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Abstract 

Concentrated photovoltaic (CPV) technology makes use of cheap optical elements to 

amplify the irradiance and focus it on small-sized solar cells enabling the extraction of higher 

amounts of electricity. However, increasing the solar concentration raises the temperature of 

the PV cell which can deter its performance and can also cause its failure. To combat this issue 

both active and passive cooling mechanisms are utilized for different types of CPV systems. In 

this study, we determine the limits of passive cooling systems and establish when an active 

cooling system is needed based on the recommended operating temperature of the solar cell. 

We investigate the temperature characteristics of the solar cells bonded to three different 

substrate materials under different solar concentrations. Results showed that cell temperature 

is linearly dependent on the concentration ratio and ambient temperature independent of the 

substrate material. Further, the integration of a micro-finned heatsink results in higher heat 

dissipation by 25.32%, 23.13%, and 22.24% in comparison with a flat plate heatsink for Direct 

Bonded Copper (DBC), Insulated Metal Substrate (IMS), and Silicon Wafer (Si wafer) 

substrates respectively. The low thermal resistance of the IMS substrate compared to the DBC 

and the Si wafer substrates result in the best thermal performance in terms of maintaining the 

cell temperature < 80 °C and allowing a wider range of high concentration ratio. 

Keywords: Concentrating Photovoltaic, Concentration Ratio, Passive cooling, flat-plate heat-

sink, micro fin heat-sink, finite element. 
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Nomenclature 

A  Area (m2) 

𝑄 Heat dissipated by the solar cell (W) 

𝑞 heat flux (W/m2) 

�̇� heat source (W/m2) 

𝑞𝑜  optical power (W/m2) 

T Temperature (℃) 

h Heat transfer coefficient (W/ m2 . K) 

DNI Direct normal irradiance (W/m2) 

R Thermal resistance (m2.K/W) 
L thickness (m) 

K thermal conductivity (W/ m . K) 
X The position of fin along the baseplate area (cm) 

Greek Symbols 

𝜀 Emissivity 

𝜎 Stefan-Boltzmann constant 5.67 × 10-8 (W/m2 . K4) 

𝛻 three dimensions (x, y, z) 

𝜂 Efficiency  

Subscript 
s solar surface 

sur surrounding 

a ambient 

c solar cell  
Ge germanium 

Cu copper 

Al aluminium 
Al2O3 alumina 

Si3N4 silicon nitride  

SnAgCu tin-silver-copper 
cond conduction  

conv convective  

rad radiation  

tr Thermal resistance 
L plain layer 

baseplate baseplate area of heatsink  

n number of fins 

Abbreviations 

DBC Direct Bonded Copper 

IMS Insulated Metal Substrate 
Si Wafer Silicon Wafer 

PCB Printed Circuit Boards 

CPV Concentrated Photovoltaic 

WCC Worst-Case Condition 
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1. Introduction  

A concentrator photovoltaic (CPV) system replaces expensive, high-efficiency 

semiconductor materials with cost-efficient optical concentrators[1] with an aim to lower the 

Levelized Cost of electricity compared to standard solar panels. Single junction silicon solar 

cells although widely utilized due to their availability and affordability have performance 

limitations in areas with high DNI and temperature[2] and have been primarily utilized for Low 

Concentration Photovoltaic Systems. Multijunction solar cells, on the other hand, have better 

tolerance to extreme DNI and can very well operate at high temperatures and solar 

concentrations and are essential in any type of High Concentrating Photovoltaic system 

(HCPV).  Currently, multijunction solar cells have been reported to have an efficiency of 47.1% 

under a solar concentration of 143 suns. These cells optimize the bandgap energy to expand 

the absorption range of the solar spectrum resulting in less thermalization loss (low thermal 

performance)[3]. One of the major issues however in the HCPV systems is the dissipation of 

the excess heat generated due to the limited electrical conversion of the solar energy. Increasing 

the concentration ratio enables higher power extraction using a smaller solar cell but at the 

same time increases their operating temperature. The solar cell temperature’s linear correlation 

with the concentration ratio is dependent on the cell area, where increasing the cell area 

increases the wasted heat [4].  The most commonly used solar cell sizes include 3 × 3 mm2, 

5.5 × 5.5 mm2 and 10 × 10 mm2 with peak efficiencies of 42.5%, 41.6% and 40.9% 

respectively[5]. The performance of a CPV module is strongly influenced by the cell 

temperature and it is highly desirable to maintain it between 50 – 80 °C [6]. Use of optical 

concentrators results in localized heated spots due to the nonuniformity of solar irradiance at 

which mechanical failures such as cell surface deformation might occur[7].   

The solar cells are typically mounted on heat spreaders made using highly thermally 

conductive materials which serve at the same time as contact pads for the internal electrical 

connection of the module. The thermal behavior of the solar cell mainly depends on the heat 

spreader type and the associated different layers of the materials employed in its assembly. The 

heat spreader is located between the PV cell and cooling mechanism to conduct the heat and 

then dissipate it, as shown in Figure 1 
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Figure 1  Basic Configuration of a CPV Unit. 

 

The heat sink which is typical of a larger area helps further dissipate the heat to the 

surroundings. Active and passive cooling mechanisms can be utilized within the heat sink 

enabling better control of the operating solar cell temperature [8]. Traditionally, passive 

cooling systems have shown good potential for maintaining temperatures of the PV cell at high 

concentrations of up to 500 × in severe weather conditions [9,10]. Active cooling, in particular, 

has been utilized for HCPV systems enabling co-generation of both heat and electricity 

simultaneously[11–14]. A number of studies have been reported earlier that [15–17] illustrates 

different cooling mechanisms which have been integrated into CPV systems to maintain the 

cell temperature below the cell’s operational limits. Min et al.[18] developed a thermal model 

to study a 3 × 3 mm2 triple-junction solar cell and found the cell temperature reached 1200 °C  

at 400 suns with no heatsink.  

Gualdi et al. [19] identified the limits of passive cooling for concentration ratios up to 

2000 suns. Results showed that a flat heat-sink could maintain the cell temperature below 80 

°C for a cell side length between 2-4 mm. A thermal test and simulation of an Alumina flat 

heat-sink for a concentration ratio in the range from 1 sun up to 1000 suns showed that at 500 

suns the cell temperature reached 80 °C and kept increasing to reach about 120 °C at 750 

suns[20]. Wang et al.[21] presented a numerical investigation addressing the effect of DNI, the 

wind speed, the module elevation angle, and the ambient temperature. Renzi et al. [22] studied 

the performance of two commercial 3.5 kWp CPV systems at 476 suns. The temperature of the 

backside of the aluminum heatsink was measured to be in the range of 55 and 65 ℃. Chou et 

al.[23] developed a thermal model to assess the performance of a 6.5 × 5.5 mm2 triple-junction 

solar cell under a concentration ratio of 380 suns cooled with an aluminum flat-plate heatsink 
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and reported the maximum cell temperature of 69℃ correspondent to the thermal resistance of 

4.67°C/W. Theristis and Donovan [24] used finite element analysis to estimate the operating 

temperature of a 10 × 10 mm2 triple-junction solar cell and found that the flat plate heatsink of 

1.63 K/W thermal resistance can passively maintain the solar cell in a safe operating condition 

up to 500 suns. A further study showed that a solar cell of 1 × 1 mm2 or below with an 

aluminum flat-heatsink could maintain the cell temperature below 60 °C [4]. Micheli et al. [25] 

showed that the optimized fin array improved the mass-specific power by up to 50%. Further, 

they explored the use of different substrate materials like DBC and, IMS [5]. 

Abo-Zahhad et al. [26] developed a thermal model to investigate effect of increasing the 

area ratio (proposed two copper areas/originally defined two copper areas). Hu et al.[27] 

studied the dynamic performance of a hybrid system coupled subsystems The subsystems 

helped to maintain the electrical efficiency to 35.15% with a tank water mass altering range 

between 0.82-17.52L. Abo-Zahhed et al. [28] examined  novel jet impingement microchannel 

heatsink design and compared it with a conventional model.. Maka and Donovan [29] reported 

that, at 1000 concentration ratio, a minimum of 2400 W/m2. K of the convective heat transfer 

coefficient is needed to maintain the cell < 80 °C.  

Aldossary et al. [30] studied two passive cooling designs (round pin and straight fins 

heatsinks) and showed that they are incapable of maintaining the cell temperature < 80 ℃. 

Wang et al. [31] reported  that the temperature could be maintained below 75℃ at the worst 

ambient temperature of 45℃ with a fan pump power of less than 2W.    

 Fin heat-sinks are widely used to enhance the heat transfer between two media by the 

thermal exchanging surface. Parametric optimization for fin heat-sink geometry in CPV 

application showed that a thicker fin does not improve the heat transfer because of the 

surpassing convective heat transfer between fins[32,33]. A thinner fin in a heat-sink with an 

optimized fin number minimizes the weight. The minimized weight of the heat-sink materials 

reduces the load and size of the tracking system, especially with a high and ultra-high 

concentration ratio, where the acceptance angle is limited. The optimization of the fin number 

and fin spacing is strongly related to the temperature difference and inclination angle[34–36]. 

In a micro fin heat sink, a general correlation among geometry and orientation has been 

experimentally studied and showed that convective heat transfer coefficient increases by 

decreasing the height of the fins, increasing the fin spacing, and/or decreasing the fin thickness 

for upward/ downward horizontal orientation and vertical orientation, as in Figure 2. The 
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upward horizontal orientation showed a 12% discrepancy in the thermal resistance compared 

to the downward surface orientation. Kim and Micheli [37][38] carried out their experimental 

study at 100 – 200 micrometer-height and their work showed an enhancement in the thermal 

exchange of up to 10%. Also, the correlation between the fin’s geometry and thermal 

performance was investigated for a range of temperatures [39,40]. Recently, flared heatsink 

configurations applied in CPV module were experimentally investigated and showed a 

reduction in the thermal resistance of 10 % in comparison to a flat-plate heat sink [41].  

 

Figure 2 General correlation between geometry and orientation for micro-fin heat-sink [34–36]. 

In this study we report the influence of different parameters that dictate the solar cell 

operating temperature. The concentration ratio in the range of 100 -1000 suns has been 

investigated for the worst-case operating condition on a 3 × 3 mm2 multijunction solar cell 

bonded to a flat-plate and micro fin heat-sink. The use of three different substrate materials 

namely Direct Bonded Copper (DBC), Insulated Metal Substrate (IMS), and Silicon Wafer 

substrate (Si wafer) has been explored. For the micro-fin heat-sink,  the effect of wind speed 

on the external boundaries has been taken into consideration by varying the convective heat 

transfer coefficient between  3 − 25 [
𝑊

𝑚2.𝐾
] [42]. The impacts of extreme weather conditions 

have been considered by varying the ambient temperature beyond 50°C. Furthermore, a 

geometrical parametric study for heat sink fin number and fin spacing has been numerically 

investigated to optimize the thermal performance. The results help determine the concentration 

ratio limits at which passive cooling is no longer enough and active cooling is needed to 

thermally manage the solar cell for improved reliability. 
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2. CPV design considerations 

A starting point for the design of any CPV system is to determine the type of solar cell 

used and its associated heat dissipation system. A clear understanding of the expected 

environmental conditions can help determine the solar cell operating temperatures, the amount 

of power to be extracted and the overall physical dimensions of the system depending on the 

type of heat sink deployed. The cell temperature’s linear correlation with the concentration 

ratio is dependent on the cell area, where increasing the cell area increases the wasted heat.  

 In this study, a 3 × 3 mm2 multijunction PV (Model 3C44C) cell from Azur space has 

been considered as shown in Figure 3. The cell is designed to operate within a range of 100-

1500 suns and has a peak efficiency of 42%. The maximum operating temperature is reported 

to be 110 °C [43]. The cell has a widely recognized H-pattern optimized to perform under non-

uniform illumination conditions. 

 

Figure 3 Performance characteristics of an Azur space 3C44C. The four lines are efficiency versus sun concentrations for 
version MC/air & glass and version HC/Air & glass where the solar cell is optimized. Measurement conditions is 1.5 AM D 

– 1000 W/m2 (ASTM G 173-03), T = 25 °C, designated measurement area = 100,51 mm² [43]. 

2.1 Passive cooling with fin design  

Utilization of passive cooling mechanisms in different studies has been proven to successfully 

handle the thermal management for a wide range of concentration ratio. Flat-plates and finned 

heat-sinks are used commonly in a passive cooling system. Generally, increasing the area of 

the heat-sink baseplate easily dissipates heat but at the cost of increased module weight which 

ultimately increases the cost of tracking and the LCOE ultimately. So, the minimum heat-sink 
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baseplate area for Azur Space 3C44 – 3 × 3 mm2 cell area is calculated, applying the same 

approaches in [5], by the Eq.(1). 

𝐴𝑏𝑎𝑠𝑒𝑝𝑙𝑎𝑡𝑒 =  
𝑄𝐶  

[𝑞𝑐𝑜𝑛𝑣 + 𝑞 𝑟𝑎𝑑]
                          ( 1 ) 

The CPV system exchanges heat with its surrounding through natural convection and radiation. 

The convective heat flux ( qconv) is proportional to the difference between the solar surface 

temperature (𝑇𝑆) and the ambient fluid temperature (𝑇𝑎) considering the exchange baseplate 

area (Abaseplate ) and the convective heat transfer coefficient (ℎ ), as in Eq.(2).   

𝑞conv = 𝐴𝑏𝑎𝑠𝑒𝑝𝑙𝑎𝑡𝑒 . ℎ . (𝑇𝑠 −   𝑇𝑎)                                 ( 2 ) 

Where radiation (𝑞𝑟𝑎𝑑) is proportional to the difference between the solar surface temperature 

(𝑇𝑆) and the surrounding fluid temperature (𝑇𝑆𝑢𝑟) to the fourth power considering the radiative 

property (ε) of  the exchange baseplate area (𝐴𝑟𝑒𝑎𝑏𝑎𝑠𝑒𝑝𝑙𝑎𝑡𝑒 ) and the Stefan-Boltzmann 

constant ( 𝜎 =  5.67 × 10−8  
𝑊

𝑚 2.𝐾4 ), as in Eq.(3) 

𝑞𝑟𝑎𝑑 = 𝐴𝑏𝑎𝑠𝑒𝑝𝑙𝑎𝑡𝑒 . ε . 𝜎 (𝑇𝑠
4 −   𝑇𝑆𝑢𝑟

4)   ( 3 ) 

 Assuming that all the heat generated (𝑄𝐶  ) by Azur Space 3C44C – 3 × 3 mm2 cell is 

conducted to the bottom surface of the heat sink, considering only the flat bottom surface of 

the receiver, and taking into account the highest value of natural convective heat transfer 

coefficient of 25 W/m2.K, an emissivity value of polished aluminum surface of 0.09, a heat 

sink surface temperature of 60 ℃, and an ambient temperature of 25 ℃. Thus, the minimum 

required dissipating area of 0.0025 m2 is required correspondent to 5 × 5 cm2. The assumption 

was made considering the emissivity value of aluminum instead of copper and silicon where 

they would result in the lesser dissipating area due to their higher emissivity. The fin heat-sink 

geometry is obtained from[25], as in Figure 4. A 3x3 mm2 multijunction solar cell is attached 

to a heat sink with an area of 25cm2 and uses 50 micro-fins (thickness 200m and pitch of 

900m). 
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Figure 4 Asymmetric, side-view, and cross-section view for the micro-finned heat-sink with typical dimensions of the fins 

2.2 Heat Spreader selection and thermo-physics Properties   

The selection of the CPV system’s components and materials plays a fundamental role 

in thermal management. The heat spreader between the PV cell and the heat-sink needs to be 

highly efficient to transfer the generated heat out of the PV cell. A high thermal conductivity 

material for the substrate is preferable, while electrical conductivity needs to be minimized. 

The most commonly used substrate in the CPV system is Direct Bonded Copper (DBC) due to 

its mechanical strength and excellent thermal and electrical properties[44–46]. Printed Circuit 

Boards (PCB) substrates on the other hand which is widely used in the electronic applications 

have a laminated fiberglass on one or both sides with copper that decreases the thermal 

conductivity[47] and limits its application in CPV. Replacing the laminated material with a 

metal improves the thermal conductivity and is referred to as Insulated Metal Substrate (IMS). 

IMS is an alternative for DBC due to its affordability and excellent thermal performance[48]. 

Also, Silicon wafer (Si wafer) is an excellent material for the substrate because Si wafer has a 

similar thermal expansion rate to the multijunction PV cell semiconductor material that can 

improve its reliability [5]. Silicon manufacturability is simple, but silicon is an expensive 

material compared to other substrates and mechanically fragile[38].  

The substrate layer thickness and materials have been selected according to the cell 

area, as shown in Figure 5. 
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Figure 5 Geometric model of the CPV receivers, material and thickness layers for the DBC [35], IMS [33], and Si wafer 
[36]. 

Three different substrates with three different heat-sink materials have been researched 

in COMSOL Multiphysics to evaluate the thermal performance at fixed heat-sink geometry, as 

in table 1.  

Table 1  Thermo-physical properties used in COMSOL 

Material 
Density 

[kg/m3] 

Heat Capacity 

[J/kg. K] 

Thermal 

Conductivity 

[W/m. K] 

Germanium (Ge) 5323 700 60 

Copper (Cu) 8700 385 400 

Aluminium (Al) 2700 900 238 

Silicon (Si) 2329 700 130 

Alumina (Al2O3) 3900 900 27 

Silicon nitride (Si3N4) 2370 673 10 

Marble Resin  - - 3 
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3. Numerical Model  

In the present study, we model the solar cell and the associated heat dissipation using 

the energy equation. The heat transfer rate in the CPV unit is governed by considering the 

energy conservation law for the steady-state condition with the heat source (q̇), where (qcond) 

and (qconv ) indicate the conduction heat transfer and the convective heat flux, respectively, in 

Eq. (4).   

𝑞𝑐𝑜𝑛𝑑 =  �̇�  +  𝑞𝑐𝑜𝑛𝑣                                     ( 4 ) 

The analysis of the conduction heat transfer rate (𝑞𝑐𝑜𝑛𝑑 ) in the solid domain is obtained 

by Fourier’s law. The conduction heat transfer equation is solved to obtain the temperature 

distribution between the solid layers in three dimensions (x, y, z) where it is presented as a del 

operator (𝛻) considering the solid layers thermal resistance (Rtr,cond) in Eq. (5) 

𝑞𝑐𝑜𝑛𝑑 =  𝛻 (−
1

𝑅𝑡𝑟,𝑐𝑜𝑛𝑑
𝛻𝑇)         ( 5 ) 

The thermal resistance, by different layer composition, influences the heat transfer rate 

because thermal resistance and thermal conductivity are inversely correlated as in Eq. (6)  

𝑅𝑡𝑟,𝑐𝑜𝑛𝑑 =  
𝐿 𝐿 

𝑘𝐿
                                          ( 6 ) 

The thermal resistance is basically the reciprocal of the thermal conductivity (KL) 

through a plain layer of a thickness (LL) 

The convective heat flux (𝑞𝑐𝑜𝑛𝑣 )on the external boundaries is obtained by Newton’s 

law of cooling considering Rtr,conv using Eq. (7). However, the adiabatic condition has been 

applied for the baseplate periphery of the heat-sink taking into consideration the real condition 

where the receiver is contiguous with other receivers.       

𝑞𝑐𝑜𝑛𝑣 = 𝛻 (
1

𝑅𝑡𝑟,𝑐𝑜𝑛𝑣 
  . 𝛻𝑇 )                                      ( 7 ) 

The thermal resistance is also associated with convective heat transfer where it is the 

reciprocate of the convective heat transfer coefficient (ℎ𝑐) in Eq. (8).  

𝑅𝑡𝑟,𝑐𝑜𝑛𝑣 =  
1 

h 
                                            ( 8 ) 

The CPV system was mounted in a horizontal position, where buoyancy force is normal to the 

layer, to allow the natural convection flow and to avoid the temperature gradient on the layer.   
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Considering the energy conservation law with a heat source for a steady-state condition 

in Eq. (4), the conduction heat transfer equation for estimating the temperature distribution in 

the solids can be solved by Eq. (9) 

𝛻 (
1

𝑅𝑡𝑟,𝑐𝑜𝑛𝑑
𝛻𝑇) =  �̇�                                                ( 9 ) 

The heat source can be modelled as shown in equation (10) below. Where (𝑞𝑜) indicates 

the optical power output in (W/m2) after solar concentration and (𝜂𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 ) indicates the 

electrical efficiency of the solar cell.  

�̇� = 𝑞𝑜  . (1 −  𝜂𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 )                                       ( 10 ) 

The arrangement of the solar cell as a heat source is to model the portion of solar 

irradiance that converts to wasted heat.  The optical power after concentration can simply be 

expressed as the product of the direct normal irradiance available, the geometric concentration 

factor and the optical efficiency. For a worst-case condition, we consider that the solar cell 

generates no electrical energy and assume that all the available optical power is to be dissipated 

by the heat sink. The optical efficiency (𝜂𝑜𝑝𝑡𝑖𝑐𝑎𝑙 ),  the direct normal irradiance (DNI), and the 

geometrical concentration ratio was assumed to be 85%, 1000 W/m2 and between 100-1000 

sun, respectively. 

3.1 Boundary Conditions  

Azur Space 3C44- 3×3 mm2 cell area was modelled as one block of germanium (Ge), 

as considered by other authors[4,20,24,47,49].  The thermal boundary conditions applied to the 

system can be seen in Figure 6. Substrates and fin heat-sink, as a consecutive component for the 

solar cell in building-up the CPV system, was modelled using material of different layers and 

thicknesses (Figure 5) and using the thermo-physics properties of each layer table 1.   Density 

and thermal conductivity had been set to be independent, no variation with temperature. Solder 

material was considered as thin thermal resistive layers. All the analyzed inputs and boundary 

conditions in the simulations are summarized in table 2 and Figure 6. 
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Table 2 Input parameters for the simulations and thermal boundary conditions for Figure 6 

Components Symbols  Value  Units  

Solar Cell 

Ac 3 × 3 mm2 

DNI 1000 W/m2 

η electric 42.5 % 

η optical 85 % 

Concentration ratio 100 - 1000 Sun 

Substrates 

Area 3 × 3 mm2 

Type 

Direct Bonded Copper (DBC) 

Insulated Metal Substrates (IMS) 

Silicon Wafer (Si Wafer) 

Fin heat-sink 

Baseplate thickness 0.8 µm2 

Baseplate Width 5 cm 

Baseplate Length 5 cm 

Materials 

Aluminium 

Copper 

Silicon 

CPV system 
h 3 - 25 W/ m2. K 

𝑇𝑎  20 – 56 ℃ 

 

Thermal Boundary conditions 

 

Number Region Boundary Condition 

1 Solar Cell Boundary heat Source 

2 
All free surfaces and micro-fin heat-sin Natural Convection 

3 

4 All Side surfaces of the heat-sink baseplate Adiabatic 𝑞 = 0 

5 Surrounding Ambient Temperature 

 



 

14 
 

 
Figure 6 Thermal Boundary Condition 

3.2 Meshing  

Meshing is a key process when using the finite element method. The accuracy and the 

time it takes to solve the model is strongly related to the mesh set-up. In this study, different 

sizes of meshing were applied to ensure the optimal meshing size in every domain. The 

thickness of the thin layers in the substrates was smaller than the smallest element size for the 

predefined value in extremely fine mesh in COMSOL. The tetrahedral mesh was introduced to 

customize the maximum and the minimum element size to be within the thickness of the thin 

layer by taking into consideration the required computational time, as in Figure 7.  

 

Figure 7 Tetrahedral mesh applied to the thin layer. 

Different mesh sizes were simulated at 1000 × concentration ratio. The cell temperature 

obtained at every mesh size is used to consider the relative error between consecutive mesh 

sizes and to consider the computational time. The maximum cell temperature was simulated to 

be 156.39 °C and 156.47 °C for mesh size ranged from extremely coarser to extremely fine 
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with a computational time from 4 s to 84 s, respectively. Thus, the normal mesh size was 

selected to give a temperature of 156.42 °C. The normal mesh size results in a relative error of 

0.03% to the asymptotic value at extremely fine meshing, as in Figure 8. 

 

Figure 8  Mesh selection study for cell temperature (micro-finned heat-sink with DBC substrate at 1000 suns). 

4. Results 

In this work, the HCPV was subjected to operate in the worst-case conditions (WCCs) 

wherein the cell is not capable of producing any electrical power (η𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 0 ). Thus, all 

the sunlight incident on the solar cell is to be dissipated as heat. In this condition, the cell 

temperature rapidly elevates rapidly. For safe operation, the solar cell must not exceed 110 °C, 

which is the maximum operating temperature of 3C44C Azur Space.  

We validated the model by comparison with previous studies for the same solar cell 

size and heatsink configuration. First, we adjusted the developed thermal model to the same 

conditions in [18] with no heatsink to predicted the cell temperature under a concentration ratio 

in the range of 100 -1000 Suns, and the results of the current study are in good agreement with 

[18,26] with an average error factor of 2.7 %, as in Figure 9.  
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Figure 9 Validation for the predicted maximum cell temperature with Min et al. [18] and Abo-Zahhad et al. [26] with no 
cooling aid for DBC substrates 

 

Second, the thermal model was adjusted for standard operating test conditions (SOTC) 

allowing the cell to produce electrical power (η𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 42.5% ) at 500 suns for a flat-plate 

heatsink. Table 3 shows a significant agreement between this study and [5,50].  

Table 3 Validation with the previous study 

 DBC [℃] IMS [℃] Si wafer [℃] 

Current Study  75.11 71.2 77 

Micheli et al [5]  75 72.8 78.8 

Current Study 74 - - 

Algora et al [50] 73 - - 

 

4.1 Performance characteristics of CPV with flat-Plate and micro-fin heat sinks 

Utilizing the COMSOL Multiphysics numerical simulation model, we can predict the 

maximum cell temperature for a 3x3 mm2 solar cell mounted on DBC, IMS, and Si wafer 

attached with a flat-plate and micro-finned heat-sink under concentration ratios ranging from 

100 to 1000 suns. Copper, aluminum, and silicon were selected as the heat-sink materials for 

DBC, IMS, and Si wafer, respectively. Figure 10 shows the temperature contours of the solar 

cell when using different substrate materials and using micro fin heat sinks. 
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Figure 10 Temperature field distribution for a) Direct Bonded Copper (DBC), b) Insulated Metal Substrates (IMS), and c) 
Silicon Wafer Substrate (Si Wafer) 

 



 

18 
 

Even as the concentration ratio increased, the cell on the micro-finned heat-sink 

exhibited a lower maximum cell temperature compared to the system with a flat-plate heat-

sink. The difference in maximum temperature between the flat-plate heat-sink and micro-

finned heat-sink increased linearly. As shown in Figure 11, the switching values from passive 

to active cooling for the flat plate is 305.7, 316.6 and 296.2 suns for DBC, IMS, and Si wafer; 

whereas, the switching value for micro-finned are 433.7, 450 and 411.8 suns for DBC, IMS, 

and Si wafer, respectively. The introduction of the micro-finned heat sink results in 25.32%, 

23.13%, and 22.24% as an average drop in temperature for DBC, IMS, and Si wafer, 

respectively. The result shows an average increase of 0.254 °C, 0.248 °C, and 0.26 °C for every 

Sun in the flat-plate heat-sinks for DBC, IMS, and Si wafer; whereas, the result shows an 

average increase of 0.197 °C, 0.192 °C, and 0.204°C for every Sun in the micro-finned heat-

sinks for DBC, IMS, and Si wafer, respectively. At 1000 suns the micro-finned heat sink 

showed a much lower temperature than the flat-plate heat sinks. It can be seen in Figure 11 that 

this was 57.31 °C, 55.43 °C, and 56.07 °C for the micro-finned DBC, IMS, and Si wafer heat 

sinks respectively. 

 

Figure 11 Simulated maximum temperature for the solar cell mounted on DBC, IMS, and Si wafer. 

4.2 Impact of increasing convective heat transfer coefficient  

The convective heat transfer is classified according to the nature of the flow and is 

dependent on the wind speed and the temperature gradient. Forced convection is caused by 
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external intervention. However, for natural convection, the temperature gradient induces the 

density differences causing a buoyancy force within the air to move. The CPV system is 

subjected to external winds which impacts the operating solar cell temperature. 

The impact of the wind speed is studied by varying the convective heat transfer 

coefficient in the natural convection range of 3 − 25 [
𝑊

𝑚2.𝐾
] in an interval of 2 [

𝑊

𝑚2 .𝐾
] at an 

ambient temperature of 20 °C for the micro-fin heat-sink. The results showed that the cell 

temperature is linearly dependent on the concentration ratio, as shown in Figure 12.a. Also, the 

cell temperature dependency on the convective heat transfer has a strong effect up to 

14[
𝑊

𝑚2.𝐾
]and then the drop-in cell temperature begins diminishing. Clearly, the higher the 

convective heat transfer coefficient, the lower the cell temperature meaning high exploitation 

of natural air circulation. The solar cell on the DBC substrate was found to have a maximum 

temperature of 429.38°C at 1000 suns under the lowest convective heat transfer coefficient of 

4 [
𝑊

𝑚2.𝐾
] and goes down to 129.57°C using a convective heat transfer coefficient of 22 [

𝑊

𝑚2.𝐾
]. 

The solar concentration limits for safe operation also increase with the increasing heat transfer 

coefficient. As shown in Figure 12.a. the solar concentration limits increase by 401.3 suns, 507.5 

suns, and 431.2 suns for the DBC, IMS, and Si wafer, respectively. 

Using linear interpolation, we identified the concentration ratio limits for a range of 

convective heat transfer coefficient whilst maintaining an 80 °C maximum recommended 

operating temperature. The concentration ratio limits are plotted for DBC, IMS and Si wafer 

in Figure 12.b.  

 

Figure 12 a. cell temperature with concentration ratio and convective heat transfer coefficient range for DBC, IMS, and Si 
wafer and b.  Concentration ratio limits with convective heat transfer coefficient for DBC, IMS, Si wafer. 
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4.3 Impact of ambient temperature and increasing Concentration ratio   

One of the important parameters that influence the PV performance is the ambient 

temperature. In the present study, we vary the ambient temperature taking it from a nominal 

value of 20°C to extreme weather condition of 56 °C. The selection of the temperature range 

is made to accommodate the historical day temperatures in countries like Saudi Arabia, India 

and Spain where these CPV systems would be typically deployed.  

Studies were carried out to evaluate the performance of the micro-fin heat-sink varying 

the ambient temperature, concentration ranges 100 – 1000 suns and at a fixed convective heat 

transfer coefficient 10 W/m2. K. The incremental linear correlations between the cell 

temperature and ambient temperature are shown in Figure 13.a. It was observed that for every 

degree increment of the ambient temperature between 100-1000 sun, the cell temperature for 

DBC, IMS, and Si wafer increased by 123.08 °C, 120.72 °C, and 130.87 °C, respectively. 

Obviously, a lower ambient temperature results in better heat exchange with the surrounding 

reducing by that the cell temperature and allowing the cell to accept a higher concentration 

ratio. Increasing the ambient temperature from 20 – 56 °C reduces the concentration ratio limits 

by 265.4 suns, 267.2 suns, and 249.6 suns for the DBC, IMS, Si wafer, respectively. The results 

obtained were extrapolated to determine the concentration ratio limits with ambient 

temperature at 80 °C and plotted for DBC, IMS and Si wafer as in Figure 13.b.  

 

Figure 13  a. PV temperature with concentration ratio at a range of ambient temperature value for DBC, IMS, and Si wafer 

and b. concentration ratio limits with ambient temperature for DBC, IMS, and Si wafer 

It can be seen clearly that the solar concentration needs to decrease for optimal 

operation at places with higher ambient temperatures. The most comfortable range to operate 

under any of these extreme conditions would be in the range of 100-200suns.  
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4.4 Impact of varying the number of micro-fins 

Fins can play a crucial role in dissipating the heat from the substrate. Different types of 

fins with different shapes and sizes can be utilized. However, in our study we have used micro 

fins with a linear profile and varied them between 10 – 120 maintaining a fixed fin thickness. 

It is important to note that increasing the micro-fin number also reduces the pitch spacing 

between them. The thermal model was performed based on convective heat transfer at 10 W/ 

m2. K and ambient temperature at 20 °C assuming, there is no effect by the reduction in the 

spacing between micro-fin. To configure the micro-fin on the baseplate for spacing evenly, the 

following equations (9) were conducted in the thermal model 

𝑋1 =  
𝐵𝑎𝑠𝑒𝑝𝑙𝑎𝑡𝑒 𝑊𝑖𝑑𝑡ℎ

2

𝑀𝑖𝑐𝑟𝑜−𝑓𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 
                                position of first micro-fin  

𝑋2 = 𝑋1 +  
𝐵𝑎𝑠𝑒𝑝𝑙𝑎𝑡𝑒 𝑊𝑖𝑑𝑡ℎ

𝑚𝑖𝑐𝑟𝑜−𝑓𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
                        position of second micro-fin 

𝑋𝑛 = 𝑋1 + 𝑋2 + 𝑋𝑛 + 
𝐵𝑎𝑠𝑒𝑝𝑙𝑎𝑡𝑒 𝑊𝑖𝑑𝑡ℎ

𝑚𝑖𝑐𝑟𝑜−𝑓𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
       position of consecutive micro-fins                       ( 9 ) 

Where X is the position of micro-fin localized along the baseplate width and distributed based 

on the micro-fin number. As in Figure 14.a. the results show a linear dependency of cell 

temperature on the concentration ratio. The maximum safe operating concentration ratio range 

increases to up to 600 suns when using a micro finned heat sink of up to 120 fins. Increasing 

the number of fins helps improve the heat dissipation from the heat sink. It was found that 

increasing the number of fins from 20 – 120 fins results in improving the concentration ratio 

limits by 233.7 suns, 250 suns, and 216.9 suns for the DBC, IMS, and Si wafer, respectively.  

 

Figure 14 a. PV temperature with concentration ratio at a range of micro-fin number for DBC, IMS, and Si wafer and b. 
Concentration ratio limits with micro-fin number for DBC, IMS and Si wafer 
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The manufacturing techniques of micro-fins out of metals are laborious process at 

which the cost of machining a micro scaling fin is primarily related to the machining time. 

Thus, the limits of concentration ratio at 80 °C for a large number of fins clearly increases but 

at the price of required machining time as shown in Figure 4 and Figure 14.b.   

Table 4 The concentration ratio limits with a range of micro-fin number. 

Micro-Fin 

Number 

Concentration ratio at 80 °C 

(Sun) 

DBC IMS Si Wafer 

10 340.8 345.1 322.7 

20 367.3 372.6 347.1 

30 392.5 398.8 370.1 

40 416.5 424.1 392.2 

50 439.6 448.3 413.2 

60 461.7 471.6 433.5 

70 482.7 494.1 452.8 

80 503.2 515.7 471.5 

90 522.5 536.6 489.5 

100 541.5 556.7 506.8 

110 559.5 576.3 523.5 

120 576.9 595.1 539.6 

5. Performance metrics and Outlook 

CPV systems can be designed using a variety of heat sinks in order to dissipate heat 

and operate the solar cell at the desired operating temperature. If natural convection is the only 

available choice, then this would involve the use of sophisticated machining of the heat sinks 

in order to achieve the optimal operating conditions. Micro heat sinks have been widely used 

in a variety of applications including in space and the cooling of a variety of electronic 

equipment given their lightweight and small dimensions. In CPV applications the weight of the 

CPV module dictates the load for the tracker and hence makes it equally important to use lighter 

heat sinks.  

The limitations posed by these heat sinks include their physical geometry, machining 

costs and the amount of heat that they can dissipate. In our study, we chose a standard design 

of a micro heat sink and evaluated its performance while changing its material properties, the 

number of fins and the operating variables. We studied a variety of substrate materials 

including DBC, Si wafer and IMS. The choice of the materials was based on previous research 

studies highlighting the advantages of different substrates. Silicon being a semiconductor has 

very similar thermal expansion properties to those of the solar cell and can help prevent 
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mechanical failure due to the mechanical stresses induced via thermal loading. DBC uses 

multiple layers of copper sheet enabling higher conduction of heat but has a higher thermal 

expansion coefficient. IMS is an alternative to DBC and has been very commonly used in the 

PCB industry making it the cheapest heat sink currently available. 

The geometrical parameters of the heat sink dictate the performance limits of the CPV 

solar cell attached to them. The number of fins, the pitch and their shape can determine the 

amount of heat dissipation from these devices and ultimately enable the optimization of the 

system design. In our study, we maintained a linear fin geometry and heat sink area but varied 

the number of the fins and the pitch. Increasing the number of fins improved the heat dissipation 

rate but also increases the machining costs of the heat sink. The operating range of the CPV 

device also increased with an increase in the number of fins. We found that heat sinks using 

IMS at 10 W/m2. K and an ambient temperature of 20°C were limited to its solar concentration 

of 595suns while using the maximum number of fins (120). Which leads us to the question of 

understanding the impact of the operating variables which can vary significantly in places with 

high DNI.  

The key operating variables that influence the performance of the CPV system are the 

ambient temperature and the wind speed which determines the heat transfer coefficient 

available at the heat sinks. In our study, we have exhaustively varied the temperature range 

between 20-56°C and the heat transfer coefficient between 4-20 W/m2. K.  We found that both 

these parameters have a huge impact. For example, the maximum solar concentration of 

595suns drastically decreases the IMS performance limit to 180 suns at 56 °C and 10 W/m2. 

K. The increase in the heat transfer coefficient can have a positive impact becomes 22 W/m2. 

K the performance limit of solar concentration increases to 725suns. 

6. Conclusion  

A 3D numerical model has been developed to predict the maximum cell temperature of 

micro-finned heat-sink in Fresnel based CPV under different concentration ratio levels for three 

different substrates materials using COMSOL. In the worst-case conditions, the developed 

model was able to determine the concentration ratio limits based on the solar cell maximum 

recommended temperature of 80 °C for different values of natural convective heat transfer 

coefficient, ambient temperature, and the number of fins. Based on the predicted results, we 

reached the following: 
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1- Micro-finned heat sink showed 57.31 °C, 55.43 °C, and 56.07 °C as a drop-in 

temperature at 1000 suns in comparison with the flat-plate heatsink for the DBC, 

IMS, and Si wafer, respectively. 

2- Increasing the convective heat transfer coefficient from 4 – 22 W/m2. K allows the 

concentration limits to rise by 401.3 suns, 507.5 suns, and 431.2 suns for the DBC, 

IMS, and Si wafer, respectively.  

3- Increasing the ambient temperature from 20 – 56 °C reduces the concentration ratio 

limits by 265.4 suns, 267.2 suns, and 249.6 suns for the DBC, IMS, Si wafer, 

respectively   

4- Increasing the number of fins from 20 – 120 fins result in improving the 

concentration ratio limits by 233.7 suns, 250 suns, and 216.9 suns for the DBC, 

IMS, and Si wafer, respectively.  

Clearly, the thermal resistance of Al2O3 in DBC, Marble resin in IMS, and Si3N4 in 

Si wafer generate a temperature gradient between the cell and the heat-sink material. However; 

the low thermal resistance of the IMS substrate results in the best thermal performance in terms 

of maintaining the cell temperature below 80 °C and allowing a wider range of high 

concentration ratio.  
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