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Abstract  6 

Piezoelectric energy harvesters (PEHs) are usually connected to a load resistor 𝑅𝐿 matching to the impedance of 7 

their internal capacitance 𝐶𝑃
𝑇 to characterise the power generation during transducer design and optimisation. For 8 

strongly-coupled PEHs operating near resonance, this simple RC matching method underestimates the power 9 

output and fails to characterise the dual power peaks but are still often used in both simulation and experiment. 10 

This study analysed the internal impedance network and the power output characteristics of PEHs. Based on the 11 

analysis, a novel and efficient finite element model (FEM) for strongly coupled PEHs was developed and applied 12 

to a pre-stressed piezoelectric stack energy harvester (PSEH). A stationary analysis was first performed to simulate 13 

the pre-stressed state of the PSEH. The FEM then analysed the internal impedance of the pre-stressed PSEH, 14 

which was used as the optimal load resistance to simulate the electric power output. The simulated internal 15 

impedance and electric power output of the PSEH were validated by the experiment with good agreement. The 16 

FEM developed precisely predicted the electric power output, including the two identical power peaks, of the 17 

strongly coupled PSEH operating near resonance and outside resonance. In contrast, the FEM with the traditional 18 

RC matching showed only one power peak and significantly underestimated the power output near resonance, 19 

although it was still valid outside resonance. The developed FEM was also able to predict the effects of the static 20 

pre-stress and coupling efficiency figure of merit on the PSEH. The coupling efficiency figure of merit was found 21 

to increase the power output.  22 
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Nomenclature 𝑍𝑖𝑛 Internal impedance of a PEH (Ω) 

PEH Piezoelectric energy harvester  |𝑍𝑖𝑛| Magnitude of internal impedance (Ω) 

PSEH Piezoelectric stack energy harvester  𝑌𝑖𝑛 Internal admittance of a PEH (S) 

FEM Finite element model  𝐺 Conductance, the real part of  𝑌𝑖𝑛 (S) 

SDOF Single degree of freedom 𝐵 Susceptance, the imaginary part 𝑌𝑖𝑛 (S) 

ECM Equivalent circuit model  𝐺𝑚𝑎𝑥  The maximum conductance value (S) 

𝐾 Electromechanical coupling coefficient  𝜔𝑠 Short circuit resonance frequency (rad/s) 

𝑄𝑀  Mechanical quality factor  𝐵(𝜔𝑠) Conductance value at 𝜔𝑠 (S) 

𝐾2𝑄𝑀  Coupling efficiency figure of merit  𝜔1, 𝜔2 Frequencies at which the conductance value 

is 
1

2𝑅𝑚
 (rad/s) 

𝑚 Proof mass of a PEH (kg) 𝜔01, 𝜔02 Angular frequencies with zero impedance 

phase and  𝜔01 < 𝜔02 (rad/s) 

𝑐𝑑  Damping coefficient of a PEH  𝑓01, 𝑓02 Frequencies with zero impedance phase and 

𝑓01 < 𝑓02 (Hz) 

𝑘 Stiffness of a PEH (N/m) 𝑓𝑚 The frequency with the maximum 

impedance phase (Hz) 

𝑥 Displacement of a PEH (m) 𝛽 Tilted angle of the inclined beams in the 

mechanical transformer (°)  

𝐶𝑃
𝑆 Clamped capacitance of a PEH (F) 𝐹𝑥 Input force to the PSEH along the 𝑥-axis (N) 

𝐶𝑃
𝑇 Free capacitance of a PEH (F) 𝐷𝑥 Input displacement to the PSEH along the 𝑥-

axis (m) 

Λ Force factor of a PEH (N/V) 𝐹𝑧 Force applied to the piezoelectric element 

(N) 
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𝑉𝑃 Output voltage on a load resistance (V) 𝐷𝑧 Displacement of the piezoelectric element 

(m) 

𝐼𝑃 Output current through a load resistance 

(A) 

𝑘𝑥 Stiffness of the PSEH in the 𝑥-axis (N/m) 

𝑅𝐿 Load resistance (Ω) 𝑘𝑧 Stiffness of the PSEH in the 𝑧-axis (N/m) 

𝑅𝑜𝑝𝑡 The optimal load resistance (Ω) 𝐿𝑧 Length of the PSEH along the 𝑧-axis (mm) 

𝐴0 Amplitude of the harmonic acceleration 

(m/s2) 

Δ𝐿𝑧 Change of 𝐿𝑧 due to the pre-force (µm) 

𝜔 Angular frequency (rad/s) 𝐿𝑥 Length of the PSEH along the 𝑥-axis (mm) 

𝐶𝑚 Capacitance in the equivalent circuit model 

(F) 

Δ𝐿𝑥 Change of 𝐿𝑥 due to the pre-force (µm) 

𝑅𝑚 Resistance in the equivalent circuit model 

(Ω)  

𝑁 Number of active piezoelectric layers in the 

multilayer piezoelectric stack  

𝐿𝑚 Inductance in the equivalent circuit model 

(H)  
𝑠𝑖𝑗 

𝐸  Elastic compliance tensor at the constant 

condition (m2/N) 

𝑉𝑒𝑞  Voltage in the equivalent circuit model (V)  ˇ Variables corresponding to the single-layer 

piezoelectric element used in the FEM 

𝐹𝑠 The static force applied to the mechanical 

transformer without the piezoelectric 

element in the FEM, i.e. estimated static 

force applied to the fabricated PSEH (N) 

𝐹0 The static force applied to the PSEH in the 

FEM for impedance and power simulation  

 25 

1. Introduction  26 

Piezoelectric energy harvesting has been intensively investigated in the past two decades, aiming to provide a 27 

sustainable power source for wireless electronics by converting the ambient vibrations to usable electricity [1]. It 28 

is well known that the power output of a piezoelectric energy harvester (PEH) is highly dependent on the 29 

impedance of the load. Although complicated power management circuits are required to transfer the power 30 

efficiently from the PEHs to energy storages [2], a load resistor is usually connected to characterise the generated 31 

power during the transducer design and optimisation stage. The optimal load resistance is the one yielding the 32 

maximum power consumption on the load resistor. In the simplest form, a piezoelectric energy harvester can be 33 

considered as two decoupled mechanical and electrical systems. It is usually modelled as an equivalent circuit 34 

model with a current source connected in parallel or a voltage source connected in series to the free capacitor of 35 

the piezoelectric material [3, 4]. The optimal resistance is therefore considered as the impedance of the free 36 

capacitor (referred to as RC matching) [5]. The RC matching method has satisfactory accuracy for all PEHs 37 

operating outside the resonance [6] and for weakly coupled PEHs operating near resonance [7], due to the 38 

capacitive nature of PEHs in these cases and thereby has been widely used in both modelling and experiment. 39 

However, for strongly coupled PEHs operating near resonance, the RC matching method was found to be 40 

inaccurate [8]. For instance, the power output of strongly coupled PEHs has two identical peaks near resonance 41 

[9], which cannot be observed with the RC matching method in either experiment or simulation.    42 

To predict the electric power output of PEHs more accurately, analytical models have been developed to derive 43 

the full expression of power output, which is then analysed to identify the optimal load resistance and peak power 44 

[10]. Through analytical models, Renno et al. [11] and Goldschmidtboeing et al. [12] found that two power peaks 45 

and two optimal load resistance values may exist near the resonance of a PEH when the electromechanical 46 

coupling coefficient 𝐾 is high enough or the mechanical damping is low enough. This phenomenon was also 47 

observed by Liao and Sodano [13] in both experiment and analytical modelling. They found that if the RC 48 

matching method was used, only a single power peak could be observed, which confirmed the inaccuracy of the 49 

RC matching method for strongly coupled PEHs near resonance. Analytical models can precisely predict optimal 50 

resistance and maximum power generation. They can be quite useful for design optimisation of PEHs. However, 51 

they do not provide a physical and intuitive explanation for the power characteristics of strongly-coupled PEHs. 52 

Moreover, the closed form expression of the power output may not be available when the structure of the PEH 53 

becomes complicated or nonlinear [14, 15].  54 



Equivalent circuit models (ECMs) of PEHs based on lumped parameters have been developed and implemented 55 

in simulation tools such as SPICE. The lumped parameters can be determined by either analytical modelling  [16] 56 

or finite element analysis [17]. Kong et al. [18] derived the internal impedance network of PEHs based on the 57 

analogy between electrical and mechanical domains. The internal impedance network was found far more 58 

complicated than the free capacitor as used in the RC matching method. They pointed out that with a resistive 59 

impedance matching, the maximum power transfer was available at frequencies with a purely resistive internal 60 

impedance, i.e. the impedance phase is zero. When the zero-phase is not available, the load resistance should still 61 

match the internal impedance magnitude to achieve a sub-optimal matching [18]. This was further investigated 62 

by Lei et al. [19], who showed that when the coupling efficiency figure of merit 𝐾2𝑄𝑀 (𝑄𝑀 being the mechanical 63 

quality factor) was larger than 2, the internal impedance of the PEH had two zero-phase frequencies near 64 

resonance and therefore two power peaks were available. The link of power peaks to the zero-impedance-phase 65 

provides a sensible explanation to the double power peaks of strongly coupled PEHs. ECMs with lumped 66 

parameters are useful for designing the power management circuits [20, 21] after the design of a PEH is finished 67 

and thus the lumped parameters are fixed. However, it is not convenient for the design and optimisation of energy 68 

harvesters because the design parameters such as geometry and material properties are not directly reflected in 69 

the lumped parameters [22].  70 

For energy harvester design and optimisation, commercial software packages such as ANSYS and COMSOL 71 

provides a powerful tool because of their ability to simulate complicated transducer structures [23, 24] and more 72 

importantly to couple the fields of mechanical structures, piezoelectricity and electrical circuits. This enables the 73 

development of piezoelectric-circuit coupled finite element models (FEMs), in which piezoelectric energy 74 

harvesters are connected to electrical circuits. This provides a direct link between physical design parameters and 75 

the electric power output. The first coupled piezoelectric-circuit coupled FEM was developed by Zhu et al. [25] 76 

in ANAYS to analyse the power output of piezoelectric cantilever connected to a load resistor, but it is for weakly 77 

coupled piezoelectric energy harvesters although there is no mention on this. Since then, similar FEMs have been 78 

developed to simulate the performance of various PEHs [26-28]. Cheng et al. [22] modelled the nonlinear 79 

synchronized switch harvesting on inductor as an equivalent linear electric impedance in COMSOL thus enabling 80 

the finite element modelling of PEH connected to a nonlinear circuit. For strong coupled piezoelectric energy 81 

harvester, although the internal impedance network of a PEH is far more complicated than the free capacitor of 82 

the piezoelectric material, most FEMs still use the simple RC matching method, i.e. using a load resistance to 83 

match the impedance of the capacitor, which could lead to inaccurate results for strongly coupled PEHs operating 84 

near resonance. FEMs for strongly coupled PEHs have not been reported so far. This work proposes a novel and 85 

efficient finite element modelling method for strongly-coupled PEHs connected to a load circuit. The FEM first 86 

analyses the internal impedance of the PEH across the frequency range of interest. The impedance magnitudes are 87 

then used as the value of the optimal load resistance at the corresponding frequency to simulate the power 88 

generation. Using the proposed method, the full performance of the PEH including the optimal load resistance 89 

and the maximum power output across the whole frequency range can be accurately simulated, regardless of the 90 

degree of electromechanical coupling.  The method can be applied to any harmonically actuated linear PEHs or 91 

nonlinear PEHs that can be linearized around the operating point. 92 

2. Optimal load resistance and power out characteristics of PEHs  93 

In this section, the theories behind the optimal load resistance and power output characteristics of PEHs are 94 

revisited to provide guidance for the finite element modelling.  95 

2.1 Internal impedance of PEHs   96 

The majority of piezoelectric energy harvesters can be regarded as an oscillator with single-degree-of-freedom 97 

(SDOF) and working at the fundamental mode. Considering a single SDOF PEH subjected to harmonic excitation 98 

at its base, its dynamic behaviours can be described by ( 1 ) [21].  99 

  𝑚�̈�(𝑡) + 𝑐𝑑𝑥 ̇ (𝑡) + 𝑘𝑥(𝑡) + Λ𝑉𝑝(𝑡) = 𝑚𝐴0𝑐𝑜𝑠(𝜔𝑡)  

 𝐼𝑃(𝑡) + 𝐶𝑃
𝑆𝑉�̇�(𝑡) = Λ�̇�(𝑡) ( 1 ) 



where 𝑚 is the mass, 𝑐𝑑 the mechanical damping coefficient, 𝑘 the stiffness, 𝑥 the displacement, 𝐶𝑃
𝑆 the clamped 100 

capacitance, Λ   the force factor,  𝑉𝑃  the output voltage, 𝐼𝑃  the output current,  𝐴0  the amplitude and 𝜔  the 101 

frequency of excitation acceleration, respectively.  102 

According to the analogy between mechanical and electrical systems, the system described by ( 1 ) can be 103 

represented by an equivalent circuit model as shown in Figure 1 (a). The inertial mass 𝑚, compliance 1/𝑘 and 104 

mechanical damping 𝑐𝑑  are represented by the inductor, capacitor, and resistor respectively. The 105 

electromechanical coupling of the piezoelectric element is represented as an ideal transformer with a 106 

transformation factor of  Λ: 1. The excitation force is modelled as a harmonic voltage source with an amplitude of 107 

𝑚𝐴. The model in (a) can be simplified to (b) by taking the equivalence in ( 2 ).  108 

  
𝐶𝑚 =

Λ2

𝑘
                𝑅𝑚 =

𝑐𝑑

𝛬2
  

 
𝐿𝑚 =

𝑚

Λ2
                     𝑉𝑒𝑞 =

𝑚𝐴

Λ
 ( 2 ) 

where 𝐶𝑚, 𝑅𝑚, 𝐿𝑚 and 𝑉𝑒𝑞  are the capacitance, resistance, inductance and equivalent voltage, respectively.   109 
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                                   (a)                                                 (b)                                                   (c)  111 

Figure 1 Equivalent circuit models of single-degree-of-freedom piezoelectric energy harvesters operating near 112 

the fundamental resonance: (a) original equivalent circuit model; (b) simplified model by taking the transformer 113 

equivalence; (c) resultant model by applying Thevenin’s Theorem on (b)   114 

The ECM in Figure (b) can be further transformed to Figure (c) by applying Thevenin’s Theorem. In Figure (c), 115 

the PEH is modelled as an AC voltage source with an internal impedance 𝑍𝑖𝑛 connected in series to 𝑅𝐿. The 116 

amplitude of the voltage source is the output voltage 𝑉𝑃 measured at open-circuited condition, denoted as 𝑉𝑃𝑜𝑐(𝜔) 117 

and is frequency-dependent. The internal impedance network consists of a motional branch (𝐶𝑚, 𝐿𝑚 and 𝑅𝑚) and 118 

the clamped capacitor 𝐶𝑃
𝑆 connected in parallel. It is clearly far more complicated than just a capacitor, which is 119 

assumed when using the RC matching method.  120 

The values of the components in the ECMs can be identified from the measured or simulated internal impedance 121 

characteristics by using ( 3 ) [29].  122 

 
𝑅𝑚 =

1

𝐺𝑚𝑎𝑥

                𝐶𝑃
𝑆 =

𝐵(𝜔𝑠)

𝜔𝑠

   

 
𝐶𝑚 =

𝜔2 − 𝜔1

𝑅𝑚𝜔1𝜔2

                 𝐿𝑚 =
1

𝜔𝑠
2𝐶𝑚

=
𝑅𝑚

𝜔2 − 𝜔1

 ( 3 ) 

where 𝜔𝑠  is the short-circuit resonance frequency that has the maximum conductance value 𝐺𝑚𝑎𝑥 ; 𝐵(𝜔𝑠) the 123 

susceptance value at 𝜔𝑠; 𝜔1 and 𝜔2 are the two frequencies with a conductance value of 1/(2𝑅𝑚). The voltage 124 

𝑉𝑒𝑞  can be calculated as  125 

  𝑉𝑒𝑞 = 𝐼𝑠𝑐(𝜔𝑠)𝑅𝑚 ( 4 ) 

where 𝐼𝑠𝑐(𝜔𝑠) is the short-circuited current generated at 𝜔𝑠.   126 



2.2 Power output characteristics of PEHs with resistive impedance matching  127 

At each frequency, the PEH is a voltage source 𝑉𝑃𝑜𝑐  with a complex internal impedance 𝑍𝑖𝑛. According to the 128 

maximum power transfer theorem, the maximum power delivery occurs only when the load is a complex conjugate 129 

matching of 𝑍𝑖𝑛. The maximum power that can be delivered is [18] 130 

  
 𝑃𝑚𝑎𝑥 =

𝑉𝑒𝑞
2

8𝑅𝑚

 ( 5 ) 

However, a complex conjugate matching across the whole resonance range is difficult because of the large and 131 

varied inductance required at different frequencies [18]. Instead, a load resistor is usually used to match the 132 

internal impedance in the energy harvester design stage. With a resistive load, the conjugate impedance matching 133 

occurs when the phase of the internal impedance is zero, i.e. the internal impedance is purely resistive. In such a 134 

case, the maximum power transfer occurs and 𝑃𝑚𝑎𝑥 is delivered to the load resistance. At frequencies with non-135 

zero-phase, conjugate impedance matching is not possible with a resistive load and therefore the maximum power 136 

transfer cannot be achieved. However, the load resistance should still be selected to match |𝑍𝑖𝑛| to obtain the sub-137 

maximum power although this power will be lower than  𝑃𝑚𝑎𝑥. Therefore, with a resistive load, power peaks of a 138 

PEH are located at zero-phase frequencies if available and the number of power peaks depends on the number of 139 

zero-phase frequency.  140 

When the impedance phase of the PEH is always negative, a conjugate impedance matching is not possible with 141 

the resistive load across the whole resonance region. In this case, a single power peak occurs at the frequency with 142 

the maximum internal impedance-phase because at this frequency, the internal impedance has the minimum 143 

reactive component, i.e. it is mostly close to being purely resistive, which has been mathematically proved in [19].  144 

At low frequencies where the PEH can be regarded as quasi-static, the contribution of 𝐿𝑚  and 𝑅𝑚  to 𝑍𝑖𝑛  is 145 

negligible compared to 𝐶𝑚 . As a result, the internal impedance network can be approximated by 𝐶𝑚  and 𝐶𝑃
𝑆 146 

connected in parallel, which equals to the free capacitor 𝐶𝑃
𝑇 of the PEH [17]. This leads to the traditional RC 147 

matching method with the optimal load resistance 𝑅𝑜𝑝𝑡 being  148 

 
 𝑅𝑜𝑝𝑡 =

1

𝜔𝐶𝑃
𝑇 ( 6 ) 

2.3 Conditions for the existence of zero-phase frequencies  149 

Since the zero-phase frequency plays an important role in the power output characteristics of PEHs, the conditions 150 

for its existence are derived in this section by using a more intuitive method—graphic analysis than the traditional 151 

analytical modelling [19]. Instead of using the internal impedance directly, the admittance of the internal 152 

impedance network was used because the unique characteristics of conductance and susceptance can simplify the 153 

analysis. It is noted that the phase of the admittance is opposite to that of the impedance.  154 

The complex admittance 𝑌𝑖𝑛 of the internal impedance network shown in Figure 1 (c) is [30] 155 

 

  𝑌𝑖𝑛 =
1

𝑍𝑖𝑛

=
𝑅𝑚

𝑅𝑚
2 + (𝜔𝐿𝑚 −

1
𝜔𝐶𝑚

)
2 + 𝑗

[
 
 
 
𝜔𝐶𝑃

𝑆 −
𝜔𝐿𝑚 −

1
𝜔𝐶𝑚

 

𝑅𝑚
2 + (𝜔𝐿𝑚 −

1
𝜔𝐶𝑚

)
2

]
 
 
 
 ( 7 ) 

The real and imaginary parts of the 𝑌𝑖𝑛 are the conductance 𝐺 and susceptance 𝐵, respectively. The relationship 156 

between 𝐺 and 𝐵 near resonance can be re-written as  157 

 
 (𝐺 −

1

2𝑅𝑚

)
2

+ (𝐵 − 𝜔𝑠𝐶𝑃
𝑆)2 = (

1

2𝑅𝑚

)
2

 ( 8 ) 

The typical locus of 𝐺-𝐵 for a PEH is presented in Figure 2 (a). It is a circle with a diameter of 1/𝑅𝑚 and its 158 

centre 𝑂1 at (1/(2𝑅𝑚), 𝜔𝑠𝐶𝑃
𝑆). The two intersections of the G-B locus with 𝐵=0 (𝐺-axis), denoted as 𝜔01and 𝜔02, 159 

are corresponding to the zero-phase frequencies, at which a complex conjugate impedance matching by a load 160 



resistance is available. Therefore, a PEH with a 𝐺-𝐵 circle as Figure 2 (a) has two power peaks across near 161 

resonance. Obviously, 𝜔01 and 𝜔02  are always available as long as 𝜔𝑠𝐶𝑃
𝑆 < 1/(2𝑅𝑚) . Considering the 162 

mechanical quality factor 𝑄𝑀 and the electromagnetic coupling factor 𝐾 in ( 9 ) [8, 17], the condition for the 163 

existence of 𝜔01 and 𝜔02 can be rewritten by ( 10 ), which agrees with the expression derived by using maa 164 

thematical method in [19].  165 

     166 
                                           (a)                                                                           (b) 167 

Figure 2 Locus diagram of the internal admittance of a piezoelectric energy harvester near resonance when: (a) 168 

𝜔𝑠𝐶𝑃
𝑆 < 1/(2𝑅𝑚), i.e. 𝐾2𝑄𝑀>2 and (b) 𝜔𝑠𝐶𝑃

𝑆 > 1/(2𝑅𝑚), i.e. 𝐾2𝑄𝑀<2. 𝐺-axis is located at 𝐵=0 169 

 
𝑄𝑀 =

𝜔𝑠

𝜔2 − 𝜔1

=
1

𝜔𝑠𝑅𝑚𝐶𝑚

                         𝐾2 =
Λ2

𝑘𝐶𝑃
𝑆 =

𝐶𝑚

𝐶𝑃
𝑆  ( 9 ) 

   𝐾2𝑄𝑀 > 2 ( 10 ) 

When 𝜔𝑠𝐶𝑃
𝑆 > 1/(2𝑅𝑚) or 𝐾2𝑄𝑀 < 2 , the G-B circle has no intersection with the B=0, i.e. no zero-phase 170 

frequency as shown in Figure 2 (b). Compared to figure (a), the centre of the G-B circle in (b) was moved-up 171 

while the diameter was kept unchanged, simulating the case when 𝐶𝑃
𝑆 is increased (𝐾 is reduced according to ( 9 )). 172 

The loss of zero-phase can also be caused by the shrink in the diameter of the G-B circle due to increased 173 

mechanical damping 𝑅𝑚, which will be demonstrated in Section 5.4. Without the zero-phase frequency, the power 174 

peak is available at the maximum-impedance-phase frequency (the minimum-admittance-phase frequency), 175 

although conjugate impedance matching is not possible with a resistive load. When 𝜔𝑠𝐶𝑃
𝑆 = 1/(2𝑅𝑚 )  or 176 

𝐾2𝑄𝑀 = 2, the G-B locus will have one intersection with 𝐵 = 0 and a single power peak is available at the single 177 

zero-phase frequency.  178 

It is noted that the internal admittance magnitude of the PEH at the minimum-admittance-phase frequency is 179 

always 𝜔𝑠𝐶𝑃
𝑆 regardless of 𝐾2𝑄𝑀 . The minimum admittance-phase frequencies correspond to point 𝐹 in Figure 2, 180 

where the line 𝑂𝐹̅̅ ̅̅  is tangent to G-B locus. The angle 𝛼 between 𝑂𝐹̅̅ ̅̅  and 𝐺-axis is the minimum admittance phase 181 

in each case. Because triangles OO1E and OO1F are congruent,  |𝑂𝐹̅̅ ̅̅ | always equals to |𝑂𝐸̅̅ ̅̅ | and 𝜔𝑠𝐶𝑃
𝑆. In other 182 

words, the internal impedance magnitude and the optimal load resistance of a PEH at the maximum-impedance-183 

phase frequency is always 1/(𝜔𝑆𝐶𝑃
𝑆).  184 

In light of the importance of 𝐾2𝑄𝑀 on the power output characteristics of PEH, 𝐾2𝑄𝑀 is usually referred to as the 185 

coupling efficiency figure of merit [19]. PEHs with 𝐾2𝑄𝑀 >2 are strongly-coupled, have two zero-phase 186 

frequencies and two power peaks near resonance; PEHs with 𝐾2𝑄𝑀 ≤ 2 are weakly-coupled, have a single or no 187 

zero-phase frequency and a single power peak near resonance.   188 

3. Piezoelectric stack energy harvester  189 

A piezoelectric stack energy harvester (PSEH) with a mechanical transformer was used to study in this work, 190 

which is a good example of strongly coupled PEH. Similar harvesters have been widely studied for low-frequency 191 

compressive force energy harvesting [31-34] due to the high electrical power output, which is a result of the force 192 

amplification mechanism and the high electromechanical coupling of piezoelectric stacks used [35]. 193 



3.1 Working mechanism  194 

A schematic of the PSEH with a mechanical transformer is shown in Figure 3. It consists of a mechanical 195 

transformer and a piezoelectric element usually in the form of a multilayer piezoelectric stack. The inclined beams 196 

of the mechanical transformer have a tilted angle 𝛽. Both ends of each inclined beam serve as flexure hinges. To 197 

simplify the analysis, it is assumed that the hinges are free to flexure while the inclined beams do not change its 198 

length. In a quasi-static state, the following relationship can be obtained [33, 36]  199 

 𝐹𝑧 = 𝐹𝑥 cot 𝛽      𝐷𝑥 = 𝐷𝑧 cot 𝛽 
( 11 ) 

where 𝐹𝑥  and 𝐷𝑥  are the input force and displacement; 𝐹𝑧  and 𝐷𝑧  are the force and displacement of the 200 

piezoelectric element.  201 
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Figure 3 The operation principle of the PSEH with a mechanical transformer 203 

Eq. ( 11 ) suggests that when 𝛽 is small, the mechanical transformer amplifies the input force 𝐹𝑥 by a factor of 204 

cot 𝛽 to the force 𝐹𝑧 applied on the piezoelectric element. It is this force amplification mechanism that attracts the 205 

wide interests from energy harvesting research community because the electric power output of a PEH increases 206 

proportionally with the square of the force applied on the piezoelectric material. Eq. ( 11 ) also indicates that while 207 

amplifying the force, the mechanical transformer reduces the displacement 𝐷𝑥 by a factor of cot 𝛽. This leads to 208 

the stiffness along 𝑥-axis (𝑘𝑥) to be lower than that along 𝑧-axis (𝑘𝑧) since 209 

 

𝑘𝑥 =
𝐹𝑥

𝐷𝑥

=
1

cot2 𝛽
∙
𝐹𝑧

𝐷𝑧

=
𝑘𝑧

cot2 𝛽
 ( 12 ) 

Piezoelectric elements have high stiffness, leading to a resonance frequency usually in the range of tens of 210 

kilohertz, in contrast to the usual low frequencies (from a few to hundreds of hertz) of ambient vibrations. The 211 

reduction in the stiffness can lower the resonance frequency of the PSEH to match the ambient vibration. Although 212 

Eqs. (11-12) can be used for qualitative analysis, it must be noted that in reality, the relationship between the 213 

force/displacement amplification and the tilted angle is more complicated due to the elastic deformation of the 214 

inclined beams [33, 34, 36].   215 

3.2 Design, fabrication and testing method   216 

The PSEH designed for this study is shown in Figure 4 (a). Given that the focus of this study is the modelling of 217 

the PSEH, the design optimisation of the mechanical transformer is not presented herein. Notably, a notch hinge 218 

design was used for the inclined beams where the thickness of the flexure hinges was much smaller than the 219 

middle section of the inclined beam. This is to allow easy bending of the hinges while reducing the elastic 220 

deformation and energy storage in the inclined beams [36].  221 

A multilayer piezoelectric stack (7×7×36 mm, PI ceramic) was used for the PSEH. The piezoelectric stack is made 222 

of ~560 layers of active piezoelectric material working at 33-mode (PIC252, layer thickness: ~60 µm including 223 



electrodes) and 2 passive piezoelectric layers (~0.5 mm thick), one on each end. The active piezoelectric layers 224 

are electrically connected in parallel. The mechanical transformer was made of spring steel and fabricated by 225 

electrical discharge machining.  The space on the mechanical transformer was machined to be ~50 µm shorter 226 

than the multilayer piezoelectric stack as shown in Figure 4 (b). During assembling, the mechanical transformer 227 

was stretched along the z-axis so that the piezoelectric stack could slide into space. Upon release, the mechanical 228 

transformer was subjected to deformation, leading to an increase in both 𝐿𝑥 (denoted as ∆𝐿𝑥) and 𝐿𝑧 (denoted as 229 

∆𝐿𝑧). As a result, the mechanical transformer applied a static compressive force to the piezoelectric stack, which 230 

is essential for reliable operation since piezoelectric material has low tensile strength and high compressive 231 

strength. Adhesive epoxy was used on the interfacing surfaces between the piezoelectric stack and the mechanical 232 

transformer to further secure the connection. After assembling, ∆𝐿𝑧  and ∆𝐿𝑥  was measured by a micrometer 233 

(resolution of 10 µm) as 69 and 660 µm, respectively.       234 
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                                         (a)                                                            (b)                                            (c)  236 

Figure 4 (a) Designed PSEH with a mechanical transformer: unit in mm unless specified, (b) the fabricated 237 

mechanical transformer and multilayer piezoelectric stack used for the PEH,  and (c) fully assembled PSEH 238 

installed on a shaker for testing    239 

The fabricated PSEH is shown in Figure 4 (c). A 100-gram mass was added on the PSEH to produce inertial force 240 

and reduce the resonance frequency. The internal impedance of the PSEH was measured by a frequency response 241 

analyser (PSM1700, Newton 4th). The internal impedance was converted to admittance to calculate the mechanical 242 

quality factor 𝑄𝑀  by using ( 9 ). To measure the electric power generation, the PSEH was installed on an 243 

electromagnetic shaker (V20, Data Physics). The harmonic acceleration produced by the shaker was measured by 244 

a laser Doppler vibrometer (CLV 2534, Polytech). The PSEH was connected to a variable load resistor, the voltage 245 

across which was recorded to calculate the power output. For each excitation frequency, the load resistor was 246 

varied until the maximum power and the optimal load resistance were found.  247 

4. Finite element modelling methods  248 

Finite element modelling was used to aid the design of the PSEHs [31, 34, 36]. However, these FEMs were only 249 

able to simulate the mechanical responses, not the electrical output, which severely limits their usefulness. 250 

Moreover, the PSEHs are usually strongly coupled but the RC matching method was used in modelling and may 251 

lead to inaccurate results. Furthermore, static compressive stress on the piezoelectric stacks is essential to 252 

compensate for their weakness to tensile stress. The static prestress may affect the performance of the PSEH but 253 

the effects have not been modelled.  254 

A finite element model of the PSEH described in Section 3.2 was therefore developed in COMSOL Multiphysics 255 

® (COMSOL Inc, UK), which is able to accurately predict the power output of the pre-stressed and strongly 256 

coupled energy harvester.  Because the analysis in Section 2 suggests that the optimal load resistance is the internal 257 

impedance magnitude, the internal impedance is first simulated in the developed FEM and is then used as the load 258 

resistance for power generation simulation. The method described in this section can be used for any harmonically 259 

excited linear PEHs or nonlinear PEHs that can be linearized around the operating point. The PEHs can be 260 

connected to a linear interfacing circuit that does not contain nonlinear components such as diodes and transistors.  261 



4.1 General considerations  262 

The 3D physical model is comprised of the mechanical transformer and the piezoelectric element, which is shown 263 

in Figure 5 in 2D for better presentation. The dimensions are shown in Figure 4 (a). A 100-gram mass was added 264 

to the top surface of the mechanical transformer by applying COMSOL boundary condition without building a 265 

physical mass. The dimension of the piezoelectric element was 7×7×36 mm, which was all treated as active 266 

material in the model since the volume fraction of the passive layer was only 2.7% of the multilayer piezoelectric 267 

stack. The mechanical damping of the PSEH was specified as a mechanical quality factor 𝑄𝑀.  268 
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Figure 5 3D model and boundary conditions of the PSEH in (a) pre-stressed state simulation (b) internal 270 

impedance simulation and (c) power generation simulation 271 

The multilayer piezoelectric stack was modelled as a single-layer piezoelectric element with the same overall 272 

dimensions and polarised along the z-axis to simplify the model and reduce the computational time. The number 273 

of layers does not affect power output and resonance frequencies but affects some values such as impedance 274 

magnitude and voltage. To facilitate the comparison between simulation and experiment, the values of the single-275 

layer stack were converted to the equivalent values of a multilayer stack by ( 13 ).  276 

 

 Γ =
Γ 𝑠
𝑁2

    𝐶 = 𝑁2𝐶    𝑉𝑃 =
𝑉 𝑃
𝑁

      ( 13 ) 

Γ stands for the impedance magnitude |𝑍𝑖𝑛|, load resistance 𝑅𝐿, inductance 𝐿𝑚; 𝐶 stands for capacitance 𝐶𝑃
𝑆, 𝐶𝑃

𝑇 277 

and 𝐶𝑚; 𝑁=560 is the number of layers; 𝑉𝑃 is the voltage output. The symbols with an accent ˇ denote the values 278 

for the single-layer piezoelectric element, while those without an accent denote the converted values for multilayer 279 

piezoelectric stack. The material properties used for simulation are presented in Table 1. As the multilayer 280 

piezoelectric stack includes not just piezoelectric material (PIC252) but also electrodes, its elastic compliance is 281 

different from the piezoelectric material. The elastic compliance along 𝑧-axis is particularly important because 282 

the piezoelectric stack vibrates along this direction. The elastic compliance of the piezoelectric stack 𝑠33
𝐸  was 283 



estimated based on the stiffness (50 N/µm)) of the multilayer stack provided by the supplier, instead of using the 284 

material properties of PIC252.  285 

Table 1 the material properties of the multilayer piezoelectric stack and spring steel  286 

Parameters   Values 

         Piezoelectric stack  

Density (kg/m3) 7800 

𝑠11
𝐸  (×10-12 m2/N) 16.06 

𝑠12
𝐸 (×10-12 m2/N) -5.68 

𝑠13
𝐸 (×10-12 m2/N) -7.45 

𝑠33
𝐸 (×10-12 m2/N) 27.0 

𝑠44
𝐸 (×10-12 m2/N) 46.99 

𝑠66
𝐸 (×10-12 m2/N) 43.50 

𝑑31(×10-12 m/V) -186.7 

𝑑33 (×10-12 m/V) 399.6 

𝑑15 (×10-12 m/V) 617.4 

𝜀11
𝑇 /𝜀0 1852 

𝜀33
𝑇 /𝜀0 1751 

Spring steel   

Density (kg/m3)  

Young’s modulus (GPa) 

Poisson’s ratio 

7850 
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In the fabricated PSEH, the mechanical transformer was stretched to apply to static compressive stress on the 288 

piezoelectric element. As a result, a static tensile force was applied to the mechanical transformer, leading to a 289 

reduced inclined angle 𝛽. The reduction 𝛽 is expected to reduce the stiffness and resonance frequency of the 290 

PSEH, as analysed in Section 3.1. To simulate this effect, a static force 𝐹0 was applied to the PSEH as shown in 291 

Figure 5. The static force stretched the mechanical transformer and reduced 𝛽, which is the same as the case of 292 

the fabricated PSEH. The static force in the FEM also introduced static tensile stress in the piezoelectric element, 293 

which is opposite to the case of the fabricated PSEH. This does not affect the validity of the modelling because 294 

the static stress in the piezoelectric element does not affect the power output. The magnitude of 𝐹0 in the FEM 295 

was set to a value that produced the same ∆𝐿𝑧 as in experiment (66 µm).  296 

4.2 Boundary conditions  297 

The developed FEM consists of three analysis steps incorporated in one study. Step (1), pre-stressed state 298 

simulation, is a stationary analysis which computes the pre-stressed state of the PSEH as a result of the static force. 299 

The pre-stressed state obtained in this step is passed to the next two steps. Step (2) and (3) are ‘frequency domain, 300 

perturbation analysis’, which computes the response of the PSEH subjected to a harmonic perturbation fluctuating 301 

around the pre-stressed state computed in Step (1). Step (2) simulates the internal impedance of the pre-stressed 302 

PSEH, which is passed to Step (3) for power generation simulation. The relationship between the three steps is 303 

shown in Figure 5. The boundary conditions for each step are described below. For PEHs without pre-stress, Step 304 

(1) can be omitted.  305 

(1)  Pre-stressed state simulation  306 

In this step, the piezoelectric element was short-circuited and a static force was applied to simulate the mechanical 307 

responses without electromechanical coupling, as shown in Figure 5 (a). The bottom surface of the mechanical 308 

transformer was fixed to make sure that enough degrees of freedom were constrained in the simulation.  309 

(2) Internal impedance simulation  310 

In this step, the bottom of the mechanical transformer was fixed as step (1). A harmonic voltage  0 was applied 311 

to the electrodes of the piezoelectric element, as shown in Figure 5 (b). A frequency sweep across the frequency 312 

range of interest was performed. The current  0 simulated was used to compute the internal impedance of the 313 

PSEH at each frequency by 314 



 
 𝑍 𝑖𝑛 =

 0

 0
= |𝑍 𝑖𝑛|𝑒−𝑗𝜃𝑖𝑛 ( 14 ) 

where 𝜃𝑖𝑛 is the internal impedance phase.  315 

(3) Power generation simulation  316 

In this step, a harmonic acceleration was applied to the bottom of the mechanical transformer as shown in Figure 317 

5 (c). The electrodes of the piezoelectric element were connected to a circuit with a load resistor 𝑅 𝐿. 𝑅 𝐿 was set 318 

to the internal impedance magnitude |�̌�𝑖𝑛| computed in Step (2), by using the built-in operator ‘withsol’ provided 319 

by COMSOL. In this way, during a frequency sweep, 𝑅 𝐿 was always equal to |�̌�𝑖𝑛|  at the frequency that is being 320 

swept.  The voltage across 𝑅 𝐿was recorded to compute the electric power output. For the purpose of comparison, 321 

a simulation was also performed by using the RC matching method, where 𝑅 𝐿 was set to 1/𝜔𝐶 𝑃
𝑇. 322 

4.3 Estimation of the static force in the fabricated PSEH   323 

𝐹0 used for internal impedance and power generation simulations is much higher than the static force in the 324 

fabricated PSEH. This is because in these simulations both the mechanical transformer and the piezoelectric were 325 

stretched by 𝐹0 to produce ∆𝐿𝑧=66 whereas in the fabricated PSEH only the mechanical transformer was stretched 326 

to produce ∆𝐿𝑧 = 66 µm. To estimate the static force in the fabricated PSEH, a stationary analysis was performed 327 

on the mechanical transformer without the piezoelectric element, as schematically shown in Figure 6. The 328 

mechanical transformer was stretched by a static force 𝐹𝑠 along 𝑧-axis to reach a displacement of ∆𝐿𝑧= 66 µm. 329 

This 𝐹𝑠 was the static force applied in the fabricated PSEH.  330 
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Figure 6 A schematic of the finite element model to estimate the static force 𝐹𝑠 applied in the fabricated PSEH 332 

5. Results and discussions  333 

5.1 Experimental validation of internal impedance simulation  334 

The simulated and measured internal impedance magnitudes are compared in Figure 7. In the simulation, the 335 

mechanical quality factor 𝑄𝑀  was set to 60, which was obtained from the measured internal impedance 336 

characteristics and by using (9). The static 𝐹0 was initially set to produce ∆𝐿𝑧=66 µm, which is the deformation 337 

measured on the fabricated PSEH. However, with ∆𝐿𝑧=66 µm the simulated resonance frequency was higher than 338 

the experiment. 𝐹0 was then adjusted until the simulated resonance frequency matched the experiment. When ∆𝐿𝑧 339 

=76 µm was produced, good agreement between the measured and simulated impedance was observed. Based on 340 

the simulated internal impedance, the parameters of the equivalent circuit model were identified by using ( 3 ) and 341 

listed in Table 2. The effective electromechanical coupling factor 𝐾 was calculated by ( 9 ). Considering 𝑄𝑀 is 342 

60, the value of 𝐾2𝑄𝑀 is 7.8, which is larger than 2. Therefore, the PSEH modelled in this work is strongly coupled.  343 

Both simulated and measured internal impedance have zero-phase at 189 and 200.5 Hz. The maximum-phase is 344 

observed at 195 Hz. At this frequency, impedance magnitude is 159 Ω, which is close to the value of 345 

1/(𝜔𝑠𝐶𝑃
𝑆)=156 Ω. This agrees with the theoretical analysis in Section 2 that the internal impedance magnitude at 346 

the maximum-phase frequency is 1/(𝜔𝑠𝐶𝑃
𝑆).  347 



The difference in ∆𝐿𝑧  between simulation and experiment is attributed to (1) the geometrical difference between 348 

the designed and fabricated mechanical transformer due to manufacturing tolerance; (2) the properties of the 349 

piezoelectric material typically varies ±5-10% compared to the datasheet.  350 

  351 
(a)                                                                (b) 352 

Figure 7 Comparison of measured and simulated internal impedance of the PSEH (a) impedance magnitude and 353 

(b) impedance phase  354 

Table 2 Lumped parameters identified from the simulated internal impedance of the PSEH 355 

Parameters   Values Unit  

𝐶𝑃
𝑆 5.40 µF 

𝐶𝑚 0.71  µF 

𝐶𝑃
𝑇 6.11 µF 

𝜔𝑠 1190 (189) Rad/s (Hz) 

𝐿𝑚 1.00 H 

𝑅𝑚 19.93 Ω 

𝐾 0.36 - 

 356 

5.2 Estimation of the static force in the fabricated PSEH  357 

When ∆𝐿𝑧=76 µm was produced in the FEM (Figure 8 (a)), the static force 𝐹0 was 4100 N. The corresponding 358 

∆𝐿𝑥 was found to be 770 µm, as shown in Figure 8 (b). The displacement ratio of the PSEH, ∆𝐿𝑥/∆𝐿𝑧 in the FEM 359 

is 10.13, which is close to the value of 9.50 in the experiment. Without the piezoelectric element, 𝐹𝑠=360 N was 360 

required to produce ∆𝐿𝑧 = 76 µm as shown in Figure 9 (a). Therefore, the static force applied in the fabricated 361 

PSEH is estimated to be 360 N. With 𝐹𝑠=360 N, ∆𝐿𝑥 of the mechanical transformer alone is 807 µm (Figure 9 362 

(b)), which is slightly higher than that of the simulated PSEH. The slight difference in ∆𝐿𝑥 reflects the influence 363 

of the piezoelectric element on the amplification effect of the mechanical transformer. 364 

         365 
 366 

(a)                                                                (b) 367 

Figure 8 Displacement of the PSEH due to the static force 𝐹0=4100 N (a) 𝑧-axis displacement and (b) 𝑥-axis 368 

displacement. Unit of the colour legend: µm 369 

-38µm 38µm 
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(a)                                                                (b) 371 

Figure 9 Displacement of the mechanical transformer due to 𝐹𝑠=360 N: (a) 𝑧-axis displacement and (b) 𝑥-axis 372 

displacement. Unit of the colour legend: µm 373 

5.3 Experimental validation of power generation simulation  374 

The measured and simulated electric power outputs of the PSEH actuated at 2.5 m/s2 are compared in Figure 10 375 

(a). The corresponding load resistance used for the power generation is presented in Figure 10 (b). When the 376 

internal impedance magnitude |𝑍𝑖𝑛| is used as the load resistance, the simulated electric power shows two nearly 377 

identical peaks of 5.19 and 5.22 mW at 189 and 200.5 Hz, respectively. Both frequencies are the zero-phase 378 

frequency, as identified in Section 5.1. The impedance magnitudes at these two frequencies are 19.9 and 1130.2 379 

Ω, respectively. Moreover, the simulated power shows a local minimum of 4.21 mW at 195 Hz, which is the 380 

maximum-phase frequency. Simulations were performed at each frequency with various load resistance to confirm 381 

that the power output with 𝑅𝐿 = |𝑍𝑖𝑛| is the maximum at each frequency and the impedance magnitudes are the 382 

optimal load resistance. Representative results are presented in Figure 11. When actuated at 189 Hz, the PSEH 383 

produces the maximum power of 5.19 mW at 19.5 Ω.  384 

 385 
(a)                                                                (b) 386 

Figure 10 Comparison of the measured and simulated performance of the PSEH actuated at 2.5 m/s2 (a) electric 387 

power output (b) load resistance and internal impedance magnitude 388 

In the experiment, the power output (Figure 10 (a)) shows two peaks of 4.90 mW and 5.4 mW at 188 and 198 Hz, 389 

respectively. A local minimum of 3.8 mW was recorded at 193 Hz. The optimal resistance at each frequency was 390 

measured by varying the connected load resistance until the maximum power output was recorded. Typical results 391 

are shown in Figure 11. The PSEH at 188 Hz produced 4.90 mW with 𝑅𝐿=35 Ω. The experiment results in Figure 392 

10 show good agreement with the simulation although slight discrepancy is observed. Moreover, the measured 393 

power peaks are located at 188 and 198 Hz, instead of the zero-phase frequencies (189 and 200.5 Hz) identified 394 

in the measured internal impedance. This is caused by the nonlinear behaviours of piezoelectric material in the 395 

experiment, which was not modelled in the simulation. When piezoelectric materials are actuated to operate at 396 

high stress/strain level, the material properties will change and the behaviours become nonlinear, leading to 397 

phenomena such as reduced resonance frequency and increased mechanical loss [19, 37]. These nonlinear 398 

behaviours also caused the difference between the measured optimal resistance 𝑅𝑜𝑝𝑡  and the measured impedance 399 

-38µm 
38µm 



magnitude since the impedance was measured at a low voltage level (0.5 V peak to peak) with little nonlinear 400 

behaviour. 401 

 402 
Figure 11 Electric power outputs against load resistance at the first power-peak frequency 403 

When the RC matching method is used, i.e. 𝑅𝐿 = 1/(𝜔𝐶𝑃
𝑇), the simulated power shows only one peak of 3.42 404 

mW at 195 Hz, in contrast to two power peaks of 5.2 mW when 𝑅𝐿 = |𝑍𝑖𝑛|. Both simulation configurations 405 

produce the same power output at the maximum-phase frequency (195 Hz). This is because the value of 1/(𝜔𝐶𝑃
𝑇) 406 

at 195 Hz is 134 Ω, which is close to the impedance magnitude 1/(𝜔𝑠𝐶𝑃
𝑇) at this frequency. This can be verified 407 

by the intersection of |𝑍𝑖𝑛| and 𝑅𝐿 = 1/(𝜔𝐶𝑃
𝑇) at around 195 Hz, as shown in Figure 10 (b). Moreover, at 408 

frequencies outside the resonance (>205 Hz and <175 Hz), the same power outputs are observed with the two 409 

simulation configurations due to the relatively small difference between |𝑍𝑖𝑛|and 1/(𝜔𝐶𝑃
𝑇). At other frequencies, 410 

the simulation with 𝑅𝐿 = 1/(𝜔𝐶𝑃
𝑇) underestimates the power output.  411 

Therefore, with the |𝑍𝑖𝑛| as the optimal load resistance, the FEM can accurately predict the power output of the 412 

PSEH in both resonance and off-resonance regions, whereas the FEM with RC matching can only predict the 413 

power output at the maximum-phase frequency and at off-resonance.   414 

5.4 Effects of 𝐾2𝑄𝑀  415 

The theoretical analysis in Section 2 indicates that the coupling efficiency figure of merit 𝐾2𝑄𝑀 determines if 416 

there exist two power peaks of a PEH. When 𝐾2𝑄𝑀  > 2, the PEH is strongly coupled and has two power peaks; 417 

when 𝐾2𝑄𝑀  ≤ 2, the PEH is weakly coupled and has a single power peak. To verify the ability of the FEM to 418 

predict such characteristics, simulations were performed on the PSEH with 𝐾2𝑄𝑀 of 7.8, 3.9, 2 and 1.3. This was 419 

achieved by keeping the effective electromechanical factor 𝐾 constant at 0.36 while changing the mechanical 420 

quality factor 𝑄𝑀 to be 60, 30, 15 and 10, respectively. The simulated electric power outputs of the PSEH actuated 421 

at  2.5 m/s2 along with the impedance-phase are presented in Figure 12.  422 



 423 

 424 

Figure 12 Simulated electric power output and impedance-phase of the PSEH with different values of 𝐾2𝑄𝑀 (a) 425 

𝐾2𝑄𝑀 = 7.8, (b) 𝐾2𝑄𝑀 = 3.9, (c) 𝐾2𝑄𝑀 = 2,  and (d) 𝐾2𝑄𝑀=1.3 426 

When 𝐾2𝑄𝑀=7.8 and 𝑅𝐿 = |𝑍𝑖𝑛|, the power peaks appear at 𝑓01= 189 Hz and 𝑓02=200.5 Hz. The local minimum 427 

power is located at the maximum-phase frequency (𝑓𝑚=195 Hz). The frequency range between 𝑓10 and 𝑓02 is 11.5 428 

Hz. With 𝑅𝐿 = 1/𝜔𝐶𝑃
𝑇, the single peak power is located at 𝑓𝑚=195 Hz. When the 𝐾2𝑄𝑀  is reduced to 3.9 (Figure 429 

12 (b)), the PSEH has similar power-frequency characteristics as 𝐾2𝑄𝑀 = 7.8 but with power peaks reduced from 430 

5.22 mW to 2.62 mW and the frequency range between 𝑓01  and 𝑓02  decreased from 11.5 Hz to 10 Hz. The 431 

reduction in the power output is due to the increased mechanical damping by decreasing 𝑄𝑀. Because of the 432 

decrease in 𝑄𝑀, the value of 𝑅𝑚 is increased according to Eq. ( 9 ). This leads to a decrease in the diameter of the 433 

G-B circle, as shown in Figure 13. As a result, the frequency range between 𝑓01 and 𝑓02 is decreased. When 𝐾2𝑄𝑀 434 

is 2, the G-B cicle is tangent to 𝐵=0. As a result, 𝑓01, 𝑓02 and 𝑓𝑚 merges to one frequency—195 Hz and the PSEH 435 

has a single power peak at this frequency (Figure 12 (c)). As the value of 𝐾2𝑄𝑀 is further decreased, the PSEH 436 

has no zero--phases and a sinlge power peak is observed at the maximum-phase-frequency. The performance of 437 

the PSEH simulated by the FEM, therefore, agrees well with the theoretical prediction in Section 2.2.  438 

It can be also noted from Figure 12 that as 𝐾2𝑄𝑀 is reduced, the descrepancy of power output between 𝑅𝐿 = |𝑍𝑖𝑛| 439 

and RC matching is decreased. This suggests that when 𝐾2𝑄𝑀  is low enough, the RC matching can be a valid 440 

approximation for the PSEH at the resonance region.  441 

 442 

Figure 13 G-B locus of the PSEH with different values of 𝐾2𝑄𝑀 443 



5.5 Effects of static force  444 

The simulated effects of the 𝐹0 on the power output of the PSEH is presented in Figure 14. As 𝐹0 increases, the 445 

resonance frequency decreases and the peak power increases. This is because as 𝐹0 increases, the angle 𝛽 of the 446 

mechanical transformer is reduced, which can be verified by the increase of ∆𝐿𝑥/∆𝐿𝑧 with 𝐹0 in Table 3 . As a 447 

result, the stiffness of the mechanical transformer is decreased, leading to the decrease of the resonance frequency. 448 

Moreover, the reduction of 𝛽 results in an increased force amplification effect as suggested by ( 11 ), giving rise 449 

to the increase in the power generation.  450 

 451 

Figure 14 Effects of the static force 𝐹0 on the power output and resonance frequency shift of the PSEH  452 

Table 3 the static displacement ∆𝐿𝑧, ∆𝐿𝑥, displacement ratio ∆𝐿𝑧/∆𝐿𝑧and static force 𝐹𝑠 corresponding to each 453 

value of 𝐹0 454 

𝐹0 (N) ∆𝐿𝑧 (µm) ∆𝐿𝑥 (µm) ∆𝐿𝑥/∆𝐿𝑧 𝐹𝑠 (N) 

1000 19 175 9.2 60 

3000 57 554 9.8 230 

4100 76 770 10.1 360 

6. Conclusions  455 

In this work, a finite element model (FEM) for strongly-coupled and pre-stressed piezoelectric energy harvester 456 

(PEH) was developed and experimentally validated. The FEM enables the efficient and accurate prediction of the 457 

electric power output of both weakly and strongly coupled PEHs. The model was developed for a piezoelectric 458 

stack energy harvester (PSEH) with a force amplifier, but the method can be applied to any linear PEHs or 459 

nonlinear PEHs that can be linearized around the operating point.  460 

The equivalent circuit model (ECM) of PEHs was first derived from an analytical model. Based on the ECM, the 461 

internal impedance network of PEHs was identified. According to the maximum power transfer theorem, the load 462 

resistance should be matched to the internal impedance magnitude of PEHs to obtain the maximum power 463 

generation although the theoretical maximum power transfer only occurs when the impedance-phase is zero. 464 

Analysis of the conductance and susceptance locus of the internal admittance suggested that the availability of 465 

zero-phase frequency depended on the value of 𝐾2𝑄𝑀, with 𝐾 being the electromechanical coupling factor and 466 

𝑄𝑀 being the mechanical quality factor.  467 

Since the internal impedance magnitude should be used as the optimal load resistance, the proposed finite element 468 

modelling method first analysed the internal impedance of the PEH, the magnitude of which was then used as the 469 

load resistance for power output simulation. The modelling method was applied to a pre-stressed piezoelectric 470 

stack energy harvester (PSEH) with a mechanical transformer. Comparisons between simulation and experiment 471 

showed that the developed FEM was able to precisely predict both the internal impedance and electric power 472 

output of the strongly coupled PSEH at any frequencies. The simulated power output characteristics of the PSEH 473 

at different values of 𝐾2𝑄𝑀 also agreed well with the theoretical prediction. When the impedance of the internal 474 

capacitor of the PSEH was used as the optimal load resistance (RC matching), the FEM was valid at off-resonance 475 



and the maximum-phase frequency regardless of the degree of the electromechanical coupling. At resonance, the 476 

FEM with RC matching underestimated the power output for the strongly-coupled PSEH, although the error 477 

decreases with the value of 𝐾2𝑄𝑀.   478 
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