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Abstract 
 

Many non-human animals produce vocalisations via the combination of multiple 

acoustic elements into larger sequences, a property referred to as 

combinatoriality. Chestnut crowned babblers (Pomatostomus ruficeps) are the 

only known species other than humans to use phonemic contrasts, i.e. the 

rearrangement of meaningless acoustic elements into meaningful calls, in the 

generation of vocal signals. Identifying the similarities and differences in 

phoneme use between humans and babblers, therefore, can potentially grant 

valuable insight into the evolution of this linguistic ability in humans. The primary 

goal of this thesis is to understand the cognitive mechanisms that underlie the 

reception of vocalisations generated via phonemic contrasts in chestnut crowned 

babblers. Specifically, I address the following research questions: 1) whether 

babblers are able to respond appropriately to vocal signals even when the 

constituent acoustic sub-units have been rearranged; 2) whether individuals are 

capable of integrating previously acquired contextual information in order to 

produce appropriate behavioural responses to ambiguous signals; and 3) 

whether babblers generate a visual mental image of signal referents upon 

reception of context-specific acoustic signals. I find that subjects respond 

appropriately to vocal stimuli even when the acoustic sub-units have been 

rearranged to differ from any existing call template, but only when the modified 

signal exhibits a high degree of acoustic similarity to the natural call. This 

suggests that babblers, as opposed to humans, possess flexible acoustic 

templates for their phoneme-based vocalisations. I also observe that subjects 

respond appropriately to ambiguous signals if they have been previously 

exposed to information which may disambiguate the meaning of future, uncertain 

stimuli. This extends the evidence for the integration of contextual information to 

an avian species exhibiting a combinatorial repertoire. Finally, I do not find 

evidence in support of the hypothesis that babblers generate visual mental 

images of signal referents upon reception of context-specific calls. Thus it 

remains as of yet unclear whether babblers respond to calls via a process of 

affect-conditioning, associative learning or conceptual semanticity. The findings 

of this thesis contribute to the field of comparative and combinatorial 

communication by describing some of the cognitive mechanisms which underlie 

the reception of phoneme-based vocalisations in an avian species. 
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Chapter 1  
Introduction 

 

Study species 
The studies described in this thesis were conducted on an avian species, the 

chestnut crowned babbler (Pomatostomus ruficeps). Chestnut crowned babblers 

are 50g, sexually monomorphic birds. They are a member of the ancient family 

Pomatostomidae, i.e. Australo-Papuan babblers, of which P. ruficeps are one of 

five extant members (Russell 2015). This species, which is endemic to south-

east inland Australia, emerged ~11Ma, at a time when the Australian continent 

was covered by forests. Thus although the current habitat of this species mainly 

consists of arid and semi-arid inland scrubs and open woodland, it likely 

originated as a forest-dwelling species.  

The first and only long-term study on chestnut crowned babblers is based 

at Fowlers Gap Arid Zone Research Station, in far western New South Wales 

(31° 05’ S, 141° 43’ E). The study area is 64km2, dominated by open chenopod 

shrubland which also exhibits areas of denser vegetation along numerous dry 

creek beds. In this region, the annual temperature variation is extreme: from 0oC 

nocturnal minimums during winter to 45oC daytime maximums during summer. 

The habitat is classified as arid, as annual rainfall averages 215mm/y, with high 

annual variation and no seasonal pattern. 

Chestnut crowned babblers are highly dependent on group living (Portelli 

et al. 2009). Outside the breeding season these groups, referred to as “social 

units”, are large, comprising 7-16 (mean 11) individuals, of which ~50% are 

juveniles born during the previous breeding season. The sex ratio of social 

groups is on average 64% male. Male babblers remain philopatric for life, while 

females typically disperse after a maximum of one year. The members of a 

social group typically forage together, and roost within the same nest. Babblers 

are weakly territorial (Sorato et al. 2015): groups commonly forage over an area 

of ~1km2, but may venture into the territory of neighbouring social units. 

Between-group encounters result in vocalisation or physical interaction only 55% 

of the time, and often these interactions are amicable rather than aggressive. 

Greatest foraging activity occurs in the early morning or late afternoon, and 

groups spend on average 64% of time foraging. The preferred habitat for 

foraging is along dry creek beds, which account for 21% of the group’s territory 
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on average (Portelli et al. 2009). This habitat represents the ideal foraging 

location as it combines maximum prey availability with minimum predation risk. 

Babblers are not strong flyers, and are most commonly observed exhibiting short 

bouts of swooping flight between low perches. By contrast, these birds are 

surprisingly agile when moving on the ground, where they prefer to forage via 

manipulation of the substrate. Although the members of a social group roost 

together in a single nest, the territory of the group typically exhibits multiple 

nests. During nonbreeding, groups regularly alternate between roosting nests 

and may roost in a different nest each night. Nests used for roosting are actively 

maintained, as shown by the presence of fresh twigs along the nest opening 

(Louis O’Neill, pers. obs). 

Like all of the other Pomatostomids, chestnut crowned babblers are 

cooperative breeders, i.e. they rely on the provisioning efforts of helpers outside 

the breeding pair for successful reproduction (Rusell 2015). Prior to the onset of 

breeding (mid-late July), babbler social units fission into smaller groups, referred 

to as “breeding units”. These groups comprise on average 6 individuals (range 2-

13), and typically include 1-8 nonbreeding helpers in addition to the breeding 

pair. The home ranges of breeding units are ~0.5km2, but may vary as a function 

of unit size. Babblers make up to 3 breeding attempts per season, the first 

attempt generally occurring in early August. 50% of breeding units that make one 

attempt also make a second attempt with a mean interval between attempts of 

31 days; third attempts are rare. The mean clutch size is 4 in first and 3.5 in 

subsequent attempts, with a maximum clutch size of 6. Nestling mortality is high, 

and on average, 3.5 offspring are reared to fledging per breeding unit throughout 

the entire breeding season. 

Breeding success in chestnut crowned babblers is strongly influenced by 

the size of the breeding unit (Russell 2010, Liebl et al. 2016). Firstly, larger 

breeding units breed earlier and re-nest sooner than smaller ones, which is likely 

to be mediated by: a) a reduction in the amount of time that females need to 

spend off-roost with increasing number of helpers, b) greater direct provisioning 

of the incubating female, and c) increased provisioning of the offspring, thereby 

freeing the female from caring for the previous brood. Second, nestling starvation 

decreases with increasing size of the breeding unit, as a result of fully additive 

care. On average, each additional helper results in a roughly 35% increase in 
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chick per capita food intake, despite females showing significant load-lightening. 

Finally, larger breeding units are less susceptible to nest depredation. 

Within a typical babbler breeding group, 70% of non-breeders are first-

order relatives to the breeding male, female or both (Russell 2015). The 

remaining 30% are second-order relatives or unrelated to the breeding pair. 

Almost all first-order relatives contribute to offspring provisioning, and do so at an 

average rate 90% higher than second order relatives, who only contribute to 

offspring provisioning in one-third of cases. This highlights a strong kin-selected 

component to cooperative breeding in chestnut crowned babblers (Browning et 

al. 2012a,b). Indeed, inclusive fitness benefits play a key role in shaping both the 

occurrence and patterns of cooperative breeding in this species.  

In chestnut crowned babblers, males exhibit lifetime philopatry, while 

females disperse out of their natal territory to join other babbler groups. The most 

commonly invoked explanation for delayed dispersal involves ecological 

constraints, i.e. a lack of available territories or suitable mates for independent 

breeding (Emlen 1982). In babblers, dispersal patterns reflect neither the 

availability of suitable territories nor potential mates (Russell 2015), however, 

babbler philopatry can be explained by understanding the importance of indirect 

fitness benefits. Only 21% of adult males gain direct fitness in their lifetime, so 

for the majority of individuals, indirect benefits are the only avenue available for 

promoting the spread of their genes in the population. In order to reap these 

indirect benefits, delaying dispersal is of fundamental importance, as it grants 

access to close relatives who are in a position to breed independently. 

Therefore, in this system, delayed dispersal represents a consequence, rather 

than a cause, of cooperative breeding. 

The importance of inclusive fitness benefits in babblers also provides an 

explanation for the presence of fully additive care among nonbreeding helpers 

(Liebl et al 2016). In this species, nestling starvation is the primary form of 

offspring mortality. However, increases in the number of male helpers are 

linearly associated with the rates at which whole broods and individual nestlings 

are provisioned. Together, these results imply that additional care can 

substantially increase the productivity of breeding attempts. As most group 

members derive their only fitness benefits from the successful rearing of the 

offspring of related breeders, it is unsurprising that they should provision 

maximally in order to guarantee the highest brood productivity, rather than 
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reduce their contributions with an increasing number of additional helpers. The 

dynamics of cooperative breeding in arid zones have received comparatively 

little attention, thus chestnut crowned babblers provide a valuable opportunity to 

elucidate the selective pressures that operate on cooperative breeders inhabiting 

harsh environments, such as the Australian arid zone.  

 

Acoustic communication in chestnut crowned babblers 
Chestnut crowned babblers possess a rich repertoire of vocalisations (Crane et 

al. 2016). The first thorough analysis of the diversity of the babbler repertoire 

revealed that this species produces at least 18 distinct calls, 13 of which are 

specific to a certain context, while the remaining 5 are not reliably associated 

with a unique function. The call types of babblers reflect their species-specific 

ecological and behavioural features. The 13 context-specific calls can be 

assigned to four broad functional categories:  

1. General arousal: includes only the chatter call. This short, monosyllabic 

call exhibits two variants, one harsh and fully broadband, the other 

harmonically rich and squeaky. The call, which is typically produced in 

bouts, denotes a combination of mild anxiety, threat or excitement: for 

example, it is produced reliably upon encountering people, as well as 

when the group exits the roost nest in the morning. 

2. Threat: includes the aerial alarm, alert and distress calls. These are all 

monosyllabic, often produced in bouts, and among the calls in the 

repertoire which exhibit the highest amplitude (Joseph Mine, unpublished 

data). Babblers have several nest and aerial predators, so a multitude of 

alarm calls associated with various levels of urgency are highly beneficial 

for this species. Furthermore, the distress call elicits mobbing behaviour in 

group members, an indication of the highly cooperative tendencies of 

babblers. 

3. Contact: includes the flight, maternal contact, long-distance contact, short-

distance contact and peow pee calls. These vocalisations are used to 

mediate a number of within and between-group interactions. The flight, 

short-distance and long-distance contact calls are produced frequently, 

and function to maintain group cohesion and limit foraging competition 

during both static foraging as well as during individual or group 

movements. The long distance contact and flight calls are multisyllabic, 
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the first element of each exhibiting a lower frequency than the following 

acoustic elements. Interestingly, the long-distance contact call exhibits 

individual-specific variation in acoustic properties, and is used for 

individual recognition by group members (Crane et al. 2015). The peow 

pee is also multisyllabic, and utilised to maintain group cohesion, but 

produced predominantly by juveniles. The maternal contact call is one of 

the most complex and variable vocalisations in the repertoire. It is 

multisyllabic with a variable first element, followed by the repetition of 

high-amplitude and high-frequency elements among which there is also 

considerable variation, resulting in a sequence referred to as “piping”. This 

call is produced exclusively by the breeding female, to communicate 

personal or nestling hunger and to elicit provisioning efforts by helpers. 

Females produce this call before breeding, as well as throughout the 

duration of the breeding attempt. 

4. Social: Includes the adult begging, provisioning, chase and conflict calls. 

Begging and provisioning calls are common among avian cooperative 

breeders (Otter et al. 2007; Ellis et al. 2009), and are used by babblers to 

elicit and coordinate cooperative efforts to provision offspring. The 

provisioning call is multisyllabic, comprising a total of three acoustic 

elements with a harmonic structure: the first and last elements are 

identical and exhibit a higher fundamental frequency than the middle 

element. The chase and conflict calls, on the other hand, are important for 

the formation and maintenance of social hierarchies, and are also 

produced during encounters with other groups. These calls mediate 

agonistic interactions such as dominance displays during breeding or 

roosting, or escalated inter-group conflicts. 

 

Chestnut crowned babblers combine large group sizes with a strict dependence 

on cooperation. Consistent with the hypothesis that vocal complexity reflects 

social complexity (Freeberg 2006), as well as the hypothesis that cooperative 

breeding influences the size of avian vocal repertoires (Leighton 2018), the large 

size of the babbler repertoire reflects its high level of sociality as a species, along 

with its dependence on cooperation for successful reproduction. Indeed, in the 

case of babblers, a high proportion of the entire repertoire is devoted to 

cooperative contexts, such as breeding and alarm calling, highlighting the 
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fundamental importance of vocal communication in mediating cooperative 

behaviour in this species. This high level of cooperation has been suggested to 

play a significant role in the colonisation of harsh environments, such as the arid 

and unpredictable habitats commonly occupied by chestnut crowned babblers 

(Cornwallis et al. 2017). Considering this interdependence between cooperation 

and acoustic communication, in addition to the suitability of open habitats to the 

propagation of acoustic signals (Morton 1975), it is consequently unsurprising 

that the babbler repertoire has evolved to exhibit such a diversity in form and 

function of vocalisations. 

 Apart from its diversity, the babbler repertoire exhibits another 

characteristic that is indicative of vocal complexity: combinatoriality, i.e. the 

combination of multiple acoustic elements to create larger acoustic structures. 

But what determines the uniqueness of babbler sound combinations with respect 

to any other non-human animal is the use of phonemic contrasts (Engesser et al. 

2015). This term refers to the rearrangement of specific acoustic elements to 

generate functionally distinct signals, which is the same principle that underlies 

the generative power of most human languages. For example, within the babbler 

repertoire, the flight and provisioning calls utilise the same acoustic elements, 

but in different arrangements: the flight call is a bisyllabic signal comprising the 

elements labelled A + B, whereas the provisioning call is a trisyllabic signal made 

up of B + A + B. Indeed, empirical evidence has been obtained in support of the 

following statements (Engesser et al. 2015, Engesser et al. 2019): a) the A and B 

elements are perceptibly distinct, and neither of these conveys functionally-

relevant information when used in isolation; b) the element labelled A in the flight 

call is statistically and perceptibly equivalent to the A in the provisioning call, as 

is the element labelled B; c) the flight and provisioning calls are context-specific 

signals, therefore possessing the potential for reliable information transfer; d) the 

addition or omission of a single B element at a specific position results in the 

generation of two functionally distinct signals. The importance of these results is 

twofold: on one hand, they represent the first demonstration that non-human 

animals have the capacity to produce phoneme-like contrasts; on the other, they 

highlight similarities with the mechanism that underlies word formation in human 

language. For example, the basic principles described above equally apply to the 

English words “on” and “non”, or the Italian words “la” and “ala”.  
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Despite a superficial resemblance, significant differences exist between 

babbler and human phoneme use. The first is that the elements used in human 

words, such as the sound /n/, are re-used productively across a number of other 

words, while the elements A and B in babblers are present only in the flight and 

provisioning calls. Moreover, the use of phonemic contrasts in babblers involves 

the addition or omission of a single element, and not the complete 

rearrangement of the units that compose the sequence, such as in the example 

“tap” and “apt”. This suggests that the phoneme-like elements present in the 

babbler repertoire represent a simple precursor for a more elaborate use of 

phoneme-based structures. It is likely that the phonological layer of acoustic 

combination present in many human languages is the result of gradual increases 

in complexity (Zuidema & de Boer 2009, 2018), and yet little evidence exists 

regarding the early stages of language evolution. Understanding the precise form 

and function of babbler vocalisations, therefore, may grant valuable insight into 

the emergence and evolution of phoneme structuring. Although the babbler vocal 

repertoire has been carefully described, there is still considerable uncertainty 

regarding the contextual correlates, combinatorial rules and computational 

mechanisms that underpin the production and reception of many of the babbler 

calls (Crane et al. 2016). 

 
Aims and methods 
The aim of the studies outlined in this thesis is to investigate the reception of 

combinatorial acoustic signals in chestnut crowned babblers. Specifically, I wish 

to obtain further information regarding the combinatorial rules underlying babbler 

vocalisations, and to understand how these complex signals are interpreted by 

receivers. I tackle these questions by conducting playback experiments on wild-

caught babblers, utilising both natural and artificial acoustic stimuli, and 

measuring behavioural responses to these signals. 

 Chestnut crowned babblers currently represent the sole opportunity 

outside of human language to investigate the use of phonemic contrasts in vocal 

communication (Engesser et al. 2015). In this regard, the first question that is 

addressed in this study of babbler vocalisations concerns the strictness of the 

relationship between vocal signals and specific acoustic templates. Many 

babbler calls are multisyllabic, i.e. composed of multiple consecutive acoustic 

elements. The arrangement of the individual elements within specific babbler 
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calls is relatively consistent, however there are also certain calls in the repertoire, 

such as the maternal contact and flight calls, that exhibit more within and 

between-individual variation than would be expected if these calls adhered to 

very strict acoustic templates. For example, the maternal contact call is highly 

variable in both the temporal and spectral features of the first element of the call, 

as well as the subsequent repeated “piping” elements. The bisyllabic flight call, 

which commonly consists of element A followed by element B, is occasionally 

produced in reverse order, i.e. BA. And yet one of the key features which 

determines the reliability of information transfer in vocal communication is the 

strength of association between a specific vocalisation and a single context: 

when this association is loose, i.e. multiple signals are associated with one 

context, or one signal is associated with multiple contexts, the potential for 

information transfer is reduced (Seyfarth & Cheney 2017). So understanding the 

precise relationship between vocalisation, template and context in babbler calls 

will provide information regarding the potential for information transfer of these 

calls. In order to assess the strictness of the relationship between signals and 

their respective acoustic templates, I conduct a playback experiment involving 

both natural babbler vocalisations and artificially modified versions of existing 

babbler calls. I specifically focus on two calls of the babbler repertoire, i.e. the 

flight and provisioning calls, which are both composed of the acoustic elements 

labelled A and B. As a result of sharing acoustic elements, these two calls 

naturally exhibit a certain measure of acoustic similarity. However, babblers have 

been shown to exhibit functionally different responses to playbacks of flight vs 

prompt calls (Engesser et al. 2015), indicating that these call types, despite their 

similarity, adhere to two distinct acoustic templates. In this experiment, I expose 

wild babblers to playback stimuli with increasing levels of acoustic similarity to 

the provisioning call, in order to determine the threshold similarity that results in a 

provisioning-related response, and thereby assess the strictness of the 

relationship between signal and acoustic template. 

The second research question addressed in this study regards a cognitive 

mechanism underlying signal reception known as pragmatic inference (Seyfarth 

& Cheney 2014a, 2017), which consists in integrating additional contextual 

information during the reception of an acoustic stimulus. Indeed, among the 

cognitive mechanisms that increase the efficiency of information transfer in vocal 

communication, pragmatic inference has been shown to play a significant role in 
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several mammalian species, including humans (Miller et al. 1951). For example, 

the alarm call repertoires of putty-nosed monkeys (Cercopithecus nictitans) 

contain individual vocalisations that are produced in multiple different contexts, 

and thereby exhibit a reduced potential for information transfer (Arnold & 

Zuberbuhler 2013, Fischer et al. 2001, Hammerscmidt & Fischer 1998). 

However, these and other primate species have empirically demonstrated the 

ability to acquire information from sources other than the signal itself, during a 

communicative event between sender and receiver (Price & Fischer 2014, Scott-

Phillips 2015, Crockford et al. 2007). Indeed, subjects are able to extract 

additional information, in the form of both visual and acoustic stimuli, from the 

context in which the signal is emitted, and utilise this information to refine 

behavioural responses to signals exhibiting low information content. Therefore, 

pragmatic inference represents a powerful tool to overcome the challenges 

posed by signals associated with low information content. However, the 

investigation of this cognitive ability has mostly been limited to mammalian 

species. In the past, pragmatic inference has commonly been tested via 

playback experiments in which the availability of contextual information is 

manipulated, and behavioural responses to playbacks with and without 

contextual information are measured (Arnold & Zuberbuhler 2013, Price & 

Fischer 2014). I apply this same experimental design to chestnut crowned 

babblers, utilising contextual information in the form of additional acoustic stimuli. 

Specifically, I expose subjects to artificial playback stimuli resembling erroneous 

provisioning calls, both with and without prior exposure to natural provisioning 

call stimuli. By comparing responses to artificial playbacks experienced after 

exposure to the provisioning call with responses to the same playbacks 

experienced without a priming stimulus, I evaluate the ability of babblers to 

integrate information obtained during past communicative events when 

responding to a novel acoustic stimulus, thereby extending the search for 

pragmatic inference to avian species.   

The final research question addressed in this thesis regards another 

cognitive mechanism that potentially underlies acoustic communication in 

chestnut crowned babblers: the visual mental representation of signal referents 

(Suzuki 2018). When processing an acoustic stimulus, subjects may either 

attend only to the physical features of the call or, alternatively, they may also 

attend to the meaning of the signal as well as its acoustic properties 
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(Zuberbuhler et al. 1999). In the first scenario, referred to as perceptual 

semanticity, behavioural responses result from the direct effect of the acoustic 

properties of the stimulus on the internal state of the receiver (Owren & Rendall 

2001), while in the second, known as conceptual semanticity, responses are 

mediated by a mental representation of the referent of the acoustic signal 

(Seyfarth et al. 2010). My goal is to determine whether babbler communication 

represents a case of perceptual or conceptual semanticity. Conceptual 

semanticity provides a way to increase the robustness of information transfer 

between individuals, as it involves the detailed internal representation of features 

of the external environment (Premack 1984). However, it is a complex cognitive 

mechanism which in humans and other primates requires interactions between 

specialised areas of the brain (Pan & Sakagami 2012, Logotethis et al. 1995). To 

date, only two other studies have attempted to find evidence for the visual or 

conceptual mental representation of signal referents in avian species, and 

obtained positive results (Evans & Evans 2007, Suzuki 2018), suggesting that 

this ability may not be limited to vocal communication in primates. Chestnut 

crowned babblers are highly dependent on acoustic communication to mediate 

the crucial cooperative behaviours that enable their survival and reproduction in 

a harsh environment. Furthermore, their vocal repertoire is complex in terms of 

both diversity and combinatorial features. Therefore, I consider babblers to be a 

prime candidate for the investigation of mental representation of signal referents, 

as the selective pressure to increase the robustness of acoustically-mediated 

information transfer is likely to be high in this species. 

Tests of conceptual semanticity in the scientific literature are scarce, due 

to the inherent difficulty of investigating the mental processes of non-human 

animals. However, a novel methodology for the empirical investigation of visual 

mental images evoked by acoustic signals has been recently developed by 

Suzuki (2018). This design involves playback of specific acoustic stimuli 

combined with physical model referents of target acoustic signals. By observing 

the subject’s attention to specific visual stimuli in response to playback, Suzuki 

(2018) proposes that the presence of visual mental images of signal referents 

can be inferred. In this experiment, implementing additional experimental 

features including those suggested by Bond (2019), I utilise the following 

playback approach: I expose subjects to playbacks of provisioning calls, which 

are reliably associated with babbler nests, and give them the choice to interact 
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with nests that differ in their component visual features. I predict that if stimuli do 

not evoke visual mental images of nests, receivers should not preferentially 

interact with nests that differ in their component visual features. However, if 

reception of the provisioning call evokes the visual mental image of a nest, I 

predict that babblers should be primed to detect a nest that matches the 

component visual features established by the mental image. 

The questions addressed in this thesis may generate important 

discoveries in the field of comparative vocal communication. First, it is not yet 

known whether birds possess strict or loose internal templates for their context-

specific calls, due to a lack of species that exhibit phonemic contrasts and a 

paucity of studies that examine responses to imperfect calls. Second, the ability 

to integrate contextual information upon reception of an acoustic stimulus is a 

powerful cognitive mechanism that underlies human and primate vocal 

communication, yet this ability has been comparatively under-investigated in 

avian species to date. Finally, the mental representation of signal referents is a 

hotly debated topic in the field of animal communication, with exponents of both 

perceptual and conceptual semanticity offering valid arguments in defence of 

their claims (Seyfarth et al. 2010, Rendall et al. 2009); yet a consistent base of 

empirical evidence for either view is still lacking. Thus, the studies described in 

this thesis represent a valuable opportunity to provide novel experimental 

evidence concerning all three of these important questions in the field of acoustic 

communication. 
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Chapter 2 
Overcoming uncertainty in a non-human phonemic communication system 
 
Summary 
The production of combinatorial vocalisations, wherein multiple acoustic 

elements are combined to create larger structures, is an example of vocal 

complexity exhibited by a number of mammals and birds. However, in only one 

non-human species to date has empirical evidence for phonemic contrasts, i.e. 

the recombination of meaningless acoustic elements to produce meaningful 

signals, been reported: the chestnut-crowned babbler (Pomatostomus ruficeps). 

Therefore, babblers currently represent the only opportunity to compare and 

contrast the cognitive abilities associated with a phoneme-like communication 

system, and thus possibly gain insight into the evolution of this particular trait in 

humans. For example, such a combinatorial design may require specialised 

cognitive mechanisms for overcoming the ambiguity inherent in complex 

combinatorial signals. In this study I examine two cognitive mechanisms that 

may aid this species in processing vocalisations generated via phonemic 

contrasts. Specifically, I test for a) the ability to interpret erroneous phoneme-

based sequences via the assessment of acoustic similarity between signal and 

template, and b) the ability to integrate additional, contextual information upon 

reception of such erroneous sequences. Using a playback experiment involving 

both natural and artificial acoustic stimuli, I find empirical support for the 

presence of both of these cognitive abilities in this species. 

 
Introduction 
Communication, defined as the production of a costly signal by a sender to 

influence the behaviour of a receiver (Seyfarth & Cheney 2003), is probably a 

near-universal feature of animals. Throughout the diversity of life, communication 

occurs in a variety of sensory modalities: among these, chemical signalling is 

believed to be the most ancient, as it occurs even in prokaryotic bacteria 

(Mashburn & Whiteley 2005, Waters & Bassler 2005). More derived forms 

include visual displays, such as the waggle dances of honey bees (Apis 

mellifera) or the aerial courtship acrobatics of Anna’s hummingbirds (Calypte 

anna) (Gruter & Farina 2009, Clark 2009), as well as acoustic signals, including 

the complex songs of passerine birds, or the low-frequency rumbles of elephants 
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(Loxodonta africana), used to communicate with conspecifics up to 10km away 

(Garstang 2004). These signals, whether acoustic, visual, chemical or other, 

share one fundamental outcome: they reduce the receiver’s uncertainty 

regarding features of the environment (Kight et al. 2013). They accomplish this 

by shifting the probability of occurrence of certain events in predictable 

directions. Indeed, when a signal associated with a particular context or event 

occurs, the statistical probability of the event it is associated with increases, 

while the probability of contrasting events diminishes. In this sense, signals 

transmit probability-related information from sender to receiver (Seyfarth et al. 

2010, Wiley 2013, Fischer 2013). 

In social species, increased pressure on communication drives the 

evolution of a broader range of signals, and in the case of acoustic 

communication, of larger vocal repertoires (Leighton 2017). However, as 

repertoire size increases, the likelihood of exhibiting calls that are acoustically 

similar is also greater, especially when combinatorial structures are used, i.e. 

composite vocalisations generated via the combination of smaller acoustic 

elements (Nowak & Krakauer 1999, Zuidema & de Boer 2009, 2018). Therefore, 

all species that exhibit large or combinatorial repertoires must overcome 

ambiguity associated with acoustic stimuli. To do so, receivers may depend on 

specialised cognitive mechanisms to aid in signal reception. For example, 

receivers might: a) possess a very strict acoustic template for each call, 

responding appropriately only if the call is a correct match to the template; or b) 

exhibit a graded response, which is increasingly appropriate the closer the call is 

to a given template. Following recent studies on human speech perception, it 

emerges that fine-grain similarity between a perceived stimulus and a target 

word is required to identify the picture of the target word (Toscano et al. 2013, 

Gregg et al. 2019). This suggests that in humans, where the productive 

combination of phonemes results in boundless generative power (Fitch 2018), 

acoustic templates are necessarily strict. Conversely, whether animals rely on 

strict or loose templates is not yet known, due to the scarcity of playback 

experiments that assess the response to imperfect stimuli. Thus the first question 

addressed in this study regards the importance of strict vs loose acoustic 

templates in the reception of combinatorial vocalisations in an avian species. 

In order to evaluate the ability of animals to process stimuli that are a sub-

optimal match to the corresponding acoustic template, it is necessary to 
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artificially modify the organisation of the acoustic sub-elements that make up the 

playback stimulus. This is a difficult task when a) vocalisations belonging to a 

specific call type consist of a single vocal emission, or b) the sub-elements of a 

single call type are not clearly defined. Therefore, to tackle these questions, I 

have focused on the only known non-human species whose calls are generated 

utilising phoneme-like elements (Engesser et al. 2015), i.e. acoustic items that 

are not used in isolation but combined with others to produce context-specific 

calls (Coye et al. 2017): the chestnut-crowned babbler (Pomatostomus ruficeps). 

This cooperative breeder of the Australian outback exhibits a unique vocal 

repertoire wherein distinct calls are seemingly produced via the re-arrangement 

of specific acoustic sub-units. Two such calls are the flight and nest provisioning 

calls: the flight call is typically produced during aerial movement, while the 

provisioning call is produced when entering or leaving the nest for the 

provisioning of nestlings; moreover, playback experiments have shown that 

subjects respond to the former by scanning the surroundings and to the latter by 

orienting towards an available babbler nest (Engesser et al. 2015). Both the flight 

and provisioning call comprise the acoustic elements labelled A and B: where the 

flight call consists only of element A followed by element B, the nest provisioning 

call contains B, A and B again. Indeed, Engesser et al. (2015) showed that the 

presence/absence of a single B element generates functionally distinct 

behavioural responses to playback, thus constituting unique empirical evidence 

for phonemic contrasts in a non-human animal. Here, by rearranging the A and B 

elements into new sequences and exposing subjects to both natural and 

aberrant versions of the provisioning call, I test whether note sequence alteration 

results in a complete loss of functional response, or if instead the modified 

provisioning calls still elicit nest-related behavioural responses. The latter 

outcome would suggest the ability to respond to coarse-grain similarity to a call 

template (Gregg et al. 2019), which may be advantageous in the context of 

complex and error-prone phonemic constructs. 

Another well-established mechanism used by both humans and non-

human animals to disambiguate the meaning of uncertain calls is the integration 

of contextual information (Norris et al. 2003, Eisner & McQueen 2005, Arnold & 

Zuberbuhler 2013, Fischer et al. 2001). This ability, known as pragmatic 

inference (Cheney & Seyfarth 2014a, 2016), is based on the acquisition of 

information from sources other than the signal itself, during a communicative 
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event between sender and receiver (Price & Fischer 2014, Scott-Phillips 2015, 

Crockford et al. 2007). Any event that is prior to or concurrent with the signal, 

whose association with the signal is recognised, may contribute to refining the 

receiver’s behavioural response – the most direct proxy for ‘meaning’ in studies 

on animal communication (Marler 1961, Smith 1980, Wiley 2013) – particularly 

when the stimulus itself is ambiguous (Fischer et al. 2001). In articulation tests 

on humans, where receivers are tasked with identifying and writing down the 

acoustic test stimuli to which they are exposed, words are more often transcribed 

correctly if they are heard in a sentence than if they are heard in isolation (Miller 

et al. 1951). Furthermore, the receiver’s previously acquired knowledge of the 

vocabulary from which the test stimuli are chosen influences his/her ability to 

identify words correctly. For example, if the receiver is told in advance that 

he/she will be hearing a digit from 1 to 10, then the test stimulus “four” is more 

frequently recognised than if it were presented without previous notification.  

Non-human animals are also capable of integrating information originating 

from sources other than the acoustic stimuli themselves, to guide behavioural 

responses in the appropriate direction (Seyfarth & Cheney 2017). Many primate 

species exhibit calls that are used in multiple different contexts, and thus have 

low context specificity and are relatively ambiguous (Meise et al. 2010, Price et 

al. 2015). It has been shown that when exposed to a priming stimulus, such as 

an eagle shriek or the sound of a falling branch, followed by a multi-purpose 

alarm call, subjects exhibit more appropriate behavioural responses than if the 

call is presented alone (Arnold & Zuberbuhler 2013, Price & Fischer 2014). In 

addition, previously acquired knowledge concerning the social bonds between 

group members has been shown to influence subjects’ responses to playbacks 

simulating social interactions in baboons (Papio ursinus) (Crockford et al. 2007). 

Although the investigation of pragmatic inference has involved a number of 

mammalian species (e.g. Miller et al. 1951, Norris et al. 2003, Cheney & Seyfarth 

1988, Price & Fischer 2014, Townsend et al. 2011), it has received 

comparatively little attention with regards to other taxa (Wheeler & Fischer 2012). 

Furthermore, the experimental designs implemented to research this cognitive 

ability range from direct to indirect, and differ between mammals and birds. To 

my knowledge, only two avian studies have obtained results suggesting the 

ability to combine the information from signal and context. In one case, male 

song sparrows (Melospiza melodia) were exposed to intrusive vs non-intrusive 
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playback stimuli from neighbouring males, and later exhibited variation in 

aggressiveness to further playbacks from those same males, consistent with the 

conditional retaliation hypothesis (Akcay et al. 2009, 2010). On the other hand, a 

study on fowl (Gallus gallus domesticus) by Evans & Evans (2006) was designed 

to test whether acoustic signals in birds are associated with mental 

representations of signal referents (Arnold & Zuberbuhler 1999, Townsend & 

Manser 2012). It emerged that chickens which had been recently familiarised 

with the presence of food later exhibited a weaker response to playback of 

chicken food calls; the authors hence concluded that specific external referents 

such as food are represented mentally upon signal reception. Thus although the 

investigation of pragmatic inference was not stated among the questions 

addressed in the paper, the results of Evans & Evans (2006) also reveal that 

signalling in birds is influenced by previously acquired information. As a 

consequence, previous studies of pragmatic inference in birds are limited by 

both: a) the absence of replication and b) variation in explicit research aims, and 

thus a deeper understanding of this issue in comparative cognition is lacking 

(Fischer 2013). Furthermore, the relevance of this cognitive mechanism to forms 

of combinatorial acoustic communication has not yet been fully appreciated, as 

most studies have focused on species in which acoustic signalling is constrained 

rather than flexible (e.g. Zuberbuhler et al. 2013).  

Thus the second aim of this study is to extend to an avian species, which 

exhibits a complex combinatorial repertoire, the important research questions 

addressed mainly by linguists and primatologists regarding the ability to integrate 

contextual information upon reception of acoustic stimuli (e.g. Norris et al. 2003, 

Arnold & Zuberbuhler 2013, Price & Fischer 2014). To do so, I conform to the 

experimental procedure outlined by Arnold & Zuberbuhler (2013) and Price & 

Fischer (2014), in which subjects are exposed to a target playback stimulus (e.g. 

general-purpose alarm call) either with or without previous exposure to a priming 

stimulus (e.g. predator model or vocalisation). As the priming stimulus provides 

additional contextual information which is related to the target stimulus, the use 

of pragmatic inference predicts that behavioural responses to the target stimulus 

should be more appropriate in the primed vs non-primed condition. In this study, 

I utilise the correct provisioning call sequence (i.e. BAB) as the priming stimulus, 

and measure responses to erroneous sequences, which constitute the target 

stimuli (e.g. AAB), both with and without prior exposure to the priming stimulus. 
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Chestnut-crowned babblers have been observed to produce signals in which the 

arrangement of acoustic elements differs from that of the most common 

templates. For example, babblers occasionally combine the A and B elements 

into aberrant sequences, such as reverse flight calls “BA” (Crane et al. 2016) or 

unusual 3-element sequences, such as “AAB” and “ABA” (Joseph Mine, 

unpublished data). Furthermore, babblers frequently produce calls in bouts, such 

that multiple flight or provisioning calls may follow one another in rapid 

succession, making it possible for the sequence “unambiguous call – ambiguous 

call” to occur in the wild. Thus I ask the following question: if subjects are first 

exposed to the correct combination of provisioning call elements, and 

subsequently played the aberrant version, do they respond to the ambiguous 

signal differently than if it were played alone, i.e. without the priming stimulus? I 

predict that subjects that are previously exposed to the correct provisioning call 

should be more likely to interact with an available babbler nest upon reception of 

a subsequent ambiguous provisioning call stimulus than those which are not 

primed with the correct call. If so, this would suggest that the challenge of 

processing ambiguous acoustic stimuli may be overcome by referring to 

unambiguous stimuli heard previously (Davis et al. 2005). I propose that this 

capacity would be particularly important for a species with such a complex 

combinatorial repertoire, where errors in call production are likely to occur.  

 
Methods 
Study site and species 
The study was conducted during August to November 2016 at the Fowlers Gap 

Arid Zone Research Station in far western New South Wales, Australia 

(141°42´E, 31°06´S). Chestnut-crowned babblers are 50g, sexually 

monomorphic passerine birds endemic to south-eastern Australia (Russell 2015). 

This cooperatively breeding species lives in groups of up to 23 individuals (mean 

10), and is highly vocal, with each adult possessing a repertoire of at least 18 

functionally distinct calls (Crane et al. 2016). The repertoire of this species is one 

of only two known cases in the animal kingdom (including humans) in which 

phonemic contrasts are involved in the production of complex vocalisations 

(Engesser et al. 2015). The calls of the babbler repertoire are used in various 

contexts including social, threat, contact and arousal (Crane et al. 2016). The 

acoustic signals under investigation in this study are the flight call and the 
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provisioning call, both of which are composed of the two acoustically distinct 

elements labelled A and B, in the order AB and BAB, respectively (Engesser et 

al. 2015). 

 

Test-subject Selection and Housing 

Birds were captured using mist-nets in creek beds and transported in bird bags 

no more than 5km away by vehicle to onsite aviaries. No more than 4 group 

members were captured at a time, and no more than 50% of the group was 

removed. Juveniles and breeding females were not taken for experiments. All 

birds were released back to their groups within 48 hours of capture. The aviaries 

consisted of four single compartments each of 2 m long, 2.5 m deep and 2 m 

high with standardised artificial perches on natural substrate with ad lib water. 

Each aviary compartment also contained two previously used babbler nests in 

which the birds could roost overnight, as is typical of this species. The nests 

were extracted from territories within the field site known to contain babbler 

groups, and were selected for their qualities by experienced team members. For 

the purposes of a further experiment described elsewhere (see Chapter 3), two 

nests exhibiting different visual features were chosen: one nest was completely 

intact, of the highest standard of quality (large size, curved dome, protruding 

neck, small opening) and recently maintained, while the other was older and 

exhibited signs of natural degradation such as a flattened dome, smaller neck 

and larger entrance. Babbler nests are highly durable structures, and may retain 

functionality in the wild for several years (Louis O’Neill, pers. obs.), thus it was 

not possible to determine the precise age of the nests. 100% of birds roosted 

within one of the available nests. The two sides of the aviary were opaque metal, 

the front consisted of one-way Perspex allowing observers to record behaviour, 

while the back side of the aviary exhibited a metal mesh of 1cm2 allowing test 

subjects a view to the outside. During the day, each bird was provided 20 

mealworms every 2-3 hours. When more than one bird was removed from a 

group, these birds were housed in the same compartment overnight.  

 
Experimental protocol: playback stimuli and video recordings 
The calls used in the playback experiments were obtained from recordings of 6 

groups of wild chestnut-crowned babblers. Vocalising individuals were adult male 

and female babblers of at least 1 year of age. Flight calls were produced during 



	 23	

flights to and from the nest, while provisioning calls were produced while 

provisioning chicks within the nest. In each case, calls were recorded using a 

Sennheiser directional microphone (ME66/K6) connected to a Marantz solid-

state recorder (PMD660, sampling frequency 48 KHz, 24 bits), positioned within 

1 m of a nest. Playbacks, including the construction of artificial calls, were 

created with Adobe Audition CS6 (Version 6 Build 732, Adobe Systems). From 

each of the six groups recorded, utilising only high-quality recordings (high 

signal-to-noise ratio, no obscuring vocalisations, low background noise), multiple 

sets of seven playback stimuli were created. Each set included a natural flight 

call (AB), a natural prompt call (BAB), a reverse flight call (BA), three triple-

element combinations of A and B notes (AAB, ABA, BAA), and a control stimulus 

consisting in the call of a heterospecific species (spiny-cheeked honeyeater). 

When acoustic elements for the generation of artificial calls were added and/or 

replaced, it was ensured that inter-element distance and amplitude matched the 

original call. A new call-set was played in randomized order for each subject or 

pair of subjects, and birds never received a call-set from their own group. In 13 

cases, two individuals of the same group were placed in separate, non-adjacent 

aviary compartments and tested simultaneously with the same playback-set. 

Subjects tested in pairs did not have visual access to each other, which reduced 

the confounding effect of the presence of another individual during testing. This 

procedure was implemented in order to increase the sample size of the 

experiment within the available time frame.  

Playbacks were broadcast at an amplitude of 50 dB at 2 meters, matched 

to the natural amplitude of flight and provisioning calls as measured with a Castle 

GA206 sound level meter. The speaker was placed immediately outside the 

aviary compartment(s) containing the test subject(s). During each playback, a 

stimulus was repeated six times over a total of 10 s; a break of at least 10 min 

was given for focal individuals to resume pre-stimuli behaviour before the 

initiation of another playback sequence. Playback experiments were conducted 

on the day following capture. 

During testing, individuals were recorded using digital Sony handycams 

(HDR-CX220 and HDR-CX160). Visual recordings of 4 s from playback onset 

were analysed frame by frame using Adobe Audition CC (Version 6 Build 732, 

Adobe Systems). The behavioural parameters recorded were time (s) spent in 

camera view (mean = 3.12 s, range = 0.99-4s), looking at the nest, looking 
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outside, flying or hopping, looking other. Following Engesser et al. (2015), gaze 

direction was evaluated as orientation of the beak following a head movement. 

Behavioural observations began with the first head movement following the first 

acoustic element of the playback, which occurred within a mean of 0.5s from the 

beginning of the playback. Marker lists created in Adobe Audition were extracted 

into txt-files by using CueListTool (Version 1.7). Scoring was conducted blind to 

experimental condition. 

The experiment was conducted on 70 adult chestnut-crowned babblers. 

Some of the individuals were removed from statistical analyses due to 

confounding variables during the experiment: for example, in 2 cases, an aerial 

predator was perched within view of the aviary, which resulted in the test subject 

remaining entirely motionless throughout the test. 

 
Experimental protocol: Rationale 
The primary goal of this experiment was to rearrange the A and B elements 

found uniquely in the flight and provisioning call of the babbler repertoire into 

new combinations, in order to examine the cognitive mechanisms associated 

with signal reception. Specifically, I tested for: a) the ability to respond to 

imperfect stimuli based on acoustic similarity to a natural template, and b) the 

ability to integrate contextual information upon reception of ambiguous calls.  

Each bird was exposed to a series of 7 unique playback treatments with a 

break of 10 min between treatments. The order of the treatment stimuli was 

randomised. 6 out of 7 treatments consisted in playing back two- and three-

element combinations of the A and B elements typical of the flight and 

provisioning calls. Of these, 2 treatments exhibited naturally-occurring 

combinations of elements, i.e. AB (flight call) and BAB (provisioning call). In the 

other four treatments, attempting to span the variation of potential similarity to 

the provisioning call, the elements were rearranged to produce the following 

aberrant combinations: BA, ABA, AAB, BAA. The remaining treatment was a 

control, where the subject was played the call of a sympatric species (spiny-

cheeked honeyeater, Acanthagenys rufogularis). Thus the 6 experimental stimuli 

(AB, BA, ABA, AAB, BAA, BAB) exhibited variation in two key parameters: a) the 

total number of A and B elements (i.e. 2 or 3), and b) the position of these 

elements relative to the correct BAB sequence. I predicted that 3-element 

combinations, and combinations where the position of the A and B elements 



	 25	

resembled that of the correct sequence more closely, would be perceived as 

more similar to the correct sequence than 2-element combinations and those 

where the order of A and B elements differed more substantially from the correct 

sequence (see below for a quantification of acoustic similarity between playback 

stimuli).  

The provisioning call of the babbler repertoire is produced exclusively 

during interactions with the nest, and in addition, it has been shown to elicit nest-

looking behaviour following playback (Crane et al. 2016, Engesser et al. 2015). 

Therefore the key data that was collected regarded the probability that babblers 

performed nest-looking behaviour and the duration of this behaviour, in response 

to different playback stimuli. As mentioned above, the experimental aviaries 

contained two previously used babbler nests exhibiting variation in their 

component visual features. Despite this variation, babblers interacted visually 

with both nests during testing, thus nest-looking response was measured 

irrespective of nest quality for this experiment.  

Based on previous studies on human speech perception (Davis et al. 

2005), I assumed that exposure to the correct provisioning call combination (i.e. 

BAB) prior to reception of an incorrect combination (treatments BA, ABA, AAB 

and BAA) would provide contextual information that could be used to 

disambiguate the meaning of the uncertain signal heard subsequently. However, 

I predicted that this effect should not be present when the correct BAB 

combination was followed by an unambiguous combination, i.e. the flight call 

(AB). Thus I first divided the non-BAB experimental stimuli into two categories: 1) 

ambiguous stimuli (BA, ABA, AAB and BAA), i.e. where the elements had been 

reorganised to differ from any existing call template; and 2) unambiguous 

stimulus (AB), where modifications to natural calls had not been made. Via the 

randomisation of treatment order, I ensured that some birds were exposed to the 

correct provisioning call treatment (BAB) early within the playback set, such that 

all subsequent treatments were categorised as post-priming, and some late, 

such that all previous treatments were effectively not primed with the correct call 

combination. This allowed me to compare the response to ambiguous and 

unambiguous signals heard before and after the focal signal, i.e. BAB, and thus 

to evaluate whether exposure to the correct provisioning call combination could 

be used as contextual information to disambiguate the meaning of future, 

uncertain signals. 
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During playback experiments, a common risk is that birds may habituate 

to playback, decreasing their behavioural responses as more playbacks are 

presented during the experiment (Engesser et al. 2015). I tested for habituation 

by assessing the relationship between behavioural response and playback 

number. There was no significant effect of treatment number on the probability or 

duration of time spent looking at the nest (GLMM, χ²1 = 2.49, p = 0.1; GLMM, χ²7 

= 6.87, p = 0.4). 

 
Statistical Analyses 

Statistical analyses were conducted using the software programme Rstudio 

(Engesser et al. 2017, Ihaka & Gentleman 1996). The packages used were: 

boot, car, tidyverse, ggplot2, tidyr, diplyr, broom, lme4. Analyses of behavioural 

responses from the playback experiments were conducted using Generalized 

Linear Mixed Models (GLMM), some of which were carried out within a two-step 

hurdle model, and chi-square tests for given probabilities. The choice of a hurdle 

model, in which the behavioural response is first assessed qualitatively and then 

quantitatively, was made necessary by the characteristics of the dataset, wherein 

68% of entries for the behaviour of interest (looking at the nest) were 0.  

The first set of analyses regarded the ability to respond to imperfect 

stimuli based on acoustic similarity to a natural template, i.e. the provisioning 

call. To model the differences in behavioural responses among the 7 playback 

treatments I used GLMMs executed within two-step hurdle models. The first step 

of the hurdle model consisted in determining the probability of looking at the nest 

as a function of treatment. The occurrence of nest-looking behaviour, coded as 0 

(did not look at nest) and 1 (looked at nest) represented the response term, fitted 

to a binomial error structure with logit link function. Time spent in camera view 

was fitted as the binomial denominator, treatment type (CTR, AB, BA, ABA, BAA, 

AAB, BAB) was fitted as a seven-level factor, treatment number was fitted as an 

additional explanatory term, and individual identity nested within group identity 

were fitted as random terms. The second step of the hurdle model assessed the 

differences in nest-gaze duration (s) among playback treatments and restricted 

its scope to all the non-zero entries in the dataset. The duration of nest-looking 

behaviour represented the response term, fitted to a binomial error structure with 

logit link function. Time spent in camera view was fitted as the binomial 

denominator, treatment type (CTR, BA, AB, ABA, BAA, AAB, BAB) was fitted as 
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a seven-level factor, treatment number was fitted as an additional explanatory 

term, and individual identity nested within group identity were fitted as random 

terms.  

Once the differences among treatments in the probability and duration of 

nest-looking behaviour had been modelled, I assessed how these differences 

were affected by variation in acoustic similarity to the BAB call template. Classic 

methods for evaluating acoustic similarity, such as spectrographic cross-

correlation (SPCC), were deemed unsuited to the experimental design given that 

all playback stimuli (excluding the control treatment CTR) consisted of 

rearranged versions of two acoustic elements (i.e. A and B), the spectral and 

temporal features of which were maintained constant across all experimental 

stimuli. The playback stimuli nonetheless differed acoustically in two key 

parameters: 1) the total number of A and B elements in the sequence, and 2) the 

number of elements in the correct position relative to the BAB sequence. As both 

of these measures could be directly compared to the correct provisioning call 

sequence, I computed a similarity index for each non-BAB playback treatment 

which accounted for the variation in these two parameters, relative to the BAB 

sequence. Thus each non-BAB treatment was first assigned a score for both a) 

total number of A and B elements relative to the number of A and B elements in 

the BAB sequence (range = 0-1, mean = 0.72); and b) number of elements in 

correct position relative to BAB (range = 0-0.66, mean = 0.44). Finally, a 

composite index was generated for each treatment by calculating the mean of 

the two individual scores (range = 0-0.83, mean = 0.58). Using these composite 

similarity scores, I then examined the effect of acoustic similarity to the BAB 

sequence on the qualitative nest response (i.e. probability of looking at the nest) 

via a further GLMM. The occurrence of nest-looking behaviour, coded as 0 (did 

not look at nest) and 1 (looked at nest) represented the response term, fitted to a 

binomial error structure with logit link function. Time spent in camera view was 

fitted as the binomial denominator, acoustic similarity to the BAB sequence was 

fitted as the primary explanatory term, treatment number was fitted as an 

additional explanatory term, and individual identity nested within group identity 

were fitted as random terms.  

 The second and final set of analyses regarded the integration of 

contextual information upon reception of acoustic stimuli. To model the variation 

in nest response as a function of variation in exposure to contextual information I 



	 28	

used GLMMs. Separate GLMMs were carried out for responses to ambiguous 

stimuli, unambiguous stimuli and control stimuli. In all cases, the occurrence of 

nest-looking behaviour, coded as 0 (did not look at nest) and 1 (looked at nest) 

represented the response term, fitted to a binomial error structure with logit link 

function. Position of the BAB playback stimulus within the playback sequence 

was fitted as a binomial denominator, exposure to the BAB sequence (Before vs 

After) was fitted as a two-level factor, and individual identity nested within group 

identity were fitted as random terms. 

 

Results 
Effect of call structure 
Overall, 32% of the 258 playbacks resulted in birds looking at the nest. For those 

individuals that looked at the nest, the average duration of nest looks was 0.41s 

(SD = 0.22, range = 0.078s - 1.22s).  

The probability of looking at a nest was significantly affected by treatment 

type (GLMM, χ²6 = 16.54, p = 0.01) (Fig. 1A). The control stimulus, as predicted, 

elicited the lowest nest response, with only 13% of subjects looking at the nest 

during such playbacks. The AB and BA stimuli showed a mean 11.5% increase 

in nest response compared to the control, while the incorrect 3-element 

combinations (i.e. ABA, AAB and BAA) showed a mean 22% increase in nest 

attentiveness. Finally, the stimulus where the elements of the provisioning call 

were played in the correct order (i.e. BAB) evoked the highest qualitative nest 

response, with a 37% increase compared to the control. The BAB treatment was 

fitted as the reference level for all subsequent analyses: overall, the probability of 

looking at a nest was significantly greater in the BAB treatment compared to 

Control, AB and BA (GLMM, effect size (ES) = -2.08, SE = 0.61, z value257 = -

3.28, p = 0.0006 [CTR]; ES = -1.19, SE = 0.53, z value257 = -2.4, p = 0.02 [AB]; 

ES = -1.15, SE = 0.53, z value257= -2.13, p = 0.03 [BA]) but not compared to 

ABA, AAB and BAA stimuli (GLMM, ES = -0.84, SE = 0.51, z value257= -1.65, p = 

0.09 [ABA]; ES = -0.54, SE = 0.5, z value257 = 1.08, p = 0.2 [AAB];  ES = -0.63, 

SE = 0.49, z value257 = -1.27, p = 0.2 [BAA]). These results suggest a graded 

response, such that playbacks are more likely to induce nest looking behaviour 

when they are acoustically more similar to the correct provisioning call sequence. 

In support of this suggestion, acoustic similarity to the provisioning call, 

quantified via a composite similarity index as described in Methods section, had 
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a significant positive effect on the probability of looking at the nest (GLMM, χ²1 = 

6.87, p = 0.008): a greater probability of looking at the nest was associated with 

higher acoustic similarity to the BAB sequence (Fig 1B). 

In contrast to the probability of looking at the nest, there was no effect of 

call type on the duration of time spent looking at the nest (GLMM, χ²6 = 3.54, p = 

0.7) (Fig. 1C). This result may have been influenced by the small sample sizes of 

certain treatments (e.g. Control), during which very few birds looked at the nest 

(total = 4). However, the effect of treatment type on duration of time spent 

looking was non-significant even when the treatments with fewest nest looks 

were removed from the analysis (GLMM, χ²3 = 0.69, p = 0.8). These results 

suggest that a gradation in similarity to the correct call induces the nest looking 

response, but does not affect the duration of looking behaviour. 

 

 
Fig 1A. The probability of exhibiting the behaviour of functional relevance (i.e. 

looking at the nest) differed significantly among treatment types. Figure 1A 

shows the probability for each treatment type (± Standard Error [SE]), generated 

from a Generalized Linear Mixed Model (GLMM), in which the occurrence of 

nest-looking behaviour was fitted as the independent response term. The 

response term was fitted to a binomial error structure with logit link function, time 

spent in camera view was fitted as the binomial denominator, treatment type 

(CTR, AB, BA, ABA, BAA, AAB, BAB) was fitted as a seven-level factor, 

treatment number was fitted as an additional explanatory term, and individual 

identity nested within group identity were fitted as random terms. CTR represents 

the control treatment, wherein the call of a different bird species was played. The 
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other treatments are labelled according to the combination of acoustic elements 

specific to each treatment, i.e. AB treatment consisted of elements A + B, BA 

consisted of elements B + A, etc. As predicted, the control treatment exhibited 

the lowest probability of looking at the nest, while the correct provisioning call 

combination (i.e. BAB treatment) elicited the highest probability of looking at the 

nest. 

 

 

 
Fig 1B. The probability of looking at the nest for each playback treatment 

increases with greater acoustic similarity to the provisioning call, i.e. BAB. The 

similarity to the provisioning call for each treatment type was calculated utilising 

a composite similarity index generated according to two specific criteria: a) total 

number of A and B elements in the call relative to the number of A and B 

elements in the provisioning call, b) number of A and B elements in correct 

position relative to the provisioning call. 
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Fig 1C. The duration of nest looks did not differ significantly among treatments. 

Figure shows means and quartiles for each treatment type, generated from a 

Generalized Linear Mixed Model (GLMM), in which the duration of nest-looking 

behaviour was fitted as the independent response term. The response term was 

fitted to a binomial error structure with logit link function, time spent in camera 

view was fitted as the binomial denominator, treatment type (CTR, BA, AB, ABA, 

BAA, AAB, BAB) was fitted as a seven-level factor, treatment number was fitted 

as an additional explanatory variable, and individual identity nested within group 

identity were fitted as random terms. 

 
Effect of context 
Birds might differentially perceive the reorganised playbacks as provisioning calls 

in the artificial arena depending on whether or not they have already heard the 

provisioning call. The hypothesis that prior playbacks of BAB have a priming 

effect would be upheld if birds responded differentially to ambiguous treatments 

but not unambiguous treatments after previously hearing the correct call. In 

accordance with these predictions, prior exposure to the BAB treatment was 

associated with a significant increase in the likelihood of looking at the nest 

during subsequent ambiguous stimuli (GLMM, χ2 = 6.024, p = 0.01). 

Furthermore, exposure to the BAB treatment did not significantly influence the 

probability of looking at the nest during subsequent unambiguous stimuli (GLMM, 

χ2 = 6e-04, p = 0.9) and during subsequent control stimuli (GLMM, χ2 = 3e-04, p 

= 0.9) (Fig. 2).  
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 At this point, it must be noted that these results have potential 

confounding implications on the previous analyses regarding the ability to 

respond to imperfect signals based on perceived acoustic similarity. Indeed, the 

finding that birds demonstrated significantly greater nest-looking behaviour in 

response to certain treatments which exhibited increased acoustic similarity to 

the provisioning call (e.g. AAB, BAA), could have potentially been confounded by 

the fact that these treatments were experienced after exposure to the correct 

sequence of provisioning call elements, as described above. Therefore, to 

control for the confounding effect of previous exposure to the BAB sequence, I 

re-ran all statistical analyses assessing the variation in nest-looking response as 

a function of playback treatment and acoustic similarity according to the following 

procedure: all unambiguous playback treatments (i.e. AB) and the control 

treatment (i.e. CTR), which had not shown to be significantly influenced by 

previous exposure to the BAB sequence, were maintained without modification; 

while all ambiguous playback treatments (i.e. BA, ABA, AAB, BAA) experienced 

after exposure to the BAB sequence were removed from the new analyses, 

leaving only the cases in which ambiguous stimuli were experienced prior to 

exposure to the BAB sequence. These further tests confirmed the previous 

findings regarding the response to imperfect stimuli: a) the probability of looking 

at a nest was still significantly affected by treatment type (GLMM, χ²6 = 14.7, p = 

0.02); and b) treatments with greater acoustic similarity, as measured by the 

composite similarity index described above, were still associated with a 

significantly greater probability of looking at the nest (GLMM, χ²1 = 3.87, p = 

0.04). Thus the effect of playback treatment on the probability of looking at the 

nest, via the variation in acoustic similarity to the provisioning call, was significant 

regardless of the integration of contextual information from previous acoustic 

stimuli. 
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Fig 2. Previous exposure to the BAB treatment induced greater nest looking 

behaviour in subsequent ambiguous treatments (i.e. BA, ABA, AAB, BAA), but 

not in subsequent unambiguous ones (AB), or in the control treatment (CTR). 

Figure shows probability of looking at the nest for each treatment category (± 

Standard Error [SE]). Ambiguous treatments were defined as those where the 

element combination had been rearranged so as not to match any existing call 

template, while unambiguous treatments represented unmodified templates of 

existing bird calls. 

 

Discussion 
I have provided evidence that chestnut crowned babblers respond to acoustic 

signals constructed via phonemic contrasts according to the similarity of the 

perceived call to its call type template. Furthermore, the results suggest that 

babblers are capable of integrating contextual information upon reception of an 

acoustic signal. I propose that the ability to assess acoustic similarity between 

signal and template, and to integrate contextual information during vocal 

communication, may have played an important role in the evolution of a 

phoneme-like communication system in chestnut crowned babblers. These 

cognitive abilities are not necessarily specialised adaptations to a phoneme-

based communication system: indeed, the facultative adjustment of behaviour 

based on acoustic similarities and the integration of contextual information have 

been documented in species exhibiting non-phoneme based repertoires (e.g. 

McDonald & Wright 2011, Crockford et al. 2007). However, whether these 

cognitive abilities in chestnut crowned babblers represent specialised 

adaptations for phoneme-based signalling, or pre-existing mechanisms which 
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were then co-opted for use in this specific form of combinatorial communication, 

this study highlights the importance of such abilities in a species exhibiting a 

rudimentary form of phonemic contrasts. As chestnut crowned babblers are the 

only non-human animal known to utilise such a combinatorial design, 

understanding which cognitive mechanisms are shared or unique in the 

comparison of human and babbler phoneme use provides valuable insight into 

the evolution of combinatorial communication. 

In communication systems such as the one investigated in this study, as 

well as in species that exhibit graded repertoires, vocalisations belonging to a 

single call type may nonetheless exhibit within-individual variation in acoustic 

properties, resulting in ambiguity (Hammerschmidt & Fischer 1998, Keenan et al. 

2013). For example, a phoneme-like combinatorial design is associated with a 

high chance of error in element sequence generation, and thus of producing 

ambiguous signals, in speech development in human children (Jakobson 2012, 

Smit 1993). Similarly, the chestnut crowned babbler provisioning call normally 

follows the B + A + B element combination template, yet several instances of 

incorrect A and B element combinations have been recorded in both natural and 

experimental circumstances (H. Mylne, E. Tew, J. Mine, unpublished data). 

These aberrant signals could potentially impede the acquisition of information, 

and thus have detrimental effects on both sender and receiver. To circumvent 

this problem, information acquisition may depend not only on the recognition of 

associations between signals and events, but also between signals and natural 

templates, via the assessment of acoustic similarity. Indeed, the ability to adjust 

behaviour based on the assessment of acoustic similarity between different 

vocalisations is not without precedent, as this mechanism is used for kin 

discrimination in multiple avian species (Sharp et al. 2005, McDonald & Wright 

2011). The results of this study indicate that babblers are sensitive to the 

similarity between a call type template, i.e. the provisioning call, and the actual 

stimulus that is heard. Not only do they perceive this similarity, but the 

provisioning-related behavioural response associated with each stimulus is 

greater when the similarity of the call to the template is also high. As highlighted 

by this study in the case of variation in sequences of A and B elements, the 

ability to assess acoustic similarity to the BAB call template allows the babblers 

to produce appropriate behavioural responses to signals even when these 

signals match their corresponding template imprecisely. 
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 Interestingly, recent studies show that human phoneme combination 

appears to rely on fine-grain, as opposed to coarse-grain similarity between a 

perceived signal and the target template for the identification of signal referents 

(Gregg et al. 2019). Therefore, where phoneme-based templates used in human 

speech may be referred to as “strict”, babbler templates appear to exhibit greater 

flexibility. It is possible that this discrepancy may be explained by differences in 

the productivity of the phoneme-based system: humans recombine single 

phonemes, such as the sound /n/, into a vast array of different words; in 

babblers, on the other hand, the use of the A and B elements is limited to only 

two functionally distinct calls. As a result, the ambiguity experienced upon 

reception of erroneous combinations of A and B elements is likely to be lower 

than in the case of phonemes that are used productively. Thus the limited 

number of potential signals comprising the A and B elements, as a result of non-

productivity in phoneme-like combination, may facilitate adaptive decision-

making based on coarse-grain acoustic similarity. This study has limited its 

scope to the A and B elements of the babbler repertoire, and it is therefore 

unknown, although plausible, whether the ability to respond to ambiguous 

phoneme-based sequences via coarse-grain acoustic similarity to a template 

also applies to other calls produced by this species. Replicating this experimental 

procedure across the entire repertoire would help to shed light on the importance 

of this cognitive ability for the interpretation of phoneme-based combinatorial 

signals. 

With this study, I have also presented novel empirical evidence for the 

ability to integrate contextual information upon reception of acoustic stimuli in 

chestnut crowned babblers, a cooperatively breeding bird. Specifically, exposure 

to incorrect combinations of the acoustic elements that make up the provisioning 

call resulted in a heightened nest-looking response when subjects had previously 

been exposed the correct sequence of provisioning call elements. In essence, 

subjects were more likely to respond to incorrect arrangements if they had 

previously heard the correct arrangement, than if they had not. These findings 

suggest that chestnut crowned babblers are capable of integrating previous 

stimuli in order to produce appropriate behavioural responses to future, 

ambiguous signals. This ability, known as pragmatic inference, appears to be 

beneficial in the context of vocal communication in this species by allowing 

receivers to reduce their uncertainty regarding error-prone, combinatorial 
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acoustic stimuli. I thus propose that the role of contextual information in acoustic 

communication is as important for vocal birds as it is for mammals. 

In primates, where pragmatic inference has received substantial attention, 

the most commonly invoked pressure driving its evolution is the inflexibility of 

signal production due to vocal constraints (e.g. Arnold & Zuberbuhler 2013). 

Indeed, the vocal repertoires of non-human primates are constrained by both the 

neurobiological circuits involved in the vocal pathway, as well as the morphology 

of the vocal apparatus (Hammerschmidt & Fischer 2008). Due to such 

constraints, a limited number of calls may be produced in association with a wide 

range of contexts. Putty-nosed monkeys (Cercopithecus nictitans), for instance, 

possess two distinct alarm calls, which are used in contexts ranging from aerial 

to terrestrial predators, falling trees or branches, encounters with non-predatory 

heterospecifics, as well as within and between-group interactions (Arnold & 

Zuberbuhler 2013). But as in the case of putty-nosed monkeys and other primate 

species, despite constraints on signal production, behavioural responses to vocal 

signals are often flexible and complex (Wheeler & Fischer 2012). This 

behavioural flexibility has been shown to depend largely on the capacity to 

integrate contextual information upon reception of acoustic stimuli. For instance, 

when such general-purpose alarm calls are combined with contextual stimuli 

such as the behaviour of other group members or environmental cues, the 

associated behavioural responses reflect the available contextual information 

(Arnold & Zuberbuhler 2013, Price & Fischer 2014). Thus in primates, receivers 

acquire additional information before or during the communicative event, in order 

to overcome ambiguity associated with vocal constraints. 

In many avian species, the vocal apparatus is not constrained, but highly 

specialised and flexible (Suthers et al. 2016). Many passerines exhibit large and 

complex song and call repertoires (Catchpole & Slater 2003), and in some 

cases, new signals can be continuously learned throughout the lifetime (Tyack 

2016). Thus where pragmatic inference occurs in birds, the selective pressures 

on its development are likely to be different from those operating in primates. As 

birds exhibit a much greater scope for acoustic flexibility, ambiguities in vocal 

communication are not likely to arise from vocal constraints. Yet a high degree of 

signal complexity, whether in terms of repertoire size or combinatorial properties, 

may also represent a source of ambiguity (Engesser & Townsend 2019). When 

repertoires are large, or when multiple calls share a proportion of their 
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combinatorial sub-units, different signals are more likely to resemble each other 

(Coye et al. 2017), as demonstrated by flight/prompt calls and long 

distance/maternal contact calls in chestnut crowned babblers (Crane et al. 2016). 

Furthermore, when sequences of acoustic elements are underpinned by 

combinatorial rules, such as in the stochastic structures of black fronted titi 

monkeys (Callicebus nigrifrons) or the temporal structures of southern pied 

babblers (Turdoides bicolor) (Engesser & Townsend 2019), errors in production 

and reception may occur (Bradbury & Vehrencamp 1998). Thus in birds, 

specialised cognitive mechanisms may be required to overcome ambiguity 

associated with complex, rather than constrained, vocal signals. Indeed, as 

shown by this study, pragmatic inference in chestnut-crowned babblers is useful 

to circumvent the loss of information arising from ambiguities in the production 

and reception of signals generated via phonemic contrasts.  

This study constitutes one of the first explicit tests of pragmatic inference 

in an avian species, and hence the experimental procedure warrants replication. 

Further research on pragmatic inference in birds may confirm that although 

distinct taxa have converged upon this cognitive mechanism to aid in vocal 

communication, the specific selective pressures driving its emergence are 

distinct. In particular, this study suggests a role of pragmatic inference in 

mediating the reception of highly specialised and flexible forms of vocal 

communication, as opposed to constrained vocal output. Furthermore, this 

constitutes an important step forward for the field of comparative communication, 

as it highlights the link between pragmatic inference and combinatorial signalling 

in a non-human species. It is widely accepted that the acquisition of contextual 

information is an important component of vocal communication in humans 

(Noveck et al. 1991, Goodman & Frank 2016, Seyfarth & Cheney 2017). 

However, human language is often regarded as an occurrence whose distinct 

features are entirely unique within the animal kingdom (Hauser, Fitch & Chomsky 

2002). Yet bit by bit, combinatorial abilities once considered unique to language 

such as affixation, phonemic contrasts and compositional processing are 

increasingly finding parallels in animal vocal communication, especially in avian 

species (Outtara et al. 2009, Engesser et al. 2015, Suzuki et al. 2016, Engesser 

et al. 2016). Furthermore, as detailed by this study, the use of combinatorial 

acoustic signals in vocal communication is accompanied by a cognitive 

mechanism known as pragmatic inference, which enables signallers and 
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receivers to overcome the ambiguity inherent in vocal communication by 

acquiring information from sources other than the signals themselves. This 

suggests that the ability to acquire contextual information during a 

communicative event may be a prerequisite for the evolution of complex forms of 

combinatorial signalling, with specific reference to phonemic contrasts. 

In conclusion, there is certainly much to be learned from renewed and 

heightened interest in animal combinatorial communication. This field has the 

potential to shed light on the evolutionary origins of human language, which has 

played such a key role in developing the highly adaptive social structures and 

behaviours typical of our species, and yet remains shrouded in mystery 

preceding the adoption of written language. For example, the link between 

pragmatic inference and phonemic contrasts highlighted here may have 

important implications for understanding the cognitive mechanisms which 

promoted the emergence of phoneme-based signals in human language. In 

addition, species with large and complex vocal repertoires, such as birds and 

marine mammals, provide a valuable opportunity to explore the diversity of 

combinatorial structures and cognitive mechanisms related to vocal 

communication (Engesser & Townsend 2019). This endeavour is sure to 

enlighten us as to the myriad ways in which vocal communication has evolved, 

and rescale our anthropocentric views while broadening our comprehension of 

what communication really is. 
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Chapter 3 
An empirical test of the generation visual mental images upon signal 

reception in an avian species 
 

Summary 
In non-human vocal communication, behavioural responses to acoustic signals 

may either be mediated by reflexive, motivation-induced reactions to the physical 

features of the signal, by associative learning between signals and contexts, or 

by processing the signal’s meaning through an internal representation of the 

signal’s referent. Here, I investigate the processing of a context-specific signal, 

i.e. the nest provisioning call, in cooperatively breeding chestnut-crowned 

babblers (Pomatostomus ruficeps), by exposing subjects to playbacks of natural 

nest provisioning calls and to artificial stimuli designed to exhibit varying degrees 

of acoustic similarity to the provisioning call. I hypothesise that upon reception of 

provisioning calls, babblers generate a visual mental image of the signal’s 

presumed referent, i.e. the nest. I predict that if babblers generate a mental 

image of the nest, they should be primed to visually detect a nest that matches 

their internal representation rather than other available nests. Furthermore, I 

predict that this preferential detection should be dependent upon the similarity of 

the perceived signal to the provisioning call template. The results however show 

no significant tendency to interact preferentially with any individual nest during 

playback of provisioning calls or similar acoustic stimuli. This suggests that the 

reception of provisioning calls does not evoke the visual mental image of a nest 

in chestnut crowned babblers. Alternative explanations for the processing of 

acoustic signals are discussed. 

 
Introduction 
The ability to process information extracted from the environment is a 

fundamental characterisation of all animals (Thornton et al. 2012). The capacity 

for information processing exhibits spectacular variation in complexity, from high-

speed and fine-scale perception of sensory information (Wagner et al. 1987; 

Schnitzler & Denzinger 2011), to detailed spatial memorisation of environmental 

features such as food or water resources (Thornton & Boogert 2019; Polansky et 

al. 2015). Furthermore, information extracted from the environment may be 

stored in the animal’s cognitive machinery and re-used during future behavioural 
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events.  For example, when brown-eared bulbuls (Hypsipetes amaurotis pryeri) 

learn to associate the butterfly species (Pacbliopta aristolochiae) and its 

Batesian mimic (Papilio polytes) with an uncomfortable taste, they subsequently 

refuse to eat these species in later encounters (Uèsugi 1996). However, the 

precise form in which this information is perceived, stored and retrieved within 

animal minds is unclear, and represents a topic of hot debate (Stegmann 2013). 

In humans, visual mental images, defined as the mental representation of visual 

and accompanying sensory information, are a pervasive aspect of cognition 

(Kreiman et al. 2000, Pearson et al. 2015). However, it is currently unknown 

whether non-human animals also generate mental images depicting specific 

behaviourally-relevant features of the environment, and particularly, whether 

these mental images can be evoked by specific sensory stimuli such as vocal 

signals (Seyfarth et al. 2010, Stegmann 2013, Rendall & Owren 2009). 

In human language, it is natural for senders and receivers to associate a 

vocal stimulus, such as the noun ‘leopard’, with an internal depiction of the 

referent (Hurford 2007, Fitch 2010). Crucially, we do not only interact with signals 

on the basis of their acoustic properties, we also attend to their semantic content 

via an internal representation of the signal’s meaning (Zuberbuhler et al. 1999). 

But what happens in the mind of a non-human animal upon reception of a 

context-specific signal? On one hand, some suggest that animal signals could 

represent a case of perceptual semanticity: receivers only attend to the physical 

features of a call and this sensory percept alone, via its influence on the 

receiver’s internal motivational state, drives subsequent behaviour (Owren & 

Rendall 2001; Rendall et al. 2009). This approach excludes any implication of 

information, meaning or visual mental images. Others argue in favour of 

conceptual semanticity, i.e. where the acoustic properties of vocal signals are 

only relevant insofar as they relate to associated cognitive structures such as 

visual mental images or concepts (Seyfarth et al. 2010; Seyfarth & Cheney 

2017). Prompted by the seminal work of Seyfarth, Cheney and Marler (1980a,b) 

on the alarm call system of vervet monkeys, over the past four decades, a flurry 

of research in the field of animal communication has produced evidence across 

multiple taxa for so-called functionally referential signals, i.e. those that contain 

information referring to specific internal or external events, insofar as they: a) are 

produced predictably in certain contexts, and b) elicit specific behavioural 

responses in the receiver (reviewed in Townsend & Manser 2013, Wheeler & 
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Fischer 2012). Yet despite representing promising candidates for conceptual 

semanticity, even signals that meet these two key criteria for functional reference 

do not imply visual mental images, as the resulting behavioural responses could 

be explained more parsimoniously via associative learning (Wheeler & Fischer 

2012). Therefore, direct testing of conceptual semanticity, as opposed to 

perceptual semanticity, requires a careful experimental approach. 

Few empirical tests have been conducted which specifically address the 

presence and quality of visual or conceptual representations of signal referents 

in non-human animals, and much of what we know, we owe to the tradition of 

Peter Marler. One such study was conducted by Zuberbuhler, Cheney & 

Seyfarth (1999), on the alarm call repertoire of diana monkeys (Cercopithecus 

diana diana). The authors examined whether receivers simply attend to the 

perceptual, acoustic features of alarm calls, or whether, on the other hand, they 

form a concept regarding the meaning of calls upon signal reception. To do so, 

they used a prime-probe playback experiment, subjecting individuals to a two-

step playback sequence involving vocalisations related to specific predators and 

recording responses in terms of subsequent alarm calling behaviour. In the 

baseline treatment, a crowned eagle (Stephanoaetus coronatus) or leopard 

(Panthera pardus) alarm call was followed by another, identical alarm call, thus 

the two stimuli were similar in both their acoustic and purported semantic 

properties. The authors predicted a weaker response to the probe due to a 

habituation effect. In the test treatment, the priming stimulus in the form of an 

eagle or leopard alarm call was followed by an actual eagle or leopard 

vocalisation as the probe stimulus. In this case, the two stimuli differed in their 

acoustic properties but were similar in their semantic properties, i.e. in indicating 

the presence of a specific predator. The authors predicted that if receivers 

attended only to acoustic properties, they would not transfer habituation between 

the prime and probe stimulus, thus they would exhibit a strong response to both 

stimuli. However, if they also attended to the semantic properties of the signal, 

via an internal conceptualisation of the signal’s meaning, then they would exhibit 

a weaker response to the probe stimulus due to its similarity in semantic content 

to the priming stimulus. Indeed, monkeys exposed to eagle alarm calls followed 

by eagle vocalisations produced significantly fewer alarm calls to the probe than 

to the prime stimulus. This result suggests that diana monkeys generate an 



	 42	

internal representation of signal referents, either in the form of a visual mental 

image or a concept, upon reception of predator-specific alarm calls. 

Recently, a study by Suzuki (2018) on an avian species, the Japanese tit 

(parus minor), has provided a novel empirical approach and promising results for 

the study of visual mental images evoked by vocal signals. Japanese tits, like the 

diana monkeys described above, produce distinct alarm calls for different 

predators, including as a specific “jar” call produced only when encountering 

predatory snakes. The author hypothesised that this predator-specific alarm call 

evokes a visual mental image of a snake in receivers, and consequently, 

predicted that reception of this call would enhance detection of the target object, 

i.e. a snake. In Suzuki’s experimental design, tits were exposed to a model 

snake, in the form of a short stick pulled by a string, and to three kinds of 

acoustic stimuli: 1) the snake-specific “jar” call, 2) a general alarm call used for a 

wider range of predators, and 3) a recruitment call, used to attract conspecifics in 

non-predatory contexts (Suzuki 2011, 2012, 2014). Conforming to his 

predictions, Suzuki found that tits were more likely to approach the stick when 

hearing the snake-specific alarm call than when hearing any of the other 

playback stimuli, and moreover, that tits would only approach the stick when it 

appeared to move in a snake-like fashion (i.e. being pulled along the ground or 

up a tree), rather than when the movement of the stick did not resemble the 

movement of a real snake (i.e. swinging from a low branch). Thus from the 

observation that receivers become more visually perceptive to objects 

resembling snakes only when hearing a snake-specific alarm call, the author 

concluded that this increased visual detection of snake-like stimuli is mediated by 

a visual mental image of a snake. 

Although encouraging, the results of Suzuki (2018) spark consideration as 

to whether the experiment can be unequivocally interpreted as evidence for 

signal-evoked visual mental images in receivers, as detailed in Bond’s (2019) 

subsequent criticism of the study. Crucially, Bond notes that the findings cannot 

rule out the alternative explanation that the behavioural responses observed 

could merely represent a chain of innate responses, driven by associative 

learning: when the bird hears a snake-specific call, it automatically looks down; 

by doing so, it sees the snake, which induces a learned mobbing response. 

However, Bond does not propose to abandon the novel approach outlined by 

Suzuki altogether, but to refine it so as to permit a closer examination of the link 
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between a context-specific call and particular attention to specific visual features. 

To successfully validate the hypothesis of a visual mental image, Bond suggests 

integrating an analysis of the component features of the presumed referent, by 

utilising a fully realistic model, as well as additional models that differ from the 

true model in certain visual stimulus features e.g. shape/color. Thus in future 

playback experiments, by combining a highly referential call with models that 

differ in their component visual features, and observing the resulting variation in 

behavioural responses, more detailed information can be acquired regarding the 

presence, as well as the quality of signal-evoked visual mental images. 

With this study, I continue the investigation of visual mental images 

associated with vocal communication in non-human animals. To this end, I 

conduct a playback experiment on an avian species, the chestnut-crowned 

babbler (Pomatostomus ruficeps). This highly social and cooperatively-breeding 

bird exhibits a complex vocal repertoire comprising at least 13 distinct signals 

used in specific contexts (Crane et al. 2016), and relies on such a complex 

system of vocal communication to cooperate effectively within a harsh 

environment, the Australian outback (Russell 2016). I limit my investigation to the 

process underlying the reception of one babbler call, the provisioning call. This 

signal, which consists of the combination of the acoustic elements labelled A and 

B in the arrangement B+A+B, is produced by babblers carrying food items when 

approaching and leaving the breeding nest (Engeser et al. 2015). Babblers are 

obligate cooperative breeders, and thus rely heavily on the provisioning efforts of 

helpers outside the breeding pair for successful offspring development (Russell 

et al. 2010). As the provisioning call plays a significant role in mediating this 

cooperative behaviour, I consider this signal to be sufficiently important to be an 

appropriate target stimulus for the investigation of visual mental images. I 

propose that the evolution of visual mental images of signal referents could have 

been driven by selection for increased robustness of information transfer during 

vocal communication. 

My experimental design draws from that of Suzuki (2018): I conduct a 

playback experiment in which subjects are exposed to multiple distinct stimuli, 

and allowed to interact with the presumed referents of the acoustic stimuli. 

However, my design implements several novel features compared to previous 

work. First, I use multiple signal referent models with different component visual 

features, as suggested by Bond (2019). The presumed referent of the chestnut 
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crowned babbler provisioning call is a nest, as this call is produced solely during 

interactions with the breeding nest. I thus allow subjects the opportunity to 

interact with nests differing in their component visual features. I utilise both a 

completely intact, high-quality babbler nest, as well as a nest which has 

undergone natural degradation: the two nests differ in overall shape and size, as 

well as other visual features such as the size of the nest opening and the length 

of the protruding neck. Finally, adding a completely novel perspective to the 

approach outlined by Suzuki (2018) and Bond (2019), I deconstruct the vocal 

signal in question, i.e. the provisioning call, into its core acoustic components, 

and rearrange these structural units into novel combinations to use as 

experimental playback stimuli. I propose that by artificially generating acoustic 

variation in the target signal, and observing how this variation relates to 

behavioural responses, it is possible to gain an understanding of the underlying 

mental process that results in the formation of a visual mental image upon signal 

reception. I envision two possible outcomes: 1) increasing acoustic similarity to 

the provisioning call results in enhanced detection of target referents with 

specific component visual features, suggesting a graded mechanism; or 2) only 

the correct, unmodified provisioning call results in enhanced detection of target 

referents, suggesting a threshold mechanism. I propose that the empirical 

investigation of visual mental images generated upon signal reception can 

greatly benefit from procedures that involve the deconstruction of both the 

acoustic signal and its presumed referent into their component acoustic and 

visual features. 

 

Methods 

 
Study site and species 
The study was conducted during August to November 2016 at the Fowlers Gap 

Arid Zone Research Station in far western New South Wales, Australia 

(141°42´E, 31°06´S). Chestnut-crowned babblers are 50g, sexually 

monomorphic passerine birds endemic to south-eastern Australia (Russell 2015). 

This cooperatively breeding species lives in groups of up to 23 individuals (mean 

10), and is highly vocal, with each adult possessing a repertoire of at least 18 

functionally distinct calls (Crane et al. 2016). The repertoire of this species is one 

of only two known cases in the animal kingdom (including humans) in which 
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phonemic contrasts are involved in the production of complex vocalisations 

(Engesser et al. 2015). The calls of the babbler repertoire are used in various 

contexts including social, threat, contact and arousal (Crane et al. 2016). The 

acoustic signals under investigation in this study were the flight call and the 

provisioning call, both of which are composed of the two acoustically distinct 

elements labelled A and B, in the order AB and BAB, respectively (Engesser et 

al. 2015). 

 

Test-subject Selection and Housing 

Birds were captured using mist-nets in creek beds and transported in bird bags 

no more than 5km away by vehicle to onsite aviaries. No more than 4 group 

members were captured at a time, and no more than 50% of the group was 

removed. Juveniles and breeding females were not taken for experiments. All 

birds were released back to their groups within 48 hours of capture. The aviaries 

consisted of four single compartments each of 2 m long, 2.5 m deep and 2 m 

high with standardised artificial perches on natural substrate with ad lib water. 

The two sides of the aviary were opaque metal, the front consisted of one-way 

Perspex allowing observers to record behaviour, while the back side of the aviary 

exhibited a metal mesh of 1cm2 allowing test subjects a view to the outside. 

During the day, each bird was provided 20 mealworms every 2-3 hours. When 

more than one bird was removed from a group, these birds were housed in the 

same compartment overnight. Crucially, each aviary compartment also contained 

two previously used babbler nests in which the birds could roost overnight, as is 

typical of this species. The nests were extracted from territories within the field 

site known to contain babbler groups, and were selected for their qualities by 

experienced team members. For the purposes of this experiment, two nests of 

different quality were chosen: one nest, referred to as the high quality nest, was 

completely intact and recently maintained, while the other, referred to as the low 

quality nest, was older and exhibited signs of natural degradation (Fig 1). 

Specifically, the nests differed in 4 key visual features: 1) size (large vs small), 2) 

shape (domed vs flattened), 3) presence of protruding neck (present vs absent), 

and 4) size of nest opening (large vs small). The fully intact, high quality nest 

was large (34x45x15cm), domed, with a protruding neck and small nest opening 

(3x4cm). All of these features contribute to increasing the functionality of the 

nest: larger and domed nests are more spacious, while the protruding neck and 
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small opening hinder the access of larger avian predators such as the nankeen 

kestrel. Thus the high quality nest represents a fully realistic model of the 

presumed referent of the provisioning call, via the biological relevance of its 

naturalistic features. The degraded, low quality nest was small (23x27x10cm), 

flattened, with no protruding neck and a larger nest opening (5x7cm). Babbler 

nests are highly durable structures (Louis O’Neill, pers. obs.), thus it was not 

possible to determine the precise age of the nests. 100% of birds roosted within 

one of the available nests.  

 

A)   B)  

Fig 1. The two natural babbler nests used as presumed referents for the 

provisioning call in the experiment. Nest A) is the low quality nest, measuring 

23x27x10cm while nest B) is the high quality nest, measuring 34x45x18cm. 

Apart from differences in size and overall shape (flattened vs domed), the nests 

differ in the presence of a protruding neck (highlighted by the red arrow) and the 

size of the opening, which measured 5x7cm in the low quality nest and 3x4cm in 

the high quality nest. 

 

Experimental protocol: playback stimuli and video recordings 
The calls used in the playback experiments were obtained from recordings of 6 

groups of wild chestnut-crowned babblers. Vocalising individuals were adult male 

and female babblers of at least 1 year of age. Flight calls were produced during 

flights to and from the nest, while provisioning calls were produced while 

provisioning chicks within the nest. In each case, calls were recorded using a 

Sennheiser directional microphone (ME66/K6) connected to a Marantz solid-

state recorder (PMD660, sampling frequency 48 KHz, 24 bits), positioned within 
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1 m of a nest. Playbacks, including the construction of artificial calls, were 

created with Adobe Audition CS6 (Version 6 Build 732, Adobe Systems). From 

each of the six groups recorded, utilising only high-quality recordings (high 

signal-to-noise ratio, no obscuring vocalisations, low background noise), multiple 

sets of seven playback stimuli were created. Each set included a natural flight 

call (AB), a natural prompt call (BAB), a reverse flight call (BA), three triple-

element combinations of A and B notes (AAB, ABA, BAA), and a control stimulus 

consisting in the call of a heterospecific species (spiny-cheeked honeyeater, 

Acanthagenys rufogularis). When acoustic elements for the generation of 

artificial calls were added and/or replaced, it was ensured that inter-element 

distance and amplitude matched the original call. A new call-set was played in 

randomized order for each subject or pair of subjects, and birds never received a 

call-set from their own group. In 13 cases, two individuals of the same group 

were placed in separate, non-adjacent aviary compartments and tested 

simultaneously with the same playback-set. Subjects tested in pairs did not have 

visual access to each other, which reduced the confounding effect of the 

presence of another individual during testing. This procedure was implemented 

in order to increase the sample size of the experiment within the available time 

frame.  

Playbacks were broadcast at an amplitude of 50 dB at 2 meters, matched 

to the natural amplitude of flight and provisioning calls as measured with a Castle 

GA206 sound level meter. The speaker was placed immediately outside the 

aviary compartment(s) containing the test subject(s). During each playback, a 

stimulus was repeated six times over a total of 10 s; a break of at least 10 min 

was given for focal individuals to resume pre-stimuli behaviour before the 

initiation of another playback sequence. Playback experiments were conducted 

on the day following capture. 

During testing, individuals were recorded using digital Sony handycams 

(HDR-CX220 and HDR-CX160). Visual recordings of 4 s from playback onset 

were analysed frame by frame using Adobe Audition CC (Version 6 Build 732, 

Adobe Systems). The behavioural parameters recorded were time (s) spent in 

camera view (mean = 3.12 s, range = 0.99-4s), looking at the nest, looking 

outside, flying or hopping, looking other. Following Engesser et al. (2015), gaze 

direction was evaluated as orientation of the beak following a head movement. 

Behavioural observations began with the first head movement following the first 
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acoustic element of the playback, which occurred within a mean of 0.5s from the 

beginning of the playback. Marker lists created in Adobe Audition were extracted 

into txt-files by using CueListTool (Version 1.7). Scoring was conducted blind to 

experimental condition. 

The experiment was conducted on 70 adult chestnut-crowned babblers. 

Some of the individuals were removed from statistical analyses due to 

confounding variables during the experiment: for example, in 2 cases, an aerial 

predator was perched within view of the aviary, which resulted in the test subject 

remaining entirely motionless throughout the test. 

 

Rationale 
The primary goal of this experiment is to determine whether reception of the 

provisioning call, a signal produced during interactions with a working babbler 

nest, is associated with a visual mental image of the nest. To this end, I offered 

subjects the choice to interact with two nests that differed in their component 

visual features upon reception of various natural and artificial playback stimuli, 

and observed their preferences of visual interaction in relation to different 

playbacks. The experimental aviary compartments contained both a recently 

used, fully intact babbler nest, referred to as the high quality nest, as well as a 

previously used but partially degraded babbler nest, referred to as the low quality 

nest. To a trained eye, the two nests are visually distinguishable: the high quality 

nest has a more rounded, domed structure with a slightly protruding neck, while 

the old nest is flatter at the top, without a visible neck and with a much more 

prominent opening. Furthermore, years of field observations have led to the 

understanding that high quality nests are fully functional, i.e. used for both 

roosting and breeding, while low quality nests, once degraded to the condition 

described above, are no longer used by babblers (L. O’Neill, pers. obs.).  

The null hypothesis is that reception of the provisioning call does not 

generate in the receiver any visual mental image of the nest. This hypothesis 

predicts that the receiver should not discriminate between nests that differ in 

their component visual features when exposed to the provisioning call. 

Conversely, the two complementary alternative hypotheses under investigation 

in this experiment are outlined as follows. Hypothesis 1: The provisioning call 

generates in the receiver a visual mental image of the nest. Prediction 1: 

Reception of the provisioning call primes the receiver to detect a nest that 
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matches the image established by the mental representation, and thus to visually 

interact with the high quality nest more than the low quality nest. Hypothesis 2: 

The occurrence of a visual mental image depends on the reception of a signal 

adhering to a specific acoustic template, i.e. the provisioning call. Prediction 2: 

Upon hearing the provisioning call, or artificially generated variants which exhibit 

high acoustic similarity to the provisioning call, receivers should preferentially 

associate with a nest which exhibits specific component visual features, i.e. the 

high quality nest; conversely, such a preference for the high quality nest should 

not be apparent in response to playback stimuli which exhibit a reduced acoustic 

similarity to the provisioning call. 

Each bird was exposed to a series of 7 unique playback treatments with a 

break of 10 min between treatments. 6 out of 7 treatments consisted in playing 

back two- and three-element combinations of the A and B elements typical of the 

flight and provisioning calls. Of these, 2 treatments exhibited naturally-occurring 

combinations of elements, i.e. AB (flight call) and BAB (provisioning call). In the 

other four treatments, attempting to span the variation of potential similarity to 

the provisioning call, the elements were rearranged to produce the following 

aberrant combinations: BA, ABA, AAB, BAA. The remaining treatment was a 

control, where the subject was played the call of a different species (spiny-

cheeked honey-eater). Thus the 6 experimental stimuli (AB, BA, ABA, AAB, 

BAA, BAB) exhibited variation in two key parameters: a) the total number of A 

and B elements (i.e. 2 or 3), and b) the position of these elements relative to the 

correct BAB sequence. I predicted that 3-element combinations, and 

combinations where the position of the A and B elements resembled that of the 

correct sequence more closely, would be perceived as more similar to the 

correct sequence than 2-element combinations and those where the order of A 

and B elements differed more substantially from the correct sequence (see 

below).  

The provisioning call of the babbler repertoire is produced exclusively 

during interactions with the nest, and in addition, it has been shown to elicit nest-

looking behaviour following playback (Engesser et al. 2015). Therefore the key 

data that was collected regarded the probability that babblers performed nest-

looking behaviour towards a specific nest, and the duration of this behaviour, in 

response to different playback stimuli. The order of the treatment stimuli was 

randomised.  
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During playback experiments, a common risk is that birds may habituate 

to playback, decreasing their behavioural responses as more playbacks are 

presented during the experiment (Engesser et al. 2015). I tested for habituation 

by assessing the relationship between behavioural response and playback 

number. There was no significant effect of treatment number on the probability or 

duration of time spent looking at the nest (GLMM, χ²1= 2.49, p=0.1, GLMM, χ²7= 

6.87, p=0.4). 

 

Statistical Analyses 
Statistical analyses were conducted using the software programme Rstudio 

(Engesser et al. 2017, Ihaka & Gentleman 1996). The packages used were: 

boot, car, tidyverse, ggplot2, tidyr, diplyr, broom, lme4. Analyses of behavioural 

responses from the playback experiments were conducted using Generalized 

Linear Mixed Models (GLMM).  

 Hypothesis 1 was tested on the basis of behavioural responses to 

playback of the provisioning call treatment (i.e. BAB), while Hypothesis 2 was 

tested via the comparison of behavioural responses across all treatments, 

considering their various degrees of similarity to the provisioning call template. 

Classic methods for quantifying acoustic similarity, such as spectrographic cross-

correlation (SPCC), were deemed unsuited to the experimental design given that 

all playback stimuli (excluding the control treatment CTR) consisted of 

rearranged versions of two acoustic elements (i.e. A and B), the spectral and 

temporal features of which were maintained constant across all experimental 

stimuli. The playback stimuli nonetheless differed acoustically in two key 

parameters: 1) the total number of A and B elements in the sequence, and 2) the 

number of elements in the correct position relative to the BAB sequence. As both 

of these measures could be directly compared to the correct provisioning call 

sequence, I computed a similarity index for each non-BAB playback treatment 

which accounted for the variation in these two parameters, relative to the BAB 

sequence. Thus each non-BAB treatment was first assigned a score for both a) 

total number of A and B elements relative to the number of A and B elements in 

the BAB sequence (range = 0-1, mean = 0.72); and b) number of elements in 

correct position relative to BAB (range = 0-0.66, mean = 0.44). Finally, a 

composite index was generated for each treatment by calculating the mean of 

the two individual scores (range = 0-0.83, mean = 0.58). 
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To analyse nest-looking responses to the BAB treatment (Hypothesis 1), and all 

other treatment types (Hypotesis 2) I used a Generalised Linear Mixed Model 

(GLMM). First, I examined responses in terms of the probability of looking at the 

high quality nest vs the low quality nest. The orientation of nest-looking 

behaviour, coded as 0 (looked at low quality nest) and 1 (looked at high quality 

nest) represented the response term, fitted to a binomial error structure with logit 

link function. Time spent in camera view was fitted as the binomial denominator, 

treatment type (CTR, AB, BA, ABA, BAA, AAB, BAB) was fitted as a seven-level 

factor, treatment number was fitted as an additional explanatory term (to account 

for repeated measures of individuals), and individual identity nested within group 

identity were fitted as random terms. Next, I examined responses in terms of 

differences in nest-gaze duration towards the high vs low quality nest. The 

duration of nest-looking behaviour (s) towards high vs low quality nest 

represented the response term, fitted to a binomial error structure with logit link 

function. Time spent in camera view was fitted as the binomial denominator, 

treatment type (CTR, BA, AB, ABA, BAA, AAB, BAB) was fitted as a seven-level 

factor, treatment number was fitted as an additional explanatory term, and 

individual identity nested within group identity were fitted as random terms.  

 
Results 
Overall, 32% of the 258 playbacks resulted in birds looking at either nest. Of 

these, looks to the high quality nest occurred in 77% of cases, and looks to the 

low quality nest in 23% of cases. For those individuals that looked at the nest, 

the average duration of looks to the good quality nest was 0.41s (SD= 0.22, 

range= 0.11-1.22s), while the average duration of looks to the bad quality nest 

was 0.38s (SD= 0.18, range= 0.07-0.67s). The control stimulus elicited the 

lowest overall nest response, with only 4 subjects (10%) looking at either nest 

during such playbacks. The 2-element combinations (i.e. AB and BA stimuli) 

showed a mean 11.5% increase in total nest response compared to the control, 

while the incorrect 3-element combinations (i.e. ABA, AAB and BAA) showed a 

mean 22% increase in nest attentiveness. Finally, the stimulus where the 

provisioning call (i.e. BAB) was played without modification evoked the highest 

qualitative nest response, with a 37% increase compared to the control. The 

nest-looking response in the control treatment was deemed insufficient to 

provide a reliable assessment of preference for the high or low quality nest, and 
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was thus removed from further statistical analyses. In contrast with Predictions 1 

and 2, birds were not significantly more likely to look at the good quality nest 

during the BAB treatment nor any of the other playback treatments (GLMM, χ²6 = 

3.19, all p values > 0.1) (Fig. 1). Furthermore, I found no significant effect of 

treatment on the duration of nest looks toward the good vs bad quality nests 

(GLMM, χ²6 = 4.24, p = 0.64). These results suggest that acoustic stimuli that 

either match or closely resemble the provisioning call do not generate in 

receivers a preference for nests exhibiting specific visual component features. 

 

 
Fig 1. The probability of looking at the good quality nest was not significantly 

greater than chance in any of the playback treatments. Figure 1A shows back-

transformed predicted means (± Standard Error [SE]), generated from a 

Generalized Linear Mixed Model (GLMM), in which the orientation of nest-

looking behaviour (looking at the good quality nest, looking at the bad quality 

nest) was fitted as the independent response term. Time spent in camera view 

was fitted as the binomial denominator, treatment type (CTR, AB, BA, ABA, BAA, 

AAB, BAB) was fitted as a seven-level factor, treatment number was fitted as an 

additional explanatory term (to account for repeated measures of individuals), 

and individual identity nested within group identity were fitted as random terms. 

The CTR treatment was removed from statistical analyses of nest preference 

due to insufficient nest response. The other treatments are labelled according to 

the combination of acoustic elements specific to each treatment, i.e. AB 

treatment consisted of elements A + B, BA consisted of elements B + A, etc. 
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Discussion 
The results of this study do not conform to the predictions formulated on the 

basis of the hypothesis that upon reception of a context-specific acoustic signal, 

i.e. the provisioning call, chestnut crowned babblers generate a visual mental 

image of the signal’s presumed referent, i.e. the nest. The birds in this study 

were exposed to playbacks of natural nest provisioning calls and to artificial 

stimuli designed to exhibit varying degrees of acoustic similarity to the 

provisioning call. Upon stimulus reception, babblers were given the choice to 

interact with two previously used babbler nests which differed in their component 

visual features: one was fully intact, while the other was partially degraded. I 

hypothesised that the visual component features of the mental image generated 

in receivers would resemble those of a fully intact and functional babbler nest. I 

predicted that if the reception of a provisioning call was accompanied by a visual 

mental image of the nest, then babblers should discriminate between nests that 

differ in their visual features, preferentially interacting with a nest that matches 

the component visual features established by the mental image. The results 

however showed no significant tendency to interact preferentially with the fully 

intact nest during any of the playback treatments. This suggests that the 

reception of provisioning calls does not evoke the visual mental image of a nest 

in chestnut crowned babblers. 

If indeed the visual mental image hypothesis is to be excluded, then 

understanding the precise cognitive mechanism underlying signal reception in 

chestnut crowned babblers requires the formulation of alternative operant 

definitions of the “meaning” of babbler vocal signals. On one account, this call 

could merely represent the direct outcome of a specific internal state in the 

sender, via motivationally-driven changes in vocal fold tension and respiration; in 

turn, the physical properties of this acoustic signal could affect the emotional or 

motivational state of the receiver, triggering a specific response (Owren & 

Rendall 1997; Owren et al. 2003). This idea, championed by Rendall et al. 

(2009), abandons the implication of a conceptual elaboration of the meaning of 

the signal altogether, in favour of an affect-driven response. In support of this 

view, the direct link between vocal signals and emotional states has long been 

established in the non-human vocal communication literature. Decades ago, 

Morton (1977) and Tembrock (1975) identified a series of acoustic correlates of 

affective-motivational states that are consistently observed across different 



	 54	

species and even distinct taxa. For example, relaxation and contentment are 

reliably associated with short sounds and low frequencies, while fear and 

defensive behaviour correlate with short, high-amplitude, tonelike calls with high 

frequency onset and upward frequency modulation (Scherer 1992).  

Not only has it been shown that certain emotional and motivational states 

consistently result in the production of specific acoustic features, it has also been 

empirically demonstrated that receivers attend to these emotionally-driven 

acoustic features and respond with specific behaviours. For instance, the rate at 

which fallow bucks (Dama dama) groan varies in relation to levels of arousal and 

fatigue. Moreover, bucks on the receiving end produce different behavioural 

responses to playbacks of high-rate vs low-rate groans, indicating that groans 

are perceived as honest sources of information regarding the motivational state 

of the sender (Pitcher et al. 2014). Therefore, the view that some animal vocal 

signals are produced on the basis of variation in the affective-motivational state 

of the sender, and interpreted via influence on the receiver’s own motivational 

state, without an intervening semantic representation of the referent, is firmly 

grounded in the scientific literature. However, such a purely affective model fails 

to adequately explain the context-specificity of vocal signals and sender-receiver 

dynamics in chestnut crowned babblers: indeed, provisioning calls are specific to 

an external, rather than internal context, i.e. chick provisioning events at babbler 

nests (Crane et al. 2016). In addition, these calls have shown to reliably elicit 

nest-looking behaviour in receivers, further indicating an external referent 

(Engesser et al. 2015; see also Chapter 2).  

As in chestnut crowned babblers, many vocal signals used by mammals 

and other birds are reliably associated with specific stimuli or events that are 

external to both sender and receiver (reviews in Townsend & Manser 2013, 

Smith 2017). For example, the three types of alarm calls of vervet monkeys 

(Chlorocebus pygerythrus) are highly specific to certain classes of predators 

(Strushaker 1967, Cheney & Seyfarth 1990), and the five types of agonistic 

recruitment calls of rhesus macaques (Macaca mulatta) designate different 

classes of opponents in terms of rank and relatedness (Seyfarth et al. 1980a; 

Gouzoules et al. 1984). The “seet” calls of yellow warblers (Setophaga petechia), 

similarly, are produced specifically in the presence of brood-parasitic brown-

headed cowbirds (Molothrus ater), and consistently result in females rushing to 

sit in their nests (Gill & Sealy 2004). The fundamental message of this work is 
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that some non-human vocal signals encode precise information regarding 

specific external objects or events, rather than merely depicting the sender’s 

internal state. This information occurs in the form of statistical regularities in the 

co-occurrence of certain signals and specific events, so the ability to acquire this 

information must depend on a cognitive process which involves recognising and 

measuring these statistical associations in the natural environment (Marler 1961, 

Seyfarth et al. 1980, Cheney & Seyfarth 1988, Townsend et al. 2010, Fischer 

2013).  Thus a more plausible alternative to an affect-conditioning model for the 

provisioning call of babblers is that this acoustic signal generates specific 

behavioural responses in receivers as a function of its statistical association with 

an external event, i.e. the provisioning of chicks within the nest. As such, it may 

contain a “natural” meaning (Grice 1967, Scarantino 2010), i.e. it carries 

information that is grounded in natural correlations between events in the 

environment. This operant definition of the “meaning” of context-specific signals, 

such as the babbler provisioning call, may represent the most parsimonious 

explanation for the cognitive process underlying signal reception in non-humans 

(Bond 2019), and specifically, in chestnut crowned babblers. 

Apart from affect-conditioning and associative learning, there is one more 

candidate cognitive process for explaining the reception of provisioning calls in 

chestnut crowned babblers that is worth considering in light of the findings 

presented in this study. This mechanism implies more than just a learned 

association between an event and an acoustic signal, in fact it entails the 

conceptual elaboration of meaning in terms of the mental representation of a 

precise signal referent. However, it does not imply that the referent must be 

represented as a visual mental image specifically, but rather it remains agnostic 

as to the precise nature of this semantic elaboration. This is the view espoused 

by Zuberbuhler, Seyfarth and colleagues (Zuberbuhler et al. 1999, Seyfarth et al. 

2010) and referred to as “conceptual semanticity”, as described earlier on in this 

chapter. With carefully designed experimental procedures, multiple studies have 

empirically tested this hypothesis and obtained results indicating that receivers 

attend to a precise, representational meaning, rather than simply the acoustic 

properties of signals, during vocal communicative events (Zuberbuhler et al. 

1999, Evans & Evans 2006). For example, in the study on diana monkeys, 

receivers transferred habituation between signals that differed in their physical 

features but shared a semantic message, i.e. the presence of a predatory threat. 
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Crucially, an association-based perspective would predict that, if receivers 

learned to simply respond to specific stimuli with target responses, they would 

not transfer habituation between distinct acoustic stimuli.  

A very similar experiment to that conducted on diana monkeys, involving 

manipulation of experience and playback, was also conducted on fowl (Gallus 

gallus domesticus) (Evans & Evans 2006). In this study, hens in the baseline 

condition were simply exposed to playback of food calls and behavioural 

responses were recorded in terms of time spent in close frontal inspection of the 

substrate, a behaviour characteristic of the search for food. In the treatment 

condition, hens were given a small amount of food (three kernels) before being 

exposed to playback of food calls. The authors predicted that if hens attended to 

the meaning of food calls via a mental representation of a feeding opportunity, 

they should be less likely to exhibit food searching behaviour in response to food 

calls if they have recently received a small portion of food, as the putative 

meaning of the playback stimulus is redundant with prior experience. Indeed, 

hens exhibited significantly less food searching behaviour in the treatment 

condition compared to the baseline. Thus as in the diana monkey example, the 

authors concluded that behavioural responses were determined by the putative 

semantic information contained in the playback stimuli, processed in the form of 

a mental representation of the meaning of the call, rather than a statistical 

association between a signal and a particular event.  

In neither the diana monkey nor the fowl study is an attempt made to 

describe the precise nature of the mental representation itself, other than as a 

mental concept of a specific predatory threat or a feeding opportunity. This open-

ended definition of conceptual semanticity may therefore provide an alternative 

explanation to the findings presented in this study regarding reception of the 

provisioning call in chestnut crowned babblers. In fact, according to this 

definition, when hearing provisioning calls babblers may generate an internal 

representation of the nest that is not tied to its component visual features. For 

example, babblers may process the meaning of provisioning calls in terms of the 

function of the nest, i.e. to mediate reproduction via incubation and chick rearing. 

In this case, they would not be predicted to exhibit preferences of visual 

interaction between nests differing in their component visual features, unless 

these visual features were directly linked to the functionality of the different 

nests. Thus, as conceptual semanticity has offered a plausible explanation for 
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patterns in behavioural data even where associative learning and affect-

conditioning models have fallen short, in multiple cases including an avian 

species, it remains a valuable alternative hypothesis that may yet be applied 

successfully to the communication system of chestnut crowned babblers. 

With this study, I have aligned with a recently matured and ambitious 

research objective in the field of comparative communication, i.e. to test for 

cognitive mechanisms underlying vocal communication that involve the mental 

representation of signal referents. Specifically, I have drawn from a novel 

experimental design outlined by Suzuki (2018) aimed at the investigation of 

visual mental images upon signal reception. This procedure involves the 

playback of natural acoustic stimuli, accompanied by the opportunity for subjects 

to interact with carefully selected physical models of signal referents. Following a 

critique to Suzuki’s (2018) paper from Bond (2019), I have implemented 

additional features into the experimental setup in order to establish with greater 

certainty the role of visual mental images in signal reception. Specifically, I used 

physical models of signal referents that differed in their component visual 

features, so as to tease out more precisely what kind of sensory information 

might be processed in the form of a visual mental image. Finally, I have applied 

further modifications to the experimental procedure stemming from personal 

initiative. These additions, which include the use of artificially generated playback 

stimuli that exhibit variation in their acoustic similarity to the target context-

specific vocal signal, are designed to provide more information on the cueing 

mechanism resulting in the formation of a visual mental image of signal 

referents. Specifically, I hypothesised that by relating behavioural responses to 

acoustic stimuli to the degree of similarity of these artificial stimuli to the target 

signal, it is possible to distinguish between a graded cueing mechanism and a 

threshold mechanism for the generation of visual mental images. I consequently 

propose that further empirical tests of visual mental images should implement 

both: a) variation in the component visual features of the signal referent models; 

as well as b) graded variation in the component acoustic features of the playback 

stimuli. 

On a summarising note, I suggest that the experimental procedure 

outlined above, designed to test for visual mental images associated with signal 

reception, may equally be applied to the study of other forms of mental 

representation of signal referents. For example, if one is to investigate the mental 
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representation of conceptual information upon reception of signal referents, this 

conceptual information may be operationally defined as the behaviourally-

relevant function of the referent, rather than its visual features. In this case, an 

experimental design could be used which offers subjects the chance to interact 

with models that differ in functional, rather than visual qualities. One prediction of 

the processing of such conceptual information would be that subjects who 

generate a mental representation of the function of a signal’s referent should be 

primed to detect model referents that match this function rather than other 

available model referents. Thus overall, Suzuki’s (2018) novel approach has 

potentially opened the door for multiple avenues of research into the cognitive 

processes underlying signal reception, other than just visual mental images. 

Despite the dearth of available evidence for the mental representation of 

signal referents in non-human animals, whether in visual or other forms, this 

research question deserves continued and systematic attention. Linguists, 

anthropologists and biologists have yet to uncover the various early steps in the 

evolutionary history of a key behavioural trait which has significantly aided our 

species in becoming so successful: language (Aitchison 2000). However, it is 

evident that human language is heavily based on highly referential signals that 

are associated with elaborate mental representations, both visual and discursive 

(Marler et al. 1992; Premack 1984). Thus even research into the vocal 

communication of very distantly related species, insofar as it relates to the 

ecological drivers, the proximate mechanisms and the cognitive underpinnings of 

complex, representational vocalisations, has the potential to increase our 

understanding of both vocal communication in general, as well as the evolution 

of human language. 
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Chapter 4  
Conclusion 

 
In these studies on the acoustic communication of the chestnut crowned babbler 

(Pomatostomus ruficeps), a cooperatively breeding bird of the Australian 

outback, I have examined several cognitive mechanisms underpinning the 

reception of complex combinatorial signals. Specifically, I first asked whether 

individuals possess strict or loose acoustic templates for their vocalisations. I 

have found that subjects exhibit increasingly appropriate behavioural responses 

to acoustic signals when the perceived call is more similar to the corresponding 

acoustic template: this suggests that individuals do not possess strict templates, 

but are sensitive to the similarity between signals and templates. Next, I tested 

whether chestnut crowned babblers exhibit evidence for pragmatic inference, i.e. 

the ability to integrate contextual information upon reception of acoustic signals. I 

have shown that individuals respond differently to ambiguous stimuli resembling 

the provisioning call when primed with the correct provisioning call, than when 

the ambiguous stimuli are presented alone. Therefore, the reception of past 

acoustic stimuli can be used as contextual information to disambiguate the 

meaning of future, uncertain signals in this species. Finally, I asked whether the 

reception of functionally referential signals in P. ruficeps is associated with a 

visual mental image of signal referents. The results indicate that the reception of 

provisioning calls in babblers does not prime receivers to detect model referents 

possessing specific component visual features, which suggests that babblers do 

not form visual mental images of signal referents. Together, these findings 

strengthen our understanding of the combinatorial rules that underpin the 

production of babbler vocalisations, as well as the cognitive mechanisms 

employed by receivers to process combinatorial acoustic signals. 

Within the field of vocal communication, we as humans are by no means 

unique in our ability to generate complex, multi-element vocalisations (Engesser 

& Townsend 2019). In addition, the capacity to perform mental computations to 

tie together the elements within a vocalisation, both on the producing and the 

receiving end, is also not a distinctly human trait, but a widespread characteristic 

(Fitch 2018, ten Cate 2017). However, the grammatical rules underpinning the 

production of complex vocalisations across animal species exhibit considerable 

variation, and are often markedly different from those employed in human 
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languages (Engesser & Townsend 2019). Some of these rules for the generation 

of sound combinations are well understood, such as the production of meaning-

modifying affixes in Campbell’s monkeys (Cercopithecus campbelli campbelli) 

and southern pied babblers (Turdoides bicolor) (Ouattara et al. 2009, Engesser 

et al. 2018). In other cases, the operations governing sound combination and the 

generation of meaningful signals remain unclear, as in the case of killer whales 

(Orcinus orca) (Shapiro et al. 2011). Furthermore, whereas many of the external 

features of animal sound combinations have been described in detail, there is 

much less certainty regarding the cognitive mechanisms and computations that 

underlie the interpretation of acoustic signals in non-human animals (Wheeler 

and Fischer 2012). 

This study on chestnut crowned babblers provides novel evidence for the 

grammatical rules and cognitive abilities that underpin the reception of 

combinatorial signals in an avian species. The first important contribution of this 

study consists in a deeper understanding of the nature of phonemic contrasts 

employed by a non-human. Chestnut crowned babblers currently represent the 

only known species, other than Homo sapiens, in which meaningful signals are 

generated via the rearrangement of meaningless, shared acoustic elements 

(Engesser et al. 2015, Engesser et al. 2019). This ability lies at the foundation of 

the immense generative power of human language: it is the basic principle that 

underlies the formation of words, by which a limited number of sounds can be 

organised into an unlimited number of signals. The study of chestnut crowned 

babbler vocalisations therefore allows a direct assessment of the similarities and 

differences in human and non-human phoneme use. The first key point that 

emerges from this study is a substantial difference between the reception of 

phoneme-based signals in humans and babblers. In humans, vocal signals 

adhere to strict acoustic templates, such that even minor modifications to 

existing words result in an alteration or loss of meaning (Yip 2006, Chomsky & 

Halle 1968). On the other hand, as shown in Chapter 1, a signal in the babbler 

repertoire may undergo modifications of its phoneme structure and still elicit 

qualitatively equivalent behavioural responses to the unmodified version. In sum, 

whereas humans possess strict acoustic templates for phoneme-based signals, 

chestnut crowned babblers exhibit a loose association between signal and 

template, determined by a threshold similarity to the correct call. 
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The phonological layer of acoustic combination present in human speech, 

by which multiple meaningless acoustic elements are combined like building 

blocks to generate a vast array of signals, most likely arose via gradual 

increases in complexity over evolutionary time (Engesser et al. 2015, Zuidema & 

de Boer 2009). In support of this hypothesis, some forms of human language 

that are recently evolved, such as the Al Sayyid Bedouin sign language, possess 

a vastly reduced phonological component compared to languages with a longer 

evolutionary history (Sandler et al. 2011, 2014). This would seem to suggest that 

the evolution of human language passed through a stage where the use of 

phoneme-like elements was less complex and therefore more restricted in its 

generative power. Our current knowledge of early forms of human language is 

limited, and yet a comparative approach can potentially provide insights into the 

features of vocal communication and sound combination that defined early forms 

of human speech (Bolhuis et al. 2018). 

The nature of babbler phoneme use is rudimentary in comparison with 

human language phonology. The phonemes used in human vocal 

communication, such as the sound /n/, are re-used productively across a large 

number of words. By contrast, the combination of meaningless acoustic 

elements in babblers is non-productive: certain acoustic elements are limited to a 

subset of the repertoire, rather than being used flexibly across the range of vocal 

signals. For example, the A and B elements under investigation in this study are 

present only in the flight and provisioning calls, i.e. roughly 10% of the entire 

repertoire. The result of this non-productivity in phonemic combination is that 

most other babbler calls exhibit substantially low acoustic similarity compared to 

the flight and provisioning calls, as they are composed of different acoustic 

elements. This between-call dissimilarity may help to explain the finding that 

babblers exhibit loose, rather than strict, associations between signals and 

templates. Indeed, an interesting possibility that emerges from these results is 

that the strictness of the relationship between signals and templates may depend 

on the productive use of the acoustic elements that make up the signal. When 

there is no productivity and each call type differs substantially from the others, 

such as in babbler calls, templates may be relaxed; conversely, when the 

constituent elements are used productively, such as in human word formation, 

templates must be strict. This prediction could be tested in the laboratory by 

conducting a two-step artificial grammar learning (AGL) test on human subjects: 
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step 1) familiarising subjects with artificial vocabularies which exhibit different 

levels of productivity, step 2) conducting articulation tests (sensu Miller et al. 

1951) involving the recognition of signals which loosely and strictly adhere to the 

artificial vocabularies. Subjects familiarised with non-productive vocabularies 

should recognise loosely adherent stimuli significantly more than those exposed 

to productive vocabularies. If this prediction were upheld, it would suggest that 

strict acoustic templates in human vocal communication are only as recent as 

the emergence of productivity in phoneme use. 

The second key finding of this study regards the use of information arising 

from the context in which signals are emitted. This ability, known as pragmatic 

inference, has been documented in a number of primate species, yet few studies 

to date have addressed its presence in birds. Pragmatic inference constitutes 

one of the most important mechanisms involved in the interpretation of acoustic 

stimuli, and is fundamental in the case of signals which exhibit a low information 

content (Smith 1977, Cheney & Seyfarth 1988). Such signals are abundant in the 

repertoires of many species, and are often the result of constraints on signal 

production. For example, the vocal repertoires of non-human primates are 

constrained by both the neurobiological circuits involved in the vocal pathway, as 

well as the morphology of the vocal apparatus (Hammerschmidt & Fischer 2008, 

Wheeler & Fischer 2012). In some cases, this results in a limited number of call 

types being used in a large number of contexts (e.g. Arnold & Zuberbuhler 

2013), which reduces the potential for information transfer of the signals 

themselves (Cheney & Seyfarth 2010). However, despite constraints on signal 

production, behavioural responses to vocal signals are often flexible and 

complex. Indeed, the responses to acoustic stimuli of vervet monkeys 

(Chlorocebus pygerythrus), putty-nosed monkeys (Cercopithecus nictitans), 

baboons (Papio ursinus) and green monkeys (Chlorocebus sabaeus), are 

strongly affected by prior experience (Cheney & Seyfarth 1988, Arnold & 

Zuberbuhler 2013, Crockford et al. 2007, Price & Fischer 2014). For example, 

subjects may take into account the existing social relationships, past interactions, 

or the presence of additional visual or acoustic stimuli, when responding to 

signals. Therefore, in order to exhibit flexible adaptive responses to signals with 

a low information content, receivers depend on the ability to extract information 

not only from the signal, but also from the context in which the signal is given. 
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Ambiguity in acoustic communication need not arise solely from vocal 

constraints, but may also be a product of errors in signal production and 

reception, which are more broadly applicable across the range of taxa that 

communicate via acoustic signals (Wiley 1994). For example, environmental 

factors such as wind and background noise degrade the quality of acoustic 

signals, and therefore reduce the information available in such signals (Dubois & 

Martens 1984, Brumm & Slabbekoorn 2005). Furthermore, species exhibiting 

complex combinatorial vocalisations are susceptible to errors in signal 

production. In particular, where signals are generated via the combination of 

specific acoustic elements in a given order, such as in human word formation, 

inconsistencies in element sequence may occur (Frisch & Wright 2002). 

Chestnut-crowned babblers also utilise such combinatorial signals, and indeed 

have been observed to produce signals in which the arrangement of acoustic 

elements differs from that of the natural templates. For example, babblers 

occasionally combine the “A” and “B” elements used in the flight and provisioning 

calls into aberrant sequences, such as reverse flight calls “BA” (Crane et al. 

2016) or unusual 3-element sequences, such as “AAB” and “ABA” (Joseph Mine, 

unpublished data). Here I have shown that the response to such aberrant 

combinations is influenced by prior exposure to signals exhibiting the more 

common, “correct” note sequence. The importance of this cognitive mechanism 

in the context of acoustic communication has been established in a number of 

mammalian species (Seyfarth & Cheney 2017), yet this study constitutes one of 

the first explicit tests of pragmatic inference in an avian species. The most 

commonly invoked pressure driving the development of this mechanism in 

mammals is the inflexibility of signal production due to vocal constraints (e.g. 

Arnold & Zuberbuhler 3013). By contrast, where pragmatic inference occurs in 

avian species, in which the vocal apparatus is highly specialised and flexible 

(Suthers et al. 2016), the selective pressures on its development are likely to be 

different. Indeed, as shown by this study, pragmatic inference in chestnut-

crowned babblers is useful to circumvent the loss of information arising from 

ambiguities in the production and reception of signals generated via phonemic 

contrasts. Thus, further research on pragmatic inference in birds may confirm 

that although distinct taxa have converged upon this cognitive mechanism to aid 

in vocal communication, the specific selective pressures driving its emergence 

are distinct. Finally, the link between pragmatic inference and phonemic 
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contrasts highlighted here may have important implications for understanding the 

emergence of phoneme-based signals in human language. 

The third and final aim of this thesis was to establish whether, in an avian 

species, the reception of functionally referential signals is associated with the 

visual mental image of signal referents. This research question stems from an 

ongoing debate regarding the cognitive processes involved in signal reception 

across non-human taxa (Stegmann 2013). Major exponents in this debate have 

argued that either: a) simple cognitive processes, such as nervous-response 

conditioning or classic associative learning, govern behavioural responses to 

even the most context-specific stimuli (Owren et al. 2010, Chater & Heyes 1994); 

or b) complex cognitive processes, such as the processing of semantic 

information in the form of mental representations, underlie the reception of highly 

referential signals (Cheney & Seyfarth 1988, Evans & Evans 2006, Zuberbuhler 

et al. 1999, Suzuki 2018). These authors have made important theoretical 

contributions to the field, such as the affect-conditioning model proposed by 

Owren & Rendall (1997), or the concept of functionally referential signals first 

promoted by Marler et al. (1992). Furthermore, the empirical evidence available 

highlights the validity of both perspectives: in certain cases, the link between 

signals and behavioural responses is mediated simply by variation in 

motivational states or the statistical associations present in nature, while in 

others, responses are too flexible to be explained solely by associative learning 

or affect-conditioning (Wheeler & Fischer 2012). This suggests that although 

simple cognitive mechanisms in signal reception are relevant to some species, 

the ability to process signal information in a conceptual form may be more 

widespread than previously thought (Allen 2013).  

With the current study, I have not added to the available body of evidence 

suggesting that highly referential signals are processed via the mental 

representation of signal referents in non-humans. However, I have replicated and 

potentially improved a recently developed experimental procedure outlined by 

Suzuki (2018) and Bond (2019) for the investigation of visual mental images 

associated with signal referents. The explicit study of mental representations is 

relatively novel within the field of animal communication, and as such, the 

relevant methodologies and terminologies have not yet achieved a widely 

accepted form. Inspired by previous work from Zuberbuhler et al. (1999), Evans 

& Evans (2006) and Suzuki (2018), this test of mental representation was carried 
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out by exposing subjects to both acoustic signals and their presumed referents, 

and generating clear predictions regarding the presence or absence of mental 

representations in processing and responding to such signals. Due to the paucity 

of replication, the available studies on mental representation of signal referents 

may not as of yet constitute definitive evidence of visual or conceptual 

processing in non-humans. However, only via replicating this and other 

experimental designs can the debate be successfully resolved. Therefore, given 

the youth of this research topic and the controversy surrounding it, renewed 

interest in generating, perfecting and replicating relevant experimental 

procedures is warranted.   

As the study of animal acoustic communication progresses, it is becoming 

increasingly clear that non-human animals are capable of producing 

vocalisations consisting of multiple parts, constructed and processed according 

to disparate rules, and used in a variety of biologically relevant functions. Thus it 

appears that human language, which is without a doubt a highly complex form of 

vocal communication, is not entirely unique in all of its structural features, and 

neither in its dependence on specific cognitive processes. The sequences we 

produce are beyond a doubt highly articulate and deeply informative. Unlike any 

other species, humans combine phonemes productively to produce an 

astonishing array of words, and then combine these words into hierarchically-

structured phrases to maximise information output (Hurford 2011). This results in 

a multi-tiered system of acoustic combination referred to as duality of patterning 

(Hauser et al. 2002). Yet even in other taxa, meaningless elements are 

combined like building blocks to make signals that have informative value 

(Zuidema & de Boer 2018, Engesser et al. 2015). Likewise, meaningful vocal 

signals are arranged into sequences whose information content depends on all 

constituent parts (Engesser et al. 2016, Suzuki et al. 2016). In many other 

vocally-communicating species, information is extracted not only from the signals 

themselves, but also from the context in which the signals are emitted (Crockford 

et al. 2007, Cheney & Seyfarth 1988). Finally, growing evidence suggests that 

non-human receivers may also attend to the semantic qualities of signals by 

generating mental representations of signal referents, as is the case in human 

language (Arnold & Zuberbuhler 1999, Suzuki 2018). Thus overall, although 

duality of patterning may set us a step or two above other vocal species in terms 
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of combinatorial complexity, it appears that many of the proximate and ultimate 

mechanisms of human vocal communication are shared with other animals. 

Comparisons between human and non-human vocal complexity may 

appeal to both the scientific and wider audience, yet these must be approached 

with caution, as they are subject to multiple inherent flaws. First, the field of 

animal combinatorial communication is still a young one. Great efforts have been 

made in the past two decades to reveal the types of combinations used in the 

vocal repertoires of several species, and to understand how these combinations 

enrich the function of vocalisations (reviewed in Engesser & Townsend 2019). 

Discoveries such as the first evidence of phonemic contrasts and ordering rules 

in non-human animal vocalisations are fresher still, having occurred only in the 

past five years (Engesser et al. 2015, Suzuki et al. 2017). So it is likely that 

beyond the species investigated so far, many more possess combinatorial 

repertoires whose complexity has not yet been uncovered and evaluated. 

Second, comparisons between human and non-human vocal complexity are 

most often carried out on biased terms. Research in comparative communication 

frequently attempts to find examples of human language structures, rules and 

computations in other communication systems, and declares our system as 

superior when these standards are not met (e.g. Fitch & Hauser 2004). Yet it is 

not at all necessary that vocal communicative complexity should develop along 

the same lines among multiple species with entirely different evolutionary 

backgrounds. The debate should not be limited to whether or not other species 

are capable of doing what we do, because there is in essence no reason to 

expect that the evolution of vocal communication across all taxa should 

ultimately lead to our own outcome, i.e. a recursive and hierarchical system 

based on duality of patterning. Rather a more daunting task, research might 

focus instead on uncovering unfamiliar mechanisms by which substantial 

amounts of information may be conveyed acoustically. Although it may require 

great flexibility of mind and often incur frustration, this is the only way the field of 

vocal communication may be fully and effectively explored. Should this kind of 

approach be successfully implemented, we may in fact discover that evolution 

has produced other extraordinarily complex systems of vocal communication, 

alongside our own. 
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