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Abstract

During the las decades, the silicon-based semiconductor industry has enabled higher
performance per cost of integrated circuits due to the ability of nearly doubling the
amount of transistors per chip every two years, however, this has resulted in overheat-
ing issues and fundamental manufacturing problems that are very difficult to solve.
Therefore, Dirac materials (DMs), such as graphene and topological insulators (TIs),
are being extensively investigated as possible candidates for replacing silicon-channel
devices in the next-generation integrated circuits, due to their attractive ultrahigh
carrier mobility and possibility of quantum effects that may be useful for electronic
applications. This requires to study the physical principles of such nanostructures to
effectively predict the quantum transport behavior of possible devices. The aim of this
work is to explore the physical properties of Dirac material-based nanostructures that
could be used for novel memory and logic devices, by using tight-binding (TB) and
density function theory (DFT) methods combined with the non-equilibrium function
(NEGF) formulation.

Outline of the Thesis

The general background of the materials that could be used in nanoelectronic devices
is introduced in chapter 1. Then, chapter 2 presents the NEGF tools that are required
for performing charge and spin transport calculations, while chapter 3 reviews the
different approaches found in the literature for traditional charge transport devices
based on graphene channels, as the initial approach for possible succesors of traditional
integrated circuits technologies. Finally, applications of the studied physical principles
and simulation results are covered in the subsequent chapters, as follows:

1. Spin Hall Effect and Nonlocal Resistance in Adatom-Decorated Graphene
Recent experiments reporting unexpectedly large spin Hall effect (SHE) in graphene
decorated with adatoms have raised a fierce controversy. We apply numerically
exact Kubo and Landauer-Büttiker formulas to realistic models of gold-decorated
disordered graphene (including adatom clustering) to obtain the spin Hall con-
ductivity and spin Hall angle, as well as the nonlocal resistance as a quantity
accessible to experiments. Large spin Hall angles of ∼ 0.1 are obtained at zero-
temperature, but their dependence on adatom clustering differs from the pre-
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dictions of semiclassical transport theories. Furthermore, we find multiple back-
ground contributions to the nonlocal resistance, some of which are unrelated
to the SHE or any other spin-dependent origin, as well as a strong suppression
of the SHE at room temperature. This motivates us to design a multiterminal
graphene geometry which suppresses these background contributions and could,
therefore, quantify the upper limit for spin current generation in two-dimensional
materials.

2. Valley Hall Effect and Nonlocal Resistance in gapped Graphene

The recent observation [1] of nonlocal resistance RNL near the Dirac point (DP) of
multiterminal graphene, aligned on a hexagonal boron nitride (hBN) substrate,
has been interpreted as the consequence of topological valley Hall currents carried
by the Fermi sea states just beneath the bulk gap Eg in the energy spectrum of
graphene opened by the inversion symmetry breaking due to hBN. However, the
valley Hall conductivity σvxy, quantized inside Eg, is not directly measurable.
Conversely, the Landauer-Büttiker formula, as the numerically exact approach
to modeling of nonlocal transport measurements, yields RNL ≡ 0 near the DP for
the same simplistic Hamiltonian of gapped graphene which generates σvxy 6= 0.
We combine ab initio with quantum transport calculations to demonstrate that
graphene-on-hBN wires with zigzag edges host edge states near the DP that were
previously missed in theories based on too simplistic Hamiltonians. Although
such peculiar edge states, whose local density of states never vanishes in the
bulk, exist also in isolated zigzag graphene wires, only in the presence of hBN
their dispersion is modified to generate RNL 6= 0. Concurrently, they resolve the
long-standing puzzle of why the highly insulating state of graphene on hBN is
rarely observed. Thus, we conclude that the observed RNL is unrelated to any
nontrivial topology of gapped Dirac spectra.

3. Tunneling anisotropic magnetoresistance in topological-insulator/metal
interfaces

The control of recently observed spintronic effects [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] in
topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted
by the lack of understanding of band structure and spin texture around their
interfaces. Here we combine density functional theory with Green’s function
techniques to obtain the spectral function at any plane passing through atoms
of Bi2Se3 and Co or Cu layers comprising the interface. In contrast to widely
assumed [12, 13] but thinly tested Dirac cone gapped by the proximity exchange
field spectral function, we find that the Rashba ferromagnetic model describes the
spectral function on the surface of Bi2Se3 in contact with Co near the Fermi level
E0
F , where circular and snowflake-like constant energy contours coexist around

which spin locks to momentum. The remnant of the Dirac cone is hybridized with
evanescent wave functions injected by metallic layers and pushed, due to charge
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transfer from Co or Cu layers, few tenths of eV below E0
F for both Bi2Se3/Co

and Bi2Se3/Cu interfaces while hosting distorted helical spin texture wounding
around a single circle. These features explain recent observation [11] of sensitivity
of spin-to-charge conversion signal at TI/Cu interface to tuning of E0

F . Crucially
for topological spintronics [2, 3, 4, 5, 6, 7, 8, 9, 10, 11], four monolayers of Co
adjacent to Bi2Se3 host spectral functions very different from the bulk metal, as
well as in-plane spin textures (despite Co magnetization being out of plane) due
to proximity spin-orbit coupling injected from Bi2Se3 into Co. We predict that
out-of-plane tunneling anisotropic magnetoresistance in vertical heterostructure
Cu/Bi2Se3/Co, where current flowing perpendicular to its interfaces is modulated
by rotating magnetization from parallel to orthogonal to current flow, can serve
as a sensitive probe of the type of spin texture residing at E0

F .
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1 Introduction

1.1 Overview

Complementary metal–oxide–semiconductor (CMOS) is the most widely used tech-
nology for manufacturing integrated circuits (ICs) and systems. The development of
silicon-based CMOS has allowed significant improvements in the performance of the
electronic circuits within the gadgets and appliances we use every day; however, the
most recent reports of the International Technology Guide for Semiconductors (ITRS)
warn that typical horizontal dimensional scaling of CMOS technology is reaching fun-
damental limits [14]. This means it will be impossible to continue decreasing the size
of the transistors using the same technological approaches that have been used in the
industry for decades, which allowed to roughly double the number of transistors per
chip every two years (see Figure 1.1) [15]. Therefore, researchers are looking for alter-
natives to silicon-based CMOS technology that could enable the production of smaller
and faster circuits. This should make it possible to design electronic devices with more
integrated functions and higher capabilities.
The ITRS suggests extending the functionality of CMOS integrating heterogeneous
material technologies, such as germanium compounds, III-V semiconductor materials
and carbon materials; implementing low-power transistors with new operating prin-
ciples, such as tunneling or spin; and implementing vertical interconnections for 3D
integration. This may partially or completely replace silicon in the long term (15-20
years) [16] for improving electronic systems, whose cost and performance are strongly
correlated to dimensional and functional scaling (ability to improve size, power, speed
or cost without loosing functionality); thus, this is likely to continue driving the semi-
conductor industry [14], even though there is no obvious succesor to silicon-based
technology nowadays [15].
In this context, nanotechnology (manipulation of matter in nanometer dimensions) is
especially interesting for scientists around the world because of its unlimited potential.
This has encouraged enterprises, universities, research centers, military and national
governments to increase their investments in the development of highly-technological
tools and products that may solve the difficulties and limitations that current tech-
nologies have. Particularly, one of the hot topics for research in nanoelectronics is to
identify alternatives to silicon-based devices that may become the new generation of
ICs.
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Chapter 1 Introduction
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Figure 1.1: Number of transistors per chip and clock speed. Adapted from [15].

The physical properties of graphene and other Dirac materials (DMs) are making
them more attractive to the research community, creating big speculations among
scientist, but favoring an increasing progress in the field. Therefore, nanostructured
devices based on DMs are being studied, modeled and simulated in order to find
out the viability of building complex digital circuits that may outperform or improve
current silicon-based technologies. For instance, logic circuits with carbon nanotubes
were proposed as an alternative to silicon CMOS due to the possibility of obtaining
higher performance devices with significantly improved energy efficiency and operation
frequency.
Shulaker and co-workers implemented a programmable computer whose logic circuits
used carbon nanotube (CNT) transistors and has the capability to concurrently run
programs stored in memory; however, its instruction and data memories are outside
the chip and their circuits are not made with carbon nanotubes [17]. Moreover, Pei and
colleagues demonstrated a modular unit that can perform 16 different logic functions
and an 8-bit bidirectional constructed with 6 individualized semiconducting CNTs [18].
Even though their performance is still not comparable to state-of-the-art ICs, these
are the most complex and robust carbon-based computational systems up to date.
For this reason it is important to consider other nanostructures that could be used to
develop reliable systems with this complexity, such as graphene and other DMs.
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1.2 Dirac Materials

1.2 Dirac Materials

DMs are characterized by a linear energy band dispersion (E±) in the momentum
space (k) close to a Dirac point, as in Equation 1.1, where ~ is the reduced Planck
constant and ~vF is the Fermi velocity. Near such Dirac points, low-energy fermionic
excitations behave as massless Dirac particles, allowing ultrahigh carrier mobility and
Quantum Hall effects [19, 20]. Figure 1.2 shows typical Dirac cones obtained from this
linear band dispersion, which can result from different symmetries, according to the
type of material: time-reversal symmetry in topological insulators (TIs) and sublattice
symmetry in graphene [19].

E± (δk) = ±~vF |δk| (1.1)

Momentum

E
ne
rg
y

Figure 1.2: Typical linear band dispersion in Dirac materials showing Dirac cones.

1.2.1 Graphene

Graphene is a two-dimensional (2D) atomic-scale honeycomb lattice made of carbon
atoms that has higher carrier mobilities than Si and other semiconducting materials
(up to 106 cm2V−1s−1 in suspended graphene [21]). It is considered the basis structure
of graphitic materials since it can be used to form structures of zero, one, or three
dimensions (0D , 1D and 3D), depending on whether these are greater or less than
100 nm (see Figure 1.3). Therefore, graphene can be wrapped to form fullerenes (0D
structures), rolled to form nanotubes (1D structures) or vertically stacked to form
graphite (3D structure) [22].
Due to its remarkable electrical and mechanical properties, such as high carrier mo-
bility, large conductivity, high chemical and thermal stability, high transparency and
flexibility, graphene may be suitable for the next-generation electronic devices [22, 23].
The energy-momentum dispersion of graphene (see Figure 1.4) exemplifies the general
characteristics observed in Figure 1.2, showing that π and π∗ bands are totally filled
and empty, respectively, and touch at the K and K’ points, also referred as Dirac
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Chapter 1 Introduction

Figure 1.3: Graphene as a building block for graphitic materials. (a) Buckminster-
fullerene (bucky-ball). (b) Carbon nanotube. (c) Graphite. Adapted from [22].

points. Near these points, both bands are approximately linear and form two Dirac
cones [24, 25].
As seen in Figure 1.4, large-area graphene is a semi-metal with zero bandgap. This
causes very low on/off current ratios (Ion/Ioff ) when it is used as a transistor channel
material in typical field-effect transistors (FETs) because the device cannot be switched
off. This represents a major drawback in digital applications, since it is expected that
commercial digital devices have very low leakage current when being in off state,
similar to that of CMOS technology. Consequently, one of the challenges of graphene-
based devices is to reduce the off-state leakage current and improve the Ion/Ioff ratios
achieved so far (typically 1 or 2 orders of magnitude) for realistic applications [26].
Nonetheless, graphene can be treated to open up a useful bandgap; thus, researchers
have reported the following approaches for bandgap engineering:

1. Forming graphene nanoribbons (GNRs) by constraining large-area graphene in
one dimension [27],

2. Biasing bilayer graphene [28, 29],
3. Patterning graphene nanomeshes (GNMs) [30, 31, 32, 33, 34],
4. Applying strain [35, 36],
5. Applying chemical modifications to graphene [37, 38].

10



1.2 Dirac Materials
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Figure 1.4: Energy-momentum dispersion of infinite graphene. The valence and con-
duction bands touch at six discrete points, often referred as Dirac points.

These approaches for tuning the electronic properties of graphene and bandgap engi-
neering have been extensively discussed in [39], [26] and [40].

1.2.1.1 Graphene nanoribbons

The properties of GNRs highly depend on their size and edge shape, which can be
zigzag (ZGNR) or armchair (AGNR) [27]. Since GNRs are considered periodic across
their length, they are usually labeled as N-AGNR and N-ZGNR, where N is the number
of carbon atoms along its width. Figure 1.5 shows the atomic structure of a 10-AGNR
and a 5-ZGNR.

(a)

N =

Armchair edge

10
9

8
7
6
5
4
3
2
1

(b)
Zigzag edgeN = 5

4

3

2

1

Figure 1.5: Atomic structure of armchair and zigzag GNRs. (a) 10-AGNR. (b) 5-
ZGNR.

Tight-binding (TB) calculations without spin degree of freedom show that ZGNRs and

11



Chapter 1 Introduction

AGNRs with N = 3p + 2, where p is an integer number, are metallic, while AGNRs
with N = 3p or N = 3p+ 1 exhibit semiconducting characteristics and might be used
as the channel region in FET devices [41]. However, when spin degree of freedom is
included in calculations, ZGNRs have a bandgap inversely proportional to the width
due to energy splitting from spin-polarized edge states [42, 43]. Moreover, ab-initio
calculations of AGNRs show that all families are semiconducting, but N = 3p+ 2 has
the smallest bandgap [39].
Experiments at room temperature have shown that narrow ZGNRs (less than 7-nm-
wide) are antiferromagnetic semiconductors with bandgaps of ~200-300 meV, while
wider ZGNRs have ferromagnetic (metallic) behavior with parallel-aligned spin states
at both edges [44]. Furthermore, different processes have been used to fabricate narrow
GNRs (with widths below 20 nm and down to 1.4 nm) with semiconductor properties
in all cases [45, 46, 47, 48, 49], where GNRs with predominant zigzag edges have smaller
bandgap than GNRs with similar width, but predominant armchair edges [50]. Also,
researchers have probed the inverse relation between the width of the GNR and its
bandgap, that is larger than 0.5 eV for the narrowest ribbons [48] and independent of
crystallographic direction [45].
Similar to conventional semiconductors, it has been demonstrated that GNRs with
bigger bandgaps have smaller carrier mobilities [23]. There is evidence that devices
with bandgaps around 0.2-0.3 eV would require nanoribbons whose widths are less than
5 nm [41]. This constitutes a notorious disadvantage of opening a bandgap in graphene,
since the carrier mobility can be reduced in more than two orders of magnitude when
reaching bandgaps larger than 0.5 eV, which is required to obtain Ion/Ioff ratios in the
order of 104-107 [23, 51]. Carrier mobility of graphene is frequently stated as its best
advantage, and recent studies have demonstrated that the mobility and performance
of a GNRFET device can be improved by uniformly doping the GNR, as stated in [52].
Several reviews present comprehensive summaries of graphene and GNR fabrication
techniques, defects, electronic, magnetic, mechanical and optical properties, and sim-
ulation frameworks for modeling nanoelectronic devices [39, 26, 40, 53, 16] and, from
the applications point of view, we summarize in Tab. Table 3.2 both top-down and
bottom-up techniques that have been used for manufacturing large area graphene and
GNRs with their advantages and disadvantages. Usually, the manufacturing strategies
are based on simple and cost-effective methods, but the challenge is to effectively im-
plement the laboratory procedures in the large-scale [54, 40] and prepare GNRs with
high aspect ratios (length/width) for device fabrication [55]. The problem of graphene-
based applications is that the remarkable properties of graphene have been observed
mostly in research laboratories, but realistic applications require industrial large-scale
production of samples with performance as good as the obtained on the highest-quality
samples [56]. Structurally perfect GNRs could also allow testing of novel physical and
device concepts by the production of clean quantum wires, as presented in [57]. Fur-
thermore, graphene for nanoelectronic devices requires the highest quality grade (high
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1.2 Dirac Materials

crystallinity and low defect density), which is expected to need more developing time
for achieving significant progress [16].

1.2.1.2 Graphene nanomeshes

As previously discussed, GNRs are more difficult to fabricate and are very sensitive to
impurities, edge definition (different width among the ribbon) and orientation (arm-
chair or zigzag). The challenge is to be able to fabricate these structures with controlled
precision and obtain devices with reproducible properties under ambient conditions
[22].
GNMs are basically large graphene sheets patterned with 2D periodical nanoholes
that can be seen as a network of GNRs (see Figure 1.6) [31]. The structure and its
electronic properties vary according to the size and shape of the nanohole, neck width
(shortest edge-to-edge distance between two neighboring nanoholes) and periodicity
(centre-to-centre distance between two neighboring nanoholes)[31]. Researchers have
demonstrated the viability of bandgap engineering by controlling these parameters
[30, 32, 33, 34]. Moreover, GNM structures with square-shaped holes are usually
described by Nz (the number of carbon atoms in the zigzag-edge side) and Na (the
number of carbon atoms in the armchair-edge side). These structures are considered
to be easier to fabricate and handle with current technologies; then, researchers have
demonstrated the formation of GNMs with neck width down to 7 nm using nanoimprint
lithography [30]. Additionally, block copolymer templates could be used to create
GNMs with features down to 10 nm and higher throughput [58].

Na = 9Nz = 4

Figure 1.6: Atomic structure of a graphene nanomesh with Na = 9 and Nz = 4.

It is desirable to control the periodicity and neck width of the nanoholes independently.
For instance, the nanosphere lithography process described in [59] uses commercial or
self-assembled colloidal microspheres to pattern GNMs, where the periodicity and neck
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Chapter 1 Introduction

width are controlled by the size of the microspheres and the etching time. Narrower
necks are expected to have higher on/off ratios. Increased periodicity (with same neck
width) reduces the opened bandgap, i.e. there is a direct relation between the bandgap
and the number of removed atoms over total atoms, Nremoved/Ntotal [60].
GNM structures may be formed using different hole shapes, which vary according to
the manufacturing techniques under use, but result in similar semiconductor character-
istics. For this reason, researchers have focused on modeling and fabrication of GNMs
with circular [61, 30, 31, 62, 63, 58, 64, 65], squared [33], triangular [66, 67], rhomboid
[67, 32], hexagonal [60, 66] and irregular [64, 34] hole shapes.
Hossain and colleagues studied the electronic transport properties of GNRs with single
nanopores [68]. In their study, the authors use AGNRs with a nanopore in its center,
varying the width of the nanopore while fixing the width of the GNR. Their simulations
indicate better figure of merit ZT (ZT = S2σT/k, where S is the Seebeck coefficient,
σ is the electrical conductance, k is the thermal conductance and T is temperature)
for 3p + 1 AGNRs, particularly for wider nanopores that result in narrower GNRs in
the center of the device.
Nanopores in graphene have also been used for sensing applications. For instance,
BLG with a nanopore was used in [69] for DNA sequencing. By measuring electrical
current directly, the proposed method monitors changes in the I-V characteristics of the
device when different nucleobases are located inside the nanopore; then, by measuring
the changes in the conductance of the device with and without a nucleobase, it is
possible to sequence DNA strands.

1.2.1.3 Chemically-modified graphene

An alternative to fabricate GNRs with well defined edges is to apply chemical modi-
fications to graphene for bandgap engineering. According to Seol and Guo, chemical
modifications, such as hydrogenation and fluorination, alter the sp2 hybridization to
sp3, allowing a bandgap induction of few eV (comparable to GNRs) [37]. They propose
chemically modified nanorods that are formed by hydrogenation or fluorination and
can open a considerable bandgap for the groups Ng = 3p+ 1 and 3p, where Ng is the
number of graphene lines (Na is the number chemically modified graphene lines) and
p is an integer number (see Figure 1.7). This structure can deliver large on-currents
(comparable or larger than silicon devices) because the nanorods form a continuous
2D atomistic layer with uniform edge orientation that can be packed in parallel ar-
rays to obtain larger currents per width; however, the structure needs to be carefully
patterned and properly selected to outperform silicon devices.
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1.2 Dirac Materials

Ng = 9Na = 3

Figure 1.7: Atomic structure of a fluorinated graphene nanorod with Ng = 9 and
Na = 3 [37].

In order to increase the Ion/Ioff ratio of GNR devices, researchers have also ex-
plored hybrid nanoribbons, such as the graphene-hBN device presented in [38] (see
Figure 3.1(r)). In this case, the authors use a hBN channel sandwiched by two GNRs
and connected to metallic AGNR leads. By applying a transverse electric field F0
to this channel, the bandgap is significantly reduced and it is possible to switch the
channel from semiconducting to conducting, resulting in an Ion/Ioff ratio up to 1.42
× 104.

1.2.2 Topological insulators

A topological insulator (TI) is characterized by an insulating gap in the bulk and
gapless edge or surface states (in 2D or 3D objects, respectively) that are protected
by time-reversal symmetry, meaning they can insulate on the inside and conduct on
the outside without being destroyed by impurities or imperfections (see Figure 1.8)
[70, 71, 13, 19].
Interestingly, electrons with inverse spin orientation travel in opposite directions, gen-
erating an effective spin current in which the spin direction is locked to the direction
of propagation [72]. The Bi2Se3 family of materials (Bi2Se3, Bi2Te3 and Sb2Te3) has
demonstrated topological surface states theoretically and experimentally. Figure 1.9(a)
shows the Local Density of States (LDOS) calculated on the surface of Bi2Se3 (111),
where the topological surface states form a single Dirac cone at the Γ point [70]. The
spin texture has left-handed helicity in the conduction band and right-handed helic-
ity in the valence band, as observed in Figure 1.9(b) for the conduction band of the
surface states in momentum space, where the arrows represent the x-y planar spin
polarization and the colors represent the z component for the spin polarization as red
and blue for spin-up and spin-down, respectively [71]. Moreover, these Dirac cones
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Figure 1.8: Band structure of a typical topological insulator.

have also been demonstrated experimentally, such as the case of Bi2Se3 in [73] us-
ing high-momentum-resolution angle-resolved photoemission spectroscopy (ARPES)
measurements (see Figure 1.9(c)).
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Figure 1.9: (a) Local Density of States on the surface of Bi2Se3 (111). (b) Spin
texture of the conduction band of the surface states in momentum space for the
Bi2Se3 TI family of materials. (c) High-resolution ARPES measurements of surface
electronic band dispersion on Bi2Se3 (111). Adapted from [70], [71] and [73].

Due to their protected edge or surface states that avoid backscattering and strong
SO interaction, spintronic or quantum computation applications may be possible with
TIs [72] . This could yield to very low-power-consumption devices based on their
dissipationless edge or surface channels [13].
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2 Introduction to Non-Equilibrium
Green’s Functions

Compact simulation models for GNR-based devices are required to investigate the tech-
nological viability of complex ICs before reaching mass production. It is required to
accurately calculate the electronic properties of graphene and other materials, depend-
ing on their different geometries, dimensions, and defects. According to the size and
complexity of the system, first-principle (ab-initio), empirical, semi-empirical methods
or analytical models can be used for simulating nanoelectronic devices, as illustrated
in Table 2.1.

First-principle Empirical and semi-empirical Analytical

Use the laws of physics Use approximations from experiments Use equivalent RLC circuits

Model hundreds of atoms Model thousands of atoms Model complete devices

Useful for novel materials Useful for well-known materials Useful for well-known structures

Highly accurate Moderate accuracy Moderate accuracy

High computational resources Moderate computational resources Moderate computational resources

Table 2.1: Comparison of first-principle, empirical, semi-empirical methods and ana-
lytical models for simulation of nanoelectronic devices.

2.1 First-principle, empirical and semi-empirical
calculation methods

First-principle or ab-initio calculations are used to calculate the properties of materials
by means of the interactions between atoms, molecules and groups of molecules, etc.
The methods use the laws of physics and do not rely on approximations or fitting to
experimental measurements. For this reason, they help to understand the electronic
transport behavior of the device and are of particular interest during the early stages
of the device development; however, they require high computational resources and are
difficult to implement in standard electronic design automation (EDA) tools, especially
when considering complete systems with thousands of atoms.
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Figure 2.1: General structure used for the simulation of nanoelectronic devices.

In contrast, electronic structure can also be calculated using semi-empirical methods,
which are computationally less expensive because the models are fitted with parameters
obtained from experiments or first-principles calculations. This produces inaccuracy
in the calculations and may yield to different quantitative and qualitative results when
they are compared to first-principles calculations. Moreover, some assumptions and
approximations, such as a complete or linear potential drop in the channel region or
contact interface, can be considered in order to make the calculations easier, but these
are not accurate in every supply voltage for very small channels [74].
The nonequlibrium Green’s function (NEGF) – Landauer approach is generally used
for electronic transport computation. Solving the Green’s function G (E) allows the
calculation of free charge concentration, transmission coefficients and current through
the device.
Self-consistent calculations of N × N matrices have to be performed, where the ma-
trices are written down depending on the material and the simulation approach (first-
principle or semi-empirical), and N depends on the number of basis functions needed
to represent the channel of the device [75].
For the particular case of graphene sheets and GNRs, Lewenkopf and Mucciolo pre-
sented a complete compilation of the fundamentals and examples for implementing
the recursive Green’s function method. This method provides the expressions and
algorithms for computing conductance, density of states and current density [76]. Fur-
thermore, the roadmap for graphene presented in [16] reviews multiscale modeling
techniques and computational tools for understanding and predicting the physical be-
havior of materials and devices. The basic FET schematic shown in Figure 2.1 is
generally used for simulations, and the modeling theory is extended to any nanoelec-
tronic device, considering the following [75]:

• There is an active channel described by a Hamiltonian [H] that also includes any
potential U due to other charges:

H = H0 + U ([δρ]) (2.1)

This potential may be external (on the electrodes) or internal (within the chan-
nel), with δρ being the change in the density matrix [ρ]. [H] is Hermitian and
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2.1 First-principle, empirical and semi-empirical calculation methods

represents conservative dynamical forces. It is constructed using first-principle
(with density functional theory (DFT)) or semi-empirical (with tight-binding
(TB)) calculations:

– For DFT calculations, the channel is described by the single particle Kohn-
Sham Hamiltonian in Equation 2.2, where VH , Vxc and Vext correspond to
the Hartree, exchange-correlation and external potential contributions [77]:

HKS = −~2∇2

2m + VH + Vxc + Vext (2.2)

– TB Hamiltonians usually provide good qualitative results, however, they can
be modified for including edge considerations and correlation effects due to
quantum confinement in order to increase accuracy and match first-principle
results, as summarized in [39] for the particular case of graphene. Bulk
graphene can be modelled by the single electron Hamiltonian in Equation 2.3,
where tij is the hopping from site i to j in the honeycomb lattice (equal to
2.7 eV), and Vi is the on-site potential (equal to zero when no gating nor
disorder effects are accounted) [76].

H0 = −
∑
i 6=j

(tij |i〉 〈j|+ H.c) +
∑

Vi |i〉 〈i| (2.3)

• The channel communicates the contacts (typically, source and drain), which are
maintained in local equilibrium with specified electrochemical potentials. This
is described by the self-energy matrices [Σ1] and [Σ2].

• The interactions of a single electron with its surroundings is described by a self-
energy matrix [Σs] and has to be calculated self-consistently. These self-energy
matrices are non-Hermitian and determined by “entropic forces".

• In the ballistic limit, the flow of electrons is determined by the contacts and
the interactions within the channel are negligible. The opposite is considered
in the diffusive limit, where the flow of electrons is determined by the electron
interactions within the channel and the role of the contacts is negligible.

In order to obtain accurate calculations and reduce the computational cost of pure first-
principle calculations, researchers propose the combination of first-principle and semi-
empirical calculations to perform electronic transport calculations. For this purpose,
Bruzzone and colleagues suggest to:

1. Use DFT to calculate the Hamiltonian of the material,
2. Perform a basis set transformation (from Bloch to Wannier) and
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3. Solve the Green’s function G (E) to obtain the transport characteristics of the
device [78].

Furthermore, Faghaninia and colleagues propose a fully first-principle approach to
model carrier transport in semiconductor materials that takes fully account of the
effects of elastic and inelastic scattering on charge carriers. With this, they compute
the electron and phonon band structures and predict the material properties as a
function of temperature or carrier concentration [79]. As stated by the authors, the
most important advantage of these fully first-principle calculations is that it aims
to accurately predict the electronic transport properties of novel materials, avoiding
approximations and limitations from unavailability of experimental data; however, this
approach is limited to low-field electronic transport in n-type semiconductors.
Once the Hamiltonian and the self-energy matrices are obtained, G (E) is calculated
according to Equation 2.4, where E corresponds to the Eigenenergies and I is the
identity matrix. Thereafter, the transmission T (E) (probability that an electron is
transmitted from one contact to another) is calculated with Equation 2.5, where Γ1,2,s
are the broadening functions (Equation 2.6) that introduce an imaginary part to the
energy [80].

G (E) = [EI −H − Σ1 − Σ2 − Σs]−1 (2.4)

T (E) = trace
(
Γ1GΓ2G

†
)−1

(2.5)

Γ1,2,s = i
[
Σ1,2,s − Σ†1,2,s

]
(2.6)

Current is then calculated with Equation 2.7, assuming that all contacts remain in
local equilibrium according to specified Fermi functions f (E), given by Equation 2.8.

I = − q
h

∫
T (E) (f1 (E)− f2 (E)) dE (2.7)

f1,2 (E) = 1
1 + exp

(
E−µ1,2
kBT1,2

) (2.8)
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2.1 First-principle, empirical and semi-empirical calculation methods

When finite bias voltage is applied to the leads (required for calculating the complete
transfer characteristics of the device), the potential profile has to be determined self-
consistently by solving the Poisson equation for the potential U (Equation 2.9, where ε0
is the permittivity of free space and εr is a spatially varying relative permittivity) and
updating the Hamiltonian [81]. Figure 2.2 summarizes the self-consistent transport
calculation algorithm, where c is the convergence criterion.

~∇ ·
(
εr ~∇U

)
= −q

2

ε0
δρ (2.9)

Eq. 2.10

Eq. 2.9

Eq. 2.7I

≤ c

H0, U0, Σ1, Σ2, μ1, μ2, → ρ 

ρ → U 

U-U0
> c

U0 = U 

Figure 2.2: Self-consistent transport calculation algorithm based on [81].

Then, [ρ] is obtained from Equation 2.10 using the correlation function [Gn], the spec-
tral functions [A1,2], and the Green’s function [G] without electron-phonon interactions
given by Equation 2.11, Equation 2.12 and Equation 2.13, respectively [81].

ρ =
+∞∫
−∞

(
dE

2π

)
[Gn (E)] (2.10)

Gn (E) = [A1 (E)] f1 (E) + [A2 (E)] f2 (E) (2.11)

A1,2 (E) = G (E)Γ1,2 (E)G† (E) (2.12)

G (E) = [EI −H − Σ1 − Σ2]−1 (2.13)
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2.2 Landauer-Büttiker formalism

For the multiterminal device shown in Figure 2.3, current at the ith terminal is given
by Equation 2.14 [82, 83]:

Ii = q

h

∑
j

∫
dET̄ij [fj − fi] (2.14)

Where the Fermi function f (E − Ef ), transmission from terminal j to i T̄ij, broadening
function Γ for each terminal, and Green’s function G are given as follows [82, 83].

f (E − Ef ) = 1
1 + exp

(
E−Ef
kBT

) (2.15)

T̄ij = Tr
[
ΓiGΓ,jG†

]
(2.16)

Γj = i
[
Σj − Σ†

j

]
(2.17)

G = [E −H − Σ0 − Σ1 − Σ2 − Σ3]−1 (2.18)

For small bias voltages and finite temperature, the difference in Fermi functions can
be expanded into Taylor series; then, the current at the ith terminal is approximated
to Equation 2.19:

Ii = q

h

∑
j

∫
dET̄ij

(
− ∂f
∂E

)
[µj − µi] (2.19)

Moreover, Ii can be approximated to Equation 2.20 for the case of zero temperature
and small bias voltage:

Ii = q

h

∑
j

T̄ij [µj − µi] (2.20)

Considering the latter case, it is possible to build the following system of equations to
calculate I0, µ1 and µ3, by setting µ0 6= 0, µ2 = 0 and considering I1 = I3 = 0:
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Figure 2.3: Schematic of a four-terminal device.
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2.3 Spin degree of freedom

Spin electronics or spintronics refers to the active manipulation of spin degrees of
freedom in solid-state systems [84]. Spintronic devices are possible candidates for
replacing CMOS devices due to the expectations of obtaining extremely low-power
circuits [85]. Traditionally, spintronic devices aimed to effectively control spin in silicon
for integration with current technologies, however, the field is seeking for integration
with other materials (all-semiconductor structures rather than hybrid structures with
metallic ferromagnets), based on theoretical and experimental observations on device
performance [84]. For this purpose, it is necessary to create, transport, manipulate
and detect spin populations within the device [85], for which long spin lifetimes and
spin control are simultaneously required [16].
Heat generation is the biggest factor that limits CMOS scaling because of the dis-
sipative nature of electron charge transport. In contrast, coherent spin rotation is
not dissipative and devices operating under spin transport should enable scaling be-
yond CMOS [85], given that dissipation energy in spintronic devices is predicted to be
smaller than the thermal limit (kBT) per operation [86].
For conventional electronic circuits, spin-↑ and spin-↓ electrons propagate equally in
the same direction, resulting in pure charge current I = I↑ + I↓ 6= 0 that is spin
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unpolarized IS = ~
2q

(
I↑ − I↓

)
= 0 (see Figure 2.4(a)). Spin-↑ and spin-↓ electrons can

be polarized in certain systems, such as ferromagnetic elements in metallic devices,
in order to obtain unequal spin-↑ and spin-↓ currents (see Figure 2.4(b)) that results
in I 6= 0 and IS 6= 0. Finally, pure spin current is obtained if the spin-↑ and spin-↓
electrons propagate equally in opposite directions (see Figure 2.4(c)); then, I = 0 and
IS 6= 0 [87]. The challenge is to find mechanisms for generating and detecting spin
currents, both theoretically and experimentally. Moreover, the objective is to efficiently
implement spin injection, detection, gating and manipulation for enabling all-spin-
based circuits for both conventional electronics and quantum information processing
[16].

⇧ ⇧⇧

(a)
⇧ ⇧ ⇧

⇧

(b)

⇧ ⇧⇧

(c)

I↓ I↓

I↑

I↓

⇧ ⇧ ⇧
I↑

⇧ ⇧ ⇧
I↑

Figure 2.4: Classification of spin IS and charge I currents in metal and semiconductor
spintronic systems [87]. (a) Conventional charge current (I = I↑ + I↓ 6= 0, IS =
~
2q

(
I↑ − I↓

)
= 0). (b) Spin-polarized charge current (I 6= 0, IS 6= 0). (c) Pure spin

current (I = 0, IS 6= 0).

2.3.1 Spin current

In order to measure the ratio of charge to spin current conversion, the spin current ISαi
at the ith terminal is calculated from Equation 2.21 [88, 89, 90]:

ISαi = q

h

∑
j

∫
dETr

[
σ̂αΓiGΓjG†

]
[fj − fi] (2.21)

Where σ̂α corresponds to the Pauli matrices σ̂x =
[

0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
and

σ̂z =
[

1 0
0 −1

]
.

Then, for the cross-bar shown in Figure 2.3, the spin Hall conductance GSH and spin
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2.3 Spin degree of freedom

Hall angle θSH are calculated according to Equation 2.22 and Equation 2.23, respec-
tively [91].

GSH = IS1
V1 − V3

(2.22)

θSH = IS1
I0

(2.23)

2.3.2 Spin Hall effect

One of the most popular methods to generate pure spin current is the spin Hall effect
(SHE). For this, the sample material requires the coupling between the orbital and the
spin degree of freedom of electrons, known as Spin-Orbit coupling (SOC). As observed
in Figure 2.5(a), spin-orbit (SO) interactions within a sample carrying a longitudinal
charge current produce a transverse separation of spin-↑ and spin-↓ electrons. The
inverse SHE (iSHE) occurs on a sample with SO interactions carrying longitudinal
spin current that generates transverse charge current (see Figure 2.5(b)); therefore,
this effect is one of the preferred methods to detect spin currents.

SO SO

(a) (b)

I

⇧

⇧

⇧

⇧
ΔV⇧

⇧

⇧

⇧

Figure 2.5: (a) Spin current generation due to SHE phenomenology. (b) Spin current
detection due to iSHE phenomenology.

The devices shown in Figure 2.6 is used to generate spin current in the central region
by driving a charge current (IDS) between the left side terminals due to SHE. This
spin current is measured by the right side terminals due to iSHE, which is known as
the non-local voltage (VNL). The non-local resistance (RNL = VNL/IDS) characterizes
devices using different materials that could be more or less effective in converting
charge to spin current and vice versa.
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Figure 2.6: Non-local spin Hall measurement.

2.3.3 Spin-Orbit coupling

The magnetic moment of an electron is given by ~µs = −gµB ~S/~, where ~S is the spin
angular momentum, µB is the Bohr magneton (5.78 ·10−5eV ·T−1) and g is the electron
spin g-factor (≈ 2); then, ~µs is always antiparallel to ~S, as observed in Figure 2.7. In
the laboratory frame (see Figure 2.7(b)), the magnetic moment, moving with velocity
~v generates electric moment ~Plab = ~v/c2×µ̃s, which, in presence of an electric field
~Elab, feels the deflection force ~F =

(
~Plab · ∇

)
~Elab . This creates a spin current IS

perpendicular to ~Elab.

x

y

z S

μs

v

Plab

F

Plab=v/c2 × μs

F=(Plab ·    )Elab

∆

μs=-gμBS/ћ

x

z S

P=0

μs

μs=-gμBS/ћ

(a) (b)

y

Figure 2.7: Electric moment and Force due to SO coupling. (a) Instantaneous rest
frame of an electron. (b) Laboratory frame.

SOC can modify the electronic band structure of a particular system by splitting de-
generate bands with finite angular momentum (p, d and f ) [92]. The form of such band
splitting depends on the system and broken symmetries [93]. For instance, Rashba SOC
[94] occurs in systems with broken inversion symmetry at the surface or interface. This
results in an electric field that couples to the spin of electrons and produces spin-split
bands where spin and momentum degrees of freedom are locked (see Figure 2.8(a)).
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2.3 Spin degree of freedom

Such spin polarization can be used for charge-to-spin and spin-to-charge conversion by
means of the Edelstein and inverse Edelstein effects [95].
Similar to Rashba SOC, topological surface states in TIs also exhibit spin-momentum
locking in their characteristic Dirac cone (see Figure 2.8(b)) due to the connection of
bulk valence and conduction bands, which generally results in a more effective spin-
to-charge conversion [92].
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kxky

⇧ ⇧

⇧ ⇧

(a) (b)

⇧ ⇧
⇧⇧

Figure 2.8: Spin-momentum locking in (a) Rashba interfaces and (b) Topological
insulators.

2.3.4 Enhancement of Spin-Orbit coupling

According to Kane and Mele, graphene allows SO interaction that results in SHE at
low energy, enabling the transport of charge and spin currents in gapless edge states
[96]. This effect is very low in pristine graphene; then, researchers have looked for
means to enhance the SO coupling in graphene by introducing adatoms.
Generally speaking, small dimensions can improve SOC effects significantly [92]. More-
over, Balakrishnan and colleagues showed that the SO interaction can be improved
three orders of magnitude at room temperature by adding small concentrations of
covalently bonded hydrogen atoms to graphene [97]. This is achieved by means of out-
of-plane deformations that are only possible in materials with high in-plane strength,
such as graphene. Starting from pristine graphene, they showed a 400% increase in
RNL with only 0.02% hydrogenation, which also decreases mobility when the hydro-
gen concentration is increased. Also, there is a high dependence on the dimensions of
the device (where a higher width/length ratio is more desirable); then, it is required
to carefully design these devices and choose a proper impurity concentration to ob-
tain better performance. Finally, other materials, such as nickel and gold, are used to
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chemically modify graphene and enhance SO interactions, such as the graphene system
decorated with gold adatoms presented in [98].

2.3.5 Edelstein effect

Systems with spin-momentum locking (Rashba SOC interfaces and TIs) can be used to
convert charge current to spin current by means of the Edelstein effect [95]. Transverse
spin accumulation is obtained when applying an in-plane charge current JC to the
device. For the particular case of TIs, Figure 2.9(a) shows that JC at the surface shifts
the Fermi contour and generates a non-zero spin accumulation. This can diffuse to an
adjacent layer and inject a spin current into the material.
Similarly, the inverse Edelstein effect is used for converting spin current to charge
current, as seen in Figure 2.9(b), where a spin current is injected into the surface
states of a TI, causing a shift in the Fermi contour by overpopulating states on one
side and depopulating states on the other that result in an in-plane charge current JC.
From the application point of view, the Edelstein effect can be observed in the two-
terminal device configuration from Figure 2.9(c), consisting on five quintuple layers
(QLs) of Bi2Se3 connected to two macroscopic reservoirs [99]. When applying an
unpolarized charge current along the x axis, a non-zero spin density is generated at
the top and bottom surfaces of the TI. Moreover, the inverse Edelstein effect (together
with the iSHE) is shown in Figure 2.9(d), where a nanomagnet is connected to a stack
of materials with high SOC for generating a charge current JC along the x (-x) axis
when a spin current JS along the z (-z) axis appears due to the magnetization of
the nanomagnet m̂ in the y (-y) direction [100]. This combination of spin effects are
being considered for developing new logic and memory devices with very low power
consumption.
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Figure 2.9: (a) Edelstein effect in Topological insulators for charge-to-spin conver-
sion [92]. (b) Inverse Edelstein effect in Topological insulators for spin-to-charge
conversion [92]. (c) Two-terminal device configuration where a thin film of a Topo-
logical insulator is attached to two macroscopic reservoirs for generating non-zero
spin density at the surfaces once an unpolarized charge current is injected along the
x axis [99]. (d) Inverse Edelstein and spin Hall effects on a heterostructure with
high SOC for spin-to-charge current conversion, where a change of direction in the
magnetization of a ferromagnetic layer generates a charge current along the x or -x
axis [100].
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3 Charge transport devices based on
graphene channels

3.1 Introduction

Due to the high carrier mobility in graphene, the initial approach is to directly replace
silicon channels with graphene in traditional FETs, however, the zero-gap of large-area
graphene results in low Ion/Ioff . In this chapter, we summarize some approaches for
charge transport devices using graphene-based channels that work on differetn physical
principles, such as field effect, tunneling effect, ambipolar conduction and negative
resistance. Table 3.1 summarizes the simulation performance of GNR-based devices
found in the literature.

3.2 Field-effect devices

As observed in Figure 3.1(a), the channel in the top/back or double gate FET struc-
tures may be a single layer of graphene (SLG) or bilayer graphene (BLG). Normally,
the channel is intrinsic, while the source and drain contacts are assumed to be heav-
ily doped BLG or AGNR (MOS-GNRFETs), which dominate the current flow in the
device; however, large graphene sheets might be connected to the source and drain
contacts to obtain low contact resistance. Also, the channel can be formed by an array
of GNRs in order to increase the on-state current and conserve a useful bandgap. By
increasing the number of GNRs from 1 to 2, the authors in [101] calculated a du-
plication in the transmission probability and drain-current of AGNRFETs. The gate
insulator is usually SiO2, but high-k dielectric materials are also being used in order
to reduce the leakage current in the gate terminal. The source and drain contacts can
also be metallic, producing Schottky barriers at the junctions (SB-GNRFETs), which
govern the electronic transport properties of the device. These Schottky barrier de-
vices have better speed and power dissipation than CMOS and MOS-GNRFETs, but
present high leakage power and low Ion/Ioff ratio [102].
Moreover, SB-GNRFETs are preferred because no doping in the channel nor the con-
tacts is required, avoiding technical difficulties in fabrication and doping variation
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Figure 3.1: Structures for graphene/GNR-based devices. (a) Top/Back-gate FET.
(b) Double-gate GNRFET used for a resonant tunneling transistor (RTT) [109]. (c)
Asymmetric gate Schottky barrier GNRFET (SB-GNRFET) [110]. (d) Graphene
base transistor (GBT) [111]. (e) GNR-based negative resistance device [103]. (f)
Buried triple-gate GNR tunneling FET [112, 113]. (g) Graphene on diamond [114].
(h) Logic inverter based on two graphene-on-silicon FET (GOSFET) [115]. (i) Verti-
cal GNR-hBN FET (VTGNRFET) [104]. (j) Side-gate field-effect bandgap modula-
tion (FEBM) GNR transistor [116, 105]. (k) Symmetric tunneling FET (SymFET)
[106]. (l) Barrier-controlled tunnel FET (BC-TFET) [117]. (m) All-graphene de-
vice [48]. (n) T-shape AGNR PN junction [118]. (o) Multi-junction GNR [119].
(p) Modified MUX-based graphene logic device [120]. (q) Wide-narrow-wide GNR-
FET [121]. (r) Graphene/BN heterostructure with transverse electric field [38]. (s)
Curved GNRs [122]. (t) Chevron-type pristine and nitrogen-doped GNR (p-N-GNR)
heterojunction [123].
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Device Subthreshold
slope

(mV/decade)

Ion/Ioff Ref.

GNR-based negative differential
resistance device

>105 [103]

Vertical graphene-hexagonal boron
nitride FET

170 1.8 x 104 [104]

Bandgap modulation with transverse
field

37 ∼103 [105]

Symmetric tunneling FET 102−103 [106]
Graphene nanomesh >102 [31]
Nitrogen-passivated ZGNRFET with
doped channel

∼12 [107]

Homojunction tunnel FET 60 105 [108]
Hydrogenated GNR ∼104 [37]
Graphene/boron nitride nanoribbon
device

1.42 ×
104

[38]

Table 3.1: Simulation performance of GNR-based devices.

issues, but to the expense of lower Ion/Ioff ratios due to ambipolarity of graphene
[110]. In order to avoid parasitic tunneling current in the drain contact, Gholipour
and colleagues propose asymmetric gate SB-GNRFETs (see Figure 3.1(c)) to improve
its Ion/Ioff ratio by reducing Ioff significantly, in addition to subthreshold swing re-
duction.
AGNRs have been theoretically predicted to have better carrier transport proper-
ties than BLG, n-channel Si MOSFETs and InP-high-electron-mobility transistors
(HEMTs) [124, 125], particularly when they are used in GNRFETs with ribbon widths
around 3-4 nm; however, recent studies have shown that thermal conductivity de-
creases around three orders of magnitude in GNRs with widths smaller than 10 nm,
indicating a direct relation between the width of the GNR and its diffusive thermal
conductivity and effective mean free path [126].
Experimental measurements on GNRFETs are essential to verify theoretical predic-
tions and find out whether the devices are viable or not. Tahy and co-workers present
the electronic transport properties of p-n junctions formed in a GNRFET that uses a
single GNR with width of 30 nm [127]. As expected, the device has very low bandgap,
which makes it impossible to completely turn the transistor off; however, it presents
current densities comparable to Si-MOSFETs and III-V Nitride HEMTs, ranging be-
tween 1-1.5 A/mm.
Low-power electronic devices that fulfill the CMOS technology requirements have not
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Chapter 3 Charge transport devices based on graphene channels

been demonstrated; thus, novel device architectures (beyond basic GNR devices) need
to be explored [16]. Devices with higher performance should be obtained by using
conventional FET operation combined with other effects, such as bandgap modulation.
This would mean additional gate control to decrease the bandgap in the on-state and
keep the original bandgap in the off-state in order to enhance Ion and improve the
subthreshold swing [105]. The GNR transistor with field-effect bandgap modulation
(FEBM) presented in [116] (see Figure 3.1(j)) uses side gates to apply a transverse
field to the GNR and reduce its bandgap; therefore, the off-state is obtained by means
of the intrinsic bandgap of a narrow GNR, while the on-state is obtained by means
of a narrower bandgap that enhances electron transport through the channel, which
also results in higher on-currents and better subthreshold swing, compared to a typical
FET.
Moreover, the performance of graphene-based devices can significantly differ accord-
ing to the manufacturing processes that are used, commonly known as top-down or
bottom-up techniques. Top-down approaches use deposition and etching procedures
for printing or transferring nanomaterials onto the desired substrate, while bottom-
up approaches uses the ability to form the nanostructures by spontaneous or directed
assembly (see Figure 3.2) [54].

Top-dow
n

B
ottom

-up

Bulk material

Patterning

Assembling

Nanostructure

Atoms /
Molecules

Figure 3.2: Top-down and Bottom-up fabrication [54].

For the particular case of graphene sheets and GNRs, both top-down and bottom-up
techniques have several advantages and disadvantages, as shown in Table 3.2. Usually,
the manufacturing strategies are based on simple and cost-effective methods, but the
challenge is to effectively implement the laboratory procedures in the large-scale [54,
40] and prepare GNRs with high aspect ratios (length/width) for device fabrication
[55]. The problem of graphene-based applications is that the remarkable properties of
graphene have been observed mostly in research laboratories, but realistic applications
require industrial large-scale production of samples with performance as good as the
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3.2 Field-effect devices

obtained on the highest-quality samples [56]. Structurally perfect GNRs could also
allow testing of novel physical and device concepts by the production of clean quantum
wires, as presented in [57]. Furthermore, graphene for nanoelectronic devices requires
the highest quality grade (high crystallinity and low defect density), which is expected
to need more developing time for achieving significant progress [16].

3.2.1 Top-down manufacturing approaches

Several manufacturing techniques have been proposed to produce high-quality graphene
in wafer scale. Epitaxy has allowed the uniform growth of 1-2 layers of graphene on
silicon carbide (SiC) wafers in a highly reproducible process [136]. Similarly, chemical
vapor deposition (CVD) has been used to produce low-cost graphene in large scale in
which the graphene layer is formed on copper and then transferred to another sub-
strate, such as a silicon wafer [136].
Considering the requirements of commercial devices (specially the high on/off current
ratio), researchers are extensively working on new fabrication techniques and device
structures that could make GNRs suitable for commercial use in logic circuits. The
challenge is to be able to fabricate the structures with controlled precision and obtain
devices with reproducible properties under ambient conditions [22].
The conventional techniques used to fabricate GNRs are generally difficult to integrate
into large-scale processes, in addition to the difficulty to control the width and edge
orientation of the ribbon, and the potential damage caused by plasma or oxidizing steps
[49]. It is desirable to tune the electronic properties of the prepared GNRs, but there
are many technological difficulties that limit the scalability of the processes, making
these techniques unpractical to produce very narrow GNRs with clean edges, which are
required to open a useful bandgap [131]. Nonetheless, it is possible to pattern GNRs
with features down to 10 nm that remain stable at room temperature [45, 22].
Hwang and colleagues report the patterning of GNRs with widths down to 12 nm
using electron beam lithography and a CVD process [129]. Li and colleagues present a
chemical process to fabricate sub-10-nm smooth-edge GNRs by exfoliating commercial
graphite [46]. When using these GNRs as the channel material in FETs, the authors
measured Ion/Ioff ratios up to 107 at room temperature, however, some of the fab-
ricated GNRs have irregular shapes (different widths across the ribbon, sharpened
endings, bending and kinking) that may result in variation of its electrical properties
and unreliability of device performance. This process may also result in curved GNRs,
whose electronic transport properties are studied in [122] when coupled to straight
leads (see Figure 3.1(s)). The authors calculated steady state currents using a time-
dependent formalism and found that electron transport is smoother in straight GNRs
due to increased scattering in curved GNRs. This also results in higher bandgaps for
higher angles between the leads. Moreover, currents at the edges are very sensitive
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Technique Advantages Disadvantages Min.

width

(nm)

Carrier

mobility

(cm2V-1s-1)

Bandgap

(meV)

Ion/Ioff Ref.

Mechanical

exfoliation and

lithography

- Formation of

single-layer GNRs

- No precise control of
GNR edges

- Difficult in large-scale

∼15 ∼200 [45]

Exfoliation and

chemical

treatment

- Nearly pristine GNRs

- Smooth edges

- Non-uniform shapes <10 ∼100−200 >300 up to

107
[46]

Exfoliation and

catalytic etching

- Well-defined edges - Etching along

crystallographic

directions

∼15 [128]

Metal-assisted

etching

- Aligned GNRs

- Large-scale

- Large and

non-uniform width

19 ∼100 ∼7−10

up to

5000

[49]

CVD and

electron beam

lithography

- Wafer-scale graphene

- Controllable

dimensions

- Unavailable

information on edge

definition

12 ∼100 ∼10 [129]

CVD, electron

beam lithography

and neutral beam

etching

- Aligned GNRs

- Ultra-low defects

- Unavailable results

for narrower GNRs

70
(tested)

down

to 30

>200 ∼103

−104
[130]

CVD and STM

nanolithography

- Narrow GNRs with

defined crystallographic

orientations

- Edge roughness

- Difficult in large-scale

3 ∼300 [44]

Direct growth on

silicon dioxide

- No substrate transfer

- Large-scale

production

- Formation of plateaus

- Large and

non-uniform width

20 >1000 ∼50 ∼2 [131]

CVD on

germanium

- High aspect ratio

- Clean GNR/substrate

interface

- Nonuniform edges

- Low control on

placement

8.2 ∼20 [132]

SnO2 nanoribbon

mask and O2
etching

- Reduces process steps

for fabrication of

GNRFETs

- Requires selection

and transferring of

SnO2 nanoribbons

230 ∼800 3.7 [133]

Cyclodehydrogenation

of precursor

monomers

- Well-defined edges

- Atomically precise

width

- Limited to substrates

compatible with

precursors

0.74 1600 [134]

Polymerization of

molecular

precursors

- Narrow GNRs with
well-defined edges

- Bandgap similar to Si

- Unpredicted length

- Width variations

∼1 ∼1300 [135]

Growth on SiC

trenches

- Precise dimensions

- Reproducible features

- Limited to SiC

substrate

∼1.4 >500 [48]

Table 3.2: GNR fabrication techniques and characteristics at room temperature on
typical top or back gate GNRFETs.
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to impurities, especially when absorbed in sites where focused currents are localized,
resulting in conduction decreasement.
Datta and colleagues present a catalytic etching process that uses thermally activated
metallic nanoparticles and etching along crystallographic axes to form long layers of
graphene [128]. This crystallographic etching process of graphene is potentially useful
to produce atomically precise GNRs, as the metal-assisted etching process presented by
Solís-Fernández and colleagues, who highlight the importance of completely controlling
width, orientation and length of the GNRs by avoiding the randomness of conventional
processes [49]. This large-scale technique allows the formation of highly aligned GNRs
by means of a metal-assisted etching process that was used to produce 25 GNRs per
µm with widths around 19 nm. The process seems to be very promising; however, the
authors refer a few degrees of misalignment that produces impure AGNRs or ZGNRs
after transferring the ribbon to the desired substrate.
Scanning tunneling microscope (STM) nanolithography uses the tip of a STM for
breaking carbon-carbon bonds locally and allows the patterning of GNRs with well-
defined crystallographic zigzag and armchair orientations [47], and widths down to
3 nm with edge roughness less than 0.5 nm, using CVD graphene transferred to Au
substrates [44].
Another etching alternative is presented by Huang and co-workers in [130], where
the authors use electron beam lithography and oxygen neutral beam etching on CVD
graphene to fabricate GNR arrays with reduced damages to the material and low
defects. The resulting array contains high-quality GNRs with width of 70 nm, which
were used to fabricate a back-gated FET with a carrier mobility around 200 cm2V−1s−1

and Ion/Ioff ratio in the order of 103-104 at room temperature.
The direct-growth on dielectric substrate process presented in [131] develops nanotem-
plates for GNRs that well define their length and position. This method avoids the
formation of ripples and defects originated after graphene is transferred to the desired
substrate using other methods, and the fabrication steps used to pattern the GNRs
are compatible with standard fabrication techniques for ICs. Moreover, it has the
potential to manufacture GNRs in arbitrary sizes and geometries by controlling the
metal-catalyst film thickness in their CVD process; thus, allowing the production of
GNRs with bandgaps around 0.5-1 eV [137].
Tung and Kan present a process to pattern a side-gate GNR transistor with a 20-
nm-wide channel [116]. The process uses a CVD grown graphene layer on SiO2 and
a single electron beam lithography (with negative-tone hydrogen silsesquioxane and
oxygen plasma etching) step to pattern the GNR, source, drain and side gates (all made
of graphene). This process could be very useful for planar (single layer) all-graphene
devices, however, the etching step produces edge roughness defects that decrease the
performance of such devices. Similarly, a process using double-self-aligned spacers
(instead of electron beam lithography) is used in [105] to pattern GNRs for side-gate
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transistors, that also results in significant edge roughness.
Directional and anisotropic CVD growing of GNRs on germanium was explored in
[132]. The process allows the formation of GNRs with controlled orientation, widths
below 10 nm, high aspect ratio and smooth edges (mostly armchair), but lack control
over the placement of the GNR on the surface. Moreover, the authors indicate the
necessity to use slow growing rates in the width direction (<5 nm/h) for improving
the control over the dimensions of the GNRs.
Graphene can also be grown on diamond for usage in digital applications, as presented
by Yu and colleagues in [114]. Even though the authors claim this technology could
impact graphene applications in interconnects and radio frequency transistors, building
graphene devices on ultrananocrystalline diamond (UNCD) and single-crystal diamond
(SCD) substrates (see Figure 3.1(g)), instead of the traditional SiO2/Si substrates,
helps to improve the saturation velocity in graphene due to the larger energy of the
optical phonons in diamond, and might be able to reduce the 1/f noise because of their
lower trap density. Moreover, bottom dielectrics made with synthetic diamond can
work as good heat spreaders. This technology is compatible with the CMOS process
and could be used to fabricate nanoribbons if a precise control of the width and edge
roughness is achievable, together with the advances in lithography; however, there are
significant issues that need to be solved, including the high surface roughness (δH)
of synthetic diamond, difficulty to visualize the graphene on diamond, and problems
with the top-gate fabrication (since no bottom gates are possible on SCD substrates).
Liao and co-workers conclude that high-field transport in GNRs on SiO2 is limited
by self-heating and the maximum current density at a given temperature is inversely
proportional to the width of the GNR, which could be significantly improved if the
device is built on a diamond substrate [138].
On an effort for integrating GNR and device fabrication steps, the process presented in
[133] uses tin dioxide (SnO2) nanoribbons for patterning GNRs on a Si/SiO2 substrate
containing a mechanically exfoliated graphene sheet. The SnO2 nanoribbon works
as a mask for defining the width of the GNR and for protecting the graphene from
subsequent O2 plasma treatment, which significantly affects its electrical properties.
Then, gold electrodes are placed on the sample according to the desired length of the
GNR, which is obtained by removing the unmasked graphene with O2 plasma etching.
The process does not require wet processes at any stage of the device fabrication,
avoiding surface contamination; however, control over the width of the GNR depends
on the width of the SnO2 nanoribbon that needs to be selected and transferred.
Finally, once graphene sheets are formed, nanopores with different forms and sizes can
be patterned into the sheet to obtain GNMs. Several fabrication techniques have been
used for this purpose, including: i) electron beam lithography and reactive ion etching
[61], ii) block copolymer lithography and O2 plasma etching [31, 58], iii) nanoimprint
lithography and O2 plasma etching [30], and iv) nanosphere lithography [59].
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3.2.2 Bottom-up manufacturing approaches

Opposite to the top-down techniques, bottom-up approaches are expected to produce
GNRs with well-defined structures and controlled electronic properties. The process
described by Cai and colleagues in [134] allows the formation of defect-free AGNRs
on Au(111) and Ag(111) surfaces. The process consists in using a precursor monomer
molecule (10,10’-dibromo-9,9’-bianthryl) to form a linear polymer after dehalogena-
tion and C-C coupling; then, a cyclodehydrogenation process is used to obtain the
AGNR. Atomically precise GNRs with different topologies and defined width and edge
periphery can be obtained depending on the structure of the precursor. For instance,
the authors obtained a 7-AGNR with a bandgap of 1.6 eV. Similarly, Bronner and
colleagues obtain a non-aromatic polymer with bandgap of 5.25 eV, starting with the
same precursor molecule. After a cyclodehydrogenation process, the authors obtain a
GNR with a bandgap of 2.6 eV [139, 140]. Moreover, structurally perfect GNRs (sol-
uble in organic solvers, such as toluene, tetrahydrofuran, and dichloromethane) can
be obtained using polyphenylene precursors and an oxidative cyclodehydrogenation
process [55]. Therefore, it is possible to fabricate defect-free GNRs on Au/Ag surfaces
and organic solvents, but one of the main issues is to obtain the adequate precursor.
Bennett and co-workers use a similar process to fabricate GNR arrays and include a
layer transfer process to build and measure FETs [141]. The authors report difficulties
in obtaining GNRs with controlled orientation, width and length, which make it dif-
ficult to guarantee that the ribbons are in contact with the source and drain, leading
to very low on-currents.
Kim and colleagues describe a similar approach that uses different precursor molecules,
such as phenylene, naphthalene and anthracene, and cyclodehydrogenation with Iron
trichloride (FeCl3) to obtain GNRs [142]. The authors fabricated thin-film transistors
with the resulting GNRs and the anthracene-based device presented the best perfor-
mance with hole and electron mobilities of 3.25 x 10-2 cm2V−1s−1 and 7.11 x 10-3
cm2V−1s−1.
The synthetic bottom-up technique presented in [135] was used for manufacturing ~1-
nm-wide AGNRs with high-aspect-ratio, smooth edges and bandgap of ~1.3 eV, by
means of polymerization of pre-synthesized molecular precursors and cyclodehydro-
genation. The GNRs can self-assemble in highly ordered structures >100-nm-long.
The process is scalable and GNRs with different widths and geometries could be pro-
duced by choosing proper precursor molecules. The resulting GNR is p-type and can
be deposited on many substrates, such as mica, Si/SiO2 and Au(111). These GNRs
could be used for obtaining transistors with high on/off ratios, however, the resulting
devices need to be tested for finding their performance and usability in logic applica-
tions. Furthermore, these GNRs can be controllably doped with nitrogen and obtain
p-n heterojunctions (see Figure 3.1(t)) [123], which could lead to the fabrication of
transistors with p-n-p or n-p-n regions for complementary logic.
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Hicks and co-workers present a novel technique to fabricate an all-graphene structure,
which is a 1D metallic–semiconducting–metallic junction made entirely from graphene
(see Figure 3.1(m)) [48]. This is carried out by means of a scalable technique to grow
graphene on SiC that helps to improve the atomic ordering of graphene and that is
able to produce semiconducting strips with a precisely defined width and consistent
band structure, leading to a bandgap greater than 0.5 eV.
Another bottom-up technique used to control the electronic properties of GNRs is
the chemical doping using heteroatoms –any atom other than carbon or hydrogen
that replace carbon in the backbone of a molecular structure–, such as boron and
nitrogen. For instance, the synthesis of nitrogen-doped graphene described in [143]
allows the formation of n-type GNRs, which are required to fabricate complementary
logic circuits; however, these chemically-doped GNRs need to maintain large mobilities,
for which no scattering should be introduced [16].

3.3 Tunneling-effect devices

Devices whose transport characteristics rely on tunneling effect are expected to be very
fast and reduce the effects of fundamental problems in traditional FETs. Tunneling
field-effect transistors (TFETs) are gaining significant interest from the research com-
munity because of their favorable subthreshold swings and increased Ion/Ioff ratios.
According to a recent benchmark of beyond-CMOS devices, TFETs are the leading
option for low-power applications with lower switching energy, but slower switching
than high-performance CMOS circuits [144].
Usually, TFETs rely on band-to-band tunneling to obtain on/off states. Regular
TFETs consist of an n-type source (drain), an intrinsic channel and a p-type drain
(source), where switching between on/off states is based on source-drain tunneling, in-
stead of gate modulation of carrier injection and concentration in the channel. Then,
tunneling between the channel and source (drain) is controlled through the gate volt-
age, allowing steeper subthreshold characteristics than conventional MOSFETs (with
subthreshold swing below 60mV/dec) [51]. Moreover, tunneling allows very low Ioff ,
but to the expense of lower Ion. As discussed in [112], the n-i-p doping profile can be
created by means of gate-controlled doping, that is, adding an insulating layer and a
metal contact on top of the source/drain regions of the GNR and applying bias volt-
ages to control the majority of carriers in each region. The authors tested a triple-gate
TFET (see Figure 3.1(f)) using a 30-nm-wide GNR as the channel material, showing
that n-type and p-type FET characteristics can be obtained by applying appropriate
bias voltages to the gate, source-side gate and drain-side gate [113]. The experiment
shows that the 30-nm-wide GNR is not narrow enough to have a suitable bandgap,
resulting in large leakage currents when turning the device off. Then, narrower GNRs
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with well-defined edges are required, having the same fabrication issues previously
discussed for GNRFETs.
As observed in Figure 3.3, Ion is produced by electrons tunneling from source to channel
when applying a gate voltage that lowers the conduction band in the channel below
the Fermi level in the source. The opposite occurs when a gate voltage raises the
conduction band in the channel above the Fermi level in the source; thus, Ioff is
produced by electrons tunneling from source to drain [108]. Zhang and colleagues
modeled analytically TFETs with direct bandgap semiconductors, showing that it is
possible to calculate optimized values of bandgap and supply voltage for fulfilling
Ion/Ioff ratios above 105; thus, for a TFET using 10 and 15-nm-long GNRs, 0.6 and
0.93 eV bandgap are required, respectively, to obtain Ioff = 5nA/µm, using minimum
supply voltage of 0.39 and 0.24 V, respectively [108].

Source Drain
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EV = EFS

EC = EFD

EV

Channel

qVON

qVOFF
qVDD

Figure 3.3: Band diagram of an n-channel TFET. Solid red and dashed green bands
correspond to the off-state and on-state, respectively [108].

Another type of TFET is presented in [117]. The proposed device, known as barrier-
controlled TFET (BC-TFET), uses both a channel potential barrier and tunneling
between the source and the channel to obtain high Ion/Ioff ratios and low subthreshold
swing (but larger than 60mV/dec). In this particular case, the channel corresponds to a
carbon nanotube (but structures with customizable bandgap, such as GNRs, could be
used) with all-around-gate that is composed of three segments (M1, M2 and M3) with
different work functions (see Figure 3.1(l)). The work function of the middle segment
M2 is larger than the work function of the other segments M1 and M3 in order to have
increased bandgap bending and electrical field at the source-channel junction. This
causes an in-channel barrier that is controlled by the gate voltage to effectively turn
on/off the device.
Mehr and colleagues present the graphene base transistor (GBT, see Figure 3.1(d)),
which is based on the operation of a hot-electron transistor, but using graphene as
the base electrode [145, 146, 111]. A positive emitter-base voltage is required to turn
on the device, allowing carriers to tunnel from emitter to collector. This approach is
estimated to have high Ion/Ioff ratio and current gain, making it more suitable for
high-frequency applications.
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Mohamadpour and Asgari explore the performance of a resonant tunneling transistor
(RTT, see Figure 3.1(b)) that uses a p+-n-p+ structure, with a GNR as the n-type
channel of the device, whose electronic transport properties are explained with the
band to band tunneling of the carriers [109]. The simple 2-state switching device
might be of special interest for digital applications in long and short channels for high
enough bias (the short channel device can also have many switching states and oscillate
in certain conditions). In addition to that, the authors consider this RTT model to
be more ideal than practical due to the difficulty to manufacture narrow GNRs with
clean edges.
Ghobadi and Pourfath present a heterostructure that uses graphene-hBN layers to form
a tunneling barrier, and two GNRs as drain and source, obtaining the vertical GNR-
hBN FET (VTGNRFET, see Figure 3.1(i)) [104]. The authors perform simulations for
devices with 3, 5 and 7 layers of hBN, achieving the best results for the VTGNRFET
with 7 layers of hBN and a 1.3-nm-wide GNR, where the Ion/Ioff ratio is 1.8 x 104
and the intrinsic subthreshold swing is 170 mV/dec, which is almost twice of a modern
MOSFET, but could be improved with narrower GNRs at the expense of smaller Ion.
Furthermore, the performance of the device can be improved by using higher-quality
dielectric barrier, such as molybdenum disulfide (MoS2) instead of hBN [147].
According to Zhao and colleagues, the symmetric TFET (SymFET, see Figure 3.1(k))
presented in [106] achieves relatively high Ion/Ioff ratio, proportional to the doping
potential4E and the length of the graphene layer. This is independent of temperature,
which might be useful for digital applications; however, practical devices might be too
big for nanoscale logic circuits (Ion/Ioff around 103 for a gate length of 1 µm). The
bilayer pseudo-spin FET (BiSFET) presented by Reddy and colleagues in [148] is
another promising approach for future logic devices which relies on the formation of
electron-hole-pairs/excitons (bosons) when electrons in one layer pair with holes in
the opposite layer, being very sensitive to thickness variations in the insulator layers.
The physical principles of these devices are also very different compared to MOSFETs
and the implementation of digital circuits are not directly related. Nonetheless, the
structures are very attractive for their very low power consumption, compared to
typical CMOS devices.

3.4 Ambipolar conduction devices

For many next-generation devices, such as graphene-based devices, ambipolar conduc-
tion has been demonstrated due to p-n symmetry (see Figure 3.4). This property is
characterized by a superposition of electron and hole currents, allowing devices to be
switched from p-type to n-type by changing the gate bias [149]. This could represent
a major advantage compared to CMOS devices, since there is no need for gate sizing
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during design and fabrication to match current magnitudes in complementary devices
[121], but at the expense of high Ioff and limited performance.
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Figure 3.4: Ambipolar conduction in graphene-based transistors [149].

The wide-narrow-wide structure (see Figure 3.1(q)) presented in [121] takes advantage
of the ambipolarity of GNRs and their ability to exhibit semiconducting or metallic
properties, depending on the width of the material. Similarly, Hasegawa and co-workers
simulate a multi-junction GNR (see Figure 3.1(o)) for bandgap engineering, consisting
on two 3p + 2 AGNRs that work as quantum wells, and a 3p AGNR that works as a
potential barrier [119].
Moutaouakil and colleagues presented the back-gate epitaxial graphene-on-silicon FET
(GOSFET, see Figure 3.1(h)), which uses the ambipolarity of graphene to create a logic
inverter with a voltage gain of 0.8-2.6 and a good matching of the input and output
voltage levels at room temperature [115]. Even though wide-graphene is being used
(mean channel width of 10 µm), the device is very promising and requires further
improvements, such as a faster on/off switching and higher gains.
Because of high off-state currents, a lot of effort is aimed to find new fabrication
techniques and structures that allow the conversion to unipolar conduction, such as the
process presented in [150], in which a p-type graphene FET with a tunable threshold
voltage was fabricated by applying significant hole doping with titanium oxide on top of
the graphene layer. Additionally, an annealing process and a silicon nitride passivation
are used to convert the p-type device into n-type.
Kim and colleagues present another way to fabricate n-type semiconducting GNRs
in [143]. Known as nitrogen-doped GNRs (GNR-Ns), this approach uses a bottom-
up method that attempts to switch GNRs from ambipolar to n-type by doping with
nitrogen. Moreover, this technique increases the electron mobility of the GNR (0.102
cm2 V−1s−1, two orders of magnitude bigger than the untreated GNR) and shifts its
threshold voltage from 20 to -6V.
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Chapter 3 Charge transport devices based on graphene channels

3.5 Negative resistance devices

Alternative devices, such as those based on negative differential resistance (NDR, see
Figure 3.5) could be used in the design of logic circuits. According to Khatami and
co-workers, the implementation of digital circuits with negative resistance properties
has been limited to very low Ion/Ioff ratios [103]; thus, they propose a novel structure
where the top-gate covers half of the GNR channel and the back-gate the other half
(see Figure 3.1(e)). The device can be tuned for achieving Ion/Ioff ratios in the order
of 105 and used in complementary logic devices.
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Figure 3.5: Current-voltage (I-V) characteristics of a negative differential resistance
(NDR) device [103, 118, 107].

Nguyen and colleagues investigate the effects of NDR in graphene tunnel diodes, using
a T-shape armchair structure (see Figure 3.1(n)) that contains two doped regions (n-
type and p-type) connected by a wider transition region with small bandgap, and
that seeks to increase the peak-to-valley ratio and decrease the interband tunneling
sensitivity to the length of the device [118].
NDR devices can also be obtained with chemical modifications to the edges of the
GNR. For instance, a nitrogen-passivated ZGNRFET was simulated in [107], showing
bandgaps up to 0.6 eV and NDR in the range of 0.1-0.35 V, with a peak value that
can be controlled by a gate voltage. The simulated device uses a strip of nitrogen-
passivated ZGNR with n-type contacts (doped with nitrogen) and a p-type channel
(doped with boron). The doping atoms are located near the center of the GNR in
order to avoid adverse effects on the bandgap. The resulting currents are very low,
producing Ion/Ioff ratios up to 12.

3.6 Logic gates

For logic applications, graphene-based nanostructures need to have a non-zero bandgap
(preferably ~1 eV, similar to Si, for reliable switching), but without decreasing its car-
rier mobility and being able to achieve Ion/Ioff >106 with significant on-state current
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for voltage gains Av > 10; for which new device structures are very likely to be re-
quired [16]. Graphene-based inverters and other logic gates have been fabricated using
wide graphene sheets (0.25 to 20 µm) in [151, 152, 153, 154]. Some of these techniques
could be used to obtain novel structures for GNR-based logic circuits. A few authors
reject the use of narrow graphene layers for digital applications due to the different
manufacturing issues and the limitations that arise from the lowering of the carrier
mobility, despite of the large on/off ratio and high channel resistance that can be ob-
tained in GNRs [152]; however, the zero bandgap of graphene causes that these gates
have high static power dissipation [153, 154]. Some of the structures described in these
papers use additional processing techniques in order to obtain complementary p-type
and n-type FETs for the design of logic gates [152, 153].
As previously stated, graphene-based devices still require lots of efforts for opening a
big enough bandgap or designing novel circuits before being suitable for replacing sili-
con in very large scale electronics, such as implementing equivalent logic functionality
with fewer transistors [151]. Structures such as the one presented in [151], not only
deal with the high power dissipation caused by the impossibility to turn the device
off, but also with the issue of having different input and output voltage levels, as also
reported in [153], which would require additional design efforts and extra conditioning
hardware for cascading logic gates.
According to [152], practical devices require an optimized operating bias, a good
enough intrinsic voltage gain (A = gm/gd > 1), and cascading characteristic [154].
Large-area graphene logic gates, as the inverters presented in [152] and [154], have
similar input and output voltage levels and a voltage gain >1; however, they still have
to deal with the low on/off ratio and the high dissipation power effect. Moreover, works
that take advantage of the ambipolarity of graphene, use a pair of identical FETs to
construct an inverter. By doing structural modifications and employing different mate-
rials for the top-gate and dielectric layer of the device (such as aluminum and alumina,
respectively), researchers have been able to reduce the operating bias and improve the
voltage gain of the logic gate. After applying a positive bias (VDD > 0), the upper
and lower FETs turn into p-type and n-type, respectively, obtaining a complementary
behavior [152, 154].
CMOS-like logic circuits have been simulated using SPICE models of SB-GNRFETs
with symmetric and asymmetric gates, showing that the latter outperform the former
because of better noise margin, less dynamic and leakage power, and better Energy-
delay product (EDP) in the ideal case [110]. Moreover, the authors in [110] show
that edge defects significantly reduce the transistor current in both devices, producing
higher propagation delay.
All-graphene circuits exhibit promising performance metrics, however, it is necessary
to solve the limitations that do not allow the fabrication of narrow GNRs with atomic
precision and smooth edges. TB modeling of metallic and semiconducting AGNRFETs
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is presented in [155], where the authors modeled a top-gated GNRFET using a 7-AGNR
as semiconducting channel and 8-AGNRs as metallic leads (see Figure 3.1(o)); however,
it is important to mention that the leads would need to be wide graphene in order to be
metallic, as in Figure 3.1(q). This device shows FET-like behavior without saturation
for bias voltages under 1V. When the channel is modeled with metallic-semiconducting-
metallic GNRs, the resulting device can be used as an on-chip resistance with a fixed
value according to the relative length of the semiconducting and metallic portions of
GNR in the channel. Then, the combination of both devices is used to obtain an
inverter circuit with 0.2 V noise margin and 100 nW power consumption, operating at
10 GHz.
Non-conventional topologies have also been used to develop logic circuits, such as the
logic inverter based on two GOSFETs (see Figure 3.1(h)) that has a voltage gain of
0.8-2.6 and input/output matching at room temperature [115]. Additionally, Pan and
Naeemi developed MUX-based graphene logic devices (see Figure 3.1(p)) that use the
angular dependent transmission probability of electrons on a p-n junction to obtain
complex circuits with graphene interconnects, whose performances are better than 15-
nm-node CMOS because of smaller device area, lower output resistance, lower delay
and power consumption [120].

3.7 Chapter summary

GNR-based nanodevices for logic applications still require years of development be-
fore reaching industrial production. The performance of devices up to date are still
unsatisfactory for replacing silicon-based circuits, however, the increasing number of
publications and patents in the field favor the expectations of using the remarkable
properties of GNRs for realistic implementations in the near future, given the fact
that nanoelectronic devices for logic circuits demand the purest quality of material
and lowest defect densities for achieving consistent performance of devices and relia-
bility. For this, improvements in the manufacturing processes of graphene and GNRs
are mandatory. Furthermore, experiments have shown the difficulty in producing very
narrow GNRs with consistent electron transport properties that could outperform sil-
icon. For this issue, bottom-up techniques using monomer precursors have enabled
the production of extremely narrow GNRs with usable bandgaps for switching devices
[134, 135], but at the expense of reduced carrier mobilities.
Typical GNRFETs with exfoliated graphene have achieved the highest Ion/Ioff (up to
107) [46], but the bandgap of the device is still too small (300 meV) and the carrier mo-
bility is drastically reduced (~100-200 cm2V−1s−1). Therefore, it is very likely that the
performance of typical GNRFETs is not sufficient for replacing silicon devices. This
will require not only improvements in the GNR manufacturing techniques, but also
the design of novel nanodevices that use different physical principles for operation.
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Knowing this, the required nanodevices should address the issues of manufacturing
and reduced carrier mobility in narrow GNRs. TFETs and NDR-based devices are
predicted to have Ion/Ioff in the order of 105, yet they still require very narrow GNRs
(1.2 and 1.7 nm) for proper operation [103, 108] and further studies on performance
with defective GNRs. TFETs with tunable n-i-p profiling seem to allow an easy transi-
tion to the development of complementary logic circuits; however, the devices require
wide bandgaps for reducing the leakage currents. Thereafter, hybrid structures us-
ing graphene with doped sections, functionalizations or controlled defects can result
in successful devices for realistic applications, but more theoretical and experimental
works are required.
Top-down and bottom-up fabrication techniques have been explored for manufactur-
ing graphene sheets in large scale, but process variations still need to be reduced
in conventional top-down processes. In this context, bottom-up techniques enable the
production of highly pure GNRs with atomically precise widths and well-defined edges,
however, they are limited to the substrates that are compatible with the fabrication
steps, which also limit their application to practical devices. The combination of top-
down patterning and bottom-up assembling should enable the development of novel
processes for manufacturing high-quality nanostructures at the large scale [54], how-
ever, more theoretical and experimental studies are required for emergent materials
and devices [39].
Ambipolarity of graphene results in devices with high off-state currents, even though
circuit design is favored by symmetry of carriers. Researchers are conducting different
experiments to fabricate unipolar graphene sheets and heterostructures that could be
used to design complementary n-type and p-type graphene FETs.
Realistic applications require improved Ion/Ioff ratios, where the off-state leakage
current needs to be significantly reduced [26]. Current performance of GNRFETs is
insufficient for switching from silicon technologies to graphene; then, the challenge is
to develop novel device structures that could outperform CMOS devices by reducing
leakage current and power dissipation, without increasing the production costs [16].
Consequently, researchers have been exploring alternative device structures that take
advantage of tunneling and negative resistance effects that could be used to overcome
fundamental issues presented by conventional approaches. TFETs with n-i-p doping
profiles enable a deeper testing of the electronic transport properties of GNRs and are
very promising for replacing silicon technologies [112, 113]. These structures have been
probed to be possible and achieve high Ion/Ioff ratios and steep subthreshold swings
at the expense of changing the operational principles for obtaining effective n-type and
p-type FET characteristics that would ease the design of logic circuits.
Finally, graphene-based nanoelectronics is possible according to the different device
structures that have been presented in the literature, however, the biggest concern is
to find a scalable, reliable and cost-effective manufacturing process that enables the
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production of devices with minimum defect densities and highly reproducible features.
Therefore, the goal is to overcome this issue by designing novel nanodevices that op-
erate under different physical principles, in addition to typical field-effect devices.
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4 Spin Hall Effect and Nonlocal
Resistance in Adatom-Decorated
Graphene

4.1 Introduction

Over the past decade, the spin Hall effect (SHE) has evolved rapidly from an obscure
theoretical prediction to a major resource for spintronics [156, 157]. In the direct SHE,
injection of a conventional unpolarized charge current into a material with extrinsic
(due to impurities) or intrinsic (due to band structure) spin-orbit coupling (SOC) gen-
erates a pure spin current in the direction transverse to the charge current. Although
the SHE was first observed only a decade ago [158, 159, 160, 161], it is already ubiq-
uitous within spintronics as the standard pure spin-current generator and detector
[156, 157]. The spin Hall angle θsH, as the ratio of generated spin Hall current and
injected charge current, is the figure of merit for charge-to-spin conversion efficiency.
To date, measured values of θsH range from ∼ 10−4 in semiconductors to ∼ 0.1 in
metals like β-Ta and β-W [157].
Concurrently, the discovery of graphene [24, 16] has ignited a considerable amount
of activity, owing to its unique electronic properties and versatility for practical ap-
plications, including possible applications in spintronics [162, 163]. The intrinsically
small SOC and hyperfine interactions [164, 165, 166, 167] in graphene lead to spin
relaxation lengths reaching several tens of micrometers at room temperature [168, 169,
170, 171, 172, 173, 174], but simultaneously making pristine graphene inactive for the
SHE [162]. On the other hand, recent nonlocal transport measurements on graphene
decorated with heavy adatoms like copper, gold and silver have extracted exceptionally
large values for θsH ∼ 0.2 [175]. These reports follow prior experiments on weakly hy-
drogenated graphene, which showed surprisingly similar results [97] despite using light
adatoms like hydrogen. The large values of θsH observed in both types of experiments
have been supported by semiclassical transport theories [176, 177].
The very recent experiments [178, 179] aiming to reproduce these results have indeed
confirmed a large nonlocal transport signal near the charge neutral point (CNP) of
graphene which, however, appears to be disconnected from SHE physics or any other
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spin-related mechanism. For example, Wang and coworkers [178] reported that Au- or
Ir-decorated graphene exhibits no signature of the SHE and relate the large nonlocal
resistance RNL to the formation of neutral Hall currents. Kaverzin and van Wees [179]
found large RNL in hydrogenated graphene which was insensitive to an applied in-plane
magnetic field. These authors [179] exclude valley Hall effect and long-range chargeless
valley currents [1] as mediating such RNL, given the absence of both its temperature de-
pendence and broken inversion symmetry, and conclude that a nontrivial and unknown
phenomenon is at play.
The presently available theories for θsH [176] or RNL [180] offer little guidance on how
to resolve these controversies, since they utilize semiclassical approaches to charge
transport and spin relaxation which are known to break down [98, 181, 182, 183] near
the CNP. Moreover, while the Kubo formula [184] offers a fully quantum-mechanical
treatment that can, in principle, capture all relevant effects, its standard analytic
evaluation neglects [185] terms (such as those corresponding to skew scattering from
pairs of closely spaced impurities [186, 187, 188]) in the perturbative expansion in
disorder strength which can become crucial for clusters of adatoms. Finally, the impact
of unavoidable adatom clustering [189] on θsH is an open and important question, since
adatom segregation has been shown to strongly affect spin transport properties [190,
191, 192, 193].
In this chapter, the spin Hall angle in graphene decorated with Au-adatoms is com-
puted by using two different numerically exact quantum transport methodologies—the
real-space Kubo formula and the multiterminal Landauer-Büttiker (LB) formula [194].
At zero temperature, both methods yield θsH ∼ 0.1–0.3 for the same Au-adatom con-
centration ni. However, those values require rather large ni & 10% and drop signifi-
cantly when temperature and adatom clustering are taken into account.
Furthermore, the LB formula applied to six-terminal graphene geometry in Figure 4.1
reveals large background contributions to RNL even when SOC is artificially turned off.
They are, therefore, unrelated to SHE physics, and are also unrelated to trivial Ohmic
contribution due to classical current paths [179, 180]. We show that their sign [195, 196]
and scaling with the channel length L makes it possible to understand their origin.
This allows us to propose a novel six-terminal graphene setup (see Figure 4.11) where
such background contributions can be eliminated in order to study a purely SHE-driven
RNL signal.

4.2 Hamiltonian model for Au-decorated graphene

When an adatom like gold, thallium or indium is absorbed onto a graphene surface,
it resides in the center of graphene carbon rings, where it can enhance the intrinsic
SOC or induce Rashba SOC due to the broken inversion symmetry [197]. The minimal
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(with single π orbital per site) effective tight-binding model for graphene with such
adatoms is given by

H = − γ0
∑
〈ij〉

c†icj + 2i√
3
VI

∑
〈〈ij〉〉∈R

c†i~s · (~dkj × ~dik)cj

+ iVR
∑
〈ij〉∈R

c†i~z · (~s× ~dij)cj − µ
∑
i∈R

c†ici. (4.1)

The first term is the nearest-neighbor hopping term with γ0 = 2.7 eV. The second term
is the next-nearest-neighbor hopping term, which accounts for the local intrinsic SOC
enhancement by adatoms residing on the set of hexagons R. The unit vector ~dkj points
from atom j to atom k, with atom k standing in between i and j, and ~s = (sx, sy, sz) is
the vector of the Pauli matrices. The third term is the nearest-neighbor hopping term
describing the Rashba SOC which explicitly violates ~z → −~z symmetry. The last term
is the on-site potential µ on carbon atoms in the hexagons hosting adatoms, which sim-
ulates charge modulation induced locally around the adatom [197]. The Hamiltonian
in Equation 4.1 has been employed to study spin dynamics in graphene decorated with
Au-adatoms [98], and here we use the same parameters VI = 0.007γ0, VR = 0.0165γ0
and µ = 0.1γ0 fitted to first-principles calculations [197].
Figure 4.1 shows the geometry used for the calculations of bulk Kubo conductivities
and multiterminal charge and spin currents. The calculations of θsH with the Kubo
formula are performed using a graphene flake of the size 400 nm × 400 nm enclosed in a
dashed square with periodic boundary conditions. For LB calculations, we consider full
six-terminal geometry in Figure 4.1, where the central region with edges of armchair
type, widthW = 50 nm (composed of 3n+2 dimer lines, so that its electronic structure
resembles that of large-area graphene [183]) and variable distance L between the pair
of leads 1 and 2 and the pair of leads 3 and 4 is attached to two armchair longitudinal
leads and four transverse leads with zigzag edges and of widthW = 50 nm. Akin to the
experimental procedure [97, 175, 178, 179, 198], injecting unpolarized charge current
I1 into this measurement geometry induces RNL = (V3 − V4)/I1 and θsH = ISz5 /I1.

4.3 Real-space Kubo formula for spin Hall conductivity

The Kubo formula for spin Hall conductivity σsH reads [157]

σsH = e~
Ω
∑
m,n

f(Em)− f(En)
Em − En

Im [〈m |Jzx |n〉 〈n |vy|m〉]
Em − En + iη

, (4.2)
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Figure 4.1: Schematic view of a six-terminal graphene employed to compute the non-
local resistance RNL = VNL/I1 and the spin Hall angle θsH = ISz5 /I1. For nonlocal
transport, the injected transverse charge current between leads 1 and 2 generates
the longitudinal spin current ISz5 in lead 5, as well as the mediative spin current ISzM
whose conversion into the voltage drop VNL = V3 − V4 between leads 3 and 4 gener-
ates RNL. The dashed region illustrates the sample of size 400 nm × 400 nm, with
periodic boundary conditions, used for calculations of Kubo conductivities. The
enlargement shows carbon atoms (black circles) and Au adatoms (yellow circles).

where vx is the velocity operator and Jzx = ~
4{sz, vx} is the spin-current operator. The

numerical evaluation of Equation 4.2 is usually made by finding the whole spectrum
Em and the full set of eigenvectors {|m〉} of H, which is a computationally expensive
task. Here we develop an alternative and efficient real-space formalism by re-writing
σsH as

σsH = e~
Ω

∫
dxdy

f(x)− f(y)
(x− y)2 + η2 j(x, y), (4.3)

with j(x, y) = ∑
m,n Im [〈m |Jzx |n〉 〈n |vy|m〉]δ(x−Em)δ(y−En). This can be calculated

by rescaling H, x, y and E into [−1, 1] (the corresponding variables are h, x̂, ŷ and ε,
respectively) and by expanding j(x, y) into Chebyshev polynomials Tm(x̂) as j(x, y) =∑M
m,n[4µmngmgnTm(x̂)Tn(ŷ)]/[(1 + δm,0)(1 + δn,0)π2

√
(1− x̂2)(1− ŷ2)], where µmn =

Im {Tr [JzxTn(H)vyTm(H)]}/∆E2 and ∆E is half the bandwidth [199]. Here gm is the
filter, Jackson kernel, that minimizes the Gibbs oscillations arising in truncating the
series to finite orderM [199]. The trace in µmn is computed by averaging [200, 201, 202]
over a small number r � N of random phase vectors |ϕ〉, with N being the number of
carbon atoms considered in the sample. Hereafter, M = 1500 (= 6000) for σsH ( σxx),
r = 1 and N = 4 × 106. Similar methods have been developed for the longitudinal
conductivity σxx [200, 201, 202], Hall conductivity σxy [203, 204, 205] and spin Hall
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conductivity σsH [206]. The method is validated by comparing our computed σsH with
analytic results [207] for clean graphene with homogeneous Rashba or intrinsic SOC.

4.4 Chebyshev-polynomial Green function method for
Kubo formula

The longitudinal conductivity is calculated using a method similar to the one developed
in the previous section for σsH called Chebyshev-polynomial Green function method.
This method was introduced very recently by Ferreira and Mucciolo [202] to study
charge transport in graphene flakes containing very large number of carbon atoms
and disorder due to structural vacancies. It is inspired from the real-space order N
quantum transport method pioneered in Refs. [200, 201]. The starting point is to
write an exact representation of the Kubo formula for the zero-frequency conductivity

σxx(E, η) = 2~e2

πΩ

M∑
m,n=0

Im [gm(E + iη)]Im [gn(E + iη)]µmn, (4.4)

where

µmn = 1
∆E2 Tr [vxTm(H)vxTn(H)], (4.5)

is given in terms of the velocity operator vx = [x,H]/i~ and Chebyshev polynomials
Tn(H). Here Ω is the area, ∆E is half the bandwidth and η is the inelastic broadening
parameter, required to define the retarded Green function G(E + iη), which has to be
larger than the mean level spacing. The coefficients gm(E+iη) appear in the expansion
of G(E + iη) in terms of first-kind Chebyshev polynomials [202]

G(E + iη) = 1
E + iη −H

=
∞∑
m=0

gm(E + iη)Tm(H), (4.6)

and are given by

gm(z) = 2
i

1
1 + δm,0

(
z − i

√
1− z2

)m
√

1− z2
. (4.7)

The most time-consuming part of this method is evaluation of the trace in Equation 4.5,
which for sparse matrices representing the tight-binding effective Hamiltonian H can
be replaced by stochastic average over r complex vectors with random phases [202].
For example, insets of Figure 4.3 show σxx for ni = 15% concentration of Au adatoms
on graphene where we used Hamiltonian matrix of size N = 4 × 106 (i.e., N is the
number of carbon atoms considered in the dashed square in Figure 4.1), M = 6000
and all results are averaged over 400 disorder configurations.
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4.5 Validation of the real-space method for spin Hall
conductivity

To validate our implementation of the real-space Kubo formula for σsH, we perform
calculations for graphene with homogeneous spin-orbit couplings (SOCs) as described
by the Hamiltonian

H = −γ0
∑
〈ij〉

c†icj + 2i√
3
VI

∑
〈〈ij〉〉

c†i~s · (~dkj × ~dik)cj + iVR
∑
〈ij〉

c†i~z · (~s× ~dij)cj. (4.8)

Here the symbols have the same meaning as in Equation 4.1, except that VI and VR are
nonzero on every hexagon. In the continuum limit and close toK andK ′ points located
at the corners of the first Brillouin zone of graphene, this Hamiltonian is equivalent to
the Dirac Hamiltonian

H(~k) = ~vF~σ · ~k + λIσzsz + λR (~σ × ~s)z , (4.9)

with λR = 3VR/2 and λI = 3
√

3VI .
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Figure 4.2: Main frame: Spin Hall conductivity σsH of graphene with homogeneous
Rashba SOC obtained from our real-space Kubo formula calculations (red solid
line)—with parameters VR = 0.1γ0, M = 300, r = 100 and N = 1.3 × 106—is
compared with analytic expression (black dashed line) in Equation 4.10. Inset: Nu-
merically computed σsH for the case of homogeneous intrinsic SOC with parameters:
VI = 0.05γ0, M = 500, r = 50 and N = 32× 106.

In the first validation test, we use Hamiltonian in Equation 4.8 with homogeneous
Rashba SOC, VR = 0.1γ0, and zero intrinsic SOC, VI = 0. For this case, an analytic
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expression

σsH(E) =


− e

4π
sign(E)E2

(E2−λ2
R) for |E| ≥ 2λR,

− e
4π

E(E+2sign(E)λR)
2λR(E+sign(E)λR) for |E| < 2λR,

(4.10)

was obtained in Ref. [207] by starting from the Dirac Hamiltonian in Equation 4.9.
The spin conductivity in two-dimensions has the same unit as spin conductance and
it is naturally given in the units of spin conductance quantum, e/4π [208]. However,
to make the spin Hall angle a dimensioneless quantity, spin conductivity/conductance
should be expressed in the same units as charge conductivity/conductance by replacing
e/4π with charge conductance quantum e2/h = (2e/~)(e/4π). Figure 4.2 (main frame)
compares our numerical result for σsH (red solid line) with Equation 4.10 (black dashed
line). Our numerical result is in perfect agreement with Equation 4.10 up to E ' 0.5γ0,
despite the fact that the Dirac Hamiltonian is expected to be a good approximation
only sufficiently close to charge neutral point (CNP) at EF = 0. For very small Rashba
SOC, λR � E, (Equation 4.10) can be rewritten as σsH(E) = −sign(E)e/4π, which
is a step function explaining the shape of σsH in the scattered case (with VI = 0) in
Figure 4.3.
In the second validation test, we use Hamiltonian in (Equation 4.8) with homogeneous
intrinsic SOC, VI = 0.05γ0, and zero Rashba SOC, VR = 0. Such system exhibits
quantum spin Hall effect (QSHE) with a gap opening in the bulk and two gapless
helical edge states with opposite spin and momentum direction on each edge [96].
Consequently, the QSHE is characterized by σsH = 2× e/4π [96, 209, 207]. Figure 4.2
(inset) shows our numerical result for σsH which exhibits quantized value inside the
gap, which is in full accord with QSHE phenomenology.

4.6 Spin Hall angle for different adatom distributions

Figure 4.3 shows σsH for ni = 15% of Au adatoms distributed in a scattered (a) or clus-
tered fashion (b), where clusters are randomly distributed islands of radius ∈ [1, 3] nm.
Although the random distribution of Au adatoms and the Rashba SOC associated
with them induce scattering (µ = 0.1γ0 in Equation 4.1), the dependence of σsH on
the Fermi energy EF in the absence of intrinsic SOC is reminiscent of a step behavior
obtained for a homogeneous Rashba SOC, with σsH ' ±e/4π near the CNP. Adding
a small intrinsic SOC, VI = 0.007γ0 � VR, slightly changes the absolute value of σsH
but preserves the step behavior. In contrast, the clustered distribution of Au adatoms
suppresses the step behavior and smooths out the shape of σsH close to the CNP. The
effect of intrinsic SOC is more pronounced for the clustered distribution with a more
significant enhancement of σsH on both electron and hole side.
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Figure 4.3: Spin Hall σsH (main frame) and longitudinal σxx (insets) conductivities for
the two cases of ni = 15% Au-adatom distributions: (a) scattered and (b) clustered,
where Au islands have varying radius ∈ [1, 3] nm. In both cases the effect of presence
(red lines, VI = 0.007γ0) or absence (black lines, VI = 0) of the enhanced intrinsic
SOC within the hexagons hosting adatoms is also shown. All results are averaged
over 400 disorder configurations.

Figure 4.4: Spin Hall angle θsH = σsH/σxx corresponding to Figure 4.3 for scattered
(black curve) and clustered (red curve) distributions of Au adatoms, which are il-
lustrated in the insets.
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4.7 Spin Hall effect in graphene with clustering of Thallium adatoms

The spin Hall angle θsH = σsH/σxx requires the additional calculation of the longitudi-
nal conductivity σxx, which is performed using a real-space Kubo formula. Figure 4.3
(insets) shows σxx for both cases. Comparable values of σxx are obtained at the CNP,
but for the scattered case σxx increases with energy faster than for the clustered case.
Figure 4.4 shows θsH for ni = 15% of Au adatoms, which are distributed homoge-
neously (black lines) or in clusters (red line). Remarkably, the values of θsH shown in
Figure 4.4 are very large ∼ 0.1 close to the CNP, which is similar to experimentally re-
ported values [175]. At the CNP, a threefold decrease in θsH is obtained when adatoms
are clustered into islands with small radius. This conclusion seems to differ from the
semiclassical transport predictions, where θsH increases with the radius of adatom clus-
ters [176], although a strict comparison would require to treat a system consisting of
identical islands. At higher energies, we observe a sizable θsH for clustered adatoms,
which contrasts with vanishingly small values for the scattered geometry. We finally
extrapolate that, for ni =2%–3% (as estimated in experiments [175]), θsH should range
between 0.01 and 0.1. We stress, however, that our calculations represent an upper
limit for experimental situations. There, the increase of the cluster size and the finite
temperature can significantly decrease θsH below 0.01.

4.7 Spin Hall effect in graphene with clustering of
Thallium adatoms

It is insightful to compare our predictions for the SHE in graphene decorated with Au
adatoms with the onset of SHE found in the case graphene decorated with clusters of
thallium (Tl) adatoms [193]. Heavy adatoms like Tl locally enhance the intrinsic SOC
while generating negligible Rashba SOC [197]. For large concentration and scattered
distribution of Tl adatoms, QSHE is expected [197], followed by a crossover from QSHE
to SHE upon Tl clustering [193]. Figure 4.5 shows that for clustered Tl adatoms, θsH
is larger than in the case of scattered Au adatoms, assuming the same concentration
for both types of adatoms. Thus, high charge-to-spin conversion efficiency could be
achieved by using adatoms which locally enhance intrinsic SOC, even in the presence
of adatom clustering.
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Figure 4.5: Main frame: Spin Hall angle θsH for graphene with Au adatoms, which are
scattered (black) or clustered (red), as well as for clustered Tl adatoms (blue curve).
The concentration of both Au and Tl adatoms is ni = 15%. Insets: Conductivities
σsH (right inset) and σxx (left inset) for graphene with Tl adatoms whose ratio gives
θsH = σsH/σxx in the main frame. All curves are obtained using real-space Kubo
formula calculations averaged over 400 disorder configurations.

4.8 Spin Hall angle and nonlocal resistance from
multiterminal Landauer-Büttiker formula

Our numerically exact quantum transport calculations for multiterminal finite-size
graphene are based on the LB formula [194]

Ip =
∑
q

Gpq(Vp − Vq). (4.11)

which relates the total charge current Ip, flowing through semi-infinite ideal (i.e., with-
out any impurities or SOC) lead p =1–6 attached to the central phase-coherent region,
to voltages Vq in all other leads. The charge conductance coefficients

Gpq = e2

h

∫
dE Tr[tpqt†pq]

(
− ∂f
∂E

)
, (4.12)

are expressed in terms of the transmission matrix tpq between transverse propagating
modes within semi-infinite leads p and q. The same Equation 4.11 can be converted
into the formula for total spin current ISαp (which is conserved along the leads without
SOC or other spin-flip mechanisms [210], as assumed in Figure 4.1)

ISαp =
∑
q

GSα
pq (Vp − Vq). (4.13)
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4.9 Nonlocal resistance and spin Hall angle in multiterminal graphene

on the proviso that Gpq is replaced by the spin conductance coefficients

GSα
pq = e2

h

∫
dE Tr[sαtpqt†pq]

(
− ∂f
∂E

)
, (4.14)

where sα is the Pauli matrix. The derivative of the Fermi function (−∂f/∂E) takes
into account thermal broadening effects, but inclusion of inelastic scattering at finite
temperature which smooths out features of Gpq or GSα

pq due quantum interference effects
requires to add phenomenological dephasing [183] which we do not perform in this
study.
The calculation of spin and charge conductance coefficients in Equation 4.12 and
Equation 4.14 was performed by using the KWANT package [211] which employs highly
efficient and robust algorithms to calculate the transmission matrix, while being able
to significantly outperform commonly used recursive GF methods [212, 213] for mul-
titerminal devices containing large number of atoms. The KWANT package also avoids
instabilities that occur with many commonly used algorithms (such as in dealing with
the evanescent modes of complicated leads) [211].
One can apply Equation 4.11 and Equation 4.13 to the six-terminal device in Figure 4.1
by either setting the voltages Vq to find currents Ip and ISαp , or fix the injected current
Ip and then find voltages Vq which develops as the response to it. For the analysis
of experiments reported in Ref. [175] the latter approach is the most suitable, so we
set injected charge current I1 through lead 1 and current −I1 flows through lead 2
while Ip ≡ 0 in the other four leads. We then compute voltages which develop in the
leads p =3–6 in response to injected current I1 and obtain the nonlocal resistance as
the quantity which is measured directly in experiments from RNL = (V3 − V4)/I1. We
define the spin Hall angle for the six-terminal graphene device in Figure 4.1 or for the
device in Figure 4.11 as θsH = ISz5 /I1 (which is not a directly measurable quantity due
to difficulty in measuring spin currents ISαp ).

4.9 Nonlocal resistance and spin Hall angle in
multiterminal graphene

In the SHE experiments [97, 175], multiterminal graphene devices are employed to
measure RNL, as illustrated in Figure 4.1. In such a circuit, a charge current I1 injected
from lead 1 towards lead 2 generates a nonlocal resistance RNL = (V3 − V4)/I1 for the
Fermi energy EF sufficiently close to the CNP. The appearance of nonzero RNL, due
to a SHE-driven mechanism, is explained by charge current I1 inducing mediative spin
current ISzM in the first crossbar in Figure 4.1 flowing in the direction 5→ 6, which is
subsequently converted into the nonlocal voltage VNL = V3− V4 by the inverse SHE in
the second crossbar. We calculate the total charge Ip and spin ISzp currents and voltages
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Vp in leads p =2–6 in response to injected charge current I1 using the multiterminal
LB formula [194], as implemented in KWANT software package [211].
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Figure 4.6: (a) Nonlocal resistances for six-terminal graphene in Figure 4.1 with ni =
15% of scattered Au adatoms, fixed channel width W = 50 nm and several channel
lengths: L = 10 nm (main frame); L = 100 nm (left inset); and L = 300 nm (right
inset). Dotted lines plot RNL when all SOC terms in (Equation 4.1) are switched
off (SOC ≡ 0 ⇔ VI = VR = 0). (b) Spin Hall angle, obtained from LB formula
calculations, for the same concentration of Au adatoms which are scattered (main
frame) or clustered (inset). All curves are averaged over 10 disorder configurations.

The spin Hall angle—defined as θsH = ISz5 /I1—is shown in Figure 4.6(b), where we
confirm large values obtained from the Kubo formula, as well as the detrimental effect
of clustering of Au adatoms. While both Kubo and LB formula calculations predict
θsH ' 0.1 close to the CNP, thermal broadening effects included in LB formula cal-
culations further reduce θsH by up to one order of magnitude (see Figure 4.6(b)). By
comparing Figure 4.6(b) with Figure 4.9, we find that the hypothetical case of ho-
mogeneous Rashba SOC, due to Au adatoms covering every hexagon in Figure 4.1,
generates the SHE akin to the intrinsic one in finite-size two-dimensional electron
gases [214, 209, 215, 210]. Its θsH exhibits wider peak (centered at EF = 0.3γ0 due
to doping of graphene by Au adatoms) of smaller magnitude than in the case of ran-
domly scattered Au adatoms. Thus, adatom-induced resonant scattering [176] plays
an important role in generating large extrinsic SHE.
Figure 4.6(a) shows RNL as a function of energy and for various channel lengths L.
Most notably, we find a nonzero RNL even when all SOC terms are switched off
(VR = VI = 0) in (Equation 4.1), while keeping random on-site potential µ 6= 0
due to Au adatoms unchanged. Furthermore, we find a complex sign change of RNL in
Figure 4.6(a) with increasing channel length from L = 10 nm to L = 300 nm, which
suggests the following interpretation. The total RNL can have four contributions
RNL = RSHE

NL + ROhm
NL + Rqb

NL + Rpd
NL, assuming they are additive after disorder aver-

aging. For an unpolarized charge current injected from lead 1 (i.e., electrons injected
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4.10 Scaling of spin Hall angle with adatom concentration

from lead 2): RSHE
NL generated by combined direct and inverse SHE has a positive sign;

trivial Ohmic contribution ROhm
NL due to classical diffusive charge transport [180, 179]

has a positive sign; Rqb
NL is the negative quasiballistic contribution arising due to direct

transmission T32 6= 0 from lead 2 to lead 3 (see Figure 4.12), as observed previously in
SHE experiments on multiterminal gold devices [195]; finally, Rpd

NL is a positive contri-
bution specific to Dirac materials where evanescent wavefunctions generate pseudodif-
fusive transport [216, 217] close to the CNP characterized by two-terminal conductance
scaling as G ∝ 1/L even in perfectly clean samples as long as their geometry satisfies
W > L (see Figure 4.11).
Thus, in a device with W > L, such as W = 50 nm and L = 10 nm in the main frame
of Figure 4.6(a), the positive sign RNL is dominated by Rpd

NL, which can be larger than
in the case of perfectly clean graphene in Figure 4.11 due to scattering from impurities
(of uniform strength) at the CNP [218]. The negative sign of RNL in the two insets in
Figure 4.6(a) in the absence of SOC and for L > W suggests that ROhm

NL can be safely
neglected in our samples due to small ni—we estimate the mean free path ` = 300–400
nm for ni = 15%, so that when diffusive transport regime sets in for ` > L the Ohmic
contribution ROhm

NL ∝ exp(−πL/W ) [180, 179] is already negligible due to L/W � 1.
Therefore, for L > W the main competition is between Rqb

NL with negative sign and
RSHE

NL with positive sign, as found in the two insets in Figure 4.6(a). The existence of
background contributions to RNL that do not originate from the SHE, and can be even
larger than RSHE

NL , could explain insensitivity of the total RNL to the applied external
in-plane magnetic field observed in some experiments [178, 179].
The difficulty in clarifying the dominant contribution to RNL could be resolved by
detecting its sign change as a function of the channel length L in Figure 4.1. An
alternative is to design a setup where ROhm

NL , Rqb
NL, and R

pd
NL are negligible so that RSHE

NL
can be isolated. We propose such setup in Figure 4.11 where adatoms are removed
in the channel. When such a channel is sufficiently long, Rpd

NL = 0 due to L > W
and ROhm

NL , Rqb
NL → 0 due to the absence of impurity scattering in the channel, so

that the mediative spin current ISzM generated by the direct SHE in the first crossbar
arrives conserved [210] at the second crossbar where it is converted into VNL by the
inverse SHE. Indeed, Figure 4.12 demonstrates that RNL and θsH in this setup are
unambiguously related, since they both display a sharp peak at virtually the same EF
very close to the CNP.

4.10 Scaling of spin Hall angle with adatom
concentration

In the experiments [175], the density of gold clusters of diameter ranging from 20 to 40
nm is estimated to lie within 1010cm−2–1011cm−2. This leads to ni ' 2–3% assuming
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that clusters are two-dimensional. The values of θsH obtained from the Kubo formula
calculations assume larger adatom concentration ni = 15%. Because of too large
mean free paths (above the micrometer) for few percent adatom densities, we cannot
(within our present computational capability) reach the diffusive regime in which the
Kubo conductivities could be safely estimated. An estimate of θsH for much lower
density is actually not straightforward because the scaling of σsH with ni is predicted
to ultimately depend on the mechanism dominating the SHE [187, 188].
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Figure 4.7: Spin Hall angle as a function of the concentration of randomly scattered
Au adatoms. These results are obtained from numerically evaluation of the LB
formula (see section 4.8) applied to four-terminal graphene devices whose central
square-shaped region of the size 50 nm × 50 nm or 100 nm × 100 nm is attached to
four semi-infinite leads of the same respective width. The values of θsH are averaged
over the Fermi energy interval [−0.01γ0, 0.01γ0].

Neglecting localization effects, the scaling of longitudinal conductivity should follow the
Fermi golden rule, σxx ∼ 1/ni. Similarly, the spin Hall conductivity follows σsH ∼ 1/ni,
but only when the skew-scattering mechanism predominates the extrinsic SHE [176,
187, 188] (e.g., as confirmed numerically in Ref. [219] for adatoms inducing Rashba
SOC). As discussed in Refs. [187, 188], σsH should be dominated by a ni-independent
value for the side-jump mechanism, whereas higher order quantum interference terms
between scattering paths could lead to nαi dependence (where α = 1, 2, ...) [202, 187,
188, 220].
Therefore in the limit of small ni, θsH is expected to be either constant or ∝ ni. The
value ni = 15% used in our Kubo formula calculations lies outside the dilute adatom
regime where such theories have been developed [187, 188, 219], but based on the
arguments above we extrapolate that for few percent of Au adatom concentration,
the maximum value should range within θsH ' 0.01–0.1, where the lower limit is for
adatom clusters. Thus, our estimate is about one order of magnitude lower than the
value reported in Ref. [175]. Finite temperatures and larger clusters will lead to even
lower spin Hall angles.
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4.10 Scaling of spin Hall angle with adatom concentration

Finally, a brute-force calculation of θsH for arbitrary adatom concentration in finite-
size samples is possible using the multiterminal LB formula approach discussed in
section 4.8. Figure 4.7 shows that θsH does increase with the adatom concentration
in the limit of low ni, with values agreeing with estimates made above. Comparing
our results in Figure 4.7 with those in Refs. [187, 188, 219] suggests that side jump
and anomalous quantum processes could dominate the physics of SHE in graphene
decorated with low concentration of adatoms.

4.10.1 Nonlocal resistance for a uniform distribution of gold
adatoms
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Figure 4.8: (a) Nonlocal resistance RNL and (b) spin Hall angle θsH as a function of
the Fermi energy for graphene with uniform distribution of adatoms where every
hexagon within the central region in Figure 4.1 is covered by one gold adatom.

Figure 4.8 shows RNL and θsH for the case of a completely uniform distribution of
Au adatoms, where each hexagon within the central region hosts one Au adatom.
Both quantities are calculated at temperatures T = 0 K and T = 300 K, where the
latter includes thermal broadening effects in the LB calculations. The uniform Rashba
SOC generates the intrinsic SHE in multiterminal systems, akin to the one found
in multiterminal two-dimensional electron gases [210, 208, 221]. Note that the large
value of the nonlocal signal and θsH is observed in Figure 4.8 away from CNP due to
doping of graphene by µ = 0.3γ0 (chosen by viewing the central region of the device
as a single large cluster) in Equation 4.1. The spin Hall angle and RNL due to such
intrinsic SHE are actually smaller than the same quantities shown in Figure 4.12 for
scattered distribution of Au adatoms in purely SHE-driven nonlocal transport setup
in Figure 4.11. This confirms the importance of resonant scattering off adatoms for
enhancing the extrinsic SHE—a conclusion reached also by semiclassical transport
theories [202].
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4.10.2 Scaling of pseudodiffusive and quasiballistic contributions
to RNL

Figure 4.9 shows the scaling of RNL with the length L (at fixed width W ) of six-
terminal pristine graphene devices when all adatoms are removed from the setup in
(Figure 4.1). Such nonlocal signal, which is positive around the CNP, is specific to
Dirac electron systems, like graphene [216] or metallic surfaces of three-dimensional
topological insulators [217], where evanescent wavefunctions penetrate through the
zero gap of the Dirac cone to generate the so-called “pseudodiffusive” transport close
to CNP. The pseudodiffusive transport regime is characterized by the Ohmic-like two-
terminal conductance G ∝ 1/L [216, 217], even though the device is perfectly clean.
This mechanism provides background contribution Rpd

NL of positive sign to total RNL, as
long as W > L, which can be further enhanced at CNP by scattering from impurities
of uniform strength [218] as observed in (Figure 4.6).
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Figure 4.9: Nonlocal resistance generated in perfectly clean six-terminal graphene
device where all adatoms removed. The width of the device is fixed at W = 50 nm,
while the length between the two crossbars varies from L = 10 nm to L = 300 nm.

Figure 4.10 shows scaling of the transmission function Tpq = Tr[tpqt†pq] in Equation 4.12
with the length L (at fixed width W ) for electron paths from lead 2 → 3 and lead
2 → 4, as well as their difference, in six-terminal graphene device in (Figure 4.1).
The difference T32 − T42 being positive means that more electrons arriving into lead 3
than in lead 4 will cause negative Rqb

NL at some intermediate length scales. The slow
decay of quantities in Figure 4.10 characterizing the quasiballistic transport regime
can manifest as long as the channel length L is smaller than the mean free path, which
we estimate for ni = 15% concentration of adatoms to be between 300 nm and 400
nm.
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4.10 Scaling of spin Hall angle with adatom concentration
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Figure 4.10: Scaling with length L of the transmission functions Tpq from lead q to
lead p in six-terminal graphene device of width W = 50 nm in Figure 4.1: (a) T32;
(b) T42; and (c) their difference, T32−T42. The central region is covered by scattered
distribution of Au adatoms of concentration ni = 15%, while their SOC is switched
on (solid lines) or off (dotted lines). All curves are obtained by averaging Tpq over
the Fermi energy interval [−0.01γ0, 0.01γ0].

4.10.3 Six-terminal graphene geometry for isolating the SHE
contribution to RNL
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Figure 4.11: Schematic view of a six-terminal graphene geometry where adatoms are
removed from the channel connecting the two crossbars in order to isolate RSHE

NL .

Our interpretation of different contributions to RNL = RSHE
NL + ROhm

NL + Rqb
NL + Rpd

NL in
Figure 4.6 and their scaling with the length L of the device motivates us to propose a
setup in Figure 4.11 where adatoms are completely removed in the channel and RSHE

NL
could be isolated and its maximum value quantified. When such ballistic channel is
sufficiently long, Rpd

NL = 0 due to L > W (see Figure 4.9) and Rqb
NL, R

Ohm
NL → 0 due to

the absence of adatom-induced scattering in the channel. The mediative spin current
ISzM generated by the direct SHE in the left crossbar then arrives conserved at the right
crossbar where it is converted into nonlocal voltage signal VNL by the inverse SHE.

65



Chapter 4 Spin Hall Effect and Nonlocal Resistance in Adatom-Decorated Graphene

0.00 0.02 0.04

0

1

0.00 0.02 0.04

-1

0

1

2

3
scatteredscattered

T=0 K

T=300 K

L = 100 nmL = 100 nm(a) (b)

×10
-1

E
F
( 
0
)

R
S
H
E

N
L
(h
/e
2
)

×10
-1

E
F
( 
0
)

 

sH

Figure 4.12: (a) Nonlocal resistance RSHE
NL generated solely by the combination of

direct SHE (in the left crossbar) and inverse SHE (in the right crossbar) in the
setup of Figure 4.11. (b) Spin Hall angle θsH for the same setup in Figure 4.11. The
gold adatoms are distributed in scattered fashion with concentration ni = 15% in
each of the square regions within the two crossbars in Figure 4.11.

The maximum value of RSHE
NL in Figure 4.12 is still smaller than the absolute value

of other contributions to the RNL in (Figure 4.6) at intermediate channel lengths L.
We also find that both RNL and θsH exhibit a sharp peak at about the same Fermi
energy located very close to the CNP, which demonstrates one-to-one correspondence
between directly measurable charge transport quantity RNL and indirectly inferred
spin transport quantity θsH.

4.11 Chapter summary

By using the real-space Kubo formula and the multiterminal LB formula, we ob-
tained θsH ∼ 0.1–0.3 in Au-decorated graphene with large Au-adatom concentration
ni & 10%, that significantly decreases with temperature and adatom clustering. We
also used a six-terminal graphene geometry for calculating RNL, where we observe a
non-zero signal close to the CNP, even when SOC is not present. Then, we consider
the components of RNL to be additive and use an alternative configuration without
impurities inside the channel for getting the pure SHE-driven component, where we
confirm its positive contribution to the total RNL, competing with the negative quasi-
ballistic contribution in configurations with L > W . These results are important for
comparison with experiments that have also shown a large nonlocal transport signal
near the CNP and could be used for designing transistors with large on/off ratios.
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5 Valley Hall Effect and Nonlocal
Resistance in gapped Graphene

5.1 Introduction

The recent experimental observation [1] of a sharply peaked nonlocal voltage VNL in
a narrow energy range near the Dirac point (DP) of multiterminal graphene on a
hexagonal boron nitride (hBN) substrate has been interpreted [222, 223, 224, 225] as
the manifestation of the valley Hall effect (VHE). In this theoretical interpretation,
the injection of charge current I3 between leads 3 and 4 of the device illustrated in
Figure 5.1 generates a VH current in the first crossbar flowing from lead 1 to lead
2, which traverses the channel of length L to be converted into a nonlocal voltage
VNL between leads 5 and 6 (typically a few microns [1] away from leads 3 and 4)
by the inverse VHE in the second crossbar. The corresponding nonlocal resistance
RNL = VNL/I3 has also been observed before near the DP in multiterminal graphene
due to an external magnetic field inducing edge states in the quantum Hall regime or
the Zeeman spin Hall effect at higher temperatures [226, 227, 228, 183, 93], as well
as due to the spin Hall effect [97, 175, 229, 93] driven by adatom-induced spin-orbit
coupling.
However, none of these mechanisms is operational in the experiment of Ref. [1]. In-
stead, the physics of graphene on hBN with their crystallographic axes aligned is
expected to be governed by the spatial inversion symmetry breaking due to different
potentials on two triangular sublattices of carbon atoms induced by the hBN substrate.
This opens a gap Eg at the DP of two valleys K and K ′ in the band structure of an
infinite two-dimensional sheet of graphene, where ab initio calculations have estimated
Eg ' 50 meV [230]. The finite Berry curvature of opposite sign at the two valleys
was predicted [222, 223, 224] to generate valley-dependent transverse conductivities,
σKxy = e2/h and σK′

xy = −e2/h. The VH current is characterized by the VH conductiv-
ity, σvxy = σKxy − σK

′
xy = 2e2/h, and zero accompanying transverse charge conductivity,

σxy = σKxy + σK
′

xy ≡ 0, within the gap [231]. Such chargeless currents, denoted also as
“topological” [222, 223, 224] due to the involvement of the Berry curvature, are not
conserved but are expected to be long-ranged when the intervalley scattering is weak.
However, σvxy is not directly observable, and semiclassical transport theories [1, 224, 225]
attempting to connect σvxy to the observable nonlocal resistance—RNL ∝ (σvxy)2ρ3

xx [1,
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Figure 5.1: Schematic view of a six-terminal graphene, whose central region is placed
onto the hBN substrate, used in the LB formula calculations of nonlocal voltage VNL
between leads 5 and 6 and the corresponding resistance RNL = VNL/I3 in response
to a charge current I3 injected between leads 3 and 4. Black, blue and red circles
represent carbon, nitrogen and boron atoms, respectively.

180], where ρxx is the longitudinal resistivity of the channel between the two crossbars
in Figure 5.1—are not strictly applicable [232, 233] to electronic transport near the
DP. This is further emphasized [234] by the presence of the gap Eg forcing electrons
to tunnel through the system which is a phenomenon with no classical analog. The
Landauer-Büttiker (LB) formalism [194, 235, 211], which offers a rigorous quantum
transport framework to compute RNL and has been used for nearly three decades
to model nonlocal transport measurements [236, 237], yields RNL ≡ 0 near the DP
in Figure 5.2(c) in multiterminal geometries when the channel length in Figure 5.1 is
larger than its width L > W (L/W ≈ 3.5 in the experiments of Ref. [1]) using the same
simplistic Hamiltonian employed [222, 223, 224, 231] to get σvxy 6= 0. In geometries
with L < W , we get RNL 6= 0 for both graphene-on-hBN channel in Figure 5.2(c)
and for isolated graphene channel in Figure 5.2(b), which is trivially explained by the
evanescent wave-functions propagation from the first to the second crossbar through
the gap in short-channel geometries [229, 234]. The numerically exact result RNL ≡ 0
near the DP in Figure 5.2(c) is also incompatible with the interpretation [223] of RNL 6=
0 based on the picture of topological valley currents carried by the Fermi sea states just
beneath the gap. Such currents are assumed to be persistent in equilibrium [223], but
they would become mediative VH currents connecting the two crossbars in Figure 5.1
under the application of a bias voltage, thereby bypassing the absence of states around
the DP as the fundamental reason for RNL ≡ 0 in the LB theory.
Another long-standing puzzle is the metallic-like resistivity ρxx ∼ 10 kΩ observed ex-
perimentally [1] despite the expected Eg 6= 0 [230] in the bulk of graphene on hBN.
This suggests the presence of additional conduction pathways, such as edge currents
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observed very recently [238], which shunt the highly insulating state at low temper-
atures. However, previous theoretical studies of graphene-on-hBN wires [239, 240,
241, 242, 243] have concluded that edge states are either absent [223] or, when they
appear for special types of edges like zigzag [244, 245, 90] or chiral [43, 246], they
become gapped near the DP and dispersionless away from it so they are unable to
carry any current [239, 240, 241, 242, 243]. The latter conclusion is reproduced in
Figure 5.5 where we compute the band structure of a graphene-on-hBN wire of width
W = 50 nm with zigzag edges using the same simplistic Hamiltonian assumed in prior
theoretical studies [1, 222, 223, 224, 231, 234, 239, 240, 241, 242, 243].
In this chapter, we aim to resolve both puzzles—RNL ≡ 0 in Figure 5.2(c) obtained for
multiterminal graphene on hBN whose bulk counterpart exhibits σvxy 6= 0, and metallic-
like ρxx despite presumed gap opening around the DP—by performing density func-
tional theory (DFT) calculation combined with quantum transport simulations, based
on both the multiterminal LB formula (Figure 5.2 and Figure 5.7) and the Kubo for-
mula (Figure 5.3). We demonstrate that the puzzles have been generated as an artifact
of too simplistic and inadequate Hamiltonian of graphene on hBN assumed in prior
theoretical studies [1, 222, 223, 224, 231, 234, 239, 240, 241, 242, 243]. For example,
in contrast to previously computed [239, 240, 241, 242, 243] gapped band structure
for all types of graphene-on-hBN wires, the ab initio band structure of graphene-on-
hBN wires with zigzag edges in Figure 5.7(a) does not exhibit any gap. The ab initio
Hamiltonian combined with the LB formula yields RNL in Figure 5.2(a) and ρxx in
Figure 5.2(d) whose sharply peaked features near the DP, persisting in the presence of
edge disorder, are remarkably similar to their counterparts measured in Ref. [1].

5.2 Hamiltonian model for gapped graphene

Since the resolution of the two puzzles crucially relies on the accuracy of the Hamil-
tonian for the graphene-on-hBN systems and its combination with a proper transport
theory approach, we first summarize the inconsistencies in previous theoretical analy-
ses. A putative “standard model” [1, 222, 223, 224, 231, 234, 239, 240, 241, 242, 243]
of graphene on hBN is TBH defined on a honeycomb lattice with the lattice constant
a0 ≈ 2.46 Å and a single pz orbital per each carbon atom

ĤTB =
∑
i

εiĉ
†
i ĉi − γ0

∑
〈ij〉

ĉ†i ĉj. (5.1)

Here ĉ†i (ĉi) creates (annihilates) electron on site i; the on-site energy εi = ±∆, which
generates a gap Eg = 2∆, is positive on one atom of the graphene unit cell and
negative on the other one to take into account the staggered potential induced by the
hBN substrate while neglecting any reorganization of chemical bonding or change in
the atomic order of the graphene and hBN layers; and hopping γ0 = 2.7 eV is nonzero
only between nearest-neighbor (NN) carbon atoms as denoted by 〈ij〉.
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5.3 Nonlocal resistance and valley Hall effect in
multiterminal graphene-on-hBN

We use ĤTB from Equation 5.1 with ∆ = 29 meV [230] to obtain RNL in Figure 5.2(c)
for a graphene-on-hBN wire with zigzag edges as the channel whose band structure is
shown in Figure 5.5(f).
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Figure 5.2: (a)–(c) Nonlocal resistance RNL in the six-terminal device in Figure 5.1,
of width W = 50 nm and length L = 10 nm or L = 500 nm, computed by the
multiterminal LB formula. We use an ab initio 5NN TBH describing the graphene-
on-hBN channel in (a) or isolated graphene in (b), while in panel (c) we use the
NN TBH in Equation 5.1 assumed in previous theoretical studies [1, 222, 223, 224,
231, 234, 239, 240, 241, 242, 243]. Panel (d) shows longitudinal resistivity ρxx for the
clean and edge-disordered channel of length L = 500 nm described by the 5NN TBH,
where the latter is averaged over ten samples. The same type of disorder is used to
compute RNL (dashed line) in panel (a). The temperature is set at T = 20 K, as in
the experiment of Ref. [1].

For analytical calculations, the long wavelength limit of ĤTB is preferred, ĤD = ~vF (σ̂ ·
k̂) + ∆σ̂z, which is a gapped Dirac Hamiltonian describing each of the two valleys
separately. Here vF = (

√
3/2)a0γ0 is the Fermi velocity, σ̂ = (σ̂x, σ̂y) is the vector

of the Pauli matrices corresponding to the sublattice degree of freedom and ~k̂ is the
momentum operator. Unlike ĤD, more general ĤTB describes both valleys and can,
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5.3 Nonlocal resistance and valley Hall effect in multiterminal graphene-on-hBN

therefore, be used to capture the intervalley scattering effects on transport quantities,
as illustrated in Figure 5.3(a) where short-range disorder diminishes σvxy.
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Figure 5.3: Zero-temperature σvxy, computed by the Kubo-Bastin formula, for a
2048×2048 supercell of graphene on hBN described by: (a) NN TBH in Equation 5.1;
or (b) ab initio Wannier TBH. The dotted black line plots the clean case; the red
dashed line includes long-range disorder (with range ξ = 10 × a/

√
3 and strength

Up = 1.275 eV in the model of Ref. [247]); and the solid green line includes short-
range disorder (with range ξ = 0.1×a/

√
3 and strength Up = 1.275 eV in the model

of Ref. [247]). The impurity concentration is 30% for both types of disorder.

The seminal prediction [222] for VHE in gapped graphene is based on the semiclassical
transport theory for wave-packets of Bloch states with dispersion εk whose velocity
vk = 1

~∂εk/∂k + dk/dt×Ωk, acquires an anomalous term due to the Berry curvature
Ωk becoming nonzero near the apex of each valley in gapped graphene. Since Ωk
points in opposite directions in the two valleys, electrons belonging to two valleys will
be separated in the opposite transverse directions in the presence of an applied electric
field E required to accelerate electrons according to ~dk/dt = eE. This gives rise [222]
to σKxy = e2

πh

∫
d2k f(εk)Ω(k), where f(εk) is the Fermi function forcing the integration

over the whole Fermi sea—from the bottom of the band to the Fermi level EF .
However, it has already been pointed out in Ref. [234] that nonzero E cannot ap-
pear in the linear-response limit of the multiterminal LB formula [194, 235, 211],
Ip = 2e2

h

∑
q Gpq(Vp − Vq), which relates the total charge current Ip in lead p to volt-

ages Vq in all other leads via the conductance coefficients Gpq =
∫
dE (−∂f/∂E)Tpq(E)

expressed in terms of the transmission functions Tpq(E) [194, 235, 211] which do not
include any effect of the applied E. Here the derivative of the Fermi function confines
the integration to a shell of states of width ∼ kBT around EF . We use the multitermi-
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nal LB formula implemented in the KWANT package [211, 248] to compute VNL = V5−V6
and RNL in response to an injected current I3 = −I4 [229] while keeping Ip ≡ 0 in the
other four leads. The same procedure allows us to compute ρxx = R4TW/L from the
four-terminal resistance R4T = (V3 − V4)/I1 obtained by injecting a current I1 = −I2
into the device in Figure 5.1 with leads 5 and 6 removed and the voltage probe condi-
tion imposed, I3 = I4 = 0.
To accommodate nonzero E, one could employ the multiterminal LB formula at finite
bias voltage [249] where the self-consistent electric potential is required to ensure the
gauge invariance [250] of the current-voltage characteristics. However, experiments
measuring RNL are carefully kept [1] in the linear-response regime in order to avoid
heating of the device and the ensuing thermoelectric effects that can add large spurious
contributions [227] to RNL.

5.4 Valley projection scheme in the Kubo-Bastin
formula calculations

The semiclassical arguments for the origin of σvxy can be replaced by a rigorous quantum
transport theory based on the Kubo-Bastin formula [231, 251] which requires to first
obtain [202, 205, 219] the velocity operator v̂ for the chosen Hamiltonian. The physical
consequences of the equation of motion for v̂ = vF σ̂ defined by ĤD [231]

dv̂
dt

= 1
i~

[v̂, ĤD] = 2v2
F (k̂× σ̂)− Eg

~
v̂× ez, (5.2)

are extracted by finding the expectation value of the acceleration operator dv̂/dt in a
suitably prepared wave-packet [214]. The wave-packet can be injected with an initial
velocity into the graphene wire where it propagates in the absence of any electric
field [214]. The first term in Equation 5.2 then causes zitterbewehgung motion of the
center of the wave-packet, while the second one acts on it like a Lorentz force due to
an effective magnetic field in the direction of the unit vector ez perpendicular to the
graphene plane. For electrons from the K ′ valley, v̂y = −vF σ̂y, leading to opposite
direction of the Lorentz force and, therefore, σKxy = −σK′

xy [231].
Figure 5.3(a) shows σvxy, computed using the Kubo-Bastin [251] formula combined with
a valley-projection scheme [93, 205, 219], for a bulk graphene on hBN described by
the ĤTB in Equation 5.1 which is either clean or contains long- or short-range disorder
as additional terms in the on-site energy εi (using the same model as in Ref. [247]).
In the clean limit, we confirm [231] that σvxy = 2e2/h is quantized inside the gap in
Figure 5.3(a), as well as that the Fermi sea states just beneath the gap provide the
main contribution to it [223]. For long-range disorder which does not mix valleys,
σvxy in Figure 5.3(a) remains close to the clean limit within a smaller energy range
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zigzag edges

than Eg due to disorder-induced broadening of the states. On the other hand, σvxy in
Figure 5.3(a) diminishes to a small value for valley mixing short-range disorder.
The valley-projection scheme [93, 205, 219] employed for numerically exact calculations
using the Kubo-Bastin formula in Figure 5.4 relies on the artificial separation of the
Brillouin zone of graphene into aK andK ′ regions with different chirality. This feature
can be exploited to speed up the valley Hall conductivity calculation, where the main
source of noise comes from the stochastic calculation of the trace [205, 219, 202].
These fluctuations are random and as such do not obey any symmetry of the system.
As shown in Figure 5.4, when computing the Hall conductivities, σKxy and σK

′
xy , for each

of the two valleys a lot of such noise is generated. But once we compute the valley
Hall conductivity, σvxy = σKxy − σK

′
xy , this noise is filtered away because it does not have

opposite chirality. Nonetheless, when we incorporate disorder that connects the two
valleys, such property is removed and one should proceed to remove these fluctuations
by averaging over disorder configurations.
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Figure 5.4: Hall conductivity computed in K (red line) and K ′ (blue line) regions
of the BZ of pristine graphene whose difference gives the valley Hall conductivity
(black line). These results are obtained by computing the Kubo-Bastin formula for
2048 × 2048 supercell of graphene on hBN described by the phenomenological NN
TBH in Equation 5.1.

5.5 Ab initio versus tight-binding band structure of
graphene-on-hBN wires with zigzag edges

Since the multiterminal LB formula yields RNL ≡ 0 near the DP in Figure 5.2(a) for the
same ĤTB for which the Kubo-Bastin formula produces quantized σvxy in Figure 5.3(a),
we investigate the ab initio band structure of graphene-on-hBN wires using local-
orbital pseudopotential DFT, as implemented in the ATK [252] and OpenMX [253, 254]
packages, whose Kohn-Sham Hamiltonian can be also be easily combined with the LB
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formula [255, 77]. Such calculations produce the band structure of graphene-on-hBN
wires shown in Figure 5.7(a) and Figure 5.5(a)–(c), which drastically differs from the
band structure in Ref. [239] or in Figure 5.5(f) produced by the “standard model” TBH
in Equation 5.1. We assume a stacking where one C atom is over a B atom and the
other C atom in the unit cell of graphene is centered above the hBN hexagon, which
is the energetically most stable configuration found in DFT calculations [230].
The diagonalization of the Kohn-Sham Hamiltonian in DFT to obtain the ab initio
band structure proceeds by approximating the Hilbert space of all single-electron eigen-
functions with a finite set of basis functions. A popular basis set is plane-waves (PWs),
where varying the energy cutoff makes it possible to improve the basis systematically.
The linear combination of atomic orbitals (LCAO) basis sets require more tuning, how-
ever, they allow us to treat supercells containing large number of atoms with O(N)
computational complexity [256] and they simplify the ab initio quantum transport cal-
culations, based on the LB formula combined with the DFT Hamiltonian [255, 77],
where one has to spatially separate the system into a central region and semi-infinite
leads illustrated by Figure 5.1.
A commonly used minimal LCAO basis set for graphene systems is composed of single-
zeta polarized (SZP) pseudoatomic orbitals on C atoms [257]. However, when applied
to wires made of graphene on a hexagonal boron nitride (hBN) substrate—together
with double-zeta polarized (DZP) orbitals on B and N and single-zeta orbitals on edge
passivating H atoms—this leads to the valence band of hBN being pushed toward the
Fermi level EF suggesting incorrectly conduction through the hBN substrate. There-
fore, we first perform DFT calculations for graphene-on-hBN wires with zigzag edges
of width W = 13 nm using a dense LCAO basis set in the OpenMX package which
consists of s2p1 orbitals on H atoms and s2p2d1 on C, B and N atoms with cutoff
radius 5.0 and 7.0 a.u, respectively. This gives a reference band structure shown in
Figure 5.5(a). The same is reproduced by the medium SG15 basis set [258] imple-
mented in the ATK package [252], as shown in Figure 5.5(b). In both OpenMX and SG15
basis set calculations we use the Perdew-Burke-Ernzerhof (PBE) parametrization of
the generalized gradient approximation (GGA) for the exchange-correlation (XC) func-
tional and norm-conserving pseudopotentials for describing electron-core interactions.
However, the DFT Hamiltonian matrices represented in OpenMX, and even in the
smaller SG15 basis sets, are still too large for computationally efficient quantum trans-
port simulations. Therefore, we perform additional calculation using DZP orbitals on
all C, B, N, and H atoms and the Perdew-Zunger parametrization of the local density
approximation (LDA) for the XC functional, which leads to a reasonably small Hamil-
tonian matrix. The corresponding band structure in Figure 5.5(c) matches the band
structure obtained in Figure 5.5(a) and Figure 5.5(b) in the energy interval around
the DP at E − EF = 0 of interest to quantum transport studies. The same match
(not shown) remains valid for W = 50 nm wires used as the channel in the device in
Figure 5.1, for which RNL is calculated in Figure 5.2(d).
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Figure 5.5: (a)—(d) Ab initio band structure of graphene-on-hBN wires of width
W = 13 nm with zigzag edges obtained by diagonalizing: (a) DFT Hamiltonian in
the LCAO basis generated by the OpenMX package [253, 254]; (b) DFT Hamiltonian
in the SG15 [258] LCAO basis; (c) DFT Hamiltonian in the basis of DZP orbitals on
C, B, N and H atoms; (d) ab initio Wannier TBH constructed from PW DFT calcu-
lations via the VASP package for bulk graphene-on-hBN. The red dashed line in panel
(c) plots the band structure obtained from the ab initio 5NN TBH whose parameters
are given in Figure 5.6. (e)–(h) Tight-binding band structure of graphene-on-hBN or
isolated graphene wires of widthW = 50 nm with zigzag edges: (e) isolated graphene
wire described by the phenomenological NN TBH in Equation 5.1 with εi = 0; (f)
graphene-on-hBN wire described by the phenomenological NN TBH in Equation 5.1
with εi = ±29 meV; (g) isolated graphene wire described by the ab initio 5NN TBH
with parameters in Figure 5.6; and (h) graphene-on-hBN wire described by ab initio
5NN TBH with parameters in Figure 5.6.

Figure 5.5(e)–(h) plot the band structure obtained by diagonalizing the phenomeno-
logical and ab initio TBHs for graphene-on-hBN or isolated graphene wires with zigzag
edges of width W = 50 nm, which serve as the channel between two crossbars in the
device in Figure 5.1. The nonlocal resistances RNL, corresponding to channels in
Figure 5.5(e)–(h), are given in Figure 5.2(a)–(d). The band structure in Figure 5.5(f)
obtained from the phenomenological NN TBH in Equation 5.1 is gapped and it was
predicted previously in Ref. [239]. The flat bands connecting the two valleys at the gap
boundary correspond to edge states, and they are inherited from the band structure of
an isolated graphene wire with zigzag edges shown in Figure 5.5(e). That is, simulating
the presence of hBN by using the staggered on-site potential εi = ±∆ in the NN TBN
in Equation 5.1 simply opens the gap between the flat bands in Figure 5.5(e) to pro-
duce the band structure in Figure 5.5(f). Both of these band structures, which are an
artifact of the phenomenological NN TBH [259, 246] or continuous Dirac Hamiltonian
with appropriate boundary conditions [260], do not generate edge currents [261]. This
contradicts experimental observation of edge currents near the DP in isolated graphene
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Figure 5.6: (a) Schematic view of up to fifth nearest neighbor hoppings tn between pz
orbitals on each C atom, on-site potential εi = νA or εi = νB and additional term in
the on-site potential ∆ for edge C atoms required to reproduce the DFT-computed
band structure of an isolated graphene wire or graphene-on-hBN wires with zigzag
edges, as illustrated in Figure 5.5(c). (b) Numerical values of parameters introduced
in panel (a).

wires with zigzag edges [244] or in graphene-on-hBN wires where some zigzag segments
are present [262]. These edge currents [262] are responsible for the metallic-like resis-
tivity ρxx ∼ 10 kΩ observed [1] in multiterminal graphene-on-hBN devices.
Therefore, in order to replace the phenomenological NN TBH with an accurate TBH
with long-range hoppings, which is required for LB- or Kubo formula-based quan-
tum transport calculations on systems containing large number (∼ 106) of carbon
atoms, our first approach is to transform [263] the DFT Hamiltonian in the PW basis
computed by the VASP package [264, 265] to a basis of maximally localized Wannier
functions [263, 266] where we consider px, py and pz orbitals on C atoms for bands
around EF of bulk graphene-on-hBN. In the VASP calculations we use a plane-wave
cutoff energy 500 eV; PBE parametrization of GGA for the exchange-correlation (XC)
functional; and the projector augmented wave method for describing the electron-core
interactions [267, 268]. The k-point mesh of size 8 × 6 × 1 is used for the Brillouin
zone (BZ) sampling of a rectangle unit cell consisting of four C atoms. The ab initio
Wannier TBH is useful for the Kubo formula calculations on squares with periodic
boundary conditions, as employed in Figure 5.3(b).
While the Wannier TBH reproduces the band structure of bulk graphene on hBN, it
generates a much higher group velocity ∂ε(kx)/~∂kx of edge state bands near E−EF =
0 in Figure 5.5(d) when compared to those in Figure 5.5(a)–(c) obtained from the
LCAO pseudopotential DFT calculations. This is because the VASP calculations for
bulk graphene on hBN used to construct the Wannier TBH did not include information
about the edge passivating H atoms. We resolve this issue by constructing another
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wires with zigzag edges

ab initio TBH via least square fitting of the bands around E − EF = 0, as shown
in Figure 5.5(c). This TBH includes up to fifth NN hoppings and on-site potentials
which are explained in Figure 5.6. The ab initio 5NN TBH is used to compute RNL in
Figure 5.2(c) and (d), as well as the two-terminal conductance in Figure 5.3(c).

5.6 Conductance and local density of states in clean
and disordered graphene-on-hBN wires with zigzag
edges

When the DFT Hamiltonian for a wire—composed of C, B and N atoms, as well as
H atoms passivating dangling bonds along the zigzage edges—is combined with the
LB formula within the ATK [252] package, we obtain its zero-temperature conductance
G21 = 5 × 2e2/h shown in Figure 5.7(b) at the DP at E − EF = 0. This value is
insensitive to the bulk nanopore in Figure 5.7(d), signifying edge current transport, but
it is reduced to G21 . 2e2/h in the presence of the edge vacancy shown in Figure 5.7(e)
or quantum interferences generated by the edge vacancies in series shown Figure 5.7(f).
The valley-polarized states [269] above and below E − EF = 0 are bulk states since
G21 is reduced at those energies by the presence of the bulk nanopore in Figure 5.7(d).
The low-energy dispersive edge state are visualized by plotting the local density of
states (LDOS) in Figure 5.7(c), which is peaked near the edges but it remains nonzero
even in the bulk [246]. This is quite different from topologically protected edge states
in quantum (ordinary [93], spin [270, 193] and anomalous [271]) Hall insulators where
LDOS in the bulk vanishes. The spatial profile of the edge currents in Figure 5.7(e)–(f)
survives even in the presence of edge disorder which breaks the graphene-on-hBN wire
into short zigzag-edge segments.
For comparison with Figure 5.7, we provide identically calculated panels of Figure 5.8
using the LCAO pseudopotential DFT whose Kohn-Sham Hamiltonian is represented
in the basis of DZP orbitals on C, B, N and H atoms, LDA is used for XC functional
and the energy mesh cutoff for the real-space grid is chosen as 75.0 Hartree. Careful
comparison shows that the hBN substrate slightly changes the spatial extension of
the edge states. This helps to make conductance in Figure 5.7(b) more resilient to
quantum interference effects in the case of a series of edge vacancies in Figure 5.8(f),
thereby evading antiresonance in the conductance at the DP in Figure 5.8(b).
We note that even in systems with topological invariants in the bulk band structure,
such as Chern number C which counts the number of metallic edge states, zigzag
edges of the honeycomb lattice play a special role [271] due to their ability to modify
the energy-momentum dispersion and the corresponding conductance carried by edge
states. Nevertheless, quantized conductance C×2e2/h survives disorder [271], while no
such topological protection exists in the case of isolated graphene or graphene-on-hBN
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Figure 5.7: (a) Ab initio band structure; (b) zero-temperature two-terminal conduc-
tance G21; and (c)–(f) LDOS at E − EF = 0 for an infinite graphene-on-hBN wire
with zigzag edges. The wire is clean in (c); it includes bulk nanopore in (d); or
edge vacancies in (e) and (f). The wire of width W = 13 nm is described by a DFT
Hamiltonian in the basis of double-zeta polarized pseudoatomic orbitals on C, B,
N and edge passivating H atoms, and local density approximation is used for the
exchange-correlation functional.

whose two- or four-terminal resistance, nevertheless, remains . h/2e2 in Figure 5.7(b)
and Figure 5.3(a).

5.7 Chapter summary

By combining ab initio with quantum transport calculations, we demonstrate that
graphene-on-hBN wires with zigzag edges host edge states near the DP. This was pre-
viously missed in theories based on too simplistic gapped Hamiltonians that predicted
insulating states of graphene on hBN. Then, look for models that better describe the
system and result in RNL 6= 0 near the DP, similar to experimental observations [1].
Since the usage of a DFT Hamiltonian is prohibitively expensive for the large num-
ber of atoms (∼ 106) in our LB or Kubo formula calculations, we construct simpler
ab initio TBHs. A widely-used approach for this purpose is to transform the DFT
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Figure 5.8: (a) Ab initio band structure; (b) zero-temperature two-terminal conduc-
tance G21; and (c)–(f) LDOS at E − EF = 0 for an infinite isolated graphene wire
with zigzag edges. The wire is clean in (c), or it includes bulk nanopore in (d)
or edge vacancies in (e) and (f). The wire of width W = 13 nm is described by a
DFT Hamiltonian in the basis of DZP orbitals on C, B, N and edge passivating H
atoms, and LDA is used for the XC functional. Each panel can be compared with
the corresponding panels in Figure 5.7 for graphene-on-hBN wire with zigzag edges.

Hamiltonian to a basis of maximally localized Wannier functions [263, 266] in a se-
lected energy window around EF . We employ a Wannier TBH in the Kubo-Bastin
formula calculations in Figure 5.3(b), finding also quantized σvxy in the gap, as well as
its surprising resilience to short-range disorder that was not exhibited in Figure 5.3(a)
for the “standard model” TBH in Equation 5.1. However, the Wannier TBH applied
to graphene-on-hBN wires generates a much higher group velocity ∂ε(kx)/~∂kx of the
edge state bands near E − EF = 0 in Figure 5.5(d) than the DFT Hamiltonian in
Figure 5.7(a) because the bulk DFT calculations performed to construct the Wannier
TBH do not include information about atoms (like H) passivating bonds of edge carbon
atoms which effectively changes the on-site energy in the TBH along the edge [272].
Therefore, we construct another ab initio TBH which fits the bands around E−EF = 0
in Figure 5.5(c), whose up to fifth NN hoppings and on-site energies are given in
Figure 5.6. The ab initio 5NN TBH combined with the multiterminal LB formula
calculations yields RNL in Figure 5.2(a) and ρxx in Figure 5.2(d) which are sharply
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peaked near the DP in both clean and edge-disorder graphene-on-hBN channels. The
edge disorder is introduced by removing the edge tight-binding sites along segments of
random length, as well as by adding an on-site energy on the remaining edge sites which
is distributed randomly in the range ±1 eV chosen to model the binding of chemical
species to the outermost carbon atoms [152]. The peak value of ρxx in Figure 5.2(d)
is about an order of magnitude larger than the measured one in Ref. [1], which could
be attributed to the choice of contacts like an abrupt interface between graphene-
on-hBN central region and graphene leads in Figure 5.1. Although metallic-like ρxx
could arise due to trivial reasons, such as charge inhomogeneity induced by chemical
or electrostatic doping, the recent experimental imaging [238] of proximity-induced
supercurrents flowing within narrow strips near the edges is in full agreement with the
spatial profiles of edge currents computed in Figure 5.7(d)–(f).
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6 Tunneling anisotropic
magnetoresistance in TI/metal
heterostructures

6.1 Introduction

The recent experiments on spin-orbit torque (SOT) [2, 3, 4, 5] and spin-to-charge
conversion [6, 7, 8, 9, 10, 11] in topological-insulator/ferromagnetic-metal (TI/FM)
heterostructures have ignited the field of topological spintronics. In these devices,
giant non-equilibrium spin densities [273, 99, 274, 275] are expected to be generated
due to strong spin-orbit coupling (SOC) on metallic surfaces of three-dimensional (3D)
TIs and the corresponding (nearly [276]) helical spin-momentum locking along a single
Fermi circle for Dirac electrons hosted by those surfaces [12, 13]. Such strong interfacial
SOC-driven phenomena are also envisaged to underlie a plethora of novel spintronic
technologies [92].
These effects have been interpreted almost exclusively using simplistic models, such as
the Dirac Hamiltonian for the TI surface with an additional Zeeman term describing
the coupling of magnetization of the FM layer to the surface state spins [12, 13],
ĤDirac = vF (σ̂ × p̂)z −∆m · σ̂, where p̂ is the momentum operator, σ̂ is the vector of
the Pauli matrices, m is the magnetization unit vector and vF is the Fermi velocity.
Thus, the only effect of the FM layer captured by ĤDirac is the proximity effect-
induced exchange coupling ∆ which opens a gap in the Dirac cone energy-momentum
dispersion [12, 13], thereby making Dirac electrons massive. On the other hand, recent
first-principles calculations [277, 278] demonstrate that the band structure of even
TI/ferromagnetic-insulator (TI/FI) bilayers, where hybridization between TI and FI
states is largely absent, cannot be captured by simplistic models like ĤDirac. The
properties of TI/FM interfaces are far more complex due to injection of evanescent wave
functions from the FM layer into the bulk gap of the TI layer, which can hybridize with
the surface state of the TI and blur its Dirac cone (as already observed in tight-binding
models of TI/metal interfaces [274, 279, 280]), as well as related charge transfer. Thus,
the key issue for topological spintronics [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 92] is to understand
the band structure and spin textures (including the fate of the Dirac cone and its spin-
momentum locking) in hybridized TI with FM or normal metal (NM) [11] layers at
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Cu Lead Bi2Se3 (6 QL) Co Lead

12 43

x

y

z
ϕm

m

θ

Figure 6.1: Schematic view of a TI-based heterostructures where: (a) semi-infinite
Bi2Se3 layer is attached to n monolayers of Co(0001); (b) 6 QLs of Bi2Se3 are sand-
wiched between a semi-infinite Cu(111) layer and semi-infinite Co(0001) layer. Both
heterostructures are infinite in the transverse direction, so that the depicted super-
cells are periodically repeated within the xy-plane. The magnetization m of the Co
layer is fixed along the z-axis in (a), or rotated within the xy-plane or the xz-plane
in (b). Applying the bias voltage Vb to the vertical heterostructure in panel (b)
leads to a charge current flowing perpendicularly to both Bi2Se3/Cu and Bi2Se3/Co
interfaces.

the nanometer scale around the interface where they are brought into contact, where
properties of both the TI side and FM or NM side of the interface can be quite different
from the properties of the corresponding bulk materials.
For example, computational searches [70] for new materials realizing 3D TIs (or other
topologically nontrivial electronic phases of matter like Weyl semi-metals [281] and
Chern insulators [271]) have crucially relied on first-principles calculations of spectral
function on their boundaries and its confirmation by spin- and angle-resolved pho-
toemission spectroscopy (spin-ARPES) [282]. A standard density functional theory
(DFT)-based framework developed for this purpose—where the DFT band structure
around the Fermi level E0

F is reconstructed using the Wannier tight-binding Hamil-
tonian [263] used to obtain the retarded Green’s function (GF) of a semi-infinite
homogeneous crystal and the spectral function on its surface in contact with vac-
uum [70, 281, 271]—is difficult to apply to complicated inhomogeneous systems like
TI/FM bilayers due to strongly entangled bands in the region of interest around E0

F .
Also, spin-ARPES experiments cannot probe buried interfaces below too many mono-
layers (e.g., penetration depth of low-energy photons is 2–4 nm) of FM or NM deposited
onto the TI surface [282].

An attempt [283] to obtain the spectral function, Aj(E; k) = ∑i∈QLj
n,i winkδ(E − εnk),

directly from DFT computed energy-momentum dispersion εnk (n is the band index
and k is the crystal momentum) and site-projected character wink of the corresponding
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eigenfunctions for TI/FM supercells has produced ambiguous results. This is due to
arbitrariness in broadening the delta function δ(E − εnk), as well as due to usage of
atomic sites i within the whole j quintuple layer (QLj) of Bi2Se3 (one QL consists of
three Se layers strongly bonded to two Bi layers in between) which effectively averages
the spectral function over all geometric planes within QLj. Similar ambiguities (such
as setting the amount of electron density which is localized on the surface or within the
whole interfacial QL) plague the interpretation of the projected DFT band structure
of TI/FI [278] and TI/FM bilayers [284].
Here we develop a framework which combines the noncollinear DFT Hamiltonian
HDFT, represented in a basis of variationally optimized localized atomic orbitals [254],
with retarded GF calculations from which one can extract the spectral function and
spin textures at an arbitrary geometric plane of interest within a junction combining
TI, FM and NM layers. It also makes it possible to compute their spin and charge
transport properties in the linear-response regime or at finite bias voltage. We ap-
ply this framework to two Bi2Se3-based heterostructures whose supercells are depicted
in Figure 6.1, where we assume that those supercells are periodically repeated in the
transverse xy-direction.

6.2 Proximity band structure and spin textures on
Bi2Se3/ferromagnetic-metal interfaces

The heterostructure in Figure 6.1(a) consists of Bi2Se3, chosen as the prototypical 3D
TI [276, 12, 13, 70], whose surface is covered by n monolayers (MLs) of Co. The
retarded GF of this heterostructure is computed as

Gk‖(E) = [E −HDFT
k‖
−ΣBi2Se3

k‖
(E)]−1, (6.1)

where k‖ = (kx, ky) is the transverse k-vector, ΣBi2Se3
k‖

(E) is the self-energy [285, 286,
287] describing the semi-infinite Bi2Se3 lead and HDFT

k‖
is the Hamiltonian of the ac-

tive region consisting of n MLs of cobalt plus 6 QLs of Bi2Se3 to which the lead is
attached. We choose n =1–3 since ultrathin FM layers of thickness ' 1 nm are typi-
cally employed in SOT experiments [288] in order to preserve perpendicular magnetic
anisotropy (note that magnetocrystalline anisotropy does favor the out-of-plane m in
Bi2Se3/Co bilayers [284]). The spectral function (or local density of states) at an
arbitrary plane at position z within the active region is computed from

A(E; kx, ky, z) = −Im [Gk‖(E; z, z)]/π, (6.2)

where the diagonal matrix elementsGk‖(E; z, z) are obtained by transforming Equation 6.1
from orbital to a real-space representation.
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The heterostructure in Figure 6.1(b) consists of semi-infinite Cu and Co leads sand-
wiching a Bi2Se3 layer of finite thickness, where we choose Cu as the NM layer similar
to the very recent spin-to-charge conversion experiment of Ref. [11]. Such a het-
erostructure is termed vertical or current-perpendicular-to-plane in spintronics termi-
nology since applying bias voltage Vb drives a current perpendicularly to the TI/FM
interface. Its retarded GF is computed as

Gk‖(E) = [E −HDFT
k‖
−ΣCu

k‖
(E)−ΣCo

k‖
(E)]−1, (6.3)

where HDFT
k‖

describes the active region consisting of 6 QLs of Bi2Se3 plus 4 MLs of Cu
and 4 MLs of Cu. Its linear-response resistance R is given by the Landauer formula

1
R

= e2

hΩBZ

∫
BZ
dk‖

∫
dE

(
− ∂f
∂E

)
Tr[ΓCo

k‖
Gk‖Γ

Cu
k‖

G†k‖
], (6.4)

where we assume temperature T = 300 K in the Fermi-Dirac distribution function
f(E), Γα

k‖
= i(Σα

k‖
− [Σα

k‖
]†) and ΩBZ is the area of the two-dimensional (2D) Brillouin

zone (BZ) within which k‖ vectors are sampled.
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Figure 6.2: Spectral function, defined in Equation 6.2, at plane 1 for panels (b)–(d) or
plane 2 for panels (f)–(h) within Bi2Se3/Co(n ML) heterostructure in Figure 6.1(a)
with m ‖ ẑ. For comparison, panels (a) and (e) plot the spectral function at planes
1 (akin to Ref. [70]) and 2, respectively, within the semi-infinite Bi2Se3 crystal in
contact with vacuum (i.e., n = 0). From Γ to Y we plot A(E; kx = 0, ky; z ∈ {1, 2}),
while from Γ to X we plot A(E; kx, ky = 0; z ∈ {1, 2}).

The spectral function of the heterostructure in Figure 6.1(a) computed at planes 1
and 2 within the Bi2Se3 layer is shown in Figure 6.2(b)–(d) and Figure 6.2(f)–(h),
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respectively, where plane 1 is passing through Se atoms on the Bi2Se3 surface in contact
with the Co layer and plane 2 is three QLs (or ' 2.85 nm) away from plane 1. For
comparison, we also show in Figure 6.2(a) and Figure 6.2(b) the spectral function at
the same two planes within the semi-infinite Bi2Se3 layer in contact with vacuum,
thereby reproducing the results from Ref. [70] by our formalism. While the Dirac cone
at the Γ-point is still intact in Figure 6.2(b) for n = 1 ML of Co, its Dirac point
(DP) is gradually pushed into the valence band of Bi2Se3 with increasing n because of
charge transfer from metal to TI. The charge transfer visualized in Figure 6.6(c) and
Figure 6.6(d) is relatively small, but due to small density of states (DOS) at the DP
it is easy to push it down until it merges with the larger DOS in the valence band
of the TI. Adding more MLs of Co in Figure 6.2(c) and Figure 6.2(d) also introduces
additional bands within the bulk gap of Bi2Se3 due to injection of evanescent wave
functions which hybridize with the Dirac cone. The metallic surface states of Bi2Se3
itself penetrate into its bulk over a distance of 2 QLs [99], so that in Figure 6.2(e) the
spectral function on plane 2 vanishes inside the gap of the semi-infinite Bi2Se3 layer
in contact with vacuum, while the remaining states inside the gap in Figure 6.2(f)–(h)
can be attributed to the Co layer.
For infinitely many MLs of Co attached to 6 QLs of Bi2Se3 within the Cu/Bi2Se3/Co
heterostructure in Figure 6.1(b), the remnant of the Dirac cone from the TI surface can
be identified in Figure 6.3(a) at around 0.5 eV below E0

F while it is pushed even further
below in the case of the Cu/Bi2Se3 interface in Figure 6.3(e). The difference in work
functions ΦCo = 5.0 eV or ΦCu = 4.7 eV and electron affinity χBi2Se3 = 5.3 eV deter-
mines [283] the band alignment and the strength of hybridization, where n-type dop-
ing [see also Figure 6.6(c) and Figure 6.6(d)] of the Bi2Se3 layer pins E0

F of the whole
Cu/Bi2Se3/Co heterostructure in the conduction band of the bulk Bi2Se3. The remnant
of the Dirac cone is quite different from the often assumed [12, 13] eigenspectrum of
ĤDirac because of hybridization with the valence band of Bi2Se3, as well as with states
injected by the Co or Cu layers whose penetration into TI is visualized by plotting the
position- and energy-dependent spectral function A(E; z) = 1

ΩBZ

∫
dkxdky A(E; kx, ky; z)

in Figure 6.5(a). On the other hand, the energy-momentum dispersion in the vicinity
of E0

F and for an interval of k‖ vectors around the Γ-point is surprisingly well-described
by another simplistic model—ferromagnetic Rashba Hamiltonian [289].
In Figure 6.3(b)—(d) and Figure 6.3(f)—(h) we show constant energy contours of the
spectral function at three selected energies E denoted in Figure 6.3(a) and Figure 6.3(e)
by dashed horizontal lines. Instead of a single circle as the constant energy contour
for the eigenspectrum of ĤDirac, or single hexagon or snowflake-like contours (due to
hexagonal warping [276]) sufficiently away from the DP for the eigenspectrum of HDFT

of the isolated Bi2Se3 layer, here we find multiple circular and snowflake-like contours
close to the Γ-point. The spin textures within the constant energy contours are com-
puted from the spin-resolved spectral function. For energies near E = E0

F , the spin
textures shown in Figure 6.3(b) and Figure 6.3c) are quite different from the helical
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Figure 6.3: Spectral function at: (a)–(d) plane 1 in Figure 6.1(b) which is pass-
ing through Se atoms at the Bi2Se3/Co interface with m ‖ ẑ; and (e)–(h) plane
2 in Figure 6.1(b) which is passing through Se atoms at the Bi2Se3/Cu inter-
face, where we remove the Co layer to make Bi2Se3 semi-infinite along the z-axis.
In panels (a) and (e), we plot A(E; kx = 0, ky; z ∈ {1, 2}) from Γ to Y and
A(E; kx, ky = 0; z ∈ {1, 2}) from Γ to X. Panels (b)–(d) and (f)–(h) plot con-
stant energy contours of A(E − E0

F ∈ {0.0 eV, 0.05 eV,−0.35 eV}; kx, ky; z ∈ {1, 2})
at three energies marked by horizontal dashed lines in panels (a) or (e), respectively,
as well as the corresponding spin textures where the out-of-plane Sz component is
indicted in color (red for positive and blue for negative). The units for kx and ky
are 2π/a where a is the lattice constant of a common supercell combining two unit
cells of the two layers around the corresponding interface.

ones in isolated Bi2Se3 layer [70]. Nevertheless, Figure 6.3(d) shows that the remnant
Dirac cone still generates distorted helical spin texture wounding along a single circle
but with out-of-plane Sz component due to the presence of the Co layer.
The envisaged applications of TIs in spintronics are based [2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
273, 274, 275] on spin textures like the one in Figure 6.3(d) since it maximizes [273,
99] the generation of nonequilibrium spin density when current is passed parallel to
the TI surface. However, utilizing spin texture in Figure 6.3(d) in lateral TI/FM
heterostructures would require to shift EF (by changing the composition of TI [11]
or by applying a gate voltage [5]) by few tenths of eV below E0

F of the undoped
heterostructures in Figure 6.3(a). For example, extreme sensitivity of spin-to-charge
conversion was recently observed [11] on the surface of (Bi1−xSbx)2Te3 TI covered by
a 8 nm thick Cu layer as EF of the TI layer was tuned, which is difficult to explain by
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assuming that the Dirac cone on the TI surface remains intact after the deposition of
the Cu layer (e.g., Ref. [11] had to invoke “instability of the helical spin structure”).
On the other hand, it is easy to understand from Figure 6.3(f)–(h) how spin textures
at the Bi2Se3/Cu interface change dramatically as one moves EF (even slightly) below
or above E0

F . Comparing Figure 6.3(a)–(d) with Figure 6.3(e)–(h) makes it possible
to understand the effect of the magnetization of the Co layer, which modifies [289]
Rashba dispersion around E0

F and the corresponding spin textures (particularly the
out-of-plane Sz component).
The theoretical modeling of SOT in TI/FM [2, 275] or heavy-metal/FM [290] bilay-
ers is usually conducted by starting from strictly 2D Hamiltonians, such as ĤDirac or
the Rashba ferromagnetic model [289], respectively, so that the FM layer is not con-
sidered explicitly. Figure 6.4(f)–(h) show that this is not warranted since the Bi2Se3
layer induces proximity SOC and the corresponding proximity in-plane spin textures
over the few MLs of Co, which decay to a negligible value in Figure 6.4(j)–(l) only
after reaching plane 4 in Figure 6.1(b). The fact that conventional room temperature
metallic ferromagnet can acquire properties of topological insulators, as demonstrated
convincingly by Figure 6.4(e)–(l) solves the problem of very small critical tempera-
ture . 10 K in recent attempts [3, 291] to create ferromagnetic topological matter by
doping 3D TIs with magnetic impurities. The existence of proximity in-plane spin
textures in Co due to a TI layer shown in Figure 6.4(f)–(h) is crucial for topological
spintronics where it has been considered [2] that an applied current will be shunted
through the metallic magnet and, therefore, not contribute to nonequilibrium spin
density generation within the topological insulator. On the contrary, Figure 6.4(f)–(h)
and Figure 6.4(j)–(l) suggest that the efficiency of the SOT in TI/FM bilayers will be
mainly determined by the ability of the TI to inject sizable in-plane spin texture over
the whole ultrathin FM layer which generates a nonequilibrium spin density [99] Sneq
and SOT ∝ Sneq × m [275, 290] when current is passed parallel to the MLs of Co
hosting those textures. We note that few previous experimental [282] and theoretical
studies [282, 280] have suggested the possibility of proximity-induced spin textures
only into one monolayer nonmagnetic metal or semiconductor in contact with a TI
layer and for special bonding requirements at the contact [282].
We also find non-trivial in-plane spin texture even on the surface of Co in contact
with vacuum, as shown in Figure 6.4(b)–(d), which is nevertheless quite different from
those in Figure 6.4(f)–(h). The spin texture in Figure 6.4(b)–(d) is a consequence of
the Rashba SOC enabled by inversion asymmetry due to the Co surface [292] where
an electrostatic potential gradient can be created by the charge distribution at the
metal/vacuum interface and thereby confine wave functions into a Rashba spin-split
quasi-2D electron gas [293]. The spin textures in Figure 6.4(a)–(d) explain the origin
of recently observed [294] SOT in the absence of any adjacent heavy metal or TI layer.
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Figure 6.4: Spectral function at: (a)–(d) the surface of a semi-infinite Co layer in
contact with vacuum; (e)–(h) plane 3 in Figure 6.1(b) passing through Co atoms
at the Bi2Se3/Co interface; and (i)–(l) plane 4 in Figure 6.1(b) passing through Co
atoms away from the interface. Magnetization m of the Co layer is perpendicular to
the interface, m ‖ ẑ, in all panels (a)–(l). In panels (e) and (i), we plot A(E; kx =
0, ky; z ∈ 3) from Γ to Y and A(E; kx, ky = 0; z ∈ 3) from Γ to X. Panels (b)–(d),
(f)–(h) and (j)–(l) plot constant energy contours of the spectral function at three
energies marked by horizontal dashed lines in panels (a), (e), and (i), respectively, as
well as the corresponding spin textures where the magnitude of the out-of-plane Sz
component is indicted in color (red for positive and blue for negative). The units for
kx and ky are 2π/a where a is the lattice constant of a common supercell combining
two unit cells of the two layers around the corresponding interface.
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6.3 Tunneling anisotropic magnetoresistance in a
Cu/Bi2Se3/Co heterostructure

Finally, we propose a purely charge transport measurement that could detect which
among the spin-textures shown in Figure 6.3(b)–(d) resides at the Fermi level of the
TI/FM interface. Our scheme requires to fabricate the vertical heterostructure in
Figure 6.1(b) and measure its tunneling anisotropic magnetoresistance (TAMR). The
TAMR is a phenomenon observed in magnetic tunnel junctions with a single FM
layer [274, 295, 292, 296], where SOC makes the band structure anisotropic so that the
resistance of such junctions changes as the magnetization m is rotated by an angle θ
or φ in Figure 6.1(b). The resistance change is quantified by the TAMR ratio defined
as [292, 296]

TAMRout(in)(α) = R(α)−R(0)
R(0) . (6.5)

Here α ≡ θ for TAMRout where magnetization in Figure 6.1(b) rotates in the plane
perpendicular to the TI/FM interface, and α ≡ φ for TAMRin where magnetiza-
tion in Figure 6.1(b) rotates within the plane of the TI/FM interface. In the case
of TAMRout(θ), R(0) is the resistance when m ‖ ẑ in Figure 6.1; and in the case
of TAMRin(φ), R(0) is the resistance when m ‖ x̂ in Figure 6.1. Thus, TAMRout(θ)
changes due to the different orientations of the magnetization with respect to the direc-
tion of the current flow, while the situation becomes more subtle for TAMRin(φ) where
the magnetization remains always perpendicular to the current flow. Figure 6.5(b)
demonstrates that the largest TAMRout(θ = ±90◦) is obtained by tuning the Fermi
level to EF − E0

F = −0.35 eV so that nearly helical spin texture in Figure 6.3(d) re-
sides at the Fermi level. Another signature of its presence is the rapid increase of
TAMRout(θ) when tilting m by small angles θ away from the current direction. The
in-plane TAMRin(φ) shown in the inset of Figure 6.5(b) is a much smaller (and difficult
to converge in the number of transverse k-points) quantity which does not differentiate
between spin textures shown in Figure 6.3(b)–(d).

6.4 Methods

We employed the interface builder in the VNL [297] and CellMatch [298] packages to
construct a common unit cell for: (a) Bi2Se3/Cu(111) bilayer, where the common unit
cell is 5 × 5 in size compared to the smallest possible Cu(111) slab cell and copper is
under compressive strain of 0.9 % while the Bi2Se3 lattice constant is unchanged; (b)
Bi2Se3/Co(0001) bilayer where Co(0001) has the same lattice constant as Bi2Se3, so
the same unit cell as for Cu(111) is used without any strain on Co(0001). These two
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Figure 6.5: (a) The position- and energy-dependent spectral function A(E; z) =
1

ΩBZ

∫
dkxdky A(E; kx, ky; z) from the left Cu lead, across Bi2Se3 tunnel barrier, to-

ward the right Co lead for the heterostructure in Fig. Figure 6.1(b). (b) The out-
of-plane TAMRout(θ) ratio defined in (Equation 6.5) as a function of the angle θ
between the magnetization m and the direction of current injected along the z-
axis in Figure 6.1(b). Inset in panel (b) shows angular dependence of the in-plane
TAMRin(φ) ratio. In order to converge the integration over the transverse wave
vector k‖ in (Equation 6.4), we employ a uniform grid of 101 × 101 k-points for
TAMRout(θ) and 251× 251 k-points for TAMRin(φ).

unit cells are illustrated in Figure 6.6(a) and Figure 6.6(b), respectively. In order to
determine the best stacking of atomic layers and the distance of the Bi2Se3 atoms with
respect to the surfaces of Cu(111) and Co(0001), we use DFT calculations as imple-
mented in the VASP package [264, 265]. The electron core interactions are described
by the projector augmented wave (PAW) method [267, 268], and vdW-DF [299] with
optB88 is used as density functional [300] in order to describe van der Waals (vdW)
forces between QLs of Bi2Se3 or between Bi2Se3 and the metallic layers. The cutoff
energy for the plane wave basis set is 520 eV for all calculations, while k-points were
sampled at 3×3 surface mesh. We use Cu and Co layers consisting of 5 MLs, where
3 bottom MLs are fixed at bulk positions while the top two metallic MLs closest to
Bi2Se3 are allowed to fully relax until forces on atoms drop below 1 meV/Å. In order
to avoid interaction with periodic images of the bilayer, 18 Å of vacuum was added in
the z–direction.
For the case of Bi2Se3 on Co(0001), the most favorable position yields a binding energy
of 460 meV per Co atom. Both ML of Co and QL of Bi2Se3 in direct contact gain some
corrugation, roughly around ' 0.1 Å, while the average z–distance between them is
2.15 Å. The average distance between the ML of Cu and QL of Bi2Se3 in direct contact
is around 2.26 Å with smaller corrugation than in the case of Co(0001), while the
binding energy is 294 meV per Cu atom. For other relative positions of the Bi2Se3 layer
with respect to the Cu(111) and Co(0001) layers the difference in binding energy is very
small. Binding energies in both cases are rather small, thereby signaling the dominant
vdW forces. Nevertheless, some charge rearrangement does occur at the interface
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(a) (c) (d)(b)

(e/Å3)

Figure 6.6: Top and side view of common unit cells for (a) Bi2Se3/Cu(111) and (b)
Bi2Se3/Co(0001) bilayers. Panels (c) and (d) show charge rearrangement around
the interface of bilayers in panels (a) and (b), respectively.

due to the push back/pillow effect [301], as shown in Figure 6.6(c) and Figure 6.6(d)
where the charge rearrangement is more pronounced for the case of the Bi2Se3/Cu(111)
interface.
The calculation of the retarded GF in Equation 6.1 and Equation 6.3 requires HDFT

k‖

represented in the linear combination of atomic orbitals (LCAO) basis set which makes
it possible to spatially separate the system into an active region attached to one or two
semi-infinite leads, as illustrated in Figure 6.1(a) and Figure 6.1(b), respectively. We
employ the ATK package [252] for pseudopotential-based LCAO noncollinear DFT cal-
culations yielding HDFT

k‖
, from which we obtain the retarded GFs and the corresponding

spectral functions, as well as the resistance in Equation 6.4. In ATK calculations, we use
the Perdew-Burke-Ernzerhof (PBE) parametrization of generalized gradient approxi-
mation for the exchange-correlation functional; norm-conserving pseudopotentials for
describing the electron-core interactions; and the LCAO basis set generated by the
OpenMX package [254, 253] which consists of s2p2d1 orbitals on Co, Cu and Se atoms,
and s2p2d2 on Bi atoms. These pseudoatomic orbitals were generated by a confinement
scheme [254] with the cutoff radius 7.0 and 8.0 a.u. for Se and Bi atoms, respectively,
and 6.0 a.u. for Co and Cu atoms. The energy mesh cutoff for the real-space grid is
chosen as 75.0 Hartree.

6.5 Chapter summary

The control of recent experimentally observed effects in topological spintronics, based
on heterostructures combining 3D TIs with conventional room temperature metallic
ferromagnets, is thwarted by the lack of understanding of energy as a function of
momentum and spin properties of electrons around their interfaces. For example,
interpretation of these experiments has relied on the naive picture offered by simplistic
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models where a ferromagnetic layer simply opens an energy gap in the Dirac cone
energy-momentum dispersion on electrons hosted by metallic surfaces of TIs while
leaving the locking of electron spin and momentum intact.
Here we introduce a novel first-principles technique which allows us to obtain energy-
momentum dispersion and spin properties of electrons at an arbitrary geometric plane
within TI/FM heterostructures. This reveals that the FM distorts the Dirac cone
on the TI side and pushes it deep below the Fermi energy, while few monolayers of
the FM acquire spin textures injected by the TI. Passing charge current parallel to
these monolayers will induce nonequilibrium spin density which plays a key role for
understanding recent and future experiments in topological spintronics.
We also propose a charge transport measurement, where current flows perpendicular to
the TI/FM interfaces while being modulated by rotating the magnetization of the ferro-
magnetic layer, which offers a sensitive probe of the type of spin texture residing at the
Fermi energy. Finally, we calculate a maximum TAMR of 60% for the Cu/Bi2Se3/Co
heterostructure in Figure 6.1(b) , showing that the studied TI/FM heterostructures
could be useful for memory applications as in magnetoresistive random-access memory
(MRAM) devices.
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New paradigms in design for logic and memory devices are required for the next-
generation integrated circuits. This includes different approaches in devices, data
representation, materials and state variables, where the aim of research is to: i) extend
the capabilities of existing CMOS technologies or ii) explore new technologies beyond
CMOS elements [14, 144].
In this sense, the initial approach is to replace silicon channels in typical FET structures
by other semiconductors that may overcome the technical difficulties of very small
silicon-based devices where the length of their channels is only a few nanometers.
Since the discovery of graphene, researchers have tried to incorporate this material
to traditional semiconductor processes in order to have a more convenient transition
to large-scale production of devices, but finding limitations in controllably obtaining
defect-free semiconducting structures with highly reproducible bandgaps that could
be integrated into existing manufacturing processes, since large-area graphene is a
semi-metal that is not suitable for commercial digital devices with very low leakage
currents. Then, for achieving successful graphene-based nanoelectronics, it is required
to develop scalable, reliable and cost-effective manufacturing process and explore novel
device architectures that could outperform state-of-the-art silicon devices.
For such approach, we have explored multiterminal graphene-based structures i) dec-
orated with gold adatoms and ii) deposited on a hBN substrate, where the injection
of an unpolarized charge current generates a non-local voltage, whose relation (RNL)
is used to characterize the system. We observed non-zero RNL near the CNP in both
setups, even in sufficiently long devices for which we calculated RNL = 0 in typical NN-
TB models of pristine graphene. Such signal may be useful for implementing novel
switching devices for low-power logic applications, if a very sharp signal can be ob-
tained for large Ion/Ioff , as seen in recent experiments [1]. Then, our next step would
be to use these non-local signals for designing transistors and calculating their per-
formance metrics, for which it would be required to use simulation techniques beyond
TB approximations. One option would be the usage of DFT Hamiltonians for charac-
terizing the system, however, the size of such matrices is very large for the number of
atoms in our multiterminal systems (∼ 106) and computations become prohibitively
expensive.
Finally, we have also studied TI/FM heterostructures by means of first-principles calcu-
lations that helped us understand the effects of TI/FM interfaces on electrons and their
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spin properties near the interface, where we found: i) a distortion of the Dirac cone on
the TI side due to the FM and ii) an injection of spin textures on the FM side by the
TI. The aim of these heterostructures is to obtain devices whose resistance is strongly
dependent on the angle of magnetization, characterized by the TAMR ratio. Then, by
looking at the energy-momentum dispersion, it is possible to identify the energy val-
ues where nearly helical spin texture resides at the Fermi level for maximizing TAMR.
For the studied Cu/Bi2Se3/Co heterostructure, we obtained a maxmimum TAMR of
60%, then, future works will focus on other TI/FM heterostructures that could allow
larger TAMR values, as required in state-of-the-art and novel magnetoresistive-based
devices.
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