) to the interval [0, 1] equipped with the usual topology. It can be verified that
the continuity of a map f : (X, τX) −→ (Y, τY ) implies the continuity of the map
f : (X,ω(τX)) −→ (Y, ω(τY )). Thus, ω is a functor.

A fuzzy space (X, δ) whose fuzzy topology is of the form δ = ω(τ) for an ordinary topology
τ on X is called topologically generated [29] or induced .

It is possible to define two further functors, e : Top −→ Fuz and j : Fuz −→ Top [33],
which are useful in the development of Fuzzy Topology, in the following way.

3. e(X, τ) = (X, e(τ)), where
e(τ) = {χU : U ∈ τ}.

Since the continuity of a map f : (X, τX) −→ (Y, τY ) guarantees the continuity of the
map f : (X, e(τX)) −→ (Y, e(τY )), e is a functor.

1Recall that, given a topological space (X, τ), a function f : X −→ R is lower-semicontinuous
(l.s.c) if, for all t ∈ R, the set {x ∈ X : f(x) > t} is an open set.
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4. j(X, τ) = (X, j(τ)), where
j(τ) = τ ∩ 2X .

Again, the continuity of a map f : (X, τX) −→ (Y, τY ) guarantees the continuity of
f : (X, j(τX)) −→ (Y, j(τY )), thus j is a functor.

Note that j(τ) is the greatest topology contained in τ .

Definition 3.4.1. [33] A fuzzy space (X, τ) is said to be weakly induced if for each t ∈ [0, 1)
and for each α ∈ τ , the characteristic function of αt := {x ∈ X : α(x) > t} belongs to τ .

Note that a fuzzy space (X, τ) is weakly induced if and only if ι(τ) = j(τ), and it is
topologically generated if and only if is both laminated and weakly induced.

In the following, we present some useful properties of these functors (see [29] and [4]).

Proposition 3.4.2. (i) For all (X, τ) in Top, ι(ω(τ)) = τ.
(ii) ι is a surjection, ω is an injection and for each τ1 ⊆ τ2, ι(τ1) ⊆ ι(τ2) and ω(τ1) ⊆ ω(τ2)

(where τ1, τ2 are topologies or fuzzy topologies, as appropriate).
(iii) ω(ι(τ)) is the smallest topologically generated fuzzy topology which contains τ .
(iv) δ is topologically generated iff ω(ι(δ)) = δ.
(v) ιω = ιe = idTop.

(vi) (X, τ) ∈ e(Top) iff e(ι(τ)) = τ iff idX ∈ HomFuz(e(ι(X)), X).
(vii) (X, τ) ∈ ω(Top) iff ω(ι(τ)) = τ iff idX ∈ HomFuz(X,ω(ι(X))).

(viii) For all (X, τ) in Fuz, idX ∈ HomFuz(ω(ι(X)), X).
(ix) For all X ∈ Fuz and for all Y ∈ Top, HomTop(ι(X), Y ) = HomFuz(X, e(Y )).

Theorem 3.4.3. [29] (X, δ) is topologically generated if and only if for each continuous
function f ∈ C(Ir, Ir) and for each α ∈ δ, we have that f ◦ α ∈ δ.

Proof. (⇒) If (X, δ) is topologically generated, then δ = ω(τ) for some (X, τ) in Top. That
is, δ =

⋃
r∈[0,1){f : X −→ (r, 1] | f is continuous}, so the conclusion holds.

(⇐) We will use the item (iv) of the previous proposition. Suppose that α ∈ ω(ι(δ)). Since
a base for ι(δ) is provided by the finite intersections

n⋂
i=1

β−1i [(εi, 1]], where βi ∈ δ, εi ∈ [0, 1);

this is equivalent to saying

∀ε, ∀x ∈ α−1([ε, 1]],∃Iε,x finite such that

x ∈
⋂
i∈Iε,x

β−1i [(ε1, 1]] ⊆ α−1([ε, 1]].

Now fix x and let α(x) = kx ∈ [0, 1], then ∀ε < kx,∃Iε finite such that

x ∈
⋂
i∈Iε

α−1i β−1i [(ε1, 1]] ⊆ α−1([ε, 1]].

Then ∀ε < kx and ∀i ∈ Iε put

αi,ε = εχ(εi,1] ◦ βi;
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then αi,ε ∈ δ and clearly

αi,ε(y) =

{
ε if βi(y) > εi
0 if βi(y) ≤ εi

Put βxε =
∧
i∈Iε αi,ε ∈ δ then clearly too

βxε (y) =

{
ε if βi(y) > εi,∀i ∈ Iε
0 if ∃j ∈ Iε, βi(y) ≤ εi

Thus βxε (y) = ε implies α(y) > ε, becuase, βxε (y) = ε implies βi(y) > εi,∀i ∈ Iε, i. e.,
y ∈ β−1i [(εi, 1]],∀i ∈ Iε, so y ∈

⋂
i∈Iε β

−1
i [(εi, 1]] ⊆ α−1([ε, 1]]; wherewith ∀ε < kx, β

x
ε ≤

α.
Now, it is easily seen that

α =
∨
x∈X

∨
ε<kx

βxε ∈ δ.

Then ω(ι(δ)) ⊆ δ and therefore ω(ι(δ)) = δ.
ut
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MV-Topologies

An MV-topology is a type of fuzzy topology which is a natural generalisation of classical
topology with the use of MV-algebras. This concept was introduced by Ciro Russo in [42] in
order to show an extension of Stone Duality between Boolean algebras and Stone spaces to,
respectively, the category of limit cut complete MV-algebras, namely, the full subcategory
of MV whose objects are MV-algebras which contain the suprema of certain cuts, and a
suitable category of MV-topologies, whose objects are the natural MV-version of Stone (or
Boolean) spaces, called Stone MV-spaces.

In this chapter, we collect the basic definitions and results of the MV-topologies pioneering
paper [42]. Besides, we develop some additional theory. For example, we define closure and
interior operators, quotient space and product space, among others. We also study the role
of MV-topologies among fuzzy topologies. In particular, we have that each MV-space is a
weakly induced fuzzy space, and we study the functors defined in Section 3.4, when they are
restricted to the category of MV-topological spaces, MVTop. Another interesting result that
we introduce here is that for each laminated MV-space (X, τ), the corresponding MV-algebra
of clopen, is a Riesz MV-algebra.

4.1 Basic Concepts and Results

Most of the definitions and results of this section can be found in [42].

Definition 4.1.1. Let X be a set, A the MV-algebra [0, 1]X and τ ⊆ A. We say that (X, τ)
is an MV-topological space if τ is a subuniverse both of the quantale 〈[0, 1]X ,

∨
,⊕〉 and of

the semiring 〈[0, 1]X ,∧,�,1〉. More explicitly, (X, τ) is an MV-topological space if

(i) 0,1 ∈ τ ,
(ii) for any family {αi}i∈I of elements of τ ,

∨
i∈I αi ∈ τ ,

and, for all α1, α2 ∈ τ ,

(iii) α1 � α2 ∈ τ ,
(iv) α1 ⊕ α2 ∈ τ ,
(v) α1 ∧ α2 ∈ τ .

The set τ is also called an MV-topology on X and the elements of τ are the open MV-subsets
of X. The set τ∗ = {α∗ | α ∈ τ} is easily seen to be a subquantale of 〈[0, 1]X ,

∧
,�〉 (where∧

has to be considered as the join w.r.t. to the dual order ≥ on [0, 1]X) and a subsemiring
of 〈[0, 1]X ,∨,⊕,0〉, i.e., it verifies the following properties:
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− 0,1 ∈ τ∗,
− for any family {βi}i∈I of elements of τ∗,

∧
i∈I βi ∈ τ∗,

− for all β1, β2 ∈ τ∗, β1 � β2, β1 ⊕ β2, β1 ∨ β2 ∈ τ∗.

The elements of τ∗ are called the closed MV-subsets of X.

We will usually call an MV-topological space by an MV-space.

Proposition 4.1.2. Let (X, τ) be an MV-topological space. For any subset Y of X, the pair
(Y, τY ), where τY := {α�Y | α ∈ τ}, is an MV-topology on Y .

Proof. Trivial. ut

Definition 4.1.3. For any subset Y of X, the pair (Y, τY ) is called an MV-subspace of
(X, τ).

Example 4.1.4. (a) (X, {0,1}) and (X, [0, 1]X) are MV-topological spaces.
(b) Any topology is an MV-topology.
(c) Let d : X −→ [0,+∞[ be a distance function on X. For any fuzzy point xt of X, and

any positive real number r, we define the open ball of center xt and radius r as the

fuzzy set βr(xt) identified by the membership function βr(xt)(y) =

{
t if d(x, y) < r
0 if d(x, y) ≥ r .

Analogously, the closed ball βr[xt] of center xt and radius r has membership function

βr[xt](y) =

{
t if d(x, y) ≤ r
0 if d(x, y) > r

. It is immediate to verify that the fuzzy subsets of X that

are join of a family of open balls is an MV-topology on X that is said to be induced by
d. This example can be found also in [29].

Definition 4.1.5. If (X, τ) is an MV-topology, then (X,B(τ)), where B(τ) := τ ∩{0, 1}X =
τ ∩B([0, 1]X), is both an MV-topology and a topology in the classical sense. The topological
space (X,B(τ)) will be called the skeleton space of (X, τ).

Note that B(τ) = j(τ) where j is the functor defined in the Section 3.4, restricted to the
category of the MV-topological spaces.

The skeleton space of a given MV-topological one can be equivalently defined by

B(τ) = {∆ ◦ α | α ∈ τ},

where ∆ is the so-called Baaz delta operator [2], i.e.,

∆ : x ∈ [0, 1] 7→
{

1 if x = 1
0 if x < 1

∈ {0, 1}.

This operator, besides being a monotonic map, is a monoid homomorphism between
〈[0, 1],�, 1〉 and 〈{0, 1},∧, 1〉. Therefore the equivalence of the two definitions follows from
the fact that MV-topologies are closed under � while classical ones are closed under ∧.

4.2 Bases, Subbases, Continuous function, etc.

The following definitions extend the given definitions in 3.3, but they have their own
peculiarities and some important consequences for our work.
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Definition 4.2.1. Given an MV-topological space (X, τ), a subset B of [0, 1]X is called a
base for τ if B ⊆ τ and every open set of τ is a join of elements of B.

Definition 4.2.2. Given an MV-topological space (X, τ), a subset S of τ is called a subbase
for (X, τ) if each open set of X can be obtained as a join of finite combinations of products,
infima, and sums of elements of S. More precisely, S is a subbase for τ if, for all α ∈ τ , there
exists a family {ti}i∈I of terms (or polynomials) in the language {⊕,�,∧}, such that

α =
∨
i∈I

ti(βi1, . . . , βini) (4.1)

where, for all i ∈ I, ni < ω, and {βij}nij=1 ⊆ S.

Remark 4.2.3. If S is a subbase for an MV-topology, the set BS defined by the following
conditions is obviously a base for the same MV-topology:

(B1) S ⊆ BS ;
(B2) if α, β ∈ BS then α ? β ∈ BS for ? ∈ {⊕,�,∧}.

A subbase S of an MV-topology τ shall be called large if, for all α ∈ S, nα ∈ S for all
n < ω.

Example 4.2.4. Let us consider the MV-topology [0, 1] on a singleton {x}. For any n > 1,
all the sets of type [0, 1/n], [0, 1/n] ∩ Q, and [0, 1/n] \ Q are easily seen to be (non-large)
subbases for the given MV-topology. Also [0, 1] \Q is a non-large subbase — it is a base, in
fact.

Example 4.2.5. It is easy to see that in the example 4.1.4 (c), the set of open balls whose
center is a fuzzy point whose non-zero membership value is greater than or equal to some
fixed a < 1 is a large subbase for the topology induced by d. On the contrary, the set of
open balls whose center is a fuzzy point whose non-zero membership value is lower than or
equal to some fixed a > 0 is a non-large subbase.

Let X and Y be sets. For a function f : X −→ Y we defined the function f

 

in (3.1) as:

f

 

: [0, 1]Y −→ [0, 1]X

α 7−→ α ◦ f. (4.2)

Seeing the sets [0, 1]Y and [0, 1]X as MV-algebras, we have that f

 

(0) = 0; moreover, if
α, β ∈ [0, 1]Y , for all x ∈ X we have f

 

(α⊕ β)(x) = (α⊕ β)(f(x)) = α(f(x))⊕ β(f(x)) =
f

 

(α)(x) ⊕ f

 

(β)(x) and, analogously, f

 

(α∗) = f

 

(α)∗. Then f

 

is an MV-algebra
homomorphism and we shall call it the MV-preimage of f .

From a categorical viewpoint, once denoted by Set, Boole andMV the categories of sets,
Boolean algebras, and MV-algebras respectively (with the obvious morphisms), there exist
two contravariant functors P : Set −→ Booleop and F : Set −→MVop sending each map
f : X −→ Y , respectively, to the Boolean algebra homomorphism f−1 : P(Y ) −→ P(X)
and to the MV-homomorphism f

 

: [0, 1]Y −→ [0, 1]X .
The following definition is also analogous of the given in 3.3.1.

Definition 4.2.6. Let (X, τX) and (Y, τY ) be two MV-topological spaces. We say that a
map f : X −→ Y is:



42 4 MV-Topologies

• MV-continuous or continuous if f

 

[τY ] ⊆ τX ,
• open if f→(α) ∈ τY for all α ∈ τX ,
• closed if f→(β) ∈ τ∗Y for all β ∈ τ∗X ,
• an MV-homeomorphism if it is bijective and both f and f−1 are continuous.

Continuity, as in Definition 4.2.6, is equivalent to f

 

[τ∗Y ] ⊆ τ∗X . Indeed, since f

 

is an
MV-algebra homomorphism, it preserves ∗; therefore, for any closed set β of Y , β∗ is an
open set, hence f

 

(β∗) = f

 

(β)∗ ∈ τX implies f

 

(β) ∈ τ∗X . In a completely analogous
way, it can be proved that f

 

[τ∗Y ] ⊆ τ∗X implies continuity in the sense of the previous
definition.

Now, we can define the category of MV-spaces, denoted by MVTop, whose objects are the
MV-spaces and the morphisms the continuous functions according to the Definition 4.2.6.

We note that if (X, τX) and (Y, τY ) are two MV-spaces, and f : X −→ Y is a continuous
function between them, then f is also a continuous map between the two skeleton spaces
(X,B(τX)) and (Y,B(τY )) and we have the restriction functor j � MVTop : MVTop −→ Top
well defined.

Lemma 4.2.7. Let (X, τ) and (Y, τ ′) be two MV-topological spaces and let B be a base for
τ ′. A map f : X −→ Y is continuous if and only if f

 

[B] ⊆ τ .

Proof. One implication is trivial, since B is a family of open sets. Conversely, assuming that
f

 

[B] ⊆ τ , let α =
∨
Γ , with Γ ⊆ B, be any open set of τ ′. As we observed, f

 

is an
MV-algebra homomorphism, hence f

 

(α) = f

 

(
∨
Γ ) =

∨
f

 

[Γ ], i.e. f

 

(α) is the join
of open sets of τ and, therefore, open itself. ut

Lemma 4.2.8. Let (X, τ) and (Y, τ ′) be two MV-topological spaces and let S be a subbase
for τ ′. A map f : X −→ Y is continuous if and only if f

 

[S] ⊆ τ .

Proof. Assuming that f

 

[S] ⊆ τ , let

α =
∨
i∈I

ti(βi1, . . . , βini) (4.3)

where, for all i ∈ I, ni < ω, and {βij}nij=1 ⊆ S, be an open set of τ ′. As f

 

is an MV-algebra
homomorphism, we have that

f

 

(α) = f

 

(
∨
i∈I

ti(βi1, . . . , βini)) =
∨
i∈I

f

 

(ti(βi1, . . . , βini)) (4.4)

and ∨
i∈I

f

 

(ti(βi1, . . . , βini)) =
∨
i∈I

(ti(f

 

(βi1), . . . , f

 

(βini))) ∈ τ

because f

 

(βij) ∈ τ for all i ∈ I, j ∈ {1, ..., ni} ni < ω and so

ti(f

 

(βi1), . . . , f

 

(βini)) ∈ τ

and therefore f

 

(α) ∈ τ .
Since S is a family of open sets, we have the other implication. ut
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4.3 Coverings and Compactness

A covering of X is any subset Γ of [0, 1]X such that
∨
Γ = 1 [7], while an additive covering

(⊕-covering, for short) is a finite family {αi}ni=1 of elements of [0, 1]X , n < ω, such that
α1 ⊕ · · · ⊕ αn = 1. It is worthwhile remarking that we used the expression “finite family”
in order to include the possibility for such a family to have repetitions. In other words,
an additive covering is a finite subset {α1, . . . , αk} of [0, 1]X , along with natural numbers
n1, . . . , nk, such that n1α1 ⊕ · · · ⊕ nkαk = 1.

Proposition 4.3.1. For any set X, any covering of fuzzy subsets of X which is closed under
⊕, �, and ∧ is a base for an MV-topology on X.

Proof. Let Γ ⊆ [0, 1]X be a covering closed under ⊕, �, and ∧, and let τ = {
∨
G | G ⊆ Γ}.

We have 1 ∈ τ , by definition of covering, and 0 =
∨
∅ ∈ τ . On the other hand, τ is trivially

closed under arbitrary joins and �, ⊕, and ∧ distribute over any existing join. Then, given
α1, α2 ∈ τ , α1 =

∨
i∈I αi and α2 =

∨
j∈J βj , with {αi}i∈I , {βj}j∈J ⊆ Γ , whence

α1 • α2 =

(∨
i∈I

αi

)
•

∨
j∈J

βj

 =
∨
i∈I

αi • ∨
j∈J

βj

 =
∨
i∈I

∨
j∈J

(αi • βj),

for • ∈ {⊕,�,∧}. So τ verifies Definition 4.1.1, i.e. it is an MV-topology, and Γ is a base
for it. ut

The presence of strong and weak conjunctions and disjunction, in the structure of open
sets of an MV-topology, naturally suggests different fuzzy versions (weaker or stronger) of
most of the classical topological concepts (separation axioms, compactness etc.). Let us see:

Definition 4.3.2. An MV-topological space (X, τ) is said to be compact if any open covering
of X contains an additive covering; it is called strongly compact if any open covering contains
a finite covering.1

It is obvious that strong compactness implies compactness and, since the operations ⊕
and ∨ coincide on Boolean elements of MV-algebras, in the case of topologies of crisp subsets
the two notions collapse to the classical one. For the same reason, it is evident as well that
the skeleton spaces of both compact and strongly compact MV-spaces are compact. The
following example shows that compactness does not imply strong compactness, i.e., they are
not equivalent.

Example 4.3.3. Let X be a non-empty set and τ the set of all constant fuzzy subsets of X,
which is clearly an MV-topology. For each r ∈ [0, 1], let or be the fuzzy set constantly equal
to r. Then, for any family {ri}i∈I ⊆ [0, 1) such that

∨
i∈I ri = 1, the set {ori | i ∈ I} is an

open covering and all the coverings not containing 1 are of this form. On the other hand,
all of such coverings do not contain finite coverings but do include additive ones.

Lemma 4.3.4. A closed subspace (Y, τY ) of a compact (respectively: strongly compact) space
(X, τ) is compact (resp.: strongly compact).

1What we call strong compactness here is called simply compactness in the theory of
lattice-valued fuzzy topologies [7].



44 4 MV-Topologies

Proof. Since Y is a subspace, in particular it is a crisp subset of X and, therefore, all of its
open sets are of the form α�Y with α ∈ τ . So let {αi}i∈I ⊆ τ such that

∨
i∈I αi ≥ Y . Since

Y is closed, Y ∗ is open and {αi}i∈I ∪{Y ∗} is an open covering of X. By compactness of X,
there exists a finite family {αj}nj=1 of elements of {αi}i∈I such that α1⊕· · ·⊕αn⊕Y ∗ = X.
Then, since Y ∧Y ∗ = 0, we have (with a slight abuse of notation) Y = Y ∧ (α1⊕· · ·⊕αn) =
(Y ∧α1)⊕ · · ·⊕ (Y ∧αn), the latter equality easily following from the properties of Boolean
elements of MV-algebras, whence Y is compact.

The case of strong compactness is completely analogous. ut

Definition 4.3.5. Let (X, τ) be an MV-topological space. X is called a Hausdorff (or
separated) space if, for all x 6= y ∈ X, there exist αx, αy ∈ τ such that

(i) αx(x) = αy(y) = 1,
(ii) αx ∧ αy = 0.

There is no interesting “weak” version of the above definition, since it is immediate to
verify that Definition 4.3.5 is equivalent to the following:

for all x 6= y ∈ X, there exist α′x, α
′
y ∈ τ verifying

(i) α′x(x) = α′y(y) = 1,
(ii’) αx � αy = 0.

Indeed, overlooking the trivial implication, assume there such two open sets α′x and α′y exist,
and set αx = α′2x and αy = α′2y . Then, by the quasi-equation x�y = 0⇒ x2∧y2 = 0 (which
holds in every MV-algebra), αx and αy satisfy Definition 4.3.5.

As for compactness, Definition 4.3.5 coincide with the classical T2 property on crisp
topologies and implies that the corresponding skeleton space is Hausdorff in the classical
sense.

The following result is obvious.

Lemma 4.3.6. If (X, τ) is an Hausdorff space, then all crisp singletons of X are closed.

4.4 MV-Topologies among Fuzzy Topologies

The MV-topologies are fuzzy topologies in the sense of Chang’s definition, and they are
contained in the class of weakly induced spaces (see Definition 3.4.1). Indeed, we have the
following

Proposition 4.4.1. Each MV-topological space is a weakly induced fuzzy topological space.

Proof. Let (X, τ) be an MV-topological space. In the following, we will identify a subset of
A with its characteristic map, so we will make no difference between χA and A when A ⊆ X.
We have to show that for each t ∈ [0, 1) and each α ∈ τ , the set {x ∈ X : α(x) > t} is an
element of τ . We will proceed in three steps.

Claim 1. For α ∈ τ , we have that suppα ∈ τ.

Indeed, as suppα = {x ∈ X : α(x) > 0}, then for each x ∈ suppα, there is some natural
number n such that

nα(x) = α(x)⊕ · · · ⊕ α(x)︸ ︷︷ ︸
n times

= 1
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then

χsuppα =

∞∨
n=1

nα ∈ τ.

Claim 2. For each α ∈ τ and every irreducible fraction t = k
2n ∈ (0, 1),

αt = {x ∈ X : α(x) > t} ∈ τ.

By induction,

• For n = 1 and k = 1. For each x ∈ X

α(x) >
1

2
iff α(x)� α(x) > 0.

Hence, α1/2 = supp(α� α) ∈ τ.
• Inductive step. Let’s see that if αt ∈ τ for all t of the form k

2n , then αt ∈ τ for all t of the

form k
2n+1 .

If t < 1/2, then t⊕ t = k
2n , hence αt = (α⊕ α)t⊕t ∈ τ.

If t ≥ 1/2, then k ≥ 2n and t� t = k−2n
2n , hence αt = (α� α)t�t ∈ τ.

Claim 3. For all µ ∈ τ and t ∈ [0, 1),

µt = {x ∈ X : µ(x) > t} =
⋃
{µs : s =

k

2n
, s ≥ t} ∈ τ.

ut

We will say that an MV-space (X, τ) is laminated if all constant functions on X are
elements of τ . It is clear that such spaces form a full subcategory of MVTop, which will be
denoted by LMVTop.

We will now see some properties about the functors defined in Section 3.4, when they are
restricted to MVTop both in the domain and in the codomain.

Proposition 4.4.2. The functors ω, ι, e and j have the following properties with respect to
the category MVTop.

1. If (X, τ) is a topological space then ω(τ) is an MV-topology, so the codomain of the
functor ω is actually the LMVTop category.

2. For all (X, τ) in MVTop and for all (Y, δ) in Top,

HomTop(Y, ι(X)) = HomMVTop(ω(Y ), X).

This implies that ω is a left adjoint of ι � MVTop : MVTop −→ Top.
3. The functor e can be seen as e : Top −→ MVTop.
4. For all (X, τ) in MVTop and for all (Y, δ) in Top,

HomTop(ι(X), Y ) = HomMVTop(X, e(Y )).

This says that e is a right adjoint of ι � MVTop : MVTop −→ Top.
5. For all X in MVTop and for all Y in LMVTop,

HomMVTop(X,Y ) 6= ∅ ⇔ X ∈ LMVTop .
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6. LMVTop
⋂

MVTop = ω(Top).

Proof. 1. We recall that ω(τ) is the following fuzzy topology

ω(τ) =
⋃

r∈[0,1)

C(X, Ir) =
⋃

r∈[0,1)

{f : X −→ Ir : f is continuous}

where Ir = (r, 1]. Let us see that ω(τ) is closed for ⊕ and �. If f : X −→ Ir and
g : X −→ Is are elements of ω(τ), then f ⊕ g : X −→ Imin(r,s) given by

(f ⊕ g)(x) = f(x)⊕ g(x) = min(f(x) + g(x), 1)

is continuous. Analogously, f � g : X −→ [0, 1] given by

(f � g)(x) = f(x)� g(x) = max(f(x) + g(x)− 1, 0)

is continuous.
2. The sentence holds because a function f : (Y, δ) −→ (X, ι(τ)) is continuous in Top if

and only if f : (Y, ω(δ)) −→ (X, τ) is continuous in MVTop. Let us see, f continuous in
Top means that for all t ∈ [0, 1) and µ ∈ τ , if U = {x ∈ X : µ(x) > t} ∈ ι(τ) then

f−1(U) = {y ∈ Y : f(y) ∈ U} = {y ∈ Y : µ(f(y)) > t} ∈ δ.

And this is equivalent to say that µ ◦ f : Y −→ It is continuous, i. e., µ ◦ f ∈ ω(δ), that
is, f is continuous in MVTop.

3. It is clear because e(τ) = {χU : U ∈ τ} is an MV-topology whenever τ is a topology.
4. It is enough to observe that if α ∈ e(δ) then α = χU for some U ∈ δ. So, f is continuous

in MVTop if for all U ∈ δ, χU ◦ f ∈ τ , that is, χf−1(U) ∈ τ , and it is equivalent to say
that f−1(U) ∈ ι(τ), and so f is continuous in Top.

ut

4.5 Extending Stone Duality

In [42] C. Russo proved that Stone Duality can be extended to a class of semisimple
MV-algebras and compact separated MV-topologies having a base of clopens. He showed
an extension of Stone Duality between Boolean algebras and Stone spaces to, respectively,
the category of limit cut complete MV-algebras, namely, the full subcategory ofMV whose
objects are algebras which contain the suprema of certain cuts, and a suitable category of
MV-topologies, whose objects are the natural MV-version of Stone (or Boolean) spaces —
called Stone MV-spaces. Such an extension is “proper” in the sense that its restriction to,
respectively, Boolean algebras and Stone spaces — which are full subcategories of the ones
involved in the duality — yields the classical well-known duality, up to a trivial reformulation
in terms of maximal ideals instead of ultrafilters.

In the following, we show how this duality is obtained. For that, we follow the route drawn
in [42]. First, let us see some preliminary facts. All theory and results can find in [42].

In what follows, we shall always denote by â and X̂, respectively, ι(a) ∈ [0, 1]MaxA and
ι(X) ⊆ [0, 1]MaxA, for a ∈ A and X ⊆ A, according we defined in the proof of Theorem
2.6.2.

The class of semisimple MV-algebras form a full subcategory ofMV that we shall denote
by MVss. As usual, for subsets Z ⊆ Y of an ordered set 〈X ≤〉 we shall denote by lY Z (or
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simply lZ when Y = X) the set of lower bounds of Z in Y and by uY Z (respectively: uZ)
the set of all upper bounds of Z in Y . We also recall that a subset Y of X is called a cut if
Y = luY . We set the following

Definition 4.5.1. Let A be a semisimple MV-algebra. We say that a cut X of A is a limit
cut iff

d(X̂, ûX) =
∧
{d(â, b̂) | b ∈ uX, a ∈ X} =

∧
{b̂	 â | b ∈ uX, a ∈ X} = 0. (4.5)

We shall say that A is limit cut complete (lcc for short) if, for any limit cut X of A, there

exists in A the supremum of X or, equivalently, the supremum of X̂ in [0, 1]MaxA belongs

to Â.

Proposition 4.5.2. Let A be a semisimple MV-algebra. Then a cut X of A is a limit cut
if and only if there exists a cut Y of A such that, in [0, 1]MaxA,

∨
X̂ =

∧
Ŷ ∗, where Y ∗ =

{y∗ | y ∈ Y }. Moreover, Y is a limit cut too.

Proof. Let X be a limit cut of A and set Y = (uX)∗. From x ≤ y iff x∗ ≥ y∗ readily follows
that a ∈ uY iff a∗ ∈ luX = X, whence uY = X∗. Analogously a ∈ luY iff a∗ ∈ uX.
Therefore luY = (uX)∗ = Y , i.e., Y is a cut. Now, since x 	 y = 0 iff x ≤ y in any

MV-algebra, from d(X̂, ûX) = 0, we get
∨
X̂ =

∧
ûX =

∧
Ŷ ∗. Moreover, from y∗ 	 x∗ =

y∗ � x = x	 y, we have that d
(
Ŷ , ûY

)
= d

(
(̂uX)

∗
, X̂∗

)
= d(X̂, ûX) = 0, and therefore Y

is a limit cut.
Conversely, let X and Y be cuts such that

∨
X̂ =

∧
Ŷ ∗, so in particular d(X̂, Ŷ ) = 0.

Then Y ∗ ⊆ uX, whence d(X̂, ûX) ≤ d(X̂, Ŷ ∗) = 0, and X is a limit cut. The fact that also
Y is a limit cut is an immediate consequence of the mutual roles of X and Y in this part of
the proof. ut

Corollary 4.5.3. A semisimple MV-algebra A is lcc if and only if, for all X,Y ⊆ A and
α ∈ [0, 1]MaxA, α =

∨
X̂ =

∧
Ŷ implies α ∈ Â.

Proof. Follows immediately from Proposition 4.5.2 by observing that, for any subset X of

A,
∨
X̂ =

∨
l̂uX. Then, if α =

∨
X̂ =

∧
Ŷ , luX and lu(Y ∗) form a pair of limit cuts as in

Proposition 4.5.2. ut

The distance d(X̂, ûX) considered in (4.5) do not necessarily coincide with ι(d(X,uX)),
as the following example shows.

Example 4.5.4. Let B the finite-cofinite Boolean algebra on the natural numbers. Let E be
the set of even numbers and consider the set X of all finite subsets of E and the set Y of all
cofinite subsets of N which include E. Then it is self-evident that X and Y ∗ are cuts in B,
Y = uX, and d(X,Y ) = 0 in B. However, by the Boolean Prime Ideal Theorem, we know
that there exists a maximal ideal M of B which separates X and Y , i.e. such that X ⊂ M
and Y ∩M = ∅. It follows that d(X̂, Ŷ ) 6= 0.

Note that limit cut completeness is a distinctive feature of Boolean algebras among
semisimple MV-algebras; in other words, all Boolean algebras are limit cut complete, while
not all semisimple MV-algebras are. So, the definition of limit cut complete MV-algebras is
somehow ad hoc but, on the other hand, it turns out that the class of limit cut complete
MV-algebras can play an important role for the theory of MV-algebras, as shown by the
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results of [42] and, in particular, by the fact that it is a reflective subcategory of MV and
a completion subcategory of MVss.

Let us now consider an MV-algebra A. By Theorem 2.6.2 and the comments following
it, up to an isomorphism, A′ = A/RadA is a subalgebra of [0, 1]MaxA. Therefore, A′ is a
covering of MaxA and, since it is an MV-subalgebra of [0, 1]MaxA, it is closed under ⊕, �
and ∧. Then, by Proposition 4.3.1, it is a base for an MV-topology τA on MaxA. Conversely,
given an MV-topological space (X, τ), the set ClopX = τ∩τ∗ of the clopen subsets of X, i.e.
the fuzzy subsets of X that are both open and closed, is a semisimple MV-algebra. Indeed
0,1 ∈ ClopX and, obviously, ClopX is closed under ⊕ and ∗; ClopX is semisimple as an
obvious consequence of being a subalgebra of [0, 1]X .

We recall that MVTop is the category whose objects are MV-topological spaces and
morphisms are MV-continuous functions between them. We shall denote by MVStone the
full subcategory of MVTop whose objects are Stone MV-spaces, i.e., compact, separated
MV-topological spaces having a base of clopen sets (zero-dimensional).

In the proof of the following results we shall often identify any semisimple MV-algebra
A with its isomorphic image included in [0, 1]MaxA; so any element a of a semisimple
MV-algebra will be identified with the fuzzy set â. The reader may refer to [3, 5, 6, 8] for
further details.

Let us now consider the following class functions:

Clop : (X, τ) ∈ MVTop 7−→ ClopX ∈ MV
Max : A ∈ MV 7−→ (MaxA, τA) ∈ MVTop .

(4.6)

Moreover, we set the following:

• for any two MV-topological spaces (X, τ) and (X ′, τ ′), and for any continuous function
f : X → X ′,

(Clop f)(α) = f

 

(α), for all α ∈ ClopX ′;

• for any two MV-algebras A and B, and for any MV-algebra homomorphism h : A→ B,

(Maxh)(N) = h−1[N ], for all N ∈ MaxB.

Lemma 4.5.5. With the above notations, Clop and Max are two contravariant functors.

Proof. Let (X, τX) and (Y, τY ) be two MV-topologies, and let f : X −→ Y be a continuous
map between them. As we already remarked f

 

: [0, 1]Y −→ [0, 1]X is a homomorphism
of MV-algebras. On the other hand, by Definition 3.3.1, f

 

[τY ] ⊆ τX and, as we observed
right after the same definition, f

 

[τ∗Y ] ⊆ τ∗X ; therefore f

 

[ClopY ] ⊆ ClopX. Hence, for all
f ∈ HomMVTop(X,Y ), Clop f is an MV-algebra homomorphism from ClopY to ClopX, i.e.,
a morphism from ClopX to ClopY in (MVss)op. The fact that Clop preserves composition
and identities is absolutely trivial.

Let now A and B be two MV-algebras and h : A −→ B an MV-algebra homomorphism.
It is known that the preimage of a maximal ideal under an MV-algebra homomorphism is a
maximal ideal; then it is well-defined the map

Maxh : N ∈ MaxB 7−→ h−1[N ] ∈ MaxA.

The function Maxh, on its turn, defines an MV-algebra homomorphism

(Maxh)

 

: α ∈ [0, 1]MaxA 7−→ α ◦Maxh ∈ [0, 1]MaxB .
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Let us prove that (Maxh)

 

[A′] ⊆ τB .
So let N be an arbitrary maximal ideal of B and M = h−1[N ] = (Maxh)(N). We have

(Maxh)

 

(â)(N) = (â ◦Maxh)(N) = â(M), for all a ∈ A.

The map h′ : a/M ∈ A/M −→ h(a)/N ∈ B/N is well-defined since

a/M = a′/M ⇒ (a� a′∗)⊕ (a′ � a∗) ∈M ⇒
(h(a)� h(a′)∗)⊕ (h(a′)� h(a)∗) ∈ N ⇒ h(a)/N = h(a′)/N ;

moreover it can be proved in a similar way that h(a)/N = h(a′)/N implies a/M = a′/M ,
that is, h′ is injective. Now, if we look at A/M and B/N as subalgebras of [0, 1], we get

that the fuzzy set ĥ(a) takes, in any given N ∈ MaxB, precisely the same value taken
by the fuzzy set â in M = Maxh(N). In other words, the fuzzy set (Maxh)

 

(â) is in
B′, for all a ∈ A. It follows that (Maxh)

 

[τA] ⊆ τB and therefore, by Lemma 4.2.7,
Maxh is an MV-continuous function from (MaxB, τB) to (MaxA, τA), i.e., it is a morphism
from (MaxA, τA) to (MaxB, τB) in MVTopop. Again, it is immediate to see that Max is
well-behaved w.r.t. composition and identity morphisms. ut

Theorem 4.5.6 (Duality theorem). Clop and Max form a duality between MV lcc and
MVStone.

Proof. It is immediate to verify that both the functors, restricted to MVStone and MV lcc

respectively, are faithful. We shall prove that

Max ClopX ∼=MVTop X and Clop MaxA ∼=MV A,

for all (X, τ) ∈ MVStone and for all A ∈MV lcc. The assertion will therefore follow from the
fact that such isomorphisms, together with faithfulness, yield two natural isomorphisms
between the two compositions Max Clop and Clop Max and, respectively, idMVStone and
idMVlcc .

First, let us prove that MaxA ∈ MVStone for any semisimple MV-algebra A and that
Clop MaxA ∼= A if A ∈MV lcc.

(MaxA, τA) is zero-dimensional by definition. Clop MaxA is obviously semisimple, and

every element of Clop MaxA can be obtained as both a join and a meet of elements of Â.
Therefore, if A ∈ MV lcc, by Proposition 4.5.2 and Corollary 4.5.3, A ∼= Clop MaxA. Now
we need to prove only that MaxA is compact and Hausdorff. Let Γ be an open covering
of MaxA and assume, by contradiction, that it does not contain any additive covering.
By Proposition 2.2.6, (Γ ] is a proper ideal of A and, therefore, it is contained in some
M ∈ MaxA; but this implies that, for any a ∈ Γ , a(M) = 0, i.e. Γ is not a covering of
MaxA, which is absurd.

In order to prove separation, let us consider M 6= N ∈ MaxA and let a ∈M \N ; we have
â(M) = 0 and â(N) 6= 0. So, since [0, 1] is hyper-Archimedean, there exists k < ω such that
kâ(N) = 1. Then we have kâ(N) = 1 and â∗(M) = â(M)∗ = 1, which implies (â∗)k(M) = 1.
Moreover, (â∗)k � kâ = (kâ)∗ � kâ = 0; then (MaxA, τA) is a Stone MV-space.

Now let us prove that X and Max ClopX are homeomorphic for any Stone MV-space
(X, τ). Let (X, τ) be a Stone MV-space and, for each x ∈ X, let

f(x) = {α ∈ ClopX | α(x) = 0}.

It is self-evident that f(x) is a proper ideal of the algebra A = ClopX for all x ∈ X. For
any fixed x and for each α ∈ A, α /∈ f(x) implies α(x) > 0 and, therefore, α∗(x) < 1. Then
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there exists n < ω such that (α∗)n(x) = 0, i.e. (α∗)n ∈ f(x), and Proposition 2.3.3 ensures
us that f(x) is a maximal ideal.

Now we must prove that the map f : X −→ MaxA is a homeomorphism of MV-spaces.
First, let x 6= y ∈ X; since X is Hausdorff, there exist αx, αy ∈ τ that satisfy Definition 5.1.1,
and each of these open sets is the join of a set of clopens because X is zero-dimensional.
By Lemma 4.3.6, {x} and {y} are closed, whence, by Lemma 4.3.4, they are compact; then
there exist two finite families of such sets — say {αxi}ni=1 and {αyj}mj=1 — which are additive
open coverings of {x} and {y} respectively, and are such that (αx1 ⊕ · · · ⊕ αxn)(y) = 0 =
(αy1⊕· · ·⊕αym)(x). Moreover, αx1⊕· · ·⊕αxn and αy1⊕· · ·⊕αym are both clopen, hence the
former belongs to f(y) and the latter to f(x). It follows f(x) 6= f(y), namely, f is injective.

In order to prove that f is onto, let M ∈ MaxA and assume, by contradiction, that M is
not the image under f of any element of X, that is, for all x ∈ X there exists α ∈ M such
that α(x) > 0. Then, for each x ∈ X, there exist α ∈ M and m < ω such that mα(x) = 1,
and mα ∈ M because M is an ideal. So let, for each x ∈ X, αx be an element of M whose
value in x is 1; the family {αx}x∈X is an open covering of X whence, by the compactness
of X, it contains an additive covering {αi}ni=1. It follows that 1 = α1 ⊕ · · · ⊕αn ∈M which
contradicts the hypothesis that M is a proper ideal. Such a contradiction follows from the
assumption that for all x ∈ X there exists α ∈ M such that α(x) > 0; hence there exists
x ∈ X such that α(x) = 0 for all α ∈M , i.e., such that M = f(x), and f is onto.

We need to prove that both f and f−1 are continuous. To this purpose, we first observe
that, for all x ∈ X and α ∈ ClopX, α/f(x) is a real number in [0, 1] and coincide with
the membership value α(x) of the point x to the clopen α. Indeed, by the property (2.2),
α/f(x) = {(α ⊕ p) � q∗ | p, q ∈ f(x)} and, on the other hand, ((α ⊕ p) � q∗)(x) = (α(x) ⊕
0) � 1 = α(x) for all p, q ∈ f(x). Therefore, (ClopX)/f(x) = {α(x) | α ∈ ClopX} and
πf(x) : α ∈ ClopX 7→ α(x) ∈ (ClopX)/f(x) ⊆ [0, 1].

Now, any clopen α of X can be identified (see the proof of Theorem 2.6.2) with a clopen
α̂ of Max ClopX in a unique way: α̂(M) = ιM (πM (α)) = ιf(x)(πf(x)(α)) = ιf(x)(α(x)), for
all M = f(x) ∈ Max ClopX, and ιf(x) is simply the inclusion map of (ClopX)/f(x) in
[0, 1]. Therefore, for any basic clopen α̂ of Max ClopX, and for each x ∈ X, f

 

(α̂)(x) =
(α̂ ◦ f)(x) = α̂(f(x)) = α(x), with α ∈ ClopX. It follows that the fuzzy preimage, under f ,
of any basic open set of Max ClopX is open in X, that is, f is continuous. Analogously, for
each M = f(x) ∈ Max ClopX, (f−1)

 

(α)(M) = (α ◦ f−1)(f(x)) = α(x) = α̂(M), and f−1

is continuous as well. We can conclude that X and Max ClopX are homeomorphic spaces.
The proof is complete. ut

4.6 MV-Topologies and Riesz MV-algebras

We write again the definition of Riesz MV-algebra given in the Section 2.10.

Definition 4.6.1. A Riesz MV-algebra is a structure (R, ·,⊕,∗ ,0), where (R,⊕,∗ ,0) is an
MV-algebra and · : [0, 1]×R→ R is a function such that for any r, q ∈ [0, 1] and a, b ∈ R:

RMV1) r · (a� b∗) = (r · a)� (r · b)∗,
RMV2) max(r − q, 0) · a = (r · a)� (q · a)∗,
RMV3) (r · q) · a = r · (q · a),
RMV4) 1 · a = a.

We show another interesting example of a Riesz MV-algebra which is related with
MV-topologies.



4.7 Closure and Interior 51

Proposition 4.6.2. If (X, τ) is a laminated MV-topological space then the MV-algebra
ClopX is a Riesz MV-algebra.

Proof. We saw before, in the Claim 3 of Proposition 4.4.1, that for any α ∈ τ , the crisp set
αa = {x ∈ X : α(x) > a} is an element of τ , for each a ∈ [0, 1). As X is laminated, we
have that the constant function r is an element of ClopX, for each r ∈ [0, 1]. Then for each
r ∈ [0, 1], r · αa = r� αa ∈ τ and r · α∗a = r� α∗a ∈ τ∗. Thus, we have the following:

Claim 1.: For each r ∈ [0, 1] and α ∈ ClopX, r · α ∈ τ . Moreover∨
a∈[0,1)

ra · αa = r · α.

Proof of Claim. For each x ∈ X

(
∨

a∈[0,1)

ra · αa)(x) = (
∨

a≥α(x)

ra · αa)(x) ∨ (
∨

a<α(x)

ra · αa)(x) = rα(x)

because αa(x) = 0 if α(x) ≤ a and αa(x) = 1 if α(x) > a. This shows that r · α is an open
fuzzy set in (X, τ).

Claim 2.: For each r ∈ [0, 1] and α ∈ ClopX, r · α ∈ τ∗,∧
a∈[0,1)

ra · α∗a = r · α.

Proof of Claim. For each x ∈ X

(
∧

a∈[0,1)

ra · α∗a)(x) = (
∧

a≥α(x)

ra · α∗a)(x) ∧ (
∧

a<α(x)

ra · α∗a)(x) = rα(x)

because α∗a(x) = 0 if α(x) > a and α∗a(x) = 1 if α(x) ≤ a. So r · α is a closed fuzzy set in
(X, τ).

We have proved that for each r ∈ [0, 1] and each α ∈ ClopX, rα ∈ ClopX. As [0, 1]X

is a Riesz MV-algebra, and ClopX is closed for scalar multiplication, then we have that
ClopX ⊆ [0, 1]X is also a Riesz MV-algebra. ut

Let A be a semisimple MV-algebra and let Âl the subalgebra of [0, 1]MaxA generated by
Â∪{r : r ∈ [0, 1]}, where r is the constant function whose value is r, for each r ∈ [0, 1]. Then,
Âl is a base for a laminated MV-topology on MaxA and it is the coarsest MV-topology that
contains Â ∪ {r : r ∈ [0, 1]}. We call this topology τÂl .

Corollary 4.6.3. The MV-algebra Clop MaxA of the clopen fuzzy sets of τÂl is a Riesz
MV-algebra.

Proof. It is immediate from last proposition. ut

4.7 Closure and Interior

In the following, we define the interior and the closure of an open fuzzy set of an
MV-topological space. This definition is the same for a fuzzy topological space. However,
below we will define an interior operator and a closure operator for MV-spaces, which have
some differences and particularities with respect to fuzzy topological spaces.
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Definition 4.7.1. Let (X, τ) be an MV-topological space and let α be a fuzzy set in X.

1. The join of all open sets contained in α is called the interior of α, denoted by α◦, i. e.,

α◦ =
∨
{β ∈ τ : β ≤ α}.

2. The meet of all closed sets containing α is called the closure of α, denoted by α, i.,e.,

α =
∧
{β ∈ τ∗ : α ≤ β}

It is clear that α◦ is the largest open set contained in α and α is the smallest closed set
containing α. The following are properties of the interior and the closure:

Proposition 4.7.2. Let (X, τ) be an MV-topological space and let α, β be fuzzy sets in X.
Then:

1. (α◦)◦ = α◦

2. α◦ ≤ α
3. If α ≤ β then α◦ ≤ β◦
4. α = α
5. α ≤ α
6. If α ≤ β then α ≤ β

Definition 4.7.3. A mapping f : [0, 1]X −→ [0, 1]X is called an MV-interior operator on
X iff f satisfies the following axioms:

1. f(1) = 1;
2. f(α) ≤ α;
3. f(f(α)) = f(α);
4. f(α ∧ β) = f(α) ∧ f(β);
5. f(α)⊕ f(β) ≤ f(α⊕ β);
6. f(α)� f(β) ≤ f(α� β).

Definition 4.7.4. A mapping f : [0, 1]X −→ [0, 1]X is called an MV-closure operator on X
iff f satisfies the following axioms:

1. f(0) = 0
2. α ≤ f(α)
3. f(f(α)) = f(α)
4. f(α ∨ β) = f(α) ∨ f(β)
5. f(α⊕ β) = f(α)⊕ f(β)
6. f(α� β) = f(α)� f(β).

Remark 4.7.5. If f is an MV-closure operator on X, then it satisfies that if α ≤ β then
f(α) ≤ f(β) for every α, β ∈ [0, 1]X . In fact, α ≤ β implies that α∨β = β then f(α)∨f(β) =
f(α∨β) = f(β) so f(α) ≤ f(β). Analogously, if f is an MV-interior operator on X, if α ≤ β
then f(α) ≤ f(β) for every α, β ∈ [0, 1]X .

Proposition 4.7.6. The interior of the definition 4.7.1 is an MV-interior operator.
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Proof. Let (X, τ) be an MV-space. The items 1., 2. and 3. are clear of the definition. For
4., we have that α◦ ≤ α and β◦ ≤ β, then α◦ ∧ β◦ ≤ α ∧ β and as α◦ ∧ β◦ ∈ τ then
α◦ ∧ β◦ ≤ (α ∧ β)◦. On the other hand, α ∧ β ≤ α, β then (α ∧ β)◦ ≤ α◦, β◦ and therefore
(α ∧ β)◦ ≤ α◦ ∧ β◦. Thus (α ∧ β)◦ = α◦ ∧ β◦. For 5., we have that α◦ ≤ α and β◦ ≤ β then
α◦ ⊕ β◦ ≤ α⊕ β, so α◦ ⊕ β◦ ≤ (α⊕ β)◦ because α◦ ⊕ β◦ ∈ τ . The proof of 6. is analogous
to item 5. interchanging ⊕ for �. Thus we have α◦ � β◦ ≤ (α� β)◦. ut

Proposition 4.7.7. The closure of the Definition 4.7.1 is an MV-closure operator.

Proof. The items 1., 2. and 3. are clear of the definition. For the item 4., we have that α ≤ α
and β ≤ β then α ∨ β ≤ α ∨ β and so α ∨ β ≤ α ∨ β because α ∨ β is a closed set. On the
other hand, as α, β ≤ α ∨ β then α, β ≤ α ∨ β and therefore α ∨ β ≤ α ∨ β. For the item 5.
we have that α ≤ α and β ≤ β then α ⊕ β ≤ α ⊕ β so α⊕ β ≤ α ⊕ β because α ⊕ β is a
closed set. On the other hand,

α⊕ β =
∧
i∈I{αi ∈ τ∗ : α ≤ αi} ⊕

∧
j∈J{βj ∈ τ∗ : β ≤ βj} =

=
∧
i∈I,j∈J{αi ⊕ βj : αi, βj ∈ τ∗;α ≤ αi, β ≤ βj} ≥

≥
∧
{γ ∈ τ∗ : α⊕ β ≤ γ} = α⊕ β,

so α⊕ β = α⊕ β. To verify 6., it is enough interchanging ⊕ by � in the item 5. ut

In the other direction, any MV-interior operator on X can determine some MV-topology
for X and any MV-closure operator on X can determine an MV-topology for X. We have
the following two theorems:

Theorem 4.7.8. Let f be an MV-interior operator on X, let τ = {α ∈ [0, 1]X : f(α) = α}
then τ is an MV-topology for X and for every β ∈ [0, 1]X , f(β) is the τ -interior of β. The
topology τ thus determined will be called the MV-topology associated with an MV-interior
operator.

Proof. By the axiom 1. of the Definition 4.7.3, we have that 1 ∈ τ . By the axiom 2., f(0) ≤ 0,
then f(0) = 0, and so 0 ∈ τ . Now, let α, β ∈ τ , i. e., f(α) = α and f(β) = β then:

(i) α ∧ β ∈ τ because, by the axiom 4., f(α ∧ β) = f(α) ∧ f(β) = α ∧ β.
(ii) By the axiom 5., α⊕β = f(α)⊕f(β) ≤ f(α⊕β) and by the axiom 2., f(α⊕β) ≤ α⊕β,

then f(α⊕ β) = α⊕ β and therefore α⊕ β ∈ τ .
(iii) By the axiom 6., α�β = f(α)�f(β) ≤ f(α�β) and by the axiom 2., f(α�β) ≤ α�β,

then f(α� β) = α� β and therefore α� β ∈ τ .

Let {αi : i ∈ I} be a family of elements of τ , i.e, f(αi) = αi for every i ∈ I. We know that
for all i ∈ I, αi ≤

∨
i∈I αi then by the remark 4.7.5, f(αi) ≤ f(

∨
i∈I αi) for each i ∈ I, so

that
∨
i∈I f(αi) ≤ f(

∨
i∈I αi). Now, by the axiom 2., f(

∨
i∈I αi) ≤

∨
i∈I αi =

∨
i∈I f(αi),

then f(
∨
i∈I αi) =

∨
i∈I αi, and so

∨
i∈I αi ∈ τ . We have proved that τ is an MV-topology.

It remains to show that f(α) = α◦. By definition, α◦ =
∨
{β ∈ τ : β ≤ α} and by the

axiom 3. of the Definition 4.7.3, f(α) ∈ τ for every α ∈ [0, 1]X ; besides f(α) ≤ α then
f(α) ≤ α◦. On the other hand α◦ ∈ τ then α◦ = f(α◦) ≤ f(α) therefore f(α) = α◦. ut

Theorem 4.7.9. Let f be an MV-closure operator on X, let F = {α ∈ [0, 1]X : f(α) = α}
and let τ = {α∗ : α ∈ F} then τ is an MV-topology for X and for every β ∈ [0, 1]X , f(β) is
the τ -closure of β. The topology τ thus determined will be called the MV-topology associated
with an MV-closure operator.
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Proof. By the axiom 1. of the Definition 4.7.4 we have that 0 ∈ F , so that 1 = 0∗ ∈ τ . By
the axiom 2., 1 ≤ f(1) so 1 = f(1) wherewith 1 ∈ F and then 0 = 1∗ ∈ τ . Let α∗, β∗ ∈ τ ,
i. e., f(α) = α and f(β) = β then:

(i) α∗ ∧ β∗ = (α ∨ β)∗ ∈ τ because f(α ∨ β) = f(α) ∨ f(β) = α ∨ β; by the axiom 4.
(ii) α∗ � β∗ = (α⊕ β)∗ ∈ τ because f(α⊕ β) = f(α)⊕ f(β) = α⊕ β; by the axiom 5.
(iii) α∗ ⊕ β∗ = (α� β)∗ ∈ τ because f(α� β) = f(α)� f(β) = α� β by the axiom 6.

Let {α∗i : i ∈ I} be a family of elements of τ , i.e., f(αi) = αi for every i ∈ I. As
∧
i∈I αi ≤ αi

for each i ∈ I, then by the remark 4.7.5, f(
∧
i∈I αi) ≤ f(αi) for each i ∈ I, so that

f(
∧
i∈I αi) ≤

∧
i∈I f(αi) =

∧
i∈I αi. Now, by the axiom 2.,

∧
i∈I αi ≤ f(

∧
i∈I αi), then

f(
∧
i∈I αi) =

∧
i∈I αi, i.e.,

∧
i∈I αi ∈ F and then

∨
i∈I α

∗
i = (

∧
i∈I αi)

∗ ∈ τ . We have proved
that τ is an MV-topology.

Now, let us see that f(α) = α. By definition, α =
∧
{β ∈ τ∗ : α ≤ β} =

∧
{β ∈ F : α ≤ β}

and by the axiom 3., f(α) ∈ F for every α ∈ [0, 1]X , and as α ≤ f(α), then α ≤ f(α). As
α ∈ F and α ≤ α then f(α) ≤ f(α) = α; therefore f(α) = α. ut

4.8 Quotient and Product Spaces

Let (X, τ) be an MV-topological space. Let R be an equivalence relation on X. Let X/R be
the quotient set, and let ϕ : X −→ X/R be the projection map. Let

τ ′ = {α ∈ [0, 1]X/R : ϕ

 

(α) ∈ τ} = {α ∈ [0, 1]X/R : α ◦ ϕ ∈ τ}.

Let us see that τ ′ is an MV-topology on X/R. We know that τ ′ is a fuzzy topology by [37],
that is, 1,0 ∈ τ ′, it is closed for arbitrary joins and finite meets. Let us see that τ ′ is closed
for ⊕ and �.

We know that if σ ◦ ϕ, δ ◦ ϕ ∈ τ then

((σ ⊕ δ) ◦ ϕ)(x) = ((σ ⊕ δ)(ϕ(x)) = σ(ϕ(x))⊕ δ(ϕ(x)) = ((σ ◦ ϕ)⊕ (δ ◦ ϕ))(x)

and as (σ ◦ ϕ)⊕ (δ ◦ ϕ) ∈ τ then σ ⊕ δ ∈ τ ′. The same holds for �.

Definition 4.8.1. Let R be an equivalence relation on X. The MV–space (X/R, τ ′) with τ ′

defined as above, is called the quotient MV-space of (X, τ).

Definition 4.8.2. Let {(Xi, τi)}i∈I be a family of MV-topological spaces. According to the
general definition of Category Theory, we say that an MV-topological space (X, τ), with a
family (pi : X → Xi)i∈I of continuous functions, is the product of the spaces (τi)i∈I if, for
any MV-topological space (Y, τY ) and any family of continuous functions (fi : Y → Xi)i∈I ,
there exists a unique continuous function f : Y → X such that pi ◦ f = fi for all i ∈ I.

Let {(Xi, τi)}i∈I be a family of MV-topological spaces. We define the product MV-topology
τ on the Cartesian product X =

∏
i∈I

Xi by means of the subbase

S = {π

 

i (α) | α ∈ τi, i ∈ I}, (4.7)

where πi : X → Xi is the canonical projection. The name “product MV-topology” is fully
justified by the following result.
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Theorem 4.8.3. The MV-topological space (X, τ), with the canonical projections πi, is the
product of {(Xi, τi)}i∈I .

Proof. First, it is immediate to see that all projections πi are continuous.
Now let Y be an MV-topological space and (fi : Y → Xi)i∈I a family of continuous

functions. We set f : y ∈ Y 7→ (fi(y))i∈I ∈ X. Let us show that f is continuous. Let B be
the base obtained from S as in Remark 4.2.3 and consider an open set β ∈ τX . If β ∈ S,
namely, β = α ◦ πi for some α ∈ τi then, for all y ∈ Y ,

(β ◦ f)(y) = ((α ◦ πi) ◦ f)(y) = (α ◦ πi)(fi(y))i∈I = α(fi(y)) = (α ◦ fi)(y)

and therefore f

 

(β) = β ◦f = α◦fi ∈ τY because each fi is continuous. Now, let us assume
that β = α ? γ, with ? ∈ {⊕,�,∧} and α, γ ∈ B being such that α ◦ f, γ ◦ f ∈ τY . Then we
have that β ◦ f = (α ? γ) ◦ f = (α ◦ f) ? (γ ◦ f) ∈ τY . Then f is continuous.

Now, in order to prove that f is the universal extension of (fi)i∈I , let g : Y → X be a
continuous function such that πi◦g = fi for each i ∈ I. For all y ∈ Y , g(y) = (πi(g(y)))i∈I =
(fi(y))i∈I , and therefore g = f . ut





5

Compactness and Separation

In this chapter we show some central results of topology in their MV-topological
version. We show a Tychonoff-type Theorem, a Urysohn-type Lemma, and a Stone-Čech
Compactification for MV-topologies. For Tychonoff Theorem we shall present two proofs,
one of which uses the functors between fuzzy and crisp topologies previously defined, while
the other uses an analogous of Alexander Subbase Lemma. Then we will show that also our
Tychonoff theorem is equivalent to the Axiom of Choice in ZF.

For what concerns compactness, we will also present Stone-Čech Compactification for
MV-topological spaces.

Eventually, we shall define normality and study the I-fuzzy unit interval F(I) defined by
Hutton in [24]. We will show that the usual fuzzy topology on F(I) is also an MV-topology
and then, using this fact, we will obtain Urysohn Lemma for MV-topologies. We also define
MV-uniformities and we show how to induce an MV-topology from a given MV-uniformity.

Last, inspired by Hutton’s paper about fuzzy uniformities [25], we define an MV-uniform
structure on the fuzzy interval F(I) in such a way that the MV-topology generated by this
MV-uniformity is the usual MV-topology on F(I). Then we will define complete regularity
for MV-spaces.

This results indicate that the MV-topological spaces have a good behaviour with respect
to the generalisation of the classical topological concepts and constructions and this suggests
other possible derived questions and new problems.

5.1 Some results about Hausdorff MV-spaces

We recall from Definition 4.3.5 that an MV-topological space, (X, τ) is called a Hausdorff
(or separated) space if, for all x 6= y ∈ X, there exist αx, αy ∈ τ such that

(i) αx(x) = αy(y) = 1,
(ii) αx ∧ αy = 0.

In the following we give some results about Hausdorff MV-spaces and compact MV-spaces.

Lemma 5.1.1. The product of Hausdorff MV-topologies is Hausdorff.

Proof. The proof proceeds analogously to the classical case with no major differences.
Indeed, let {(Xi, τi)}i∈I be a family of Hausdorff MV-spaces, (X, τ) its product space, and
(xi)i∈I , (yi)i∈I two distinct points of X. So there exists j ∈ I such that xj 6= yj and, since
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every Xi is Hausdorff, there exist αx, αy ∈ τj such that αx(xj) = αy(yj) = 1 and αx∧αy = 0.
Then it is not hard to see that the open sets αx ◦ πj and αy ◦ πj separate the given points
of X, namely, (αx ◦ πj)((xi)i∈I) = (αy ◦ πj)((yi)i∈I) = 1 and (αx ◦ πj) ∧ (αy ◦ πj) = 0. ut

Lemma 5.1.2. The product of zero-dimensional MV-topological spaces is zero-dimensional.

Proof. Since sums, products, and finite infima of clopens of an MV-topology are clopens,
the assertion follows immediately from (4.7) and Remark 4.2.3. ut

Theorem 5.1.3. Let Y be a crisp subspace of a Hausdorff MV-space (X, τ). If Y is compact,
then Y is closed in X.

Proof. First, we will show that, for all x ∈ X \ Y , there exists α ∈ τ with α(x) = 1 and
α ≤ Y ∗.

Since (X, τ) is Hausdorff, for each y ∈ Y , we can find αy, βy ∈ τ such that αy(x) =
βy(y) = 1 and αy ∧ βy = 0. Thus {βy� Y : y ∈ Y } is an open covering of Y , so it has
an additive subcovering {βy1� Y , . . . , βyn� Y }. Let α = αy1 ∧ · · · ∧ αyn , then α(x) = 1 and
α ∧ (βy1 ⊕ · · · ⊕ βyn) = 0, because α ∧ (βy1 ⊕ · · · ⊕ βyn) ≤ (α ∧ βy1) ⊕ · · · ⊕ (α ∧ βyn) = 0
in any MV-algebra. We know that for each y ∈ Y , there exists k such that βyk(y) > 0, so
α(y) = 0. Hence α ≤ Y ∗. Therefore, X \ Y =

∨
x∈X\Y αx is open in X, whence the thesis

follows. ut

Theorem 5.1.4. Let (X, τX) and (Y, τY ) be MV-spaces and let f, g : X → Y be continuous
functions. If Y is a Hausdorff MV-space then the set

Z = {x ∈ X : f(x) = g(x)}

is a closed crisp subset.

Proof. Let x ∈ X \ Z, so f(x) 6= g(x). Since Y is Hausdorff, there exist α, β ∈ τY such that
α(f(x)) = β(g(x)) = 1 and α ∧ β = 0. Moreover, f and g are continuous, so we have that
α ◦ f and β ◦ g are open sets of (X, τX). Set γx = (α ◦ f)∧ (β ◦ g). Then γx ∈ τX , γx(x) = 1,
and

γx(z) = ((α ◦ f) ∧ (β ◦ g))(z) = α(f(z)) ∧ β(g(z)) = (α ∧ β)(f(z)) = 0,

for each z ∈ Z
It follows that Z∗ =

∨
x∈X\Z γx ∈ τX , whence Z is closed. ut

5.2 Tychonoff-type theorem for MV-topologies

In the present section we shall prove the MV-topological correspondents of Alexander
Subbase Lemma (Lemma 5.2.2) and Tychonoff Theorem (Theorem 5.2.3). As in the classical
case, the latter turns out to be an immediate consequence of the former. The proof of Lemma
5.2.2 is divided in various claims with the aim of making it more readable.

Lemma 5.2.1. Let {(Xi, τi)}i∈I be a family of compact MV-topological spaces and let
(X, τX) be their product. Then any open cover Γ of X consisting solely of elements of
the form α ◦ πi, α ∈ τi, contains an additive cover.
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Proof. Let Γ be such a cover of X, and define

Γi = {α ∈ τi : α ◦ πi ∈ Γ}.

We claim that
∃j ∈ I ∀x ∈ Xj ∃αx ∈ Γj (αx(x) > 0). (5.1)

Indeed, assuming by contradiction that (5.1) does not hold, namely, that for each index i ∈ I
there exists ai ∈ Xi such that α(ai) = 0 for all α ∈ Γi, then obviously (

∨
Γi) (ai) = 0 for all

i ∈ I. Therefore, setting a = (ai)i∈I ∈ X, we get

(
∨
Γ ) (a) =

=
(∨

i∈I
(∨

α∈Γi(α ◦ πi)
))

(a) =

=
(∨

i∈I((
∨
Γi) ◦ πi)

)
(a) =

∨
i∈I (

∨
Γi(ai)) =

= 0,

which implies that Γ does not cover X, in contradiction with the hypothesis. Hence the
statement (5.1) holds.

Now, from (5.1) it follows that, for all x ∈ Xj , there exists nx < ω such that nxαx(x) = 1.
Then the family (nxαx)x∈Xj is an open cover of Xj and, by the compactness of Xj , there
exist x1, . . . , xm ∈ Xj such that

m⊕
k=1

nxkαxk = 1.

It follows that

m⊕
k=1

(nxk(αxk ◦ πj)) =

m⊕
k=1

((nxkαxk) ◦ πj) =

m⊕
k=1

nxkαxk = 1,

whence we obtain an additive subcover of Γ by simply taking nxk copies of each αxk ◦ πj ,
k = 1, . . . ,m. ut

Lemma 5.2.2 (Alexander Subbase Lemma for MV-Topologies). Let (X, τ) be an
MV-topological space and S a large subbase for τ . If every collection of sets from S that
cover X has an additive subcover, then X is compact.

Proof. By contradiction, suppose that every cover of X of elements of S has an additive
subcover, and X is not compact. Then the collection

F = {Γ ⊆ τ |
∨
Γ = 1 and Γ does not contain additive covers}

is nonempty and partially ordered by set inclusion. We use Zorn’s Lemma to prove that
F has a maximal element. Take any chain {Eα}α∈A in F; let us see that E =

⋃
Eα is an

upper bound of such a chain in F. It is clear that E ⊆ τ and
∨
E = 1. To see that E

contains no additive subcover, look at any finite subcollection {f1, . . . , fn} in E. Then, for
each j, there exists αj such that fj ∈ Eαj . Since we have a total ordering, there is some
Eα0 which contains all of the fj ’s. Thus such a finite collection cannot be an additive cover.
Now, applying Zorn’s Lemma, we can assert the existence of a maximal element M in F.

First of all, let see some properties of M .

Claim 1. α /∈M iff M ∪ {α} has an additive subcover.
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In other words α /∈M iff there exist β1, . . . , βn ∈M such that α⊕ β1 ⊕ · · · ⊕ βn = 1, and
that is obvious.

Claim 2. α1, . . . , αn /∈M implies α1 ? · · · ? αn /∈M , for ? ∈ {∧,⊕,�}.

Proof of Claim 2. First of all note that, for each i ∈ {1, . . . , n}, there exists a finite family
{βij}mij=1 of elements of M such that

αi ⊕
mi⊕
j=1

βij = 1, and αi ⊕
n⊕
i=1

mi⊕
j=1

βij = 1.

Hence, if we set β :=
⊕n

i=1

⊕mi
j=1 βij , we have αi ⊕ β = 1 for each i ∈ {1, . . . , n}.

For ? = ∧, for each x ∈ X, we have that (α1 ∧ · · · ∧ αn)(x) = αjx(x) for some jx ∈
{1, . . . , n}. So, for each x ∈ X,

(α1 ∧ · · · ∧ αn)(x)⊕ β(x) = αjx(x)⊕ β(x) = 1

namely, α1 ∧ · · · ∧ αn ⊕ β = 1, and then α1 ∧ · · · ∧ αn /∈M .
Concerning �, using (2.1), we have that

n⊙
i=1

αi ⊕ β ≥
n−1⊙
i=1

αi � (αn ⊕ β) =

n−1⊙
i=1

αi � 1 =

n−1⊙
i=1

αi

then
n⊙
i=1

αi ⊕ β ⊕ β ≥
n−1⊙
i=1

αi ⊕ β ≥
n−2⊙
i=1

αi

whereby
n⊙
i=1

αi ⊕ β ⊕ · · · ⊕ β︸ ︷︷ ︸
n−1 times

≥ α1

and therefore
n⊙
i=1

αi ⊕ β ⊕ · · · ⊕ β︸ ︷︷ ︸
n times

≥ α1 ⊕ β = 1.

It follows that (α1� · · · �αn)⊕ β ⊕ · · · ⊕ β︸ ︷︷ ︸
n times

= 1 where β ∈M and then α1 � · · · � αn /∈M .

Last, for ? = ⊕, if α1, . . . , αn /∈ M then, in particular, α1 ⊕ β = 1. It follows that
α1 ⊕ · · · ⊕ αn ⊕ β = 1 and, therefore, α1 ⊕ · · · ⊕ αn /∈M .

Claim 3. If α /∈M and α ≤ β then β /∈M .

Proof of Claim 3. Indeed, if α /∈M there exist β1, . . . , βn ∈M such that α⊕β1⊕· · ·⊕βn = 1
and then 1 = α⊕ β1 ⊕ · · · ⊕ βn ≤ β ⊕ β1 ⊕ · · · ⊕ βn, so β /∈M .

Claim 4. M is an ideal of the MV-algebra [0, 1]X .



5.2 Tychonoff-type theorem for MV-topologies 61

Proof of Claim 4. M is non-empty and, if α ∈ M and β ≤ α, then β ∈ M by Claim
3. Moreover, if α, β ∈ M then α ⊕ β ∈ M because, otherwise, if α ⊕ β /∈ M there exist
β1, . . . , βn ∈M such that α⊕ β ⊕ β1 ⊕ · · · ⊕ βn = 1. But this is impossible because M does
not contain additive subcovers.

Observe that, as a consequence of Claims 2 and 3, the set F = {β ∈ τ : β /∈M} is a filter
of the MV-algebra [0, 1]X .

Let us now consider the set T = M ∩ S, and let us prove that T is a cover of X. Since
M is a covering of X, for each a ∈ X there exists αa ∈ M such that αa(a) > 0. On the
other hand, since S is a subbase, there exists a family {ti}i∈I of terms (or polynomials) in
the language {⊕,�,∧}, such that

αa =
∨
i∈I

ti(βi1, . . . , βini) (5.2)

where, for all i ∈ I, ni < ω, and {βij}nij=1 ⊆ S.

Claim 5. Let t be a term in the language {⊕,�,∧} and let t(β1, . . . , βn) ∈ M with
{β1, . . . , βn} ⊆ S. If t(β1, . . . , βn)(a) > 0 for some a ∈ X, then there exists j ∈ {1, . . . , n}
such that βj ∈M and βj(a) > 0.

Proof of Claim 5. Let us proceed by induction on the length of the term t. If t has length
1, then t(β) = β with β ∈ S, and the condition clearly holds.

Suppose for inductive hypothesis that the assertion holds for all term of length < m, and
let t(β1, . . . , βn) ∈M be a term of length m such that t(β1, . . . , βn)(a) > 0 for some a ∈ X.
Since t has length m then t = r?s, where r and s are terms of length < m and ? ∈ {∧,�,⊕}.
Then we have to distinguish three cases.

If t = r∧s then t(β1, . . . , βn)(a) = r(β1, . . . , βn)(a)∧s(β1, . . . , βn)(a), so r(β1, . . . , βn)(a) >
0 and s(β1, . . . , βn)(a) > 0 because t(β1, . . . , βn)(a) > 0. Furthermore, since (r ∧
s)(β1, . . . , βn) ∈ M , by Claim 2, r(β1, . . . , βn) ∈ M or s(β1, . . . , βn) ∈ M . Without loss
of generality we can assume that r(β1, . . . , βn) ∈ M , then for inductive hypothesis we have
that there exists j ∈ {1, . . . , n} such that βj ∈M and βj(a) > 0. So the assertion holds for
t = r ∧ s.

If t = r � s then t(β1, . . . , βn)(a) = r(β1, . . . , βn)(a) � s(β1, . . . , βn)(a), so
r(β1, . . . , βn)(a) > 0 and s(β1, . . . , βn)(a) > 0 because t(β1, . . . , βn)(a) > 0. As in the
previous case, r(β1, . . . , βn) ∈M or s(β1, . . . , βn) ∈M for Claim 2. Without loss of generality
we can assume that r(β1, . . . , βn) ∈ M , then for inductive hypothesis we have that there
exists j ∈ {1, . . . , n} such that βj ∈M and βj(a) > 0. So Claim 5 holds if t = r � s.

Last, if t = r ⊕ s then t(β1, . . . , βn)(a) = r(β1, . . . , βn)(a) ⊕ s(β1, . . . , βn)(a),
so r(β1, . . . , βn)(a) > 0 or s(β1, . . . , βn)(a) > 0 because t(β1, . . . , βn)(a) > 0.
Furthermore r(β1, . . . , βn) ∈ M and s(β1, . . . , βn) ∈ M , because t(β1, . . . , βn) ∈ M ,
r(β1, . . . , βn), s(β1, . . . , βn) ≤ t(β1, . . . , βn), and M is an ideal. Without loss of generality we
can assume that r(β1, . . . , βn)(a) > 0, then for inductive hypothesis we have that there exists
j ∈ {1, . . . , n} such that βj ∈ M and βj(a) > 0. So the assertion holds also for t = r ⊕ s,
and this completes the proof of Claim 5.

Now, from the representation of αa in (5.2) we have that for each i ∈ I, ti(βi1, . . . , βini) ∈
M because ti(βi1, . . . , βini) ≤ αa for each i ∈ I and αa is an element of the ideal M .

Moreover, there exists j ∈ I such that tj(βj1, . . . , βjnj )(a) > 0 because αa(a) > 0. Then,
by Claim 5, we have that there exists βa = βjk ∈M with k ∈ {1, . . . , nj} such that βa(a) > 0.
Therefore we get naβa(a) = 1 for some na < ω.
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It means that the family {naβa}a∈X is a covering of X which is contained in T = M ∩ S.
From the hypothesis about S we have that T has an additive subcover, so there exists a
finite subset {na1βa1 , . . . , natβat} of T such that na1βa1 ⊕ · · · ⊕ natβat = 1. But this means
that M has an additive subcover too, which is a contradiction.

Therefore, our original collection F must be empty, whence X is compact. ut

Theorem 5.2.3 (Tychonoff-type Theorem for MV-Topologies). If {(Xi, τi)}i∈I is a
family of compact MV-topological spaces, then so is their product space (X, τX).

Proof. Let us consider as a subbase for the product MV-topology on X the collection

S = {π

 

i (β) : β ∈ τi, i ∈ I}.

Note that S is a large subbase; indeed, for each n < ω, n(β ◦ πi) = nβ ◦ πi, and nβ ∈ τi
whenever β ∈ τi. By Lemma 5.2.1, any subcollection of S that covers X has an additive
subcover. Then the compactness of X follows from Lemma 5.2.2. ut

We remark that Theorem 5.2.3 can be also obtained as a corollary of the following two
results.

Theorem 5.2.4. Every MV-topological space (X, τ) is compact if, and only if it is ultra-fuzzy
compact in the sense of Lowen [31], i.e., the topological space (X, ι(τ)) is compact.

Proof. The “only if” part is trivial. For what concerns the converse implication, suppose
that (X, ι(τ)) is a compact topological space and {αi : i ∈ I} is an open cover of X. For
each β ∈ τ and t ∈ [0, 1), we remember that βt = {x ∈ X : β(x) > t}. Since the family
{(αi) 1

2
: i ∈ I}, is an open cover of the topological space (X, ι(τ)), there exists a finite

subfamily {(αi1) 1
2
, . . . , (αim) 1

2
} that covers X. This means {αi1 , . . . , αim} is an additive

open cover of (X, τ). ut

Theorem 5.2.5. [31, Theorem 3.3] Let {(Xi, τi)}i∈I be a family of fuzzy topological spaces.
The product space (

∏
i∈I

Xi, τ) is ultra-fuzzy compact if and only if for all i ∈ I, (X, τi) is

ultra-fuzzy compact.

In the following we shall briefly discuss some immediate consequences of Theorem 5.2.3.

Corollary 5.2.6. The product of Stone MV-spaces is a Stone MV-space.

Proof. It is a consequence of Lemmas 5.1.1, 5.1.2 and the Theorem 5.2.3. ut

Corollary 5.2.7. The category MV lcc, of limit cut complete MV-algebras and MV-algebra
homomorphisms, has coproducts.

Proof. It is an immediate consequence of Theorem 5.2.3, Lemmas 5.1.1 and 5.1.2, and the
duality between MV lcc and MVStone [42, Theorem 4.9]. ut

It is important to observe that Corollary 5.2.7 does not guarantee that the coproduct, in
MV, of lcc MV-algebras is lcc too. Moreover, as Mundici observed in [35, Corollary 7.4], the
classes of totally ordered, hyperarchimedean, simple, and semisimple MV-algebras are not
preserved under coproducts in the category of MV-algebras.

In order to better understand coproducts of lcc MV-algebra we prove the following result.
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Proposition 5.2.8. Let (Ai)i∈I be a family of lcc MV-algebras, and let A,A′, and A′′ be
the coproducts of such a family in MV lcc, MVss, and MV, respectively. Then we have
A ∼= A′ ∼= A′′/RadA′′.

Proof. Let (µi)i∈I , (νi)i∈I , and (ηi)i∈I be, respectively, the embeddings of the given family
in A,A′, and A′′. For any semisimple MV-algebra B and morphisms (fi : Ai → B)i∈I , there
exists a morphism f : A′′ → B such that fηi = fi for all i ∈ I. The semisimplicity of B
guarantees that ker f ⊆ RadA′′ and, therefore, there exists a morphism g : A′′/RadA′′ → B
such that gπ = f , where π is the canonical projection of A′′ over A′′/RadA′′. So, for all
i ∈ I, gπηi = fηi = fi. Therefore A′′/RadA′′ is the coproduct in MVss of (Ai)i∈I , with
embeddings (πηi)i∈I , whence A′ ∼= A′′/RadA′′.

Now, by [42, Corollary 5.8], the lcc completion (A′)lcc of A′ is also a coproduct of the
family (Ai)i∈I inMV lcc. Therefore, if we denote by ι : A′ → (A′)lcc the inclusion morphism,
by µ : A′ → A the morphism such that (µνi)i∈I = (µi)i∈I , and by µ the unique extension
of µ to (A′)lcc as in [42, Corollary 5.8], we get that µ is an isomorphism for the essential
uniqueness of coproducts in any given category, and µ is onto because it is surjective on
a generating set of A. On the other hand, the families (µi)i∈I , (νi)i∈I , and (ινi)i∈I are
right-cancellable, for being epi-sinks. It follows that µι = µ, i.e., µ is injective too. Then µ is
an isomorphism, and we get A′ = (A′)lcc, ι = idA′ , µ = µ, and A ∼= A′. The diagram below
will better illustrate the last part of the proof.

A

µ−1

��

Ai

νi ��

µi

>>

A′

µ

OO

ι
// (A′)lcc

µ

YY

ut

In [30] the author proved Tychonoff theorem for lattice-valued fuzzy topology. Theorem
5.2.3 obviously imply classical Tychonoff theorem because every classical topological space is
an MV-topological space too. On the other hand, it is known that the same holds – although
less obviously – for Lowen’s result, as we show in the next proposition which can be easily
deduced from the results in [31].

We recall the categorical full embedding ω : Top → Fuz, of the category of topological
spaces and continuous functions into the one of laminated fuzzy topologies, with fuzzy
continuous functions, which associates, to each topological space, the so-called topologically
generated fuzzy topological space (see Section 3.4 and [29]).

Proposition 5.2.9. Lowen’s Tychonoff theorem implies Tychonoff theorem.

Proof. We need to prove that if the product of every family of fuzzy compact topological
spaces is fuzzy compact, then the product of every family of compact topological spaces is
compact. In order to do that, we recall the following facts.

• Fuzzy compactness is a good fuzzy topological property, namely, a topologically generated
fuzzy topological space is compact iff the underlying topological space is compact [29,
Theorem 4.1] and [31, Theorem 2.1].
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• The ω functor commutes with products [43, Corollary 3.7].

Let {(Xi, τi)}i∈I a family of compact topological spaces. Since compactness is a good
property, the topogically generated fuzzy spaces of the family {(Xi, ω(τi))}i∈I are compact.
On the other hand, the product of such fuzzy spaces is topologically generated by the product
of the spaces Xi, because ω commutes with products. By Lowen’s theorem, such a product
is fuzzy compact. Then the product of the Xi is compact, again, because compactness is a
good property. ut

Actually, they both need the Axiom of Choice, which is known to be equivalent to
Tychonoff theorem in ZF [27]. Therefore, the following holds.

Theorem 5.2.10. The following statements are equivalent in ZF:

(a) the Cartesian product of a non-empty family of non-empty sets is non-empty (AC);
(b) the product space of compact topological spaces is compact [47];
(c) the product space of fuzzy compact topological spaces (in the sense of [29]) is fuzzy

compact [30];
(d) the product space of compact MV-topological spaces is compact (Theorem 5.2.3).

5.3 Compactification

In 1981, Cerruti [4] studied some concepts of fuzzy topological spaces from the categorical
point of view. In particular, he studied compactness and developed a compactification theory.
For that, he showed the existence of a left adjoint functor to the embedding e : HCAFuz −→
Fuz where HCAFuz is the category of Hausdorff Compact weakly induced spaces. We do an
analogous categorical proof on the MV-topological spaces.

Recall that we are denoting by CMVTop the full subcategory of MVTop consisting of
compact MV-spaces, and by HCMVTop the full subcategory formed by compact and Hausdorff
MV-spaces.

The Stone-Cech Compactification

Let i be the embedding i : HCMVTop ↪→ MVTop.

Proposition 5.3.1. The category HCMVTop satisfies the following properties:

(a) HCMVTop has all products.
(b) HCMVTop has equalizer.
(c) HCMVTop has a small cogenerator.

Proof. (a) Follows from Theorem 5.2.3 and Lemma 5.1.1.
(b) Let f, g : X −→ Y be morphisms in HCMVTop. Seeing these morphisms in Set, we know

that Z = {x ∈ X : f(x) = g(x)} is the equalizer of them. Now, since Y is a Hausdorff
space, Z is closed in X by Theorem 5.1.4. So Z is a compact MV-space (Lemma 4.3.4)
and the canonical injection m : Z −→ X is the equalizer. Note that Z is an element of
HCMVTop.
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(c) Let us consider the interval I in Top with the usual topology and show that the
cogenerator in HCMVTop is e(I). Indeed, let X be an element of HCMVTop, x, y ∈ X,
x 6= y. As ι(X) is a compact Hausdorff space, there exists a morphism f : ι(X) −→ I in
Top such that f(x) 6= f(y). By the Proposition 4.4.2, f : X −→ e(I) is a morphism in
MVTop.

ut

From (a) and (b) of the last proposition, we have that HCMVTop is small-complete and we
obtain the following:

Theorem 5.3.2. The functor i : HCMVTop −→ MVTop has a left adjoint.

Proof. As HCMVTop is small-complete and it has a small cogenerator, we have the result by
the Special Adjoint Functor Theorem 1.3.6. ut

We denote by β̂ : MVTop −→ HCMVTop the left adjoint functor of i. Then we write
β̂ a i. Note that HCMVTop is a reflective subcategory of MVTop because HCMVTop is a full
subcategory of MVTop, then we have that each object X of HCMVTop is isomorphic to its
reflection, that is, X ' β̂(X).

We will show now that β̂ is the Stone-C̆ech Compactification functor in the category
MVTop. In what follows, we denote by β the compactification functor in Top.

Theorem 5.3.3. The functors β and ιβ̂ω are naturally isomorphic.

Proof. Let us consider the following adjunctions:

(i) ω is a left adjoint of ι � MVTop : MVTop −→ Top (see Proposition 4.4.2 (2.)),

(ii) β̂ is a left adjoint of i, and
(iii) ι � HCMVTop is a left adjoint of e (see Proposition 4.4.2 (4.)).

Now, from the following compositions:

Top
ω−→ MVTop

β̂−→ HCMVTop
ι−→ CHTop

and
CHTop

e−→ HCMVTop
i−→ MVTop

ι−→ Top,

we obtain the adjunction ιβ̂ω a ιie.
But ιie = i : CHTop −→ Top. So ιβ̂ω is a left adjoint of the embedding of CHTop in Top,

and then it is naturally equivalent to β. ut

Now, we show that for an MV-space X, the initial topology of X determines the initial
topology of the MV-compactification of X.

Theorem 5.3.4. For each X in MVTop, ιβ̂(X) ∼= βι(X).

Proof. If we consider the adjunctions β̂ a i and ι a e used in the Theorem 5.3.3, and we
compose them:

MVTop
β̂−→ HCMVTop

ι−→ CHTop,

CHTop
e−→ HCMVTop

i−→ MVTop

then we obtain the following adjunction:
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ιβ̂ a ie.

It is enough to show that the restriction of βι on MVTop is a left adjoint of ie = e.
From the Proposition 4.4.2 (4.), we have that ι � MVTop : MVTop −→ Top is a left adjoint

of e, that is, for all (X, τ) in MVTop and for all (Y, δ) in Top,

HomTop(ι(X), Y ) = HomMVTop(X, e(Y )).

Since HomTop(ι(X), Y ) ∼= HomTop(βι(X), Y ), then we have that

HomMVTop(X, e(Y )) ∼= HomTop(βι(X), Y )

and so the thesis follows. ut

As a consequence of this theorem we have that for each MV-space X, the canonical
morphism ηX : X −→ β̂(X) is equal to the canonical morphism ι(X) −→ βι(X).

Finally, we have the following result:

Theorem 5.3.5. (i) β̂e = eβ.

(ii) If X is topologically generated then β̂(X) = ωβι(X).

Proof. (i) It is clear.
(ii) Let X be a topologically generated space, then X = ωι(X) by Proposition 3.4.2 (iv).

Now, for a morphism εX : ι(X) −→ βι(X), then we have that

εX ∈ HomMVTop(ωι(X), ωβι(X)) = HomMVTop(X,ωβι(X)).

Since ωβι(X) is an object of HCMVTop, there exists a unique f that makes the following
diagram commutative:

X
ηX // β̂(X)

ωβι(X)
��

f

!!

εX

That is, f ∈ HomMVTop(β̂(X), ωβι(X)) and from the properties 5. and 6. of the

Proposition 4.4.2 we have that β̂(X) ∈ ω(Top). So, β̂(X) = ωιβ̂(X) and from

ω(Top) ⊆ MVTop and by Theorem 5.3.4, we have that β̂(X) = ωιβ̂(X) = ωβι(X).
ut

As a consequence of the item (ii) of the last theorem, we have that β̂ω = ωβ. In fact, for

each X ∈ MVTop, β̂ω(X) = ωβιω(X) = ωβ(X).

On the other hand, we have that if X is an MV-space and β̂(X) is topologically
generated, then X is topologically generated. This follows because ηX is an element of
HomMVTop(X, β̂(X)) and using the properties 5. and 6. of Proposition 4.4.2.

With the previous results, we showed that β̂ has similar properties to those of the
Stone-C̆ech Compactification β and is an extension of it. Besides, we proved that for each
topologically generated MV-space X, the compactification β̂(X) is completely determined.
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5.4 Normality and Urysohn’s Lemma

The first definition of normality for fuzzy topological spaces was given by Hutton in [24].
In this section we adopt that definition and its respective consequences for MV-topological
spaces.

Definition 5.4.1. An MV-topological space (X, τ) is normal if for every closed set α ∈ τ∗
and open set β ∈ τ such that α ≤ β, there exists γ ∈ τ such that

α ≤ γ ≤ γ ≤ β.

Proposition 5.4.2. An MV-topological space (X, τ) is normal if and only if for each pair
of closed fuzzy sets α and β such that α � β = 0 there are γ, δ ∈ τ such that α ≤ γ, β ≤ δ
and γ � δ = 0.

Proof. ⇒) Let α, β ∈ τ∗ such that α� β = 0. This means that α ∈ τ∗, β∗ ∈ τ and α ≤ β∗.
As (X, τ) is normal, there exists a set γ ∈ τ such that α ≤ γ ≤ γ ≤ β∗. So α ≤ γ,
β ≤ γ∗ where γ, γ∗ ∈ τ satisfy γ � γ∗ = 0, and we have the conclusion.

⇐) Let α ∈ τ∗, β ∈ τ and α ≤ β, i.e., α, β∗ ∈ τ∗ such that α � β∗ = 0, then there exist
γ, δ ∈ τ such that α ≤ γ, β∗ ≤ δ and γ � δ = 0, that is γ ≤ δ∗ ∈ τ∗, then γ ≤ γ ≤ δ∗

and α ≤ γ ≤ γ ≤ δ∗ ≤ β, then (X, τ) is normal.
ut

In [24], Hutton also introduced and defined the L-fuzzy unit interval and three years later
Gantner et al., [19], generalized this idea to the L-fuzzy real line. Hutton used this fuzzy
concept to give a fuzzy version of the Urysohn’s Lemma. In the following, we present the
I-fuzzy real line (when L = I := [0, 1]). This construction can be found in [44], although with
different notations from the ones used here. Finally, we show a type of Urysohn’s Lemma
for MV-spaces.

Let ZI(R) be the set of monotonic decreasing functions f ∈ [0, 1]R such that:

(i) f(x) = 1 for all x ∈ (−∞, 0) and
(ii) f(x) = 0 for all x ∈ (1,∞).

That is,

ZI(R) = {f ∈ [0, 1]R : ∀x < 0, f(x) = 1; ∀x > 1, f(x) = 0; f is decreasing}.

Definition 5.4.3. Let f ∈ ZI(R), we define for each x ∈ R

f(x+) :=
∨
t>x

f(t) and f(x−) :=
∧
t<x

f(t)

Note that if f, g ∈ ZI(R) then:

(i) If f ≤ g then f(x+) ≤ g(x+) and f(x−) ≤ g(x−) for each x ∈ R.
(ii) For all x ∈ R, f(x+) ≤ f(x) ≤ f(x−).

On ZI(R) we introduce the following equivalence relation:

f1 ∼ f2 iff f1(x+) = f2(x+) and f1(x−) = f2(x−) for all x ∈ R.

We actually have that

f1(x+) = f2(x+) iff f1(x−) = f2(x−) for all x ∈ R.
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Definition 5.4.4. The fuzzy unit interval F(I) is the set of all monotonic decreasing maps
f ∈ ZI(R) after the identification by the relation ∼. That is, F(I) = ZI(R)/ ∼.

Note that for each equivalence class [f ] ∈ F(I), there is only one left semicontinuous
function in it. We introduce a partial order in F(I) by

[f1] ≤ [f2] iff f1(x+) ≤ f2(x+) for every x ∈ R.

We define an MV-topology σ on F(I) by taking as a subbase the family of fuzzy sets {Lt, Rt :
t ∈ R} where Lt, Rt : F(I) −→ [0, 1] are such that

Lt(f) = f(t−)∗ and Rt(f) = f(t+) for all t ∈ R

Proposition 5.4.5. We have that the functions Lt, Rt with t ∈ R satisfy the following
properties:

1. Rt ∧Rs = Rt∨s;
2.
∨
j∈J Rtj = R∧

j∈J tj
;

3. Lt ∧ Ls = Lt∨s;
4.
∧
j∈J Ltj = L∨

j∈J tj
;

5. Rt ⊕ Ls = 1 if t ≤ s. In particular, Rt ⊕ Lt = 1;
6. Rt � Ls = 0 if t ≥ s. In particular, Rt � Lt = 0;
7. Lt ≤ Lt ≤ R∗t ≤ Ls if t ≤ s;
8. Rs ≤ L∗s ≤ Rt if t ≤ s;
9. Lt ≤ Ls if t ≤ s;

10. Rs ≤ Rt if t ≤ s;
11. Lt ⊕ Ls ≤ 2Lt⊕s;
12. Lt�s ≤ Lt ⊕ Ls;
13. Lt � Ls ≤ Lt⊕s;
14. Rt �Rs ≤ Rt�s;
15. Rt⊕s ≤ Rt ⊕Rs.

Remark 5.4.6. The I-fuzzy unit interval can be extended to the fuzzy real line replacing
ZI(R) for the following set denoted by Z(R):

Z(R) := {f ∈ [0, 1]R :
∨
x∈R

z(x) = 1,
∧
x∈R

z(x) = 0, f is monotonic decreasing}.

In this case, the fuzzy real line is F(R) := Z(R)/ ∼.

Theorem 5.4.7 (Urysohn-type Lemma). An MV-topological space (X, τ) is normal if
and only if for every closed β ∈ τ∗ and open set α ∈ τ , with β ≤ α, there exists a continuous
function f : X −→ F(I) such that for every x ∈ X,

β(x) ≤ f(x)(1−) ≤ f(x)(0+) ≤ α(x).

Proof. ⇐) Let α, β ∈ τ∗, such that β � α = 0, i. e., β ≤ α∗. By hypothesis, there exists a
continuous function f : X −→ F(I) such that for every x ∈ X,

β(x) ≤ f(x)(1−) ≤ f(x)(0+) ≤ α∗(x).

Then we have that, for each t ∈ (0, 1), and for each x ∈ X,
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β(x) ≤ f(x)(t+) ≤ f(x)(t−) ≤ α∗(x).

On the other hand, note that for each x ∈ X, t ∈ R

f

 

(L∗t )(x) = (L∗t ◦ f)(x) = L∗t (f(x)) = f(x)(t−)

and
f

 

(Rt)(x) = (Rt ◦ f)(x) = Rt(f(x)) = f(x)(t+),

then
β(x) ≤ f

 

(Rt)(x) ≤ f

 

(L∗t )(x) ≤ α∗(x)

and so
β ≤ f

 

(Rt) ≤ f

 

(L∗t ) ≤ α∗.

Since {Lt, Rt : t ∈ R} is a subbase for the MV-topology of F(I) and f is continuous,
we have that f

 

(Lt) and f

 

(Rt) are open sets of (X, τ), moreover as f

 

is an
MV-homomorphism, (f

 

(L∗t ))
∗ = f

 

(Lt) and we have that β ≤ f

 

(Rt), α ≤
(f

 

(L∗t ))
∗ = f

 

(Lt) and f

 

(Rt) � f

 

(Lt) = 0 because f

 

(Rt) ≤ (f

 

(Lt))
∗.

Then (X, τ) is normal by the characterization given by the Proposition 5.4.2.
⇒) Conversely, since (X, τ) is normal, we have that, for every β ∈ τ∗ and α ∈ τ such that

β ≤ α, there exists a family of fuzzy sets {γt : t ∈ (0, 1)} such that β ≤ γt ≤ α, for all
t ∈ (0, 1). Indeed, we have that 0 < r < s < 1 implies γs ≤ γs ≤ γ◦r ≤ γr.
We define f : X −→ F(I) such that f(x)(t) = γt(x). Note that for each x ∈ X, f(x) is
decreasing and

β(x) ≤ f(x)(1−) ≤ f(x)(0+) ≤ α(x),

because f(x)(1−) =
∧
s<1 γs(x) and f(x)(0+) =

∨
s>0 γs(x). Thus, f is well defined.

In order to prove that f is continuous, we use Lemma 4.2.8. So it is enough to show that
f

 

(Lt) and f

 

(Rt) are open sets of (X, τ), for each t ∈ (0, 1), which is equivalent to
show that f

 

(Rt) ∈ τ and f

 

(L∗t ) ∈ τ∗, for each t. We have:

f

 

(Rt)(x) = Rt(f(x)) = f(x)(t+) =
∨
s>t

f(x)(s) =
∨
s>t

γs(x) =
∨
s>t

γ◦s (x)

where the last equality holds because for each s ∈ (0, 1), there exists 0 < r < s such
that γs ≤ γs ≤ γ◦r ≤ γr, and therefore f

 

(Rt) =
∨
s>t γ

◦
s ∈ τ .

On the other hand,

f

 

(L∗t )(x) = L∗t (f(x)) = f(x)(t−) =
∧
s<t

f(x)(s) =
∧
s<t

γs(x) =
∧
s<t

γs(x)

then f

 

(L∗t ) =
∧
s<t γs ∈ τ∗.

Thus f is continuous.
ut

Another equivalent way to present the Urysohn-type Lemma is the following:

Theorem 5.4.8 (Urysohn-type Lemma – 2nd version). An MV-topological space
(X, τ) is normal if and only if for every closed β, α ∈ τ∗ such that β � α = 0 (“disjoint”),
there exists a continuous function f : X −→ F(I) such that for every x ∈ X,

β ≤ f

 

(L∗1) ≤ f

 

(R0) ≤ α.
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5.5 MV-uniformities and Complete Regularity

In this section we define MV-uniformities and we show that each MV-uniformity generates
an MV-topology. We define an MV-uniformity for the fuzzy unite interval F(I). Besides, we
define complete regularity for MV-spaces and we show that each MV-topological space that
is generated from an MV-uniformity is completely regular. Definitions and results here are
inspired by [25,26,39].

Let ΩX denote the family of all the functions f : [0, 1]X −→ [0, 1]X with the following
properties:

1. α ≤ f(α) for each α ∈ [0, 1]X

2. f(
∨
i∈I αi) =

∨
i∈I f(αi) for each family {αi} ⊆ [0, 1]X ,

3. f(α⊕ β) ≤ f(α)⊕ f(β) for each α, β ∈ [0, 1]X .

For f ∈ ΩX , the function f−1 ∈ ΩX is defined by:

f−1(α) =
∧
{β : f(β∗) ≤ α∗}.

Some useful properties of f−1 are the following [25, Proposition 10]:

Proposition 5.5.1. Let f, g ∈ ΩX . Then:

(a) f(α) ≤ β if and only if f−1(β∗) ≤ α∗;
(b) (f−1)−1 = f ;
(c) f ≤ g if and only if f−1 ≤ g−1;
(d) (f ◦ g)−1 = g−1 ◦ f−1.

Definition 5.5.2. An MV-quasi-uniformity on a set X is a subset D of ΩX such that:

(MV-QU1) D 6= ∅,
(MV-QU2) f ∈ D and f ≤ g, with g ∈ ΩX , implies g ∈ D
(MV-QU3) f ∈ D and g ∈ D implies f ∧ g ∈ D,
(MV-QU4) f ∈ D and g ∈ D implies f � g ∈ D,
(MV-QU5) f ∈ D implies there exists g ∈ D such that g ◦ g ≤ f.

The pair (X,D) is called an MV-quasi-uniform space.

This definition agrees with the usual definition when [0, 1] is replaced by {0, 1}.

Remark 5.5.3. The following are direct consequences of the previous definition.

• By the third property of ΩX , each function f ∈ D is increasing.
• Condition (MV-QU3) may be replaced by

(MV-QU3’) If f, g ∈ D then there exists h ∈ D such that h ≤ f and h ≤ g.

Definition 5.5.4. An MV-uniformity on X is an MV-quasi-uniformity D that also satisfies:

f ∈ D implies f−1 ∈ D.

In this case, the pair (X,D) is said an MV-uniform space.

A sub-basis for an MV-quasi-uniformity D is a nonempty subset B of ΩX which
satisfies (MV-QU5). If B also satisfies (MV-QU3’) then B is called a basis. A base for an
MV-uniformity on X is a base B for an MV-quasi-uniformity which also has the property
that for each f ∈ B, there exists g ∈ B such that g ≤ f−1.

In what follows we shall define the MV-topology induced by an MV-uniformity.
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Definition 5.5.5. Let (X,D) be an MV-uniform space. Define Int : [0, 1]X → [0, 1]X by

Int(β) =
∨
{α ∈ [0, 1]X : f(α) ≤ β for some f ∈ D}.

Proposition 5.5.6. The operator Int is an MV-interior operator.

Proof. 1. Int(1) = 1 because 1 ≤ f(1) for all f ∈ D.
2. Int(β) ≤ β because Int(β) =

∨
{α ∈ [0, 1]X : f(α) ≤ β for some f ∈ D} and α ≤ f(α),

for each α ∈ [0, 1]X and each f ∈ D.
3. Let α, β ∈ [0, 1]X and f ∈ D such that f(α) ≤ β, that is, α ≤ Int(β). Then, by

(MV-QU5) there exists g ∈ D such that g ◦ g ≤ f . So g(g(α)) ≤ f(α) ≤ β. Thus
g(α) ≤ Int(β) which implies α ≤ Int(Int(β)). Hence Int(β) ≤ Int(Int(β)). The other
inequality holds by the item 2. of this proposition, so Int(β) = Int(Int(β)).

4. Let us see that Int(α∧β) = Int(α)∧Int(β). Let γ ∈ [0, 1]X , f ∈ D such that f(γ) ≤ α∧β
then f(γ) ≤ α, β and therefore Int(α ∧ β) ≤ Int(α), Int(β). Thus Int(α ∧ β) ≤ Int(α) ∧
Int(β).
In order to prove Int(α) ∧ Int(β) ≤ Int(α ∧ β), we note that for arbitrary f, g ∈ D and
for arbitrary α, β, γ, δ ∈ [0, 1]X such that f(γ) ≤ α and g(δ) ≤ β, we have

(f ∧ g)(γ ∧ δ) ≤ f(γ) ∧ g(δ) ≤ α ∧ β

This is because f ∧ g is increasing and (f ∧ g)(γ ∧ δ) ≤ (f ∧ g)(γ) = f(γ)∧ g(γ) ≤ f(γ),
and analogously, (f ∧ g)(γ ∧ δ) ≤ (f ∧ g)(δ) ≤ g(δ). Thus

Int(α) ∧ Int(β) =
∨
{γ ∧ δ : γ, δ ∈ [0, 1]X ,∃f, g ∈ D, f(γ) ≤ α, g(δ) ≤ β}

≤
∨
{γ ∧ δ : γ, δ ∈ [0, 1]X ,∃f, g ∈ D, (f ∧ g)(γ ∧ δ) ≤ α ∧ β}

≤
∨
{γ ∈ [0, 1]X : ∃f ∈ D, f(γ) ≤ α ∧ β}

= Int(α ∧ β).

5. For Int(α)� Int(β) ≤ Int(α�β), we note that for each f, g ∈ D and for each α, β, γ, δ ∈
[0, 1]X such that f(γ) ≤ α and g(δ) ≤ β,

(f � g)2(γ � δ) ≤ f(γ)� g(δ) ≤ α� β.

This is because f � g ∈ D and then f � g is increasing. Therefore,

(f � g)(γ � δ) ≤ (f � g)(γ) ≤ f(γ) and (f � g)(γ � δ) ≤ (f � g)(δ) ≤ g(δ).

Thus

Int(α)� Int(β) =
∨
{γ � δ : γ, δ ∈ [0, 1]X ,∃f, g ∈ D, f(γ) ≤ α, g(δ) ≤ β}

≤
∨
{γ � δ : γ, δ ∈ [0, 1]X ,∃f, g ∈ D, (f � g)2(γ � δ) ≤ α� β}

≤
∨
{γ ∈ [0, 1]X : ∃f ∈ D, f(γ) ≤ α� β}

= Int(α� β).

6. Let see that Int(α)⊕ Int(β) ≤ Int(α⊕β). Note that for arbitrary f, g ∈ D, we have that
f � g ∈ D. Then for each α, β, γ, δ ∈ [0, 1]X such that f(γ) ≤ α and g(δ) ≤ β we have
γ ≤ (f � g)(γ) ≤ f(γ) ≤ α and δ ≤ (f � g)(δ) ≤ f(δ) ≤ β. Using the property 4. of ΩX ,
we obtain the inequalities:

γ ⊕ δ ≤ (f � g)(γ ⊕ δ) ≤ (f � g)(γ)⊕ (f � g)(δ) ≤ f(γ)⊕ g(δ) ≤ α⊕ β.
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Thus

Int(α)⊕ Int(β) =
∨
{γ ⊕ δ : γ, δ ∈ [0, 1]X ,∃f, g ∈ D, f(γ) ≤ α, g(δ) ≤ β}

≤
∨
{γ ⊕ δ ∈ [0, 1]X : ∃h ∈ D, h(γ ⊕ δ) ≤ α⊕ β}

≤
∨
{ρ ∈ [0, 1]X : ∃h ∈ D, h(ρ) ≤ α⊕ β}

= Int(α⊕ β).

This completes the proof. ut

Definition 5.5.7. The MV-topology generated by an MV-uniformity D is the MV-topology
generated by the MV-interior operator Int of the previous proposition.

Note that for each f ∈ D we have that f(α) ≥ α for each open α in the MV-topology
generated by the MV-uniformity D.

Definition 5.5.8. Let (X,D) and (Y,E) be MV-quasi-uniform spaces. A map ϕ : X −→ Y
is said to be MV-quasi-uniformly continuous if for every g ∈ E, there exists an f ∈ D such
that f ≤ ϕ−1(g), that is, for α ∈ [0, 1]X , f(α) ≤ ϕ−1(g(ϕ(α))).

Proposition 5.5.9. Every MV-quasi-uniformly continuous function is continuous in the
induced MV-topologies.

Proof. Let (X,D) and (Y,E) be MV-quasi-uniform spaces and let ϕ : X −→ Y be
MV-quasi-uniformly continuous. Let α be an open set in the MV-topology generated by
E. So, α =

∨
{β : g(β) ≤ α for some g ∈ E}. If g(β) ≤ α then there exists f ∈ D such that

f(ϕ−1(β)) ≤ ϕ−1(g(ϕ(ϕ−1(β)))) ≤ ϕ−1(g(β)) ≤ ϕ−1(α).

So, ϕ−1(β) ≤ Int(ϕ−1(α)), and hence∨
{ϕ−1(β) : g(β) ≤ α for some g ∈ E} ≤ Int(ϕ−1(α)).

But ϕ−1(
∨
i∈I βi) =

∨
i∈I ϕ

−1(βi) and hence ϕ−1(α) ≤ Int(ϕ−1(α)). That is, ϕ−1(α) is an
open set in the MV-topology generated by D. Therefore, ϕ is continuous. ut

Now, we will construct an MV-uniform structure on the fuzzy interval F(I) defined in
Section 5.4 in such a way that the MV-topology generated by this MV-uniformity is the
usual MV-topology on F(I).

Definition 5.5.10. For ε > 0, we define

Bε : [0, 1]F(I) −→ [0, 1]F(I)

by Bε(α) = Rt−ε where t = sup{s ∈ R : α ≤ L∗s}. That is, Bε(α) =
∧
{Rs−ε : α ≤ L∗s}.

Lemma 5.5.11. The family {Bε : ε > 0} satisfies the following properties:

1. For each ε > 0, Bε ∈ ΩX
2. B−1ε (α) =

∧
{Ls+ε : α ≤ R∗s}.

3. Bε ◦Bδ ≤ Bε+δ. In particular, Bε ◦Bε ≤ B2ε.

Proof. In this proof we will use some of the properties given in Proposition 5.4.5.

1. Let us verify that {Bε : ε > 0} satisfies the three conditions of ΩX :
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(i) α ≤ Bε(α) because L∗s ≤ Rs−ε for s.
(ii) If αj ≤ L∗sj then for each δ > 0, we have the following implications:

αi ≤ Rsj−δ
⇒
∨
j∈J αj ≤

∨
j∈J Rsj−δ

⇒
∨
j∈J αj ≤ R∧

j∈J sj−δ.

Then
∨
j∈J αj ≤ L∗∧j∈J sj ≤ R∧

j∈J sj−ε implies

Bε(
∨
j∈J

αj) ≤ R∧
j∈J sj−ε =

∨
j∈J

Bε(αj).

The other inequality is trivial.
(iii) We have that Bε(α ⊕ β) = Rt−ε with t = sup{s ∈ R : α ⊕ β ≤ L∗s}. On the

other hand, Bε(α) = Rtα−ε with tα = sup{s ∈ R : α ≤ L∗s} and Bε(β) = Rtβ−ε
with tβ = sup{s ∈ R : β ≤ L∗s}. Then Bε(α) ⊕ Bε(β) = Rtα−ε ⊕ Rtβ−ε. Now, as
tα, tβ ≥ t then tα − ε, tβ − ε ≥ t − ε. Therefore, Rtα−ε, Rtβ−ε ≥ Rt−ε and then
Rtα−ε ⊕Rtβ−ε ≥ 2Rt−ε ≥ Rt−ε. That is

Bε(α⊕ β) ≤ Bε(α)⊕Bε(β).

2. B−1ε (α) =
∧
{β : Bε(β

∗) ≤ α∗}
=
∧
{Lt : Bε(L

∗
t ) ≤ α∗}

=
∧
{Lt : Rt−ε ≤ α∗}

=
∧
{Lt+ε : α ≤ R∗t }

= Lt+ε where t = inf{s : α ≤ R∗s}
3. Bε(Bδ(α)) = Bε(Rt−δ) where t = sup{s : α ≤ L∗s}

= Rt−δ−ε
= Bε+δ = Rt−δ−ε.

ut

Theorem 5.5.12. The set {Bε, B−1ε : ε > 0} is a sub-basis for an MV-uniformity on
F(I). The MV-topology generated by the MV-uniformity is the usual MV-topology. This
MV-uniformity is called the usual MV-uniformity for the usual MV-topology on F(I).

Proof. By Lemma 5.5.11, {Bε : ε > 0} is a subbase for an MV-quasi-uniformity. So,
{Bε, B−1ε : ε > 0} is a subbase for an MV-uniformity D. Besides, as Bε(α) = Rt and
B−1ε (α) = Ls, for some t, s, then the MV-topology generated by D is the usual MV-topology
on F(I). ut

Theorem 5.5.13. Let (X,D) be an MV-uniform space and let f ∈ D. If f(α) ≤ β, then
there exists a uniformly continuous function ϕ : X −→ F(I) such that for each x ∈ X,

α(x) ≤ ϕ(x)(1−) ≤ ϕ(x)(0+) ≤ β(x).

Proof. We construct fuzzy sets {γt : t ∈ R} ⊆ [0, 1]X such that

(i) γt = 1 for t < 0,
(ii) γt = 0 for t > 1,
(iii) γ0 = β,
(iv) γ1 = α,
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and symmetric elements {fε : ε > 0} of the MV-uniformity such that fε(γt) ≤ γt−ε, for
t ∈ R. Since fε is symmetric we have that fε(γ

∗
t ) = γ∗r+ε. Now, we define ϕ : X −→ F(I) by

ϕ(x)(t) = γt(x). We observe that ϕ is well defined and for each x ∈ X,

α(x) ≤ ϕ(x)(1−) ≤ ϕ(x)(0+) ≤ β(x).

We show that ϕ is uniformly continuous. First, note that ϕ−1(Rt) =
∨
s>t γs and ϕ−1(L∗t ) =∧

s<t γs. Hence
fε(ϕ

−1(L∗t )) ≤ fε(γt−δ) for any δ > 0
≤ γt−δ−ε
≤
∨
s>t γs−2δ−ε

≤ ϕ−1(Bε+2δ(L
∗
t )). Letting δ = 1

2ε, we have that fε ≤ ϕ−1(B2ε). Similarly, fε ≤ ϕ−1(B∗2ε)
and so ϕ is uniformly continuous. ut

Definition 5.5.14. An MV-topological space (X, τ) is completely regular if for each α ∈ τ
there are a family of fuzzy sets {γi : i ∈ I} and a family of maps {fi : X −→ F(I) | i ∈ I}
such that

∨
i∈I γi = α and

γi(x) ≤ fi(x)(1−) ≤ fi(x)(0+) ≤ α(x)

for all i ∈ I and x ∈ X.

Corollary 5.5.15. Let (X,D) be an MV-uniform space and (X, τ) be the MV-topological
space such that τ is the MV-topology generated by D. Then (X, τ) is completely regular.

Proof. It is enough to apply the previous theorem and to observe that for each α ∈ τ ,
α =

∨
{γ : f(γ) ≤ α for some f ∈ D}. ut
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Sheaf Representation

In this chapter, we study a generalisation of the concept of sheaf in the context of
MV-topological spaces. The main definitions, indeed, are suitable adaptations from the
classical theory of sheaves.

Besides the basic notions, we use MV-sheaves in order to represent a particular class of
MV-algebras in the wake of Filipoiu and Georgescu’s representation for MV-algebras. In
that case, any MV-algebra is represented as an algebra of global section of a sheaf over
the maximal spectrum of the algebra and whose stalks are local MV-algebras [18]. Our
aim is to represent the whole semisimple skeleton of the given algebra only by means of
the MV-topology, while the stalks should carry just the “non-semisimple (or infinitesimal)
information” of the elements of the algebra. Unfortunately, this is not possible for any
MV-algebra, and therefore we must restrict to the class of MV-algebras for which certain
quotients have retractive radical [12]. We shall make use also of results presented by
Diaconescu, Flaminio, and Leustean in [10].

6.1 MV-presheaves

Let (X, τ) be an MV-topological space. The poset of open fuzzy subsets τ ⊆ [0, 1]X , with
the fuzzy inclusion ≤, can be viewed as a category in the usual manner, namely, τ is the
object class and, for all α, β ∈ τ , there is exactly one morphism α −→ β if α ≤ β, there are
none otherwise.

Definition 6.1.1. Let (X, τ) be an MV-topological space and let C be a category (of
algebras). An MV-presheaf of Ob(C) on X is a contravariant functor F : τ −→ C, that
is:

(i) for each fuzzy open set α in τ , F (α) is an object of C, called the set of sections of F
over α;

(ii) for each pair of fuzzy open sets β ≤ α in τ , the image of the morphism β −→ α is the
so-called restriction map ραβ : F (α) −→ F (β) with the following properties:
a) ραα = idα, for all α;
b) ραγ = ρβγ ◦ ραβ , whenever γ ≤ β ≤ α in τ .

Definition 6.1.2. Let F and G be MV-presheaves of Ob(C) over (X, τ). A morphism of
MV-presheaves from F to G is a natural transformation f : F =⇒ G, that is, a family
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{f(α) : F (α) −→ G(α)}α∈τ such that, whenever β ≤ α are open fuzzy sets in τ , the
diagram

F (α)
f(α) //

ραβ

��

G(α)

ρ′αβ
��

F (β)
f(β) // G(β)

commutes.

Example 6.1.3. 1. Let A be a fixed object in the category C and (X, τX) be an MV-space.
We define the constant MV-presheaf AX : τX −→ C on (X, τX), by setting:
AX(α) = A for all α in τX , and
ραβ = idA : AX(α) −→ AX(β) for β ≤ α in τX .

2. Let (X, τX) and (Y, τY ) be MV-topological spaces. Let us consider the following
MV-presheaf CY : τX → Set, defined by

CY (α) = {f : supp(α) −→ Y | f is continuous},

with ραβ : CY (α) −→ CY (β) such that ραβ(f) = f � supp(β) for β ≤ α in τX . Note that
supp(β) ⊆ supp(α) if β ≤ α.

Definition 6.1.4. A directed set I is a set with a pre-order ≤ which satisfies the following:

(a) for all i, j ∈ I, there exists k ∈ I such that i ≤ k and j ≤ k.

A direct system of sets indexed by a directed set I is a family {αi}i ∈ I of sets together
with, for each i ≤ j, a map of sets ρij : αi −→ αj , satisfying

(b) For all i ∈ I, ρij = idαi ;
(c) For all i, j, k ∈ I, i ≤ j ≤ k implies ρik = ρjk ◦ ρij .

Let F be an MV-presheaf of Ob(C) over an MV-topological space (X, τ) and fix x ∈ X.
Then F (α), with α running through all the fuzzy open sets such that x ∈ supp(α), form a
direct system with maps ραβ : F (α) −→ F (β), whenever β ≤ α, and x ∈ supp(β) ⊆ supp(α).

Definition 6.1.5. The MV-stalk Fx of F at x is

lim
x∈supp(α)

F (α).

This comes equipped with maps F (α) −→ Fx such that s 7−→ sx whenever x ∈ supp(α) for
α ∈ τ . The members of Fx are also called germs (of sections of F ).

6.2 MV-sheaves

Definition 6.2.1. An MV-presheaf of sets over the MV-topological space (X, τX) satisfying
the following two conditions is called an MV-sheaf of Ob(C).

1. If α is a fuzzy open set of X and the family {αi}i∈I ⊆ [0, 1]X is an open covering of α,
i.e., α =

∨
i∈I αi, and s, s′ ∈ F (α) are two sections of F such that for all i ∈ I

ρααi(s) = ρααi(s
′)

then s = s′.
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2. If α is a fuzzy open set of X and the family {αi}i∈I ⊆ [0, 1]X is an open covering of α;
and if there is a family {si}i∈I of sections of F with si ∈ F (αi) for all i ∈ I, such that
for all i, j ∈ I

ραiαi∧αj (si) = ρ
αj
αi∧αj (sj)

then there is s ∈ F (α) such that for all i ∈ I

ρααi(s) = si.

In other words, if the system (si)i∈I is given on a covering and is consistent on all of the
overlaps, then it comes from a section over all of the α’s.

Definition 6.2.2. If F,G are MV-sheaves of Ob(C) and f : F =⇒ G is an MV-presheaf
morphism, we also call f a morphism of MV-sheaves.

Example 6.2.3. The MV-presheaf CY , described in the Example 6.1.3, is an MV-sheaf. Let
us see that CY satisfies the two conditions of the definition of MV-sheaf.

Let α be a fuzzy open set of X and let {αi}i∈I ⊆ [0, 1]X be an open covering of α, i.e.,
α =

∨
i∈I αi,

1. let f, f ′ ∈ CY (α) be two sections of CY such that for all i ∈ I,

ρααi(f) = ρααi(f
′),

that is,
f � supp(αi) = f ′ � supp(αi)

where f, f ′ : supp(α)→ Y .
Note that

⋃
i∈I supp(αi) = supp(α) because α =

∨
i∈I αi. Let us see that f = f ′.

If x ∈ supp(α), then there exists i ∈ I such that x ∈ supp(αi), so

f(x) = f � supp(αi)(x) = f ′| supp(αi)(x) = f ′(x)

then f = f ′.
2. For the second condition, suppose that there is a family {fi}i∈I of sections of CY with
fi ∈ CY (αi) for all i ∈ I, such that for all i, j ∈ I

ραiαi∧αj (fi) = ρ
αj
αi∧αj (fj)

We define f :=
⋃
i∈I fi : supp(α) −→ Y by f(x) = fi(x) if x ∈ supp(αi) = dom(fi).

We know that supp(α) =
⋃
i∈I supp(αi), then f is well defined because for all i, j ∈ I,

x ∈ supp(αi) ∩ supp(αj) iff x ∈ supp(αi ∧ αj), and by hypothesis

fi � supp(αi ∧ αj)(x) = fj � supp(αi ∧ αj)(x)

where fi : supp(αi) −→ Y and fj : supp(αj) −→ Y . It is clear that f � supp(αi) = fi,
for each i ∈ I.
Now, let us prove that f is continuous.
Let γ ∈ τY , and let us prove that γ ◦ f ∈ τsupp(α). For each i ∈ I, γ ◦ fi ∈ τsupp(αi), i.e.,
γ ◦ fi = β ∧ supp(αi) with β ∈ τX . As supp(αi) = supp(αi) ∧ supp(α), then γ ◦ fi =
β∧ supp(αi)∧ supp(α). Thus, for each i ∈ I, γ ◦fi ∈ τsupp(α) because β∧ supp(αi) ∈ τX .
Therefore, γ ◦ f =

∨
i∈I(γ ◦ fi) ∈ τsupp(α).
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Definition 6.2.4. Let (X, τX) be an MV-topological space. An MV-sheaf space over X is
a triple (E, p,X) where (E, τE) is an MV-topological space and p : E −→ X is a local
MV-homeomorphism, that is, p is continuous and, for all x ∈ E, there exists an open fuzzy
set α ∈ τE such that α(x) > 0 and an open fuzzy set β ∈ τX such that p � supp(α) :
supp(α) −→ supp(β) is an MV-homeomorphism.

A morphism of MV-sheaf spaces over X, f : (E, p,X) −→ (E′, p′, X), is a continuous map
f : E −→ E′ such that p = p′ ◦ f .

In what follows we will see how to construct an MV-sheaf of sets from an MV-sheaf space.
Construction: For each MV-sheaf space E over X we can construct an MV-sheaf of sets

ΓE (the sheaf of sections of E) in such a way that a morphism f : E −→ E′ of MV-sheaf
spaces over X gives rise to a morphism Γf : ΓE −→ ΓE′ of MV-sheaves.

The MV-sheaf of sections of (E, p,X) is constructed as following: We let, for α in τX ,

Γ (α,E) = {f : supp(α)→ E|f is continuous and p ◦ f = idsupp(α)}

and then the MV-presheaf ΓE : τX −→ SET such that α 7→ Γ (α,E) is an MV-sheaf.
Given a morphism f : E −→ E′ of sheaf spaces, we have the morphism of MV-sheaves

Γf : ΓE −→ ΓE′ such that for each α in τX , the map Γ (α,E) −→ Γ (α,E′) is such that
σ 7−→ f ◦ σ.

Lemma 6.2.5. Let (E, p,X) be an MV-sheaf space over (X, τX). Then

(a) p is an open map;
(b) if α is a fuzzy open in X, and σ ∈ Γ (α,E), then σ→(α) is open in E; furthermore fuzzy

sets of this form give a basis for the MV-topology of E;
(c) if

E
ϕ //

p

  

E′

p′

��
X

is a commutative diagram of maps, and p, p′, are local MV-homeomorphisms, then ϕ is
continuous iff ϕ is open iff ϕ is local MV-homeomorphism.

6.3 MV-sheaf Representation

In this section, we are going to represent a particular class of MV-algebras by an MV-sheaf.
Before that, we shall recall some necessary results.

Let (MaxA, τA) be the MV-topological space defined in [42] and recalled in Section 4.5
of this work. Let us see some of its properties and its relation with the topological space
MaxA with the Zariski topology. The basic opens of MaxA denoted by R(a) with a ∈ A,
were defined in Section 2.4.

Proposition 6.3.1. Let A be an MV-algebra and (MaxA, τA) be the associated

MV-topological space. For each basic fuzzy open b̂ ∈ τA, we have that R(b) = supp(̂b).
So, each Zariski basic open R(b) on MaxA is a fuzzy open of τA, i.e., R(b) ∈ τA for each
b ∈ A.
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Proof. In fact, for each M ∈ MaxA, b̂(M) = b
M = 0 if and only if b ∈M . That is, M ∈ supp b̂

iff b̂(M) = b
M > 0 iff b /∈M iff M ∈ R(b). ut

Proposition 6.3.2. For each a ∈ A, the set H(a) = {M ∈ MaxA : a ∈ OM} is an element
of τA.

Proof. We will prove that H(a) is the support of a fuzzy open of τA. If M ∈ H(a) then
a ∈ OM , so by Proposition 2.3.17 there exists bM /∈ M such that a ∧ bM = 0. That is,

M ∈ R(bM ) = supp(b̂M ). Let us see that

H(a) = supp(
∨

M∈H(a)

b̂M ).

In fact, if N ∈ H(a) then there exists bN such that bN /∈ N such that a ∧ bN = 0,

then b̂N (N) > 0, and therefore (
∨
M∈H(a) b̂M )(N) =

∨
M∈H(a) b̂M (N) > 0, i.e, N ∈

supp(
∨
M∈H(a) b̂M ). For the other inclusion, if (

∨
M∈H(a) b̂M )(N) > 0 then there exists

b̂M with M ∈ H(a) such that b̂M (N) > 0, i.e., bM /∈ N and a ∧ bM = 0, then a ∈ ON and
therefore N ∈ H(a). ut

In the following we will to represent an MV-algebra A through an MV-sheaf.
Let A be an MV-algebra. Let M be a maximal ideal of A. Suppose that A/OM has

retractive radical for every M ∈ MaxA. Then, for each M ∈ MaxA:

(i) A/OM is a lexicographic MV-algebra (by Theorem 2.8.7).
(ii) A/M ' (A/OM )/(M/OM ).
(iii) (M/OM ,⊕,0) is a lattice ordered cancellative monoid.

We construct, in the usual manner, the generated lattice ordered group from (M/OM ,⊕,0)
which we denote by G(M/OM ).

Let’s consider the following functors.

1. Let (X, τ) be an MV-topological space and (X,B(τ)) its corresponding skeleton
topological space defined in [42], where B(τ) = τ ∩ {0, 1}X . As usual, we consider the
posets τ and B(τ) with their natural order as categories, that is, the objects are the
elements of τ and B(τ) respectively, and the morphisms are given by α ≤ β in τ and
U ⊆ V in B(τ), respectively. The following maps obviously define a covariant functor:

Sk : τ −→ B(τ)
α 7−→ supp(α)

For α ≤ β, we have the unique morphism α
f−→ β in τ , and its corresponding morphism

supp(α)
Sk(f)−→ supp(β) in B(τ) is also uniquely determined, because α ≤ β implies

supp(α) ⊆ supp(β).
2. Recalling Filipoiu and Georgescu’s representation [18], which we recalled in Section

2.9, we have that each MV-algebra A is representable as the MV-algebra of global
sections of a sheaf whose stalks are local MV-algebras and the base space is the space of
maximal ideals of A with the Zariski topology, O(MaxA). The associated sheaf in that
representation is the following contravariant functor:

F : O(MaxA) −→ MV
U 7−→ A/OU

,
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where OU =
⋂
M∈U OM , and the unique morphism between two open sets (if it exists)

is sent to the natural projection between the corresponding quotient algebras.
3. We recall the category ALG whose objects are Abelian `-groups and whose morphisms

are `-group homomorphisms. The following mapping defines a functor from the category
of MV-algebras to the category ALG:

G :MV −→ ALG
A 7−→ G(RadA)

,

where G(RadA) is the Abelian `-group generated by the ordered cancellative monoid
(Rad(A),⊕,0). Actually, G(RadA) = D(A) where D is the functor described in Section
2.7 (note that the group D(A) can be constructed for any MV-algebra A, not necessarily
perfect), and the action of the functor on morphisms is exactly the same as for D.

Now, for each α ∈ τ , set Aα := F(supp(α)). We obtain the following presheaf:

H : τ −→ ALG
α 7−→ G(Rad(Aα))

.

Note that in the construction performed by Filipoiu and Georgescu, the stalks are the local
algebras A/OM , and we have that, for each M ∈ MaxA,

lim
M∈supp(α)

F(supp(α)) = A/OM

Such a limit can be extended to the presheaf H on the category ALG, thus obtaining the
following two limits:

lim
M∈supp(α)

Rad(F(supp(α))) = Rad(A/OM )

and
lim

M∈supp(α)
H(α) = G(Rad(A/OM )).

Since Rad(A/OM ) = M/OM for each M ∈ MaxA, we have an MV-sheaf on ALG where
the stalks are the `-groups G(M/OM ) for each M ∈ MaxA.

If A/OM has retractive radical, then A/OM is a local MV-algebra with retractive radical
and therefore it is lexicographic. By [10, Theorem 4.1] we have that

A/OM ' Γ (H ×lex G, (u, 0))

where
(H,u) ' Γ−1(A/M) and G ' ∆−1(〈M/OM 〉) = G(M/OM ).

Equivalently,
Γ (H,u) ' A/M and 〈M/OM 〉 ' ∆(G).

Now, since A/M is an MV-subalgebra of the standard MV-algebra [0, 1], for each M ∈
MaxA, we have:

A/OM ' Γ (A/M ×lex G(M/OM ), (1, 0)).

So, according to the proof of [10, Theorem 4.1], and with an abuse of notation, we can see
each element a/OM of A/OM in the following way:
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a

OM
=
( a
M
, gaM

)
= (â(M), gaM )

where gaM = ( a
OM
	 a

M )− ( aM 	
a
OM

) ∈ G(M/OM ). Note that

G(M/OM ) = {gaM : a ∈ A,M ∈ MaxA}.

As a consequence of all that we have discussed above, we can define an MV-sheaf
space (HA, π,MaxA) whose total MV-space, HA, will be the disjoint union of stalks
HM = G(M/OM ) and π will be the trivial projection:

HA = {(gaM ,M) : a ∈ A,M ∈ MaxA},

and
π : HA −→ MaxA

(gaM ,M) 7−→ M
.

Now for each a ∈ A we define:

ã : MaxA −→ HA

M 7−→ (gaM ,M)

It is clear that (π ◦ ã)(M) = π(gaM ,M) = M for all M ∈ MaxA.

As usual in classical sheaf representations, we set {ã→(̂b)}a,b∈A being a subbase for an
MV-topology on HA, where

ã→(̂b)(gcM ,M) =
∨

ã(N)=(gcM ,M)

b̂(N) =

{
b̂(M) if gaM = gcM
0 otherwise

.

Let us see that αa,b := {M ∈ MaxA : gaM = gbM} is an element of O(MaxA). If gaM = gbM
we have the following cases:

1. If a
OM

= b
OM

then
(
a
M , gaM

)
=
(
b
M , gbM

)
, and therefore a

M = b
M and therefore

αa,b = H(d(a, b)) ∈ O(MaxA).

2. If a
OM
6= b

OM
then necessarily a

M 6=
b
M . That is a

M < b
M or b

M > a
M . Since A/OM has

a lexicographic order, this implies that a
OM

< b
OM

or b
OM

> a
OM

. Therefore there exists

c ∈ A such that a
OM

= b⊕c
OM

or a⊕c
OM

= b
OM

. Hence

αa,b =
⋃
c∈A{M ∈ MaxA : a

OM
= b⊕c

OM
} ∪

⋃
c∈A{M ∈ MaxA : a⊕cOM

= b
OM
} =

=
⋃
c∈AH(d(a, b⊕ c)) ∪

⋃
c∈AH(d(a⊕ c, b)) ∈ O(MaxA)

.

In fact, we have proved that each αa,b is an element of τA. This property guarantees that
(HA, π,MaxA) is indeed an MV-sheaf space.

The MV-sheaf defined above is an MV-sheaf of lattice-ordered Abelian groups. Next, we
want to obtain a representation of the MV-algebra A through this MV-sheaf.

First, let us consider for each a ∈ A, the function ã restricting the codomain HA to its
image Im(ã) = {(gaM ,M) : M ∈ MaxA}. Actually, the new ã acts exactly like the previous
one on the elements of the domain, so we shall use the same notation for them. Then, we
have the bijective maps:

ã : MaxA −→ Im(ã)
M 7−→ (gaM ,M)
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and for each basic open set â in MaxA we have the open fuzzy set ã→(â) in HA satisfying

ã→(â)(gaM ,M) =
a

M
, for each (gaM ,M) ∈ Im(ã).

Now, let us consider the inverse of the graphic of ã→(â) given by

a := G−1(ã→(â)) =
{( a

M
, gaM

)}
M∈MaxA

Definition 6.3.3. Let A = {a : a ∈ A} . We define the structure (A,⊕,∗ , 0) with the
operations and the constant defined as follow:

for each a, b ∈ A,

1. 0 := G−1(0̃→(0̂))

2. a⊕ b := G−1(ã⊕ b
→

(â⊕ b))
3. a∗ := G−1(ã∗

→
(â∗)).

Theorem 6.3.4. (A,⊕,∗ , 0) is an MV-algebra.

Proof. Let us see that A satisfies all properties of the Definition 2.0.1.

MV1) (A,⊕, 0) is a commutative monoid:
(i)

(a⊕ b)⊕ c =

{(
(a⊕ b)⊕ c

M
, g((a⊕b)⊕c)M

)}
M∈MaxA

=

=

{(
a⊕ (b⊕ c)

M
, g(a⊕(b⊕c))M

)}
M∈MaxA

= a⊕ (b⊕ c)

(ii)

a⊕ b =

{(
a⊕ b
M

, g(a⊕b)M

)}
M∈MaxA

=

=

{(
b⊕ a
M

, g(b⊕a)M

)}
M∈MaxA

= b⊕ a

(iii)

a⊕ 0 =

{(
a⊕ 0

M
, g(a⊕0)M

)}
M∈MaxA

=
{( a

M
, gaM

)}
M∈MaxA

= a

MV2)

(a∗)∗ =

({(
a∗

M
, g(a∗)M

)}
M∈MaxA

)∗
=

{(
(a∗)∗

M
, g(a∗)∗M

)}
M∈MaxA

=

=
{( a

M
, gaM

)}
M∈MaxA

= a

MV3)

a⊕ 0∗ =
{( a

M
, gaM

)}
M∈MaxA

⊕
{(

0∗

M
, g0∗M

)}
M∈MaxA

=

{(
a⊕ 0∗

M
, g(a⊕0∗)M

)}
M∈MaxA

=

{(
0∗

M
, g0∗M

)}
M∈MaxA

= 0∗.
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MV4)

(a∗ ⊕ b)∗ ⊕ b =

=

{(
(a∗ ⊕ b)∗

M
, g(a∗⊕b)∗M

)}
M∈MaxA

⊕
{(

b

M
, gbM

)}
M∈MaxA

=

{(
(a∗ ⊕ b)∗ ⊕ b

M
, g((a∗⊕b)∗⊕b)M

)}
M∈MaxA

=

{(
(b∗ ⊕ a)∗ ⊕ a

M
, g((b∗⊕a)∗⊕a)M

)}
M∈MaxA

=

{(
(b∗ ⊕ a)∗

M
, g(b∗⊕a)∗M

)}
M∈MaxA

⊕
{( a

M
, gaM

)}
M∈MaxA

= (b∗ ⊕ a)∗ ⊕ a.

ut

Theorem 6.3.5. The MV-algebras A and A are isomorphic.

Proof. We have the natural map Ψ : A −→ A such that a 7−→ a, which preserves the
operations ⊕,∗, and the constant 0. Indeed, by Definition 6.3.3, for each a, b ∈ A, Ψ(a⊕ b) =

G−1(ã⊕ b
→

(â⊕ b)) = a ⊕ b = Ψ(a) ⊕ Ψ(b), and Ψ(a∗) = a∗ = (Ψ(a))∗. Analogously, we
have that Ψ(0) = 0. It is clear that Ψ is a surjection, and Ψ is injective as a consequence of
isomorphism constructed in order to prove the representation theorem [10, theorem 4.1] for
lexicographic MV-algebras. ut





Conclusion

In this thesis, we have developed a big part of the fundamental properties of MV-topological
spaces, and we have shown that these spaces have good mathematical behaviour. In Chapter
4, we have defined basic concepts as interior and closure of a fuzzy set, as well as quotient
and product spaces. In the development of these concepts, the influence of the MV-algebra
structure is self-evident, and we can see how it contributes to characterise these spaces within
the fuzzy topological spaces. As an important fact, we showed that the set of clopen of a
laminated MV-topological space is a Riesz MV-algebra.

In Chapter 5 we have shown the most essential analogous theorems of the classical
topology. For MV-topological spaces, we have obtained a Tychonoff-type theorem; for what
concerns compactness, a Stone-Čech Compactification and an Urysohn-type Lemma. In
these three relevant results we used tools from fuzzy topologies and category theory. In
this chapter, we also showed that the fuzzy unit interval can see as an MV-space and this
fact allows to define normality and complete regularity for MV-topological spaces. In this
direction, we defined a kind of fuzzy uniformity for our spaces, MV-uniformity. All these
concepts and results show that MV-topologies is a good generalisation of classical topologies
and they suggest new possible questions and problems about this topic.

Finally, in Chapter 6 we presented a new kind of sheaves. We generalised the sheaves over
a topological space defining sheaves over an MV-topological space: the MV-sheaves. We
showed that each MV-algebra A such that A/OM is retractive radical, can be represented
by an MV-sheaf.

Without a doubt, the concepts and results shown in this work open new paths to future
investigations in fuzzy topology, MV-sheaves, convergence theory, algebraic MV-topology,
among others. We have only taken a first step in a theory that will develop further in the
coming times.





Conclusiones

En este trabajo hemos desarrollado gran parte de las propiedades fundamentales de
los espacios MV-topológicos y hemos mostrado que estos espacios tienen un buen
comportamiento matemático. En el Caṕıtulo 4, hemos definido y discutido conceptos básicos
como interior y clausura de un conjunto fuzzy, aśı como espacio producto y espacio cociente.
Definimos también operadores MV-interior y MV-clausura, y mostramos que satisfacen las
propiedades topológicas naturales. En el desarrollo de estos conceptos, la influencia de la
estructura de MV-álgebra es autoevidente, y es claro cómo esta contribuye a caracterizar los
MV-espacios dentro de los espacios topológicos fuzzy. Como un hecho relevante, mostramos
que el conjunto de clopens de MV-espacios laminados es una MV-álgebra de Riesz.

En el Caṕıtulo 5 mostramos los más importantes teoremas análogos de la topoloǵıa
clásica. Para los espacios MV-topológicos, hemos obtenido un teorema tipo-Tychonoff, una
compactificación Stone-Čech y un Lemma tipo-Urysohn. Destacamos que en estos tres
resultados, usamos herramientas de topoloǵıas fuzzy, aśı como herramientas algebraicas y
teoŕıa de categoŕıas. En este caṕıtulo también mostramos que el intervalo unidad fuzzy puede
verse como un MV-espacio y este hecho permite definir normalidad y regularidad completa
para espacios MV-topológicos. En esta dirección, definimos también un tipo de uniformidad
fuzzy, para nuestros espacios, que hemos llamado MV-uniformidad. Todos estos conceptos
y resultados indican que las MV-topoloǵıas son una buena generalización de las topoloǵıas
clásicas y esto sugiere nuevas preguntas y problemas acerca de este tópico.

Finalmente, en el Caṕıtulo 6 generalizamos el concepto de haz sobre espacio topológico,
definiendo haces sobre espacios MV-topológicos, los MV-haces. Con este concepto,
mostramos que cada MV-álgebra A tal que A/OM tiene radical retractivo puede ser
representada por un MV-haz. Esta representación separa la parte real y la parte infinitesimal
de la MV-álgebra A, y la parte real está codificada por los elementos del MV-espacio base.

Sin duda alguna, los conceptos y resultados mostrados en este trabajo abren nuevos
caminos a futuras investigaciones en topoloǵıa fuzzy, MV-haces, teoŕıa de convergencia,
MV-topoloǵıa algebraica, entre otras. Sólo hemos dado un primer paso en una teoŕıa que se
desarollará aún más en los próximos tiempos.
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