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ABSTRACT 
The application of Evolutionary Algorithms (EAs) to real-

world problems comes with inherent challenges, primarily the 
difficulty in defining the large number of considerations needed 
when designing complex systems such as Water Distribution 
Networks (WDN). One solution is to use an Interactive 
Evolutionary Algorithm (IEA), which integrates a human expert 
into the optimisation process and helps guide it to solutions more 
suited to real-world application. The involvement of an expert 
provides the algorithm with valuable domain knowledge; however, 
it is an intensive task requiring extensive interaction, leading to user 
fatigue and reduced effectiveness. To address this, the authors have 
developed methods for capturing human expertise from user 
interactions utilising machine learning to produce Human-Derived 
Heuristics (HDH) which are integrated into an EA’s mutation 
operator. This work focuses on the development of an adaptive 
method for applying multiple HDHs throughout an EA’s search. 
The new adaptive approach is shown to outperform both singular 
HDH approaches and traditional EAs on a range of large scale 
WDN design problems. This work paves the way for the 
development of a new type of IEA that has the capability of 
learning from human experts whilst minimising user fatigue. 

CCS CONCEPTS 
• Theory of computation → Design and analysis of algorithm      

KEYWORDS 
 Evolutionary Algorithm; Machine Learning; Human-computer 
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Network Design; Real-world Application 

1 INTRODUCTION 
Evolutionary algorithms (EAs) have been used for the 

optimisation of theoretical and real-world inspired problems in 
many fields of study. One such area is water systems engineering, 
more specifically the design and operation of Water Distribution 
Networks (WDNs). Although solutions produced by EAs can 
provide mathematically optimal designs, they are often not entirely 
suitable for real-world application. This is due in part to the 
multitude of considerations an engineer needs to take into account 
when designing such complex systems which are difficult to 
express mathematically in objective functions and constraints. As a 
result, engineers utilising evolutionary optimisation techniques will 
often have to manually adjust promising solutions to meet real-
world application requirements even following extensive objective 
function formulation and refinement. This need to involve an expert 
in the real-world optimisation of complex systems is a recognised 
issue [1] and thus researchers in the field of water systems 
engineering have been looking for approaches to address this.  

The work presented in this paper proposes a refined approach 
for the capture and application of engineering expertise to EAs for 
the optimal design of WDNs. This is achieved through the use of 
advanced interactive visualisation, machine learning and algorithm 
mechanics to produce EAs capable of learning from water systems 
engineers to improve algorithm performance and real-world 
solution applicability. It is envisaged that the developments 
presented here will provide a robust foundation for the 
development of a novel type of Interactive Evolutionary Algorithm 
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(IEA) which will have the ability to learn and apply complex 
engineering concepts to real-world WDN design problems.  

1.1 Knowledge Guided Search 
Evolutionary algorithms have been applied to a substantial 

range of optimisation tasks and have proven to be versatile 
approaches capable of locating high quality solutions for extremely 
complex problems. Their ability to effectively navigate large search 
spaces whilst avoiding local optima means they can be viewed as 
truly global search techniques. This ability can be partly attributed 
to their independence over the problem being optimised, however 
in the case of large real-world problems where evaluations are 
expensive and performance is essential, EAs can struggle to obtain 
quality results in a timely manner.  

When applied to the problem of WDN design, an EA is 
dependent on variation operators such as crossover and mutation to 
alter the design of the network. These operators are however 
ignorant of the effect changes made to the chromosome have on the 
resultant solution. For example, from the EA’s standpoint, a change 
to the diameter of a pipe has no impact on hydraulic performance 
of connected elements until the solution is evaluated, however an 
engineer would know the hydraulic head at adjacent nodes and 
velocity of water in the pipe would be affected. The hydraulic 
performance of the candidate solution is only known following 
decoding and evaluation and although this abstraction allows EAs 
to be applied to a wide variety of problems without excessive 
alteration, there is clear scope for the integration of problem 
specific knowledge provided it is implemented in a manner not to 
the detriment of global search and performance capability.  

The integration of problem specific knowledge into EAs 
within the field of water systems has started to gain traction over 
the past decade. A popular approach has been to seed the initial 
population of an EA with solutions generated by hydraulically 
based engineering inspired heuristics [2–5]. More recently these 
engineering inspired heuristics have been integrated into the 
variation operators of EAs with the view of not only improving 
overall algorithm performance but also solution feasibility [6, 7]. 
However, these approaches require the need to develop these 
heuristics manually, usually from hydraulic principles and the 
observation of engineering practices.  

1.2 Interactive Evolution 
Interactive Evolution [8] aims to combine human knowledge 

and judgement through interaction with an EA during the search 
process. The most common interaction is often to assess solution 
fitness; however, the user can also interact with other algorithm 
operators such as variation and selection. When applying an EA to 
a problem, especially those of a real-world nature, it is often non-
explicit conditions which are hard to characterize. In the field of 
product design for example, a designer relies on human intuition to 
make subjective decisions as to the aesthetic qualities of a design 
such as a piece of furniture [9]. In cases such as these, the fitness 
criterion cannot be explicitly formulated, often requiring a side-by-
side comparison to evaluate a solution effectively. In addition, user 

interaction can be used to guide the search of the algorithm to 
increase convergence and help avoid the trappings of local optima.  

The complexity of WDN problems mean they are difficult to 
solve, not only from a mathematical standpoint but also from 
sociological, political and other subjective perspectives. In the field 
of water systems, most of the research is focused on simulation 
model development and application refinement of optimisation 
algorithms. The problem comes when an EA returns a 
mathematically optimal solution, but the solution becomes 
infeasible when considering the subjective preferences of the 
engineer [10]. Researchers have recently developed methods using 
interactive evolution to calibrate models by allowing the user to 
incorporate unmodeled objectives into the search process [11]. 
Interactive evolution is becoming an increasingly popular area of 
research, especially where problems require the subjective 
responses of human users to guide the search of EAs [8]. Singh et 
al [11] utilised human input and the Non-dominated Sorting 
Genetic Algorithm II (NSGAII) [12] to identify solutions for 
groundwater problems which were both mathematically optimal 
and feasible. This was achieved through the use of human 
responses which were combined with other criteria to compute 
solution fitness. Although the interactive aspect of the technique 
was simple (solution ranking) the interactive EA produced high-
quality solutions, outperforming the standard version of NSGAII. 

These developments in the field of interactive evolution, 
specifically in water systems engineering, suggest interactive 
evolutionary algorithms have the capability to produce solutions to 
complex real-world problems. 

1.3 Machine Learning 
The aim of this work is to capture and embed human expertise 

into an EA. This has been achieved in previous research through 
the expression of ‘rules of thumb’ which are integrated into an EA 
through heuristics. However, this is often a difficult task as most 
decisions made by an engineer are founded on intuition and ‘feel’ 
rather than a specific set of rules. Therefore, in this research we 
propose the utilisation machine learning techniques as a tool to 
learn behaviour from engineering interactions. Machine learning 
algorithms use computational techniques to learn directly from data 
to produce models without relying on explicit instruction sets or 
pre-defined equations. These methods, in particular decision trees 
[13] and neural networks [14] have been used to address problems 
in WDN including pipe deterioration modelling, model calibration, 
leakage detection and demand forecasting. Random forests, utilised 
in this work, are ensemble learning approaches for classification 
and regression problems and are constructed from multiple decision 
trees. Whilst decision trees are simple, computationally efficient 
and interpretable they are prone to overfitting.       

1.4 Multi-objective Water Distribution Network 
Design 

The optimal design of WDNs has been initially formulated as a 
single-objective problem through minimizing cost (denoted by NC 
in Eq. 1), with pipe diameters given as decision variables whilst the 
layout of pipes, connectivity and nodal demands are considered as 
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input data. However, a number of authors claimed that the optimal 
design of a WDN is a multi-objective problem since it involves 
trade-off between conflicting objectives such as cost and network 
reliability. The reliability is the ability of providing adequate supply 
to consumers under both standard and unexpected operation 
conditions. Todini [15] resilience index (RI) is widely used as a 
surrogate measure of reliability and its defined as the capability of 
the network to provide more head than required at each demand 
node in order to have a sufficient excess to be dissipated internally 
in case of failure present such as pipe burst. Prasad and Park [16] 
combined both resilience index and diameter uniformity coefficient 
(Eq. 2) to provide a better representation of the reliability of loops 
in the network. Thus, the design optimization problem in this work 
is expressed as dual-objective function through minimizing 
network cost and maximizing network resilience index and can be 
written as follows: 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒											𝑁𝐶 = ∑ 𝑢-(𝑑-

0
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Where: 𝑢-(𝑑-) = unit cost of pipe of a given diameter; 𝑙- = 

length of pipe i; p and n = number of pipes and demand nodes in a 
given network; 𝑞P, ℎPU\]	and	ℎP

ab<	  = available demand, available 
pressure head and required pressure head at node j; 𝑞c	and	ℎc  = 
supply and elevation head at reservoir r; r and pp = number of 
reservoirs and pumps in a given network;𝑃0 = power of pump n; 
𝛾= specific weight of water;𝑐P  = uniformity at the node j; 𝑝𝑛	= 
number of pipes connected to node j; and 𝑑Q = diameter of pipe d 
connected to node j. 

A generated solution to the above problem is represented by 
a vector of integer numbers, in which each element is the value of 
a pipe diameter in that solution. The value of the vector ranges from 
one up to the number of commercially available diameters. The 
quality of the generated solution is assessed based on the objective 
functions. 

The optimization problem is subject to the hydraulic 
constraints. These involve satisfying continuity at each demand 
node, conserving energy in loops and ensuring that available 
pressure head at each node is always equal to or above the required 
pressure head. The constraints require solving conservation of mass 
and energy equations to determine the nodal pressure heads, flows 
in pipes for a given network, and are automatically satisfied by 
using the well-known EPANET2.0 [17] hydraulic simulator. 

2 EXPERIMENTAL SETUP 
The experimentation presented in this paper comprises of 3 core 
components: interaction capture, HDH machine learning and 
integration of HDHs into EAs. As stated previously, the aim of this 

paper is to develop refined techniques for the automatic capture and 
use of engineering knowledge within EAs with the view to 
developing a new type of IEA for the optimisation of WDN design 
problems. 

The approach presented here involves several WDN design 
problems of varying size and complexity. Three small scale 
problems are used to train the HDH models and two large, real-
world design problems are used to evaluate the performance of the 
algorithms on test.  

2.1 Engineering Interaction Capture 
To facilitate the capture of engineering knowledge a framework 
was developed to allow engineers to interact with WDN 
optimisation problems. The HOWS framework [18, 19] consists of 
two core components, a server and an interactive visualisation 
client (IVis). The system is designed so that computationally 
expensive operations such as network configuration, automatic 
optimisation, hydraulic simulation and objective function 
evaluation are handled by the server. The information generated by 
the server is sent to IVis which is designed to visualize the data and 
facilitate easy interaction with the problem at hand. IVis utilises 
advanced three-dimensional rendering techniques to present the 
user with an intuitive representation of a WDN. Several 
visualization techniques are employed to provide topological, 
hydraulic and optimisation information to assist the user to make 
efficient decisions. Figure 1 shows the Blacksburg network [20] 
being interacted with in IVis. 

 

 

Figure 1: HOWS Framework Interactive Visualization (IVis) 
Client 

As stated previously, WDNs are complex systems consisting 
of many interconnected components, the most prevalent of which 
are pipes and junctions. Within IVis these components are 
represented using simple 3D geometry, cylinders for pipes and 
spheres for junctions. The primary decision variable in most WDN 
design problems is the diameter of pipes, this is conveyed to the 
user by scaling the diameter of the representative cylinder so that it 
is directly proportional to the diameter of the pipe. This enables the 
engineer to efficiently identify diameters without the need to 
inspect individual pipes. The topology of a network is defined by 
the position of the junctions (spheres) in the 3D domain which 
intuitively conveys metrics such as distance and elevation change 
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between pipes. IVis uses colour to communicate a variety of 
hydraulic and optimisation information to the user. By default, the 
hydraulic head violation at each junction is displayed to the 
engineer using a linear colour scale where red indicates violation 
(not enough hydraulic head) and green indicates sufficient head, 
this allows the user to quickly identify problem areas within the 
network.  

Additional hydraulic data is displayed to the engineer through 
‘pipe fins’, these are aligned along the length of each pipe and can 
be used to convey up to three separate parameters simultaneously. 
By default, hydraulic head of connecting junctions is represented 
by fin height, with this value being reinforced using a linear colour 
gradient where red is high, and green is low. In addition, each fin 
has evenly spaced vertical lines running its length, these are moved 
in the direction of flow at a speed relative to the velocity of water 
in that pipe. The inclusion of these ‘high bandwidth’ visualisation 
techniques provide the engineer with all the relevant information 
needed to make most decisions without the need to constantly 
change visualisation settings. It is hoped this will aid the engineer 
make informed decisions in a timelier manner, increasing 
interaction capture volume.  

 

 

Figure 2: HOWS IVis Look-ahead Dialog  

Due to the multi-objective nature of the problem it is 
important for the engineer to consider all objectives and constraints 
during the manual optimisation process and not favour any single 
objective. This was achieved by defining an ‘equilibrium’ point 
from the reference Pareto front for each training problem. The 
equilibrium point is defined as the point on the Pareto front that has 
the smallest Euclidean distance from the ideal point (minimum 
feasible cost and maximum resilience). From this the user is given 
a target value for each primary objective which is within 10% of 
the equilibrium point.  

For this set of experiments the engineer is presented with a 
randomly generated solution to the problem and tasked with 
manually optimising the network so that both objective values meet 
or surpass the target values provided whilst ensuring solution 
feasibility (no constraint violations). These values are presented to 
the engineer in the top left of the screen and updated automatically 
when changes to the network are made. The engineer interacts with 
the network by clicking on its components. Clicking on a junction 
will provide the engineer with relevant hydraulic head information 
highlighting any constraint violation. Selecting a pipe will bring up 
a dialog detailing the pipe’s hydraulic status and if a decision 

variable, will present the engineer with a selection of available 
diameters. A core feature of IVis is the ‘look-ahead’ system which 
is designed to give the engineer detailed information on what would 
happen if the diameter of a selected pipe is changed. Figure 2 shows 
a detailed view of the look-ahead dialog in IVis. Upon selecting a 
pipe in the network, IVis sends a request to the server for the 
available diameters for that pipe. Upon receipt of the request, the 
server calculates the objective and constraint values, in this case, 
network cost, total head deficit, and network resilience for each 
potential diameter change. This feature aids the user make more 
educated and precise decisions with a view of increasing interaction 
quality. 

To gather interaction data used to generate the HDHs, three 
engineers were asked to manually solve three small WDN design 
problems, namely Two Loop [21], Hanoi [22], and Blacksburg 
[20]. Two-loop consists of a single water source and 8 decision 
pipes with 14 available pipe diameters to choose from. Hanoi is a 
representation of a single water source network consisting of three 
loops, based upon the trunk main layout for the city of Hanoi, 
Vietnam. The network consists of 34 decision pipes and 6 available 
pipe diameters. The final network, Blacksburg, is a representation 
of a single source network consisting of multiple loops and 
branches. It consists of 35 pipes 23 of which are decision variables 
and 14 available pipe diameters. 

Each time an engineer changes the diameter of a pipe the 
server logs the state of the network, these interaction logs can then 
be used to train machine learning models to predict what an 
engineer would do given a selected pipe and network state.   

2.2 Learning Human Derived Heuristics 
The developments presented here build upon earlier work 

[23, 24] that used machine learning techniques to develop models 
that would predict, given a randomly selected pipe, what diameter 
an engineer choose given the hydraulic state of the network. This 
early work paved the way to producing a generalisable approach 
where models can be trained on interaction data obtained on small 
WDN problems and then applied to large scale problems. This is 
important as it is almost impossible for a user to make a large WDN 
optimal through manual intervention, a process that will likely lead 
to user fatigue [25].  

The previous work utilised a decision tree-based learning 
approach which was selected due to the ability to visualise and 
interpret the models generated, however this approach is prone to 
overfitting and can impact model accuracy. To address this, the 
work presented here utilises random forest [26] machine learning 
methods to generate the Human Derived Heuristics as they are less 
prone to overfitting whilst reducing error due to variance and bias.  

The random forest method requires a fixed input schema. In 
this approach the following seven normalized features, local to the 
selected pipe, are considered: the current diameter, velocity, 
upstream head deficit, downstream head deficit, pipe influence, 
flow and length. These parameters were selected as they are often 
important considerations for an engineer when selecting a new 
diameter.  
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2.3 Integrating Heuristics into EAs 
The trained regressor and classifier models are integrated into 

an EA through the mutation operator. The HDH based mutation 
operator has been developed to replace the standard mutation 
procedure of an EA. Three HDH based mutation operators are 
presented in this work: HDH – Regressor (HDH-R), HDH – 
Classifier (HDH-C) and HDH – Adaptive (HDH-A). All HDH 
based operators function in a similar manner, firstly by decoding 
the chromosome and randomly selecting a pipe (decision variable) 
in the network. The selected pipe’s current diameter, velocity, 
upstream head deficit, downstream head deficit, pipe influence, 
flow and length are applied to the trained model. For the HDH-R 
the model will predict a new diameter for the pipe, this value is 
compared to the list of available diameters and the closest is applied 
to the selected pipe. For the HDH-C the classifier model predicts 
whether a pipe should be increased or decreased, this prediction is 
used alongside the list of available diameters to either increment or 
decrement the pipe’s diameter.  

Previous work [23, 24] suggests that the regressor based 
HDH approach performs well during the initial stages of a search 
whilst the classifier based HDH approach is less susceptible to 
premature convergence, performing well in the later stages of the 
search.  

This led to the development of an adaptive approach which 
aims to combine both HDH mutation methods (HDH-R & HDH-
C), applying HDH-R at the start of the search and HDH-C towards 
the end. This is achieved using a Hypervolume Gradient Monitor 
(HGM), a process which directly controls the application 
probability of both HDH methods, this is calculated as follows:  

  
ℙ(𝑚h) =

ij
ik

    (4) 

 
Where gi is the initial gradient of the hypervolume curve, gc 

is the current gradient of the hypervolume curve and P(mR) is the 
probability of utilising the HDH-R guided mutation. The gradient 
of the hypervolume curve is calculated at the end of each 
generation, using a comparison between the current hypervolume 
and that of five generations previous. If HDH-R is not utilised, then 
HDH-C is used instead. This process is designed to apply the 
regressor based HDH aggressively at the beginning of the search 
and smoothly transition to the classifier HDH as the search 
progresses and the rate of convergence slows.  

An important factor to consider when implementing such an 
operator is computational efficiency. In the case of this WDN 
design problem, the most computationally intensive task is the 
hydraulic simulation, conducted during solution evaluation. 
Therefore, to preserve computational efficiency, it is crucial not to 
incur any additional hydraulic evaluations as this would drastically 
increase runtime, especially for large real-world networks. Due to 
the dependency the HDH models have on a solution’s hydraulic 
information (pressure, flow and velocity), mutation cannot follow 
crossover, without the need to evaluate the resultant solution. 
Therefore, in the HDH variant EAs the mutation operator precedes 

the crossover operator in order to preserve the hydraulic 
information from the parent solution.   

It was found in previous experimentation [23] that when 
completely replacing an EA’s standard mutation with HDH 
mutation, although early performance was boosted, resulted in 
premature convergence. Thus, a straightforward method for 
combining standard and HDH mutation was devised where each 
time the HDH mutation operator was invoked, there was a 
probability of the standard mutation being used instead. Through 
experimentation it was found that a probability of P(m)=0.5 
resulted in the best all round performance, therefore in the 
following experimentations, the application probability of all HDH 
based approaches will be set at P(m)=0.5. The EAs used to assess 
the performance of the new HDH based approaches are NSGAII 
and the Strength Pareto EA 2 (SPEA2) algorithm [27], both were 
selected due to their ability to perform well on this WDN design 
problem [28, 29].    

Two large networks from the literature [30, 31], previously 
unseen by machine learning model, were used for testing the 
performance of the universal HDHs implemented in the EA in the 
proposed method. The universal HDHs are created from the 
cumulative interaction from all users using the generalization 
method presented by [24]. The first test network is Modena 
network which includes 317 pipes (all decision variables), 268 
demand nodes, 4 reservoirs with fixed head within 72.0 m to 74.5 
m and 13 available pipe diameters. The total number of 
combinations to cover the full solution search space is 13317. The 
second network is Balerma Irrigation Network (BIN). The BIN 
consists of 454 relatively short-length pipes, 443 demand nodes, 
and the water supplied to the network through four reservoirs. 
There are ten available diameters, ranging from 113.0 mm to 581.8 
mm, for each decision pipe, resulting in a search space equal to 
10454 combinations. The required pressure head for all demand 
nodes in both test networks is maintained at 20m. 

3 RESULTS AND DISCUSSION 
For each problem presented in this section the parameters of 

the base algorithm (SPEA2 and NSGAII) remain constant. A 
population size of 100, single-point crossover and a mutation 
probability of 1/n where n is the number of decision variables are 
used. Regarding the HDH variants, the probability that the HDH 
method is applied during mutation is fixed at P=0.5. Each algorithm 
is run 30 times for a total of 500,000 fitness evaluations. For each 
test problem the hypervolume [32] and Inverted Generational 
Distance (IGD) [33] performance metrics are used to evaluate the 
algorithms on test. Hypervolume is calculated for each problem 
using the theoretical best (utopia) and worst (nadir) points in the 
solution space. The IGD is calculated using a reference Pareto front 
obtained from Wang et al. [29].  

The first set of results presented are from the Modena 
problem. Figure 3 shows the average hypervolume for each 
algorithm over the search. The first observation is that all HDH 
based algorithms outperform their respective ‘standard’ algorithm 
(NSGAII and SPEA2) over the entirety of the allotted 500,000 
fitness evaluations. The highest performing HDH variant during the 
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initial stages of the search is HDH-R, boosting convergence rate for 
both standard algorithms. The next best performing algorithm is the 
adaptive HDH variant (HDH-A) followed by the classifier-based 
algorithm (HDH-C). This behaviour is somewhat expected as the 
regressor based heuristic is able to make larger changes in terms of 
pipe diameter compared with the classifier approach which is 
restricted to making incremental diameter changes.  

 

Figure 3: Mean Hypervolume for the Modena Problem – 
SPEA2 – HDH and NSGAII – HDH Variants 

 

Figure 4: Mean Inverted Generational Distance for the Modena 
Problem – SPEA2-HDH and NSGAII-HDH Variants 

Figure 4 shows the average IGD for the algorithms on test for 
the Modena problem. Interestingly the algorithms exhibit different 
order of performance regarding IGD than the Hypervolume results 
and vary between base algorithms. Regarding the SPEA2 based 
algorithms, SPEA2 - HDH-C achieves a better IGD throughout 

nearly the entirety of the search followed by SPEA2 – HDH-A and 
finally HDH-C. However, NSGAII – HDH-A achieves the lowest 
IGD out of all the NSGAII results followed by the other two HDH 
approaches.   

 

Figure 5: Hypervolume Results for the Modena Problem - 
SPEA2-HDH and NSGAII-HDH Variants 

Figure 5 shows the final hypervolume results (30 runs) for 
each of the algorithms on test following the allotted 500,000 fitness 
evaluations. All HDH achieve a higher average hypervolume than 
their standard counterparts. However, utilising statistical testing 
(Mann-Whitney U [34]) no statistically significant difference 
between the NSGAII - HDH variants and NSGA – II. SPEA2 – 
HDH-R and SPEA2 - HDH-A where found to produce statistically 
different distributions from SPEA2. 

The IGD results for the final generation for the Modena 
problem are shown in Figure 6. With regard to the SPEA2 based 
algorithms, both HDH-A and HDH-R achieve statistically better 
results than the other two algorithms. NSGAII – HDH-A is the best 
performing algorithm in terms of IGD, outperforming the other 
HDH variants and standard algorithm. 

The average hypervolume over the allotted fitness evaluation 
for the BIN problem are displayed in Figure 7. For this more 
complex problem the HDH based approaches have an increased 
impact on the performance of the standard algorithms. The initial 
performance of both HDH-R algorithms initial is promising; 
however, the adaptive methods SPEA2 – HDH-A and NSGAII- 
HDH-A overtake at 150,000 and 220,000 evaluations respectively. 
The classifier based HDH algorithms also go on to outperform 
HDH-R in both cases, however, does not catch the adaptive 
algorithms. 
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Figure 6: Inverted Generational Distance Results for the 
Modena Problem - SPEA2-HDH and NSGAII-HDH Variants  

 

Figure 7: Mean Hypervolume for the Balerma Irrigation 
Network Problem – SPEA2 – HDH and NSGAII – HDH 
Variants 

Figure 8 displays the average IGD results for the BIN 
problem. Initially the HDH algorithms reduce their population’s 
IGD at a faster rate than the standard algorithms. Interestingly 
SPEA2 achieves a better result than its HDH counterparts from 
approximately 100,000 fitness evaluations onwards. In the case of 
NSGAII there is less distinction between the algorithms with 

NSGAII – HDH-R performing the worst during the majority of the 
search.  

 

Figure 8: Mean Inverted Generational Distance for the 
Balerma Irrigation Network Problem – SPEA2-HDH and 
NSGAII-HDH Variants 

 

Figure 9: Hypervolume Results for the Balerma Irrigation 
Network Problem - SPEA2-HDH and NSGAII-HDH Variants 

The final generation hypervolume results for the BIN 
problem are reported in figure 9. The HDH based algorithms 
exhibit the same performance characteristics for both base 
algorithms with the adaptive method achieving the greatest 
hypervolume, followed by HDH-C and finally HDH-R. 

Figure 10 presents the IGD results for the BIN problem. 
Interestingly for the SPEA2 based algorithms the HDH variants 
perform significantly worse than the standard algorithm, with the 
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classifier based approach performing the best out of the other HDH 
methods. This is not the case for the NSGAII algorithms, where 
both the adaptive and classifier approaches find significantly lower 
IGD values compared with the HDH-R and the standard algorithm.   

 

Figure 10: Inverse Generational Distance Results for the 
Balerma Irrigation Network Problem - SPEA2-HDH and 
NSGAII-HDH Variants 

Figure 11 presents the resultant non-dominated results from 
all runs for both SPEA2 and SPEA2 – HDH-A for the BIN problem. 
In addition, the reference Pareto front is displayed along with the 
equilibrium point, which was used as a target for the engineering 
interaction capture procedure. This figure goes some way to explain 
the Hypervolume and IGD results of both algorithms. It is clear 
why SPEA achieves a lower IGD as it is able to find lower cost 
solutions in the lower resilience range, whereas HDH-A is drawn 
towards the equilibrium point due to the influence of the HDHs. 
The adaptive HDH influences the search of the algorithm and 
‘pulls’ the Pareto front towards the equilibrium point. This is a clear 
example that the preferences of a human expert have indeed been 
imparted to the algorithm. This suggests that any subjective 
preferences when designing a WDN could be captured and 
conveyed to the algorithm’s search, generating solutions more in 
line with the desires of the engineer.  

From these results it can be observed that the inclusion of the 
HDH methods, especially the adaptive technique, exhibit greater 
performance benefits on the larger of the two test problems (BIN). 
This could be due in-part to the networks used to train the HDH 
models. The nature of these training models often requires the 
engineer to find the feasible (in terms of hydraulic head) solution 
space prior to fully addressing the objective functions. However, 
the Modena problem is easily made feasible, due to its looped 
nature and expansive selection of available diameters. In fact, all 
algorithms found at least one feasible solution at initialisation. On 
the other hand, it is a lot harder for an EA to locate the feasible 
search space for the BIN problem, due to less surplus hydraulic 
head and pipe sizing options. The HDH models therefore aid the 

algorithm locate the feasible region more quickly, thus boosting 
overall algorithm performance. 

 

Figure 11: Non-dominated Fronts for the Balerma Irrigation 
Network Problem – SPEA2 & SPEA2 – HDH-A  

4 CONCLUSIONS 
This paper presents several HDH based algorithms for the 

optimisation of multi-objective WDN design problems. The 
derived heuristics are generated automatically from the interactions 
of an expert engineer solving small WDN design problems, through 
the use of random forest machine learning algorithms. An improved 
interactive visualisation system for the efficient capture of human 
interactions was also presented. The system is designed to 
maximise productivity and reduce user fatigue with the view of 
producing higher quality interactions from engineers. The derived 
heuristics are integrated into EAs through their mutation operators 
using a variety of techniques, including a method for combining 
HDH models using an adaptive process which controls HDH model 
application strength by monitoring hypervolume convergence. The 
results show that the performance on an EA can be enhanced 
through the integration of captured domain specific knowledge, not 
only in terms of performance metrics but also solution feasibility.  
Although the use of singular HDH models within the mutation 
operator of an EA improves performance, adaptively combining the 
HDH approaches yields improved and more consistent results on 
large-scale multi-objective WDN design problems.  

This work paves the way for the development of a new type 
of IEA that has the capability of automatically learning from human 
experts whilst minimising user fatigue. This algorithm would open 
up the potential for an effective interface between human expert 
and evolutionary algorithm resulting in improved, more 
engineering feasible solutions to real-world problems. There is also 
scope with further development to apply these methods to different 
domains and a wider set of problems beyond WDN design.  
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