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Abstract

In this paper we discuss the bootstrap as a tool for statistical inference in econo-

metric time series models. Importantly, in the context of testing, properties of the

bootstrap under the null (size) as well as under the alternative (power) are dis-

cussed. While properties under the alternative are crucial to ensure consistency of

bootstrap-based tests, it is often the case in the literature that only validity under

the null is discussed. We provide new results on bootstrap inference for the class of

double-autoregressive [DAR] models. In addition, we review key examples from the

bootstrap time series literature in order to emphasize the importance of properly

de�ning and analyzing the bootstrap generating process and associated bootstrap

statistics, while also providing an up-to-date review of existing approaches. DAR

models are particularly interesting for bootstrap inference: �rst, standard asymp-

totic inference is usually di¢ cult to implement due to the presence of nuisance

parameters; second, inference involves testing whether one or more parameters are

on the boundary of the parameter space; third, even second order moments may

not exist. In most of these cases, the bootstrap is not considered an appropriate

tool for inference. Conversely, and taking testing non-stationarity to illustrate, we

show that although a standard bootstrap based on unrestricted parameter esti-

mation is invalid, a correct implementation of the bootstrap based on restricted

parameter estimation (restricted bootstrap) is �rst-order valid. That is, it is able to

replicate, under the null hypothesis, the correct limiting distribution. Importantly,

we also show that the behavior of this bootstrap under the alternative hypothesis

may be more involved, because of possible lack of �nite second-order moments of

the bootstrap innovations. This feature makes for some parameter con�gurations

the restricted bootstrap unable to replicate the null asymptotic distribution when

the null is false. We show that this possible drawback can be �xed by using a

novel bootstrap in this framework. For this �hybrid bootstrap�, the parameter es-

timates used to construct the bootstrap data are obtained with the null imposed,
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while the bootstrap innovations are sampled with replacement from unrestricted

residuals. We show that the hybrid bootstrap mimics the correct asymptotic null

distribution, irrespective of the null being true or false. Monte Carlo simulations

illustrate the behavior of both the restricted and the hybrid bootstrap, and we �nd

that both perform very well even for small sample sizes.

Keywords: Bootstrap; Hypothesis testing; Double-Autoregressive models; Para-

meter on the boundary; In�nite Variance.

JEL Classification: C32.

Suggested running title: Bootstrap hypothesis testing in time series models.
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1 Introduction

Outcomes of various bootstrap schemes applied to econometric time series models are

routinely reported in the literature. This is generally done in cases where (i) the limiting

distribution of the reference estimator or test statistic depends on a (possibly in�nite-

dimensional) vector of unknown nuisance parameters; (ii) critical values or standard

errors can be obtained by simulations only; (iii) the asymptotic approximation to the

distribution of the reference estimator or test statistic is poor. The increasing compu-

tational power available to researchers coupled with the fact that the implementation of

bootstrap algorithms is typically straightforward, makes the bootstrap one of the most

popular inference tools in the econometric analysis of time series data; see, inter alia,

Davidson and MacKinnon (2006) and MacKinnon (2009).

Despite its many appealing features, the application of the bootstrap to time series

models requires a detailed analysis of its asymptotic properties. This is necessary in

order to establish asymptotic validity of the bootstrap, at least up to �rst order. Taking

hypothesis testing to illustrate �as we do throughout this paper �a proper statistical

analysis of any bootstrap test would necessarily involve two main, interconnected steps.

First, it requires to determine whether, conditionally on the original data, the bootstrap

correctly mimics the null asymptotic distribution of the reference test statistics under

the null hypothesis. This step is generally more involved than the asymptotic analysis

of the original test statistics, as the conditional distribution of the bootstrap statistic

given the data is a random element in the space of distribution functions. Hence,

speci�c probability tools are required. In general, further high level conditions over

those required for asymptotic inference are necessary and, consequently, any application

of the bootstrap which is not backed up by a proper analysis of these conditions must

be taken with caution.

The second step, which is often neglected in applications of the bootstrap, is the

statistical analysis of the properties of the test under the alternative hypothesis, i.e.

consistency of the bootstrap test. This step is more involved than assessing bootstrap

validity under the null. Essentially, di¢ culties may arise because it requires to analyze

the asymptotic behavior of the estimators used to generate the bootstrap data when

the null is false: in particular when estimators restricted by the null hypothesis are

considered.

In this paper we aim at discussing the two aforementioned steps by considering a

novel application of the bootstrap to econometric time series models. Speci�cally, we

consider bootstrap inference in the class of double-autoregressive [DAR] models, see

e.g. Borkovec and Klüppelberg (2001), Ling (2004, 2007a) and Chen, Li and Ling

(2013). The DAR is a time series model with an autoregressive structure both in the

conditional mean and in the conditional variance. The conditional mean has the classic
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autoregressive formulation, i.e. it is linear in the lagged level of the process. The

conditional variance is also linear in the lagged (squared) level of the process, which

therefore contrasts classic ARCH-type or AR�ARCH type speci�cations where lagged

innovations appear (see e.g. Ling and Li, 1998; Ling and MacAleer, 2003; Lange, Jensen

and Rahbek, 2006; Ling, 2007b; Nielsen and Rahbek, 2014). In this sense, it allows

the levels of the process to a¤ect both the conditional mean and conditional variance,

as desirable in econometric modelling of interest rates1, see also Nielsen and Rahbek

(2014). We discuss (non-standard) bootstrap-based inference in the DAR model, with

main emphasis on the likelihood-ratio [LR] test for the hypothesis that the DAR model

reduces to a random walk. In essence, this can be viewed as a non-stationarity test

within the DAR model. Previous studies of this testing problem are given in Ling

(2004), who considers the score test, and in Klüppelberg et al. (2001), who consider a

LR testing approach.

DAR models and the associated (non-)stationarity testing problem are particularly

interesting to illustrate implementation of the bootstrap to time series, for several rea-

sons. First, standard asymptotic inference is usually di¢ cult to implement, due to the

presence of nuisance parameters under the null hypothesis. The asymptotic distribu-

tion of the test statistics, for instance, depends on nuisance parameters (such as the

kurtosis of the innovations) which makes it hard to construct tables of critical values.

Second, the autoregressive parameter entering the conditional variance equation is �

in order to guarantee non-negativity of the conditional variance � usually restricted

to be non-negative. As a consequence, inference must deal with possible parameters

on the boundary of the parameter space, a situation where the bootstrap is usually

regarded as invalid (see, e.g., Andrews, 2000, Cavaliere, Nielsen and Rahbek, 2017).

Third, under strict stationarity, second order moments may not exist. Hence, under-

standing the properties of the bootstrap under the alternative hypothesis, which would

require re-sampling from an in�nite variance process, may be cumbersome, if not even

impossible (seminal results about the possible invalidity of the bootstrap when second

order moments may not exist are given in Athreya, 1987, and Knight, 1988; for time

series models see also Cavaliere, Nielsen and Rahbek, 2018, and the references therein).

In the following, the paper shows that for the DAR model, as expected in the

aforementioned cases, classic bootstrap hypothesis testing, based on generating the

bootstrap data using estimators (and residuals) obtained without imposing the null

hypothesis (as suggested in Hall, 1992), is invalid. Despite this fact, we also show

that the problem of (non-)stationarity testing in a DAR model can be successfully

solved by a proper implementation of the bootstrap. More speci�cally, we initially show

that the bootstrap based on restricted parameter estimation (the so-called �restricted

1The Cox-Ingersoll-Ross (CIR) Model is an example of a level-dependent heteroskedasticity model.

4



bootstrap�) is �rst-order valid under the null hypothesis; that is, it is able to replicate

the correct limiting null distribution when the null hypothesis is true. However, we

also show that the behavior of this bootstrap under the alternative hypothesis may

be di¤erent because of possible lack of �nite second-order moments of the bootstrap

innovations. This features makes �for some parameter con�gurations �the restricted

bootstrap unable to replicate the null asymptotic distribution when the null is false.

This is a typical instance where validity of the bootstrap under the null does not imply

consistency of the bootstrap test under the alternative.

We next show that this drawback can be �xed by using a new �hybrid�bootstrap,

where the parameter estimates used to construct the bootstrap data are obtained with

the null imposed, while the bootstrap innovations are sampled with replacement from

the unrestricted residuals. This simple modi�cation of the bootstrap algorithm, which

is novel in this framework, mimics the correct asymptotic null distribution also under

the alternative.

We use a Monte Carlo experiment to analyze the �nite sample properties of the

di¤erent bootstrap algorithms. We show substantial gains in terms of accuracy of the

empirical rejection probabilities under the null hypothesis, while under the alternative

we show that our bootstrap has power very close to the pointwise size-adjusted power

of the (infeasible) asymptotic test.

Throughout the paper, we use a number of examples from the bootstrap (time

series) literature to illustrate the importance of properly de�ning the bootstrap gener-

ating process and associated bootstrap statistic, as well as the need for looking at the

appropriate bootstrap statistic on the basis of a rigorous, case-by-case analysis of its

theoretical properties, both under the null and under the alternative hypothesis.

1.1 Structure of the paper

The structure of the paper is the following. In Section 2 we introduce the reference

DAR model and the testing problem we consider throughout the paper. In Section 3

we introduce the main bootstrap approaches and discuss their validity under the null

hypothesis. Section 4 focuses on the behavior of the bootstrap test under the alternative

hypothesis. Here we also introduce and discuss the hybrid bootstrap scheme. Results

from a small Monte Carlo study on the �nite sample behavior of the asymptotic and

bootstrap tests are reported in Section 5. We consider some extensions of the model

and of the tests in Section 6, while Section 7 concludes. All mathematical proofs are

located in the appendix.
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1.2 Notation

The following notation is used throughout. With x := y (y =: x) we mean that x is

de�ned by y (y de�ned by x). For any q 2 R (R denoting the set of real numbers),

q+ := maxf0; qg and bqc denotes the integer part of q. The set of non-negative real
numbers is denoted by R+. The space of m� 1 vectors of càdlàg functions on the unit
interval [0; 1] is denoted by Dm. With Xn !w X and X = wlimXn we mean that

Xn converges weakly to X. Also,
d
= denotes equality in distribution. We use P �, E�

and V � respectively to denote probability, expectation and variance, conditional on the

original sample. With w
�
!p we denote weak convergence in probability; that is, X�

n
w�!p X

means that, as the sample size n diverges, the cumulative distribution function [cdf] of

X�
n conditional on the original data, i.e. G

�
n (x) := P �(X�

n � x), x 2 R, converges in
probability to the cdf G of X, at all continuity points of G. For a given sequence X�

n

computed from the bootstrap data, X�
n�X = o�p(1), in probability, or X

�
n
p�!p X; means

that for any � > 0, P �(jjX�
n � Xjj > �) !p 0, as n ! 1. Similarly, X�

n = O�p (1), in

probability, means that, for every � > 0, there exists a constantM > 0 such that, for all

large n, P (P �(jjX�
njj > M) < �) is arbitrarily close to one. Unless otherwise speci�ed,

integrals are between 0 and 1.

2 (Non-)stationarity in a DAR model

In this Section we present the leading DAR model and the associated (non-)stationary

testing problem which we discuss throughout the paper. We introduce the main assump-

tions in Section 2.1, discuss estimation in Section 2.2 and the key testing procedure in

Section 2.3. Bootstrap inference and hypothesis testing is discussed in Section 3.

2.1 Model and assumptions

Consider the double-autogressive [DAR] model (Ling, 2004), as de�ned through the

recursion

�xt = �xt�1 + "t; "t := �tzt; �2t := ! + �x
2
t�1 (1)

where the zt�s are i.i.d. random variables with zero mean and unit variance, and with a

continuous, strictly positive density with respect to the Lebesgue measure2. The initial

value, denoted by x0, is independent of the future zt�s and will be considered �xed in

the statistical analysis. As is customary for this class of models, it is also assumed that

� := Ez3t = 0, � := Ez4t � 1 <1;
2The assumption of a continuous and positive density with respect to the Lebesgue measure can be

relaxed.
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the case � 6= 0 is considered in Section 6. In this model, the mean of xt conditional on the
�-�eld generated by fx0; z1; :::; zt�1g, say It�1, equals (1+�)xt�1 while the conditional
variance is given by �2t := ! + �x

2
t�1 and hence is level-dependent. In this respect, it

di¤ers from the standard AR-ARCH model (see e.g. Lange, Rahbek and Jensen, 2011),

where the conditional variance �2t depends on "
2
t�1 rather than on x

2
t�1 (see also Nielsen

and Rahbek, 2014, for a discussion of the multivariate DAR). Clearly, the model reduces

to a standard autoregression with i.i.d. innovation when � = 0, and to the ARCH model

when � = �1, which implies xt = (! + �x2t�1)
1=2zt. In the DAR model, a su¢ cient

condition for �2t to be positive a.s. is given by the usual non-negativity constraint

� � 0, which we assume to hold throughout. A necessary and su¢ cient condition for
Ex2t <1 is (1 + �)2+� < 1; moreover, provided E log j1 + � +

p
�ztj < 0, the process

can be given an initial distribution such that it is strictly stationary and geometrically

ergodic if some mild regularity conditions on the density function of zt also hold. A

key feature of the model is that the classical autoregressive unit root condition, � = 0,

does not imply that the process is non-stationary. More speci�cally, � = 0 implies

non-stationarity only if � = 0; see Figure 1 in Ling (2004). We discuss the issue of

testing for non-stationarity in Section 2.3 below.

In the following we assume that the parameter space for the true value, denoted as

�0, is given by �0 := �S [�N , where �S := f� := (�; �; !)0 : E log j1 + � +
p
�ztj < 0

with � � 0 and ! > 0g and �N := f� := (0; 0; !)0 : ! > 0g. That is, we assume
that either the process is strictly stationary (the true parameter is in �S), or that the

process is non-stationary and, speci�cally, reduces to a standard random walk with i.i.d.

increments (the true parameter is in �N ).

2.2 Estimation

As in Ling (2004) and in Klüppenberg et al. (2002), we consider quasi maximum

likelihood [QML] estimation based on the auxiliary assumption of Gaussian innova-

tions. The results given here are employed in Sections 3 and 4 in order to estab-

lish the properties of the bootstrap test. We further assume that the user-chosen

optimization set employed for maximization of the likelihood function is given by

T := f� := (�; �; !)0 : ��L � � � �U , 0 � � � �U ; !L � ! � !Ug, with �L; �U ; �U ; !L
and !U positive constants and !L < !U . In practice, estimation is performed imposing

the non-negativity restriction � � 0 while leaving � unrestricted (and ! positive).
For a time series fx1; :::; xng, and with x0 �xed in the statistical analysis, the

Gaussian QMLE is given by

�̂n := argmax
�2T

Ln (�) , Ln (�) :=
nX
t=1

lt (�)
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where, for t = 1; :::; n,

lt (�) := �
1

2
log �2t (�)�

1

2

�
�xt � �xt�1

�t (�)

�2
, �2t (�) := ! + �x

2
t�1.

Theory for the QMLE under the strict stationarity assumption, i.e. when the true

parameter �0 is in �S , is provided in Ling (2004) under the assumption that �0 is not

on the boundary (speci�cally, it is required that �0 2 [�L; �U ] with �L > 0), hence

not covering the case where �0 may be zero, that is, on the boundary. By employing

non-standard arguments as e.g. in Andrews (1999, 2001), see also Cavaliere, Nielsen,

Pedersen and Rahbek (2019), we generalize Ling (2004, Theorem 1) as follows:

Theorem 1 Suppose that fxtg is generated as in (1) with � = 0 and � <1, and that
the true parameter vector �0 2 �S . Then, as n ! 1, �̂n = (�̂n; �̂n; !̂n)0 is consistent,
i.e. �̂n !p �0 = (�0; �0; !0)

0. The asymptotic distribution of �̂n is given by

n1=2(�̂n � �0)!w � =
�
��; �

�0 ,
with ��

d
= N

�
0; �2�

�
, �2� := 1=E

�
x2t�1=�

2
t

�
. Moreover, �� is independent of the bivariate

random vector � := (��; �!)
0, where:

(i) for �0 > 0, �
d
= N (0;
) with 
 given in the Appendix, eq.(A.22);

(ii) for �0 = 0, then, with % := Ex2t ,

�� = max
�
0; �0�

�
, and �! = �

0
! � %max

�
0; �0�

�
;

where �0�
d
= N

�
0; �2�

�
and �0!

d
= N

�
0; �2!

�
are independent, �2� = �2!=�, �! =

p
�!0

and � = E
�
x4t
�
�
�
E
�
x2t
��2.

With respect to Ling (2004), the asymptotic distribution is no longer Gaussian when

�0 = 0 due to the restriction that � � 0. As a result, the asymptotic distribution of

(n1=2 times) �̂n is �half-normal�, i.e. of the form �+ := max (0; �) with � Gaussian. For

the case of �0 > 0, the asymptotic distribution of � is as in Ling (2004, Theorem 1).

Note that asymptotic normality and consistency at the n1=2-rate is established even in

cases where E(�xt)2 = +1, due to the structure of the score of the likelihood function,
see Appendix A.2 (and Jensen and Rahbek, 2004, for similar arguments in the ARCH

case).

Remark 2.1 Note that the results in Theorem 1 can be generalized to the case of � 6= 0.
In this case however, see Appendix A.2, �� and � are dependent with covariance matrix

Cov
�
��; �

�
= �
� 6= 0, with 
� given in Appendix A.2, eq.(A.16).

In order to discuss the large-sample behavior of the bootstrap tests, we also need to
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analyze the properties of the estimator under non-stationarity. These are provided in

the following theorem which, like Theorem 1, is novel.

Theorem 2 Suppose that fxtg is generated as in (1) with � = 0 and � < 1 and that

the true parameter vector �0 2 �N , i.e. �0 = 0 and �0 = 0. Then, as n ! 1,
�̂n !p �0. Moreover,

diag(n; n3=2; n1=2)(�̂n � �0)!w � = (��; ��; �!)
0 ;

where, with B and W independent standard Brownian motions,

�� :=

�Z
B2udu

��1 Z
BdB, �� := (�0�)

+ = max
�
0; �0�

�
,

for

�0� :=
p
�

�Z
B4udu� (

Z
B2udu)

2

��1�Z
B2dW �

Z
B2uduW1

�
:

Moreover, �! = �0! � (
R
B2du)��, where �0!

d
= �!W1 and �! :=

p
�!0.

Remark 2.2 With respect to the (strict) stationary case, we observe that the rate of

convergence of the estimator varies across parameters. In particular, �̂n converges at

the rate of n, similar to the standard autoregressive case with a unit root, while the

volatility parameter, �̂n, converges at the faster rate of n3=2. The estimator of the

intercept term in the variance equation has the usual stationary, n1=2, rate.

Remark 2.3 While � in Theorem 2 clearly is non-Gaussian, and thus di¤erent from

the stationary case with �0 = 0 in Theorem 1, one can immediately observe some sim-

ilarities: (i) in the expression for ��, the term (
R
B2udu)

�1 corresponds to the variance

�2� of ��; (ii) in �
0
�; the term

p
�(
R
B4udu� (

R
B2udu)

2)�1 corresponds to �2a = �
2
!=� in

�0�; (iii) �nally, in the expression for �!, while �
0
!
d
= �0!, the loading

R
B2du corresponds

to the % term in �!.

Remark 2.4 Similar to the case of Theorem 1, Theorem 2 can also be modi�ed to the

asymmetric case of � 6= 0, see the discussion in Section 6.

2.3 Testing non-stationarity

Suppose that the econometrician is interested in testing whether fxtg is non-stationary,
against the alternative of (strict) stationarity. In a pure AR�ARCH framework, the

(unit root) null hypothesis corresponds to � = 0 in eq. (1). However, the DAR process

can be strictly stationary even if � = 0, provided � > 0 and E log j1+
p
�ztj < 0; hence,

testing nullity of � is not alone su¢ cient to assess the non-stationarity of xt. Rather,
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as discussed in Ling (2004), one may test the pure random walk hypothesis, as given

by H0 : � = 0, � = 0, against the alternative H1 : � 6= 0, � � 0. The likelihood ratio
test can easily be computed in the usual way as

LRn := �2(Ln(~�n)� Ln(�̂n)) (2)

where ~�n := (0; 0; ~!n)
0, ~!n := n�1

Pn
t=1 (�xt)

2, denotes the restricted estimator of �,

i.e. ~�n := argmax�2T0 Ln (�) where T0 := f� := (0; 0; !)0 : !L � ! � !Ug. Now,
the asymptotics in the previous Theorem 1 obviously break down when �0 2 �N , see
Theorem 2. In this case, Klüppelberg et al. (2002) establish the following result for the

LR test statistic in (2).

Theorem 3 Suppose that fxtg is generated as in (1) with Ez4t < 1 and that the

true parameter vector �0 2 �N , i.e. �0 = 0 and �0 = 0. Then, as n ! 1,
LRn!w LR1 (�), where

LR1 (�) =
�

2

�
max

�
0;

R
B2uduW1 �

R
B2udWu

(
R
B4udu� (

R
B2udu)

2)1=2

��2
(3)

+
(
R
BudBu)

2R
B2udu

where B and W are as in Theorem 2.

Some remarks follow.

Remark 2.5 Notice that since B and W are independent, conditionally on B, we have

in particular that

W1

R
B2udu�

R
B2udWu

(
R
B4udu� (

R
B2udu)

2)1=2
d
=
N
�
0;
R
(B2u � (

R
B2udu))

2du
�

(
R
(B2u � (

R
B2udu))

2du)1=2
d
= N (0; 1) .

This implies that the �rst term in (3) is distributed as �
2 (max(0; N (0; 1)))

2, i.e. �
2

times the half-�21 distribution.

Moreover, it is independent of the second term, (
R
B2du)�1(

R
BdB)2, which is a

squared Dickey-Fuller distribution. Should the condition � = 0 fail to hold, both the

half �21 property and the independence of the two terms in (3) would no longer hold

true; see also Section 6.

Remark 2.6 The distribution in (3) is non-pivotal, since it depends on �. A consistent

estimator of this quantity can be constructed by using the unrestricted residuals, as

�̂n := n�1
Pm
t=1(1 � ẑ2t )2, where ẑt := "̂t=�̂t for "̂t := �xt � �̂nxt�1, �̂2t := !̂n +

�̂nx
2
t�1. An estimator ~�n which imposes the null hypothesis may be constructed using
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the restricted residuals, ~zt := ~!
�1=2
n �xt. However, this estimator overestimates � when

the null hypothesis does not hold, hence reducing the power of an asymptotic test based

on LR1(~�n). �

3 Bootstrapping the asymptotic distribution under

the null hypothesis

3.1 Preliminaries and bootstrap algorithms

The classical requirement of any bootstrap implementation is consistent estimation of

the asymptotic null distribution of the reference test statistic when the null hypothesis

is true. Speci�cally, and taking the LRn test statistic to illustrate, consider a bootstrap

analog, say LR�n, which is a function of the original sample and of a vector of bootstrap

innovations, say ��1; :::�
�
m, de�ned jointly with the original data on a possibly expanded

probability space. With G�n (�) := P � (LR�n � x) denoting the conditional distribution
of LR�n given the original data, this requires that, under the null hypothesis, G

�
n (�)!p

G1 (�), where G1 denotes the cdf of LR1 (�), the asymptotic distribution of LRn
under the null; see eq. (3). That is, LR�n

w�!p LR1 (�). If, additionally, G1 (�) is
continuous, then by Pólya�s theorem proximity of G�n (�) to G1 (�) holds in the sup
norm,

sup
x2R

jG�n (x)�G1 (x) j !p 0;

and the bootstrap p-value, given by

p�n := 1�G�n (LRn) ,

is asymptotically uniformly distributed, i.e. p�n !w U [0; 1]. This allows to construct

a bootstrap test with the correct asymptotic size at any nominal signi�cance level.

In addition, it is crucial to analyze the behavior of the bootstrap statistic under the

alternative hypothesis, which is often overlooked in applications. We discuss this issue

in Section 4.

Two main approaches can be given in order to de�ne the bootstrap statistic LR�n.

The �rst, the �restricted bootstrap�, is based on estimation of the original model with the

null hypothesis imposed; i.e. with � = � = 0. In this case, the bootstrap statistic mimics

the original test statistic and tests the restriction � = � = 0 on the bootstrap data. The

second, the �unrestricted bootstrap�, uses the unrestricted parameter estimates �̂n; �̂n
to generate the bootstrap data and the bootstrap statistic is based on testing � = �̂n
and � = �̂n on the bootstrap data; see e.g. Hall (1992). We introduce the restricted

bootstrap �rst.
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Restricted (i.i.d.) Bootstrap:

(i) Estimate model (1) using Gaussian QML under the null hypothesis, yielding the

estimates ~�n := (0; 0; ~!n)
0, together with the corresponding restricted QML resid-

uals, ~"t := �xt and ~zt := ~!
�1=2
n ~"t, as de�ned above;

(ii) Standardize the residuals as

~zs;t : =
~zt � n�1

Pn
t=1 ~zt

(n�1
Pn
t=1(~zt � n�1

Pn
t=1 ~zt)

2)1=2

and construct the bootstrap innovations using the i.i.d. bootstrap re-sampling

scheme; i.e., z�t := ~zs;��t , where �
�
t , t = 1; :::; n is an i.i.d. sequence of discrete

uniform distributions on f1; 2; :::; ng;

(iii) Construct the bootstrap sample fx�t g from the recursion

�x�t = "
�
t ; "�t := �

�
t z
�
t ; ��t

2 = ~!n, t = 1; : : : ; n; (4)

with the n bootstrap errors z�t generated in Step (ii) and with initial values x
�
0 =

x0.

(iv) Using the bootstrap sample, fx�t g, compute the bootstrap test statistic LR�n.
De�ne the corresponding p-value as p�n := 1�G�n (LRn) with G�n(�) denoting the
conditional (on the original data) cdf of LR�n.

(v) The restricted bootstrap test of H0 at level � rejects if p�n � �.

There are many variants of the restricted bootstrap, as exempli�ed in the following

remarks.

Remark 3.1 In the de�nition above, the length of the bootstrap sample equals the

length of the original sample, n. A di¤erent sample size, say m < n, could be used in

order to form the bootstrap sample. This is the so-called �m out of n�bootstrap, which

(under proper conditions onm as n increases, such asm�1+mn�1 ! 0) has been proved

to be asymptotically valid in certain cases where bootstraps based on n observations fail;

see Politis, Romano and Wolf (1999) and the references therein. However, for the �m out

of n�bootstrap, while mathematically appealing in the derivations of the asymptotic

theory, the choice of m is �delicate� (see Davison, Hinkley and Young, 2003), and,

moreover, in general it does not deliver satisfactory �nite sample results. As pointed

out by the Editor, a further issue of the �m out of n�bootstrap (and, in general, of

subsampling) is that it can lead to initialization problems in nonstationary settings,

which may not be easy to address.

12



Remark 3.2 The bootstrap shocks in Step 2 are based on i.i.d. re-sampling (i.e., with

replacement) from the standardized residuals. Di¤erent bootstrap schemes could in

principle be used. For instance, the so-called wild bootstrap (Wu, 1986; Liu, 1988;

Mammen, 1993) generates the bootstrap innovations as the (conditionally) indepen-

dent sequence z�t := ~zs;tw
�
t where w

�
t is i.i.d.(0,1) with bounded fourth order moments.

Alternatively, re-sampling without replacement of the ~zs;t�s could be employed, leading

to the permuted bootstrap sample z�t = ~zs;��(t), t = 1; :::; n, where f��(1); :::; ��(n)g
is a (uniformly distributed) random permutation of f1; :::; ng (Cavaliere, Georgiev and
Taylor, 2016; Cavaliere, Nielsen and Rahbek, 2018). Finally, a fully parametric boot-

strap could be obtained by generating z�t as i.i.d. from any pre-speci�ed zero mean,

unit variance, distribution.

Remark 3.3 In practice, the cdf G�n required in Step (iv) of Algorithm 1 can only

be approximated through numerical simulation. As is standard, this requires gener-

ating B (conditionally) independent bootstrap statistics, LR�n:b, b = 1; : : : ; B, com-

puted as above. The approximated bootstrap p-value for LRn, is then computed as

~p�n := B
�1PB

b=1 I(LR�n:b > LRn), and is such that ~p
�
n
a:s:! p�n as B !1. For the choice

of B, see, inter alia, Andrews and Buchinsky (2000) and Davidson and MacKinnon

(2000). �

The key feature of the restricted bootstrap is that the parameter estimates used in

constructing the bootstrap sample data are obtained under the restriction of the null

hypothesis, H0. As discussed for instance in Hall (1992), in the statistics literature it

is often the case that in bootstrap implementations parameters are estimated without

imposing the null hypothesis, and to subsequently calculate a bootstrap test statistic

for the hypothesis � = �̂n, that is, the hypothesis that � equals the unrestricted esti-

mate. Formally, this corresponds to the unrestricted bootstrap, as de�ned through the

following steps.

Unrestricted (i.i.d.) Bootstrap:

(i) Estimate model (1) using Gaussian QML without imposing the null hypothesis,

yielding the estimates �̂n := (�̂n; �̂n; !̂n)
0, together with the corresponding unre-

stricted QML residuals, "̂t := �xt � �̂nxt�1 and ẑt := (!̂n + �̂nx
2
t�1)

�1=2"̂t, as

de�ned above;

(ii) Standardize the residuals as

ẑs;t : =
ẑt � n�1

Pn
t=1 ẑt

(n�1
Pn
t=1(ẑt � n�1

Pn
t=1 ẑt)

2)1=2
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and construct the bootstrap innovations using the i.i.d. bootstrap re-sampling

scheme; i.e., z�t := ẑs;��t , where �
�
t , t = 1; :::; n is an i.i.d. sequence of discrete

uniform distributions on f1; 2; :::; ng;

(iii) Construct the bootstrap sample fx�t g from the recursion

�x�t = �̂nx
�
t�1 + "

�
t ; "�t := �

�
t z
�
t ; ��t

2 = !̂n + �̂n(x
�
t�1)

2, t = 1; : : : ; n;

with the n bootstrap errors z�t generated in step (ii) and with initial values x
�
0 = x0.

(iv) Using the bootstrap sample, fx�t g, compute the bootstrap test statistic LR�n for
the (auxiliary) null hypothesis � = �̂n, � = �̂n. De�ne the corresponding p-value

as p�n := 1�G�n (LRn) with G�n(�) denoting the conditional (on the original data)
cumulative distribution function (cdf) of LR�n.

(v) The unrestricted bootstrap test of H0 at level � rejects if p�n � �.

The logic behind the unrestricted bootstrap is to avoid potential power losses that

the restricted bootstrap test may experience because of incorrectly imposing a false

null hypothesis when the null does not hold. There are, however, many cases where the

unrestricted bootstrap fails to mimic the asymptotic distribution, whereas the restricted

bootstrap does not. Among those, two cases are extremely relevant for the testing

problem considered here. The �rst is the case of bootstrapping when data have unit

roots �as it happens in the DAR model when � = 0. The second is the case where a

parameter lies on the boundary of the parameter space �which again appears in our

testing problem as � = 0 is a boundary point under the maintained hypothesis that

� � 0. We brie�y discuss these two examples in the following.

Example 1 (Unit roots and unrestricted bootstrap) Consider as in Basawa

et al. (1991) the �rst order autoregression with a unit root,

�xt = �xt�1 + "t; � = 0;

"t i.i.d.N(0; !), x0 = 0 and t = 1; :::; n. Let Jc denote an Ornstein-Uhlenbeck process

with mean reversion parameter c (such that c = 0 corresponds to a standard Brownian

motion) and set � (c) :=
R
JcdJc=

R
J2c du. The QMLE of � is the least squares estimator,

�̂n =
Pn
t=1�xtxt�1=

Pn
t=1 x

2
t�1, which satis�es

�n := n�̂n !w �1 := � (0) (5)
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see Phillips (1987) and the references therein. Now, consider a (fully parametric) un-

restricted bootstrap, based on the recursion

�x�t = �̂nx
�
t�1 + "

�
t , (6)

for t = 1; :::; n, initialized at x�0 = x0; and with "
�
t i.i.d. N(0; 1). With �̂

�
n the bootstrap

(least squares) estimator, �̂�n =
Pn
t=1�x

�
tx
�
t�1=

Pn
t=1(x

�
t�1)

2, the bootstrap analog of

�n is de�ned as ��n := n�̂�n. Unfortunately, despite �̂n being superconsistent, �
�
n fails

to mimic the asymptotic distribution in (5). Essentially, because n�̂n = Op (1) rather

than op (1), the bootstrap sample (normalized by the usual rate n�1=2) behaves, in large

samples, as an Ornstein-Uhlenbeck process with random drift parameter, rather than as

a Brownian motion. To see why, replace �̂n in (6) by a sequence �n such that n�n ! v.

Then, by extending the results in Phillips (1987) to the bootstrap case, we have that

(conditionally on the original data), ��n := n(�̂
�
n � �̂n) is asymptotically distributed as

� (v) (see Basawa et al., 1991). In our case, �n := n�̂n !w �1 and, as a result, the

bootstrap statistic has a random distribution function, even for n!1, given by � (�1).
More speci�cally, it can be proved that

P � (��n � x) = P (��n � xj�n) = P (n(�̂�n � �̂n) � xj�n)

!w P

�Z
J�1dJ�1=

Z
J2�1du � x

���� �1� :
That is, the limiting distribution can be written in terms of an Ornstein-Uhlenbeck

process with a random drift, distributed as �1, i.e. as a Dickey-Fuller distribution.

Similar arguments are applied in Cavaliere, Nielsen and Rahbek (2015), see also the

next Section, and in terms of random bootstrap measures in Cavaliere and Georgiev

(2019) and Boswijk et al. (2019).

Example 2 (Unit roots and the restricted bootstrap) While the unrestricted

bootstrap fails to mimic the unit root distribution, the restricted bootstrap does not; see

Cavaliere and Taylor (2008, 2009a) and Cavaliere, Rahbek and Taylor (2012) for the

multivariate case. Speci�cally, by imposing the unit root on the bootstrap sample, i.e.

by setting

�x�t = "
�
t ,

where "�t are i.i.d. N(0; 1) and t = 1; :::; n; it is guaranteed that �
�
n := n�̂

�
n
w�!p � (0), in

probability.

Alternatively it follows by standard arguments that one may use an �m out of n�

version of the unrestricted bootstrap which, by considering samples of size m = o(n)

ensures that m�̂n = op (1) as m ! 1, which is su¢ cient for ��m := m�̂�m
w�!p � (0),

in probability. However, as already emphasized, while the asymptotic arguments are
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mathematically appealing, in practice the �m out of n� bootstrap in this case does not

have adequate �nite sample properties.

Example 3 (Boundary problems and the unrestricted bootstrap) The stan-

dard unrestricted bootstrap is also known to fail when (some of) the parameters lie on

the boundary of the parameter space. Consider, as in Cavaliere, Nielsen and Rahbek

(2017), see also Andrews (2000), the Gaussian ARCH model,

xt =
q
! + �x2t�1zt,

with zt i.i.d. N(0,1). Moreover, the optimization set is given by T� = f� : � 2 [0; �U ]g,
�0 2 �S�, with �S� =

�
� : E log

�
�z2t

�
< 0
	
, while ! is kept �xed for simplicity here.

We consider here testing �0 = 0 by the likelihood ratio statistic, LRn. As in Theorem

3 for the DAR, the MLE �̂n satis�es for �0 > 0,

p
n(�̂n � �0)!w

�
� �, � � N (0; 1) ;

� = V
�
x2t
�
, and the associated LR statistic for � = �0 is asymptotically �21 (times

�
2 ).

In contrast, if �0 = 0,

p
n(�̂n � �0)!w �1 = maxf0; �g;

and the associated LR statistic for � = 0 has an asymptotic distribution given by,

LRn !w
�
2 �
21 (� � 0) = �

2 max f0; �g
2 .

Now, consider instead the (parametric) unrestricted bootstrap sample, as given by

x�t =
q
! + �̂nx�2t�1z

�
t , with z

�
t i.i.d. N (0; 1) (independent of the original data), and

the associated bootstrap statistic, LR�n, for the (bootstrap) hypothesis that � equals the

bootstrap true value, �̂n. With �� � N (0; 1) and independent of �, we conjecture from
the theory in Cavaliere, Nielsen, Pedersen and Rahbek (2019) that, conditionally on the

original data, the asymptotic distribution of the LR�n statistic has a random limit,

�
2 (� + �

�)2 1 (� + �� � 0)
��� ��,

where �� is a function of �1 given above. Thus, as expected the unrestricted bootstrap

fails to mimic the null asymptotic distribution. �

3.2 Bootstrap validity in the DAR model

Testing the pure random walk hypothesis in the DAR framework features the compli-

cations discussed in the previous Examples 1 and 3. First, since the null hypothesis
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implies a unit root in the data, a bootstrap which does not impose the unit root on

the bootstrap sample is likely to fail to be �rst-order valid. Second, since the null hy-

pothesis implies a parameter (�) on the boundary of the parameter space, a bootstrap

which does not account for this feature may display a random limiting distribution.

The unrestricted bootstrap is neither imposing the unit root nor restricting � to be on

the boundary of the parameter space; hence, it fails to be �rst-order valid. Conversely,

under mild conditions the restricted bootstrap is able to replicate the correct null lim-

iting distribution of the LR test when the null hypothesis holds true. This is proved in

the next theorem.

Theorem 4 Under the conditions of Theorem 3, provided Ez8t < 1, as n ! 1 the

restricted bootstrap LR statistic satis�es:

LR�n
w�!p LR1 (�) .

The logic behind the proof of bootstrap validity under the null hypothesis is the

following. When the restricted bootstrap is employed, the sample bootstrap is generated

as

�x�t = "
�
t = !̂nz

�
t .

Conditionally on the original data, the bootstrap score, see Appendix A, depends on

the vector
�
z�t ; z

�2
t � 1

�
, which needs to satisfy a (bootstrap) functional central limit

theorem of the form,

Z�n (�) := n�1=2
bn�cP
t=1

�
z�t ; z

�2
t � 1

� w�!p

�
B�;

p
�W �� (7)

with B� and W � two independent standard Brownian motions. It is therefore crucial

to control what conditions are needed for (7) to hold, given that z�t is a zero mean

(conditionally) i.i.d. sample from the centered standardized residuals, ~zs;t. This re-

quires checking whether the (conditional) variance of Z�n (�) converges to diag(1; �) and
whether the Lindeberg condition holds. As shown in the Appendix, these requirements

hold provided zt has bounded eighth order moments. Notice that it is usually the case

that in order to establish the asymptotic properties of the bootstrap, further condi-

tions are required when compared to non-bootstrap asymptotics; the DAR case is not

an exception. Notice also that the eighth order moment condition simpli�es consider-

ably some steps of the proof using Chebychev-type and more general inequalities (for

early use of this approach in time series models, see Bühlmann, 1997, Swensen, 2003,

Goncalves and Kilian, 2004). It is likely that this condition can be relaxed to 4 + �

moments (� > 0), e.g. by using Marcinkiewicz-Zygmund-type law of large numbers,

as done by Liu (1988) for location and regression models. The Monte Carlo results in
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Section 5 seems to support this conjecture.

It is worth emphasizing that for the DAR model, the limiting distribution of the

LRn test statistic for reduction to a pure random walk features a nuisance parameter,

namely the constant �. This makes the testing problem based on asymptotic inference

convoluted, since the practitioner needs �rst to estimate � using a proper (consistent)

estimator, say �̂, and then using Monte Carlo methods to simulate the quantiles of

limiting distribution LR1 (�̂). The bootstrap allows to circumvent this problem, as it
replicates the correct limiting distribution without the need of plug-in methods. This

is an example of a classic application of the bootstrap to time series data, where it is

used to retrieve quantiles from an asymptotic distribution which depends on a (possibly

in�nite dimensional) vector of nuisance parameters, see the following example.

Example 4 (Non-stationary volatility) A classic instance of a limiting distrib-

ution depending on a nuisance parameter is the case of �non-stationary�volatility, see

Boswijk et al. (2019). In this case, in the simplest form the innovations of an economet-

ric model can be represented as "t = �tzt, where zt is an i.i.d. �nite variance sequence

and �t = h (t=n), where h is a bounded function satisfying some regularity conditions

(e.g., it is càdlàg; see Cavaliere, 2004, and Boswijk et al., 2017 and 2019). In this case,

the partial sum process associated to "t delivers the following result

Sn(�) :=
1

n1=2

bn�cX
t=1

"t
w!M (�) :=

Z �

0
h (u) dB (u) ,

where B is a Brownian motion. In this speci�c case, M is a continuous-time martin-

gale with covariance kernel given by Cov (M (s) ;M (s0)) =
R minfs;s0g
0 h (u)2 du. Limit

distributions of estimators and test statistics usually depend on such a covariance ker-

nel, which is unknown in practice. Although consistent estimators could be constructed

(see e.g. Cavaliere and Taylor, 2007), the bootstrap can in general automatically repli-

cate the limiting functional M . That is, consider a vector of residuals "̂t satisfying

n�1
Pn
t=1("̂

2
t � "2t ) = op (1), and construct the bootstrap errors using the �wild�bootstrap

as

"�t := "̂tw
�
t , t = 1; :::; n;

where the wt�s are i.i.d. N(0; 1). Then, it holds, as n ! 1, see Boswijk et al. (2017
and 2019) and the references therein,

S�n(�) :=
1

n1=2

bn�cX
t=1

"�t
w�!p M (�) (8)

and hence the wild bootstrap replicates the same limiting distribution of the original

functional Sn. �
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4 The behavior of the bootstrap under the

alternative hypothesis

4.1 Preliminaries and bootstrap consistency

The analysis of the large sample properties of the bootstrap test statistic under the al-

ternative hypothesis is a key requirement for a correct implementation of the bootstrap.

Unfortunately, as it will be exempli�ed later in this Section, this step is in general more

involved than just proving validity under the null hypothesis.

Ideally, one would aim that, under the alternative hypothesis, LR�n is (asymptoti-

cally) distributed as the LRn limit under the null. This would require that, as n!1,

LR�n
w�!p LR1 (�) (9)

also when H0 does not hold.

This immediately implies that the (bootstrap) test is consistent: if LRn diverges to

+1 under the alternative hypothesis then, with G�n denoting the cdf of LR
�
n conditional

on the original data, it holds that the bootstrap p-value satis�es p�n := 1�G�n(LRn)!p

0. Moreover, in large samples a test based on the (conditional) quantiles of LR�n would

have power approximately equal to the size-adjusted power of the (asymptotic) test

based on the quantiles of LR1.
In fact, a weaker result that implies bootstrap consistency can be used in case (9)

does not hold. Speci�cally, a su¢ cient condition for the bootstrap p-value to shrink

to zero under the alternative is (again, provided LRn ! 1 under the alternative

hypothesis)

LR�n = O
�
p(1), in probability, (10)

or the even weaker result that

LR�n = o
�
p(LRn), in probability. (11)

In the �rst case, the bootstrap test statistic is bounded in probability, which implies con-

sistency of the bootstrap test at the usual rate. In the second case, both the bootstrap

and the original test statistics diverge to +1. However, the fact that the conditional
quantiles of LR�n diverge at a slower rate implies consistency of the bootstrap test.

This implies that in both cases the power of the bootstrap test converges to unity as

the sample size increases.

Two simple examples are now given.

Example 5 (ARCH j Boundary and restricted bootstrap) In Example 3, un-
restricted bootstrap based testing for H0 : � = 0 was discussed in the ARCH model given
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by,

xt = �tzt; �2t = ! + �x
2
t�1; � = (�; !)0 .

Recall furthermore that the likelihood ratio statistic LRn has the asymptotic limiting

distribution as given by,

LR1 (�) =
�

2
(�+)2 =

�

2
maxf0; �g2;

with � a N (0; 1) random variable. Consider here the restricted bootstrap based on i.i.d.

resampling of the (standardized) restricted residuals proposed in Cavaliere, Nielsen and

Rahbek (2017), hereafter. With ~�n := (~!n; 0)
0 denoting the restricted (QML) estimator,

the bootstrap data are given by

x�t :=
p
~!nz

�
t , (12)

with z�t sampled with replacement from the standardized residuals from restricted es-

timation, given by ~zst := (~zt � ~zn)=(n�1
Pn
t=1(~zt � ~zn)2)1=2, ~zn := n�1

Pn
t=1 ~zt, with

~zt := xt=
p
~!n. The bootstrap shocks fz�t : t � ng are an i.i.d. sample from ~zst ,

t = 1; :::; n, such that, conditionally on the original data, E� (z�t ) = 0 and V
� (z�t ) = 1.

Cavaliere, Nielsen and Rahbek (2017, Theorem 1) show that under the null hypothesis,

the bootstrap QLR statistic, say LR�n, satis�es

LR�n
w�!p LR1 (�) , (13)

hence mimicking the correct asymptotic null distribution. However, if the null hypoth-

esis does not hold, result (13) may no longer hold. Essentially, the reason is that the

unrestricted estimator ~!n equals n�1
Pn
t=1 x

2
t , which may even diverge under the stated

assumptions. For instance, while under the null hypothesis xt = !1=2zt, which implies

that also fxt : t � 1g has �nite fourth order moments, under the alternative hypothesis
xt may have in�nite fourth order moments. If, additionally, it is assumed that xt has

�nite fourth order moments, such that �y := E(x4t )=(E(x
2
t ))

2 � 1 < 1, by Theorem 1

in Cavaliere, Nielsen and Rahbek (2017) it follows that under the alternative,

LR�n
w�!p LR1(�y);

such that LR�n = O�p (1), in probability. Hence, while as shown in Example 3 the un-

restricted bootstrap is invalid, the restricted is. Finally, note that when �0 6= 0 the

constant �y > �, hence implying a potential power loss of the bootstrap test with respect

to the asymptotic test.

Example 6 (Hypothesis testing on the cointegrating vectors) Consider a p-
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dimensional VAR process with r co-integrating relations, as given by

�xt = �xt�1 + "t; � = ��0 (t = 1; :::; n), (14)

with f"tg independent and identically distributed (i.i.d.) with mean zero and covariance
matrix 
, and where the initial value x0 is �xed in the statistical analysis. Further-

more, assume that the so-called �I(1; r) conditions�holds; that is, (a) the characteristic

polynomial associated with (14) has p � r roots equal to 1 and all other roots outside
the unit circle, and (b) � and � have full column rank r. Under these conditions xt
is I(1) with co-integration rank r, such that the co-integrating relations �0xt are sta-

tionary. We want to test the null hypothesis H0 : � = � , where � a known p � r
matrix of full column rank r. To this aim, it is customary to consider the LR test of

Johansen (1996), which rejects H0 when the associated LR statistic LRn is large, with

LRn asymptotically �2p(p�r) distributed. Now, consider a restricted bootstrap for H0, as

initially proposed in Fachin (2000), Gredenho¤ and Jacobson (2001) and later discussed

in Fachin and Omzigt (2006). This bootstrap requires estimation of (14) under H0 and

then use the corresponding (restricted) estimates ~�n and � to generate the bootstrap

sample as

�x�t = ~�n�
0x�t�1 + "

�
t , (15)

where the bootstrap shocks "�t are obtained by re-sampling (after re-centering) from the

restricted residuals, ~"t := �xt � ~�n� 0xt�1. Under H0, consistency of ~�n implies, along
with a bootstrap (functional) CLT for f"�t g, that the bootstrap LR statistic, say LR�n,

satis�es

LR�n
w�!p �

2
p(p�r).

Hence, the bootstrap mimics the correct asymptotic distribution under the null. How-

ever, as proved in Cavaliere, Nielsen and Rahbek (2015), the same result does not hold

when H0 is false. Intuitively, this is the case because when H0 is false, � 0Xt�1 is no

longer stationary, and hence the restricted estimator ~�n is based on the unbalanced re-

gression of �xt (stationary) on � 0xt�1 (non-stationary in p�r� directions , with r� < r).
This implies that ~�n� 0, properly normalized, does not converge to a constant but, rather,

to a stochastic matrix of reduced rank r� (see Cavaliere et al., 2015, Proposition 1). As

a consequence, the bootstrap estimator of � is no longer mixed Gaussian (as it is un-

der the null hypothesis) and the statistic LR�n has a random limiting distribution which

di¤ers from the target �2 distribution. However, it still holds that LR�n = O�p (1), in

probability, as in (10), hence implying that the bootstrap test is consistent.

Example 7 (Bootstrap financial bubbles) Phillips, Wu and Yu (2011) consider

testing for an explosive bubble regime, based on the supremum of a set of recursive right-
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tailed DF test statistics, �n. While Harvey, Leybourne, Sollis, and Taylor (2016) show

that the restricted (Wild) bootstrap statistic ��n mimics the right limiting distribution

under the null hypothesis, this result does not hold under the alternative; neither does

it hold that ��n = O�p(1), in probability. Rather, Harvey et al. (2016) show that �
�
n =

O�p
�
n1=2

�
, in probability and hence both the original and the bootstrap statistics diverge

to +1. But since the bootstrap statistic diverges at a polynomial rate n1=2 while the
original statistic diverges at the exponential rate n1=2 (1 + �1)

n(�2��1), see Theorem 3

in Harvey et al. (2016), the bound in (11) applies and the bootstrap test rejects with

probability tending to one as n diverges. �

4.2 On consistency of the boostrap for the DAR model

Despite the restricted bootstrap correctly estimating the null asymptotic distribution

under the null hypothesis, its performance under the alternative is not at all straightfor-

ward to establish. This is because, under the alternative hypothesis of strict stationarity,

the retricted residuals ~zt are no longer close enough to the true innovations, zt, and do

not share the same properties in terms of moments. Consequently, the bootstrap score

and information may have di¤erent asymptotic properties with respect to their sample

analogs. Intuitively, this happens because while under the null hypothesis, ~zt � zt,

under the alternative hypothesis ~zt = ~!
�1=2
n �xt, where xt may not possess �nite fourth

order moments (take, for instance, the case where � + (1 + �)2 = 1 with � 6= 0, such

that xt is strictly stationary and ergodic but Ex2t = +1).
More precisely, recall that a �rst requirement for the asymptotic result in Theo-

rem 4 is to assess whether the bootstrap functional CLT [FCLT] in (7) holds, with

z�t (conditionally on the original data) i.i.d. from the centered standardized residuals,

~zs;t := (n
�1Pn

t=1(~zt � n�1
Pn
t=1 ~zt)

2
)�1=2(~zt�n�1

Pn
t=1 ~zt). In terms of z

�
t , conditions

for

n�1=2
[n�]P
t=1
z�t

w�!p B
� (�)

withB� a standard Brownian motion, are: (i) E�z�i = 0, (ii) E
�(z�i )

2 = n�1
Pn
t=1 ~z

2
s;t !p

1, and (iii) a Lindeberg condition. The complication here is that under the alternative

it no longer holds that ~zs;t is close to zt, as it happens under the null. In contrast,

~zs;t is close to �xt (properly standardized). While (i) and (ii) are simple to verify, the

Lindeberg condition in (iii) requires further restrictions. In particular, by Lemma B.1

in Cavaliere et al. (2017) (iii) holds provided �xt has bounded fourth order moments.

Similarly, in order to deal with n�1=2
P[n�]
i=1(z

�2
t �1), the aforementioned lemma applies,

provided �xt has bounded eighth order moment. Under this additional assumption,

the following Theorem can be established.

22



Theorem 5 Let the conditions of Theorem 4 hold, and consider the restricted bootstrap

test statistic, LR�n. Then, under H1, if additionally E (�Xt)
8 <1, then as n!1:

LR�n
w�!p LR1(�y)

where �y := E(�xt)4

(E(�xt)2)2
� 1 > �.

This theorem proves that even in the case of bounded eighth order moments of

�xt, under the alternative hypothesis the bootstrap does not mimic the asymptotic

distribution given in Theorem 3. Rather, it converges to LR1(�y) rather than to the
null distribution LR1 (�). However, since LR�n remains of order O�p (1), in probability,
the bootstrap test is consistent.

We now turn to the case where the moment condition on �xt fails. Establishing the

limiting distribution in this case is extremely complicated, in particular because under

lack of moments (in particular, second order moments), the bootstrap CLT no longer

holds. Speci�cally, it is well known from Athreya (1987) and Knight (1989) that in this

case the bootstrap delivers a random limiting distribution, as reported in the following

example.

Example 8 (Bootstrap of the sample mean under infinite variance)

Suppose that the xt�s form an i.i.d. sequence in the domain of attraction of a Stable

law with tail index denoted by � 2 (0; 2). In this case it is well known that there are
sequences an and bn such that Sn := a�1n

Pn
t=1(xt � bn) !w S (�), a Stable random

variable with tail index �. Its i.i.d. bootstrap analog is given by S�n := a
�1
n

Pn
t=1(x

�
t �

E�x�t ), where the x
�
t�s are (conditionally on the original data) i.i.d. from fx1; :::; xng.

Bootstrap validity would require that, in probability, S�n
w�! S (�). However, as shown

by Knight (1989), because of the lack of �nite second order moments the large extremes

in the original sample do not �wash away� and, consequently, the cdf of the bootstrap

statistic also depends on the original data asymptotically. Put di¤erently, the cdf of the

bootstrap statistic, conditionally on the data, is random in the limit (see equation (2)

in Knight, 1989) and hence does not match the cdf of the S (�). Extensions to other

bootstraps in the context of (stationary and non-stationary) time series models with

in�nite variance are provided in Cavaliere, Georgiev and Taylor (2013, 2016, 2018)

and Cavaliere, Nielsen and Rahbek (2018). �

In particular, it is reasonable to conjecture that �similarly to the bootstrap statistic

S�n of the previous example �the term n
�1=2Pn

t=1 z
�
t , albeit not satisfying a central limit

theorem (due to the randomness of its limiting distribution), is still of order O�p (1), in

probability. Put di¤erently, the central limit theorem does not hold on z�t ; however,

its sum is still of order n1=2. This would suggest that the bootstrap LR statistic may

have a random limiting distribution which, however, is bounded in probability, hence
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ensuring consistency of the bootstrap test. The Monte Carlo simulations of Section 5

support this conjecture.

4.3 A hybrid bootstrap

We here propose a bootstrap method which is able to mimic the null asymptotic distri-

bution even if the null is false. This is simply a hybrid bootstrap, where we combine the

use of the restricted parameter estimators (typically employed for the restricted boot-

strap) with the use of the unrestricted residuals (typically employed for the unrestricted

bootstrap). The hybrid bootstrap test statistic is de�ned through the following steps.

Hybrid (i.i.d.) Bootstrap:

(i) Estimate model (1) using Gaussian QML under the null hypothesis, yielding the

estimates ~�n := (0; 0; ~!n)
0; similarly, also estimate model (1) using Gaussian QML

without imposing the null hypothesis, yielding the estimates �̂n := (�̂n; �̂n; !̂n)
0,

together with the corresponding unrestricted QML residuals, "̂t := �xt � �̂nxt�1
and ẑt := (!̂n + �̂nx2t�1)

�1=2"̂t, as de�ned above;

(ii) Standardize the unrestricted residuals as

ẑs;t : =
ẑt � n�1

Pn
t=1 ẑt

(n�1
Pn
t=1(ẑt � n�1

Pn
t=1 ẑt)

2)1=2

and construct the bootstrap innovations using the i.i.d. bootstrap re-sampling

scheme; i.e., z�t := ẑs;��t , where �
�
t , t = 1; :::; n is an i.i.d. sequence of discrete

uniform distributions on f1; 2; :::; ng;

(iii)-(v) As Steps (iii)-(v) of the restricted bootstrap.

This bootstrap is simple to implement and �with respect to the standard restricted

bootstrap �it only requires unrestricted estimation of the model on the original data.

Since this step is done one time only, implementation of this bootstrap is not more time

consuming than the two bootstraps described earlier.

The crucial features of this bootstrap are that, due to the use of the unrestricted

residuals, a bootstrap invariance principle for (z�t ; z
�2
t � 1) holds irrespective of the null

hypothesis to be true or not. Hence, the issue of possible lack of (fourth order) moments

for z�t described in the previous Section 4.2 does not arise when this bootstrap is im-

plemented. Moreover, the use of the restricted parameter estimates in the construction

of the bootstrap sample allows to avoid possible randomness of the limiting bootstrap

measures due to unit roots and a parameter on the boundary under the null hypothesis.

We have the following theorem.
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Theorem 6 Let the conditions of Theorem 4 hold, and consider the hybrid bootstrap

test statistic, LR�n. Then, both under H0 and H1, as n!1:

LR�n
w�!p LR1 (�)

Remark 4.1 In principle, under the null hypothesis it is well expected that the boot-

strap based on �restricted�residuals, i.e. from estimation with the null imposed, delivers

better size control than the hybrid bootstrap discussed here. This is a well-known prop-

erty of bootstrap tests for a unit root; see e.g. Cavaliere and Taylor (2008, 2009b) and

Palm et al. (2008) and the references therein. The amount of size accuracy which is lost

by bootstrapping unrestricted residuals instead of plain restricted residuals is usually

negligible. However, how the DAR structure a¤ects the �nite-sample properties of these

two bootstrap schemes cannot be inferred from the proofs of (�rst-order) bootstrap va-

lidity. In the next Section we aim to cast some light on this issue by means of Monte

Carlo simulation.

5 Simulations

In this Section we compare the �nite sample properties of the LR test for the pure

random walk null hypothesis with its (asymptotically valid) bootstrap analogs: the

restricted bootstrap LR test and the hybrid bootstrap test of Section 4.3. By considering

a detailed simulation study based on the DAR model, we aim at analyzing the �nite-

sample performance of the various bootstrap schemes across di¤erent choices of the

bootstrap true values and di¤erent distributions of the innovations, both under the null

and under the alternative hypothesis of (strict) stationarity.

The Section is organized as follows. First, in Section 5.1 we describe (i) the model;

(ii) the null hypothesis; (iii) the reference LR test and associated bootstrap test sta-

tistics. Finally, we describe the design of the Monte Carlo experiment. The empirical

rejection probabilities [ERP] of the tests under the null hypothesis are investigated in

Section 5.2. Section 5.3 is devoted to the analysis of the behavior of the test when

the null hypothesis is false. Here we investigate both raw and (pointwise) size-adjusted

ERPs under the alternative hypothesis.

5.1 Monte Carlo design

We consider the DAR process

�xt = �xt�1 + "t; "t = �tzt; �2t = ! + �x
2
t�1, zt � i.i.d.(0; 1), (t = 1; :::; n) (16)
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with x0 = 0 and di¤erent choices of the distribution of zt. Speci�cally, we consider the

following three cases:

(E1) zt is a zero mean, unit variance Gaussian random variable;

(E2) zt is a standardized Student t random variable with � > 4 degrees of freedom,

i.e. zt is distributed as t (�)
p
(� � 2)=�, where t (�) denotes a t random variable with

� 2 R+ degrees of freedom;

(E3) zt is a symmetric, standardized �2(1) random variable, i.e. zt is distributed as

S(�2k � k)=
p
2k, with �2k denoting a �

2 random variable with k 2 N degrees of freedom
and S is a Rademacher random variable (i.e., a two-point distribution with P (S = 1) =

P (S = �1) = 1=2).

For all error distributions, � = 0 and � < 1. Notice that for the (unimodal)

distribution in E2, the moment of order m exists provided � > m; moreover, for � > 4

the fourth-order moment (which appears in the asymptotic distribution of the LR test of

Section 2.3) is given by 3(��2)
��4 . Under E3 the distribution of the innovations is bimodal;

moreover, all moments exist and in particular the fourth-order moment is given by

12=k+3. In the simulations, we force the t and the symmetric �2 distributions to have

the same fourth-order moments, which requires setting k = 2 (� � 4); speci�cally, we
set � = 5:5 and k = 3, which corresponds to � = 6.

The null hypothesis is the pure random walk hypothesis H0 : � = � = 0, see Section

2.1. We focus in particular on alternatives of the form � < 0 and � = 0 (no unit root

in the mean equation and no conditional heteroskedasticity) and on alternatives of the

form � = 0 and � > 0 (conditionally heteroskedastic strictly stationary with a unit root

in the mean equation). In order to investigate power, we consider these alternatives

under Pitman drifts. We �rst consider the sequence of (near unit root) local alternatives

H
(�)
1 : � = c�n

�1, � = 0 (17)

with c� < 0 �xed. For n �xed, this alternative lies in the region of the parameter space

where the process is strictly stationary, conditionally homoskedastic and with �nite

fourth order moments. Moreover, we also consider the sequence of local alternatives

H
(�)
1 : � = 0, � = c�n�3=2 (18)

with c� < 0 �xed. For n �xed, this alternative with � = 0 lies in the region of

the parameter space where the process displays volatility-induced strict stationarity, is

conditionally heteroskedastic, but does not possess �nite second order moments.

Restricted and unrestricted estimation and associated LR tests are based on the

Gaussian likelihood associated with (16), with x0 considered �xed in the statistical
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analysis. Maximization of the likelihood function imposes the non-negativity constraints

� � 0 and ! > 0.3 The (asymptotic) LR test is based on asymptotic critical values

obtained numerically by discretizing the distribution in (3) over 100; 000 steps and using

100; 000 Monte Carlo repetitions (these do not substantially di¤er from those reported

in Table 1 of Klüppelberg et al., 2002) under the assumption that � = 2 and � = 0;

hence, the asymptotic case is not expected to be correctly sized, even in large samples,

when the actual distribution of zt departs from the Gaussian distribution.

We consider the two (asymptotically valid) bootstrap schemes introduced earlier

in the paper. First, the plain restricted bootstrap of Section 3.1, which is based on

resampling the residuals from restricted estimation and impose the null hypothesis on

the bootstrap generating process. Second, the hybrid bootstrap scheme, which employs

the residuals from unrestricted parameter estimation but still imposes the null on the

bootstrap sample.

Throughout, we use 10; 000 Monte Carlo replications and use B = 399 bootstrap

repetitions. Samples of size n 2 f50; 100; 200; 500g are considered throughout. All tests
are run at the nominal 1%, 5% and 10% signi�cance levels.

5.2 Empirical rejection probabilities under the null

Table 1 reports the empirical rejection probabilities (as estimated on the 10; 000 Monte

Carlo replications) under the null hypothesis, H0 : � = � = 0, for the three distributions

for the innovations.

[Table 1 about here]

The following points can be made from the analysis.

For the leading case of Gaussian errors, the asymptotic LR test tends to be under-

sized for samples of size n 2 f50; 100; 200g. For n = 500, the ERPs are closer to the

nominal level. In contrast, both the restricted bootstrap and the hybrid bootstrap tests

show excellent size control for samples of n 2 f50; 100; 200g, with ERPs very close to
the corresponding nominal levels. The bootstrap tests do not seem to dominate the

asymptotic test in terms of size when n = 500.

For t-distributed errors, the asymptotic LR test is signi�cantly oversized. This is

expected, since this test is implicitly based on the (false) assumption that the errors are

Gaussian. The bootstrap tests show very good size control, with the restricted bootstrap

being slightly more accurate than the hybrid bootstrap (as is expected, since under the

null the restricted bootstrap is based on resampling the true errors). It is interesting

3All computations are performed in Matlab R2018b using the �fmincon� constrained optimization
routine. Code is available upon request.
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to notice that in this case both Theorem 4 and Theorem 6, which provide su¢ cient

conditions for validity of the two bootstraps under the null, cannot be applied, as the

errors do not possess �nite eighth order moments. Despite this fact, the performance of

these bootstraps is largely satisfactory. A possible explanation for this �nding, which

is not uncommon in the bootstrap literature (see e.g. the simulations in Gonçalves and

Kilian, 2004, for stationary AR processes, or in Cavaliere, Rahbek and Taylor, 2010a, for

multivariate non-stationary AR processes) is that the moment condition in Theorems

4 and 6 is indeed su¢ cient rather than necessary, as also conjectured in Section 3.2. In

this respect, note that the t distribution employed here satis�es the conjectured 4 + �

moment condition.

For the bimodal �2-type errors, the asymptotic tests are again substantially unreli-

able. For instance, when the nominal level is 1% and n = 500, the ERP equals 5:5%.

The bootstrap seems to �x this problem very well, again with ERPs very close to the

corresponding nominal levels at all the sample sizes considered. Again, the restricted

bootstrap seems to marginally outperform the hybrid bootstrap.

In summary, the performance of the bootstrap tests is largely satisfactory. Not only

the bootstrap allows to circumvent the non-pivotality of the asymptotic test, whose

distribution depends on the unknown parameter �, but it also delivers an excellent

control of the ERP when the null hypothesis holds true.

5.3 Empirical rejection probabilities under local alternatives

We now turn to the inspection of the ERPs of the (asymptotic and bootstrap) tests

when the null hypothesis does not hold. To this aim, in Section 5.3.1 we consider pure

homoskedastic autoregressive alternatives in H(�)1 . Next, in Section 5.3.2 we consider

heteroskedastic alternatives with a unit root in the mean equation, as given in H(�)1 .

Throughout this Section we present both raw ERPs and (pointwise) size-adjusted

rejection probabilities. To compute the latter, as suggested in Cavaliere et al. (2015)

for each given point in the parameter space, we �rst perform the simulation under the

null and record the nominal level that would have given an ERP equal to the desired

signi�cance level. Next, we use this adjusted nominal level in the simulations under the

alternative hypothesis. Let, for instance, p�n denote the p-value of the bootstrap test,

and let p0 (�) := P (p�n � �jH0), with � denoting the chosen signi�cance level. Then,
the size-adjusted bootstrap test at the 100�% level corresponds to rejecting H0 when

p�n � ~�, where ~� is such that p (~�) := P (p�n � ~�jH0) = �.

5.3.1 Pure autoregressive alternatives

Consider the local power of the tests under the local alternative H(�)1 in (17), with

samples of size n 2 f50; 100; 200; 500g and all the three error distributions described
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earlier. Results are reported in Table 2 for c = �10. For completeness, we also report
the raw ERPs in Table 3. Obviously, these ERPs are a¤ected by the deviations of the

actual size of the tests from the corresponding nominal levels, see Table 1.

[Tables 2 and 3 about here]

For Gaussian errors, the two bootstrap tests perform similarly to the (size-adjusted)

asymptotic LR test for all the sample sizes considered. This is well expected from the

theory.

For t-distributed errors, at nominal signi�cance levels of 10% the restricted bootstrap

test behaves very similarly to the asymptotic test. At smaller nominal levels, however,

there seems to be some power gains over the asymptotic test. The hybrid bootstrap

seems somehow less powerful than the restricted bootstrap, although the di¤erences

between the two methods seem to decrease as n increases. A similar pattern can be

observed for the case of symmetrically �2-distributed errors. Here, again, the restricted

bootstrap test seems to be slightly preferrable.

The fact that in the non-Gaussian cases (E2 and E3) the restricted bootstrap seem
to experience some power gains over the asymptotic test and the hybrid bootstrap test

may appear surprising. Clearly, it may depend on the chosen Monte Carlo design.

However, similar evidence has already been documented in the literature: for example,

Davidson and MacKinnon (2002, Figure 14) report a case where the restricted bootstrap

dominates the asymptotic test. In addition, in terms of theory there is no result that

prevents this from happening (see, e.g, Davidson and Mackinnon, 2006).

As for the size results in the previous Section, in the non-Gaussian case E2, zt violates
the regularity condition of �nite eighth order moment. Again, this violation does not

seem to a¤ect the power of the bootstrap test.

In summary, the restricted bootstrap tests display power which is not inferior (some-

times even superior) to the power of the corresponding asymptotic test. Moreover, im-

plementation of the hybrid bootstrap does not seem to provide power gains (its power

is in line with the power of the asymptotic test).

5.3.2 Heteroskedastic, unit root alternatives

Results for alternatives H(�)1 in (18) are reported for c = 10 in Table 4 (size-adjusted

ERPs) and 5 (raw ERPs).

[Tables 4 and 5 about here]
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In terms of this local power analysis under Gaussian errors of E1, the hybrid boot-
strap performs similarly to the asymptotic test. This is expected from our theoretical

analysis (Theorem 6), which shows that the hybrid bootstrap mimics the null asymp-

totic distribution of the original statistic and hence, in large samples, should have the

same (local) power than the asymptotic test. The same result is expected for symmetric

�2 distributed errors. Surprisingly, also the plain, restricted bootstrap has comparable

power properties. This seems to show (parallel to the discussion of the simulations under

the null) that the moment requirement in Theorem 5 is su¢ cient, while not necessary.

Comparable results are obtained for the error distributions E2 and E3.
In summary, for both alternatives the bootstrap tests display power which is gen-

erally not inferior (and sometimes superior) to the power of the corresponding (size-

adjusteed) asymptotic test. The implementation of the restricted bootstrap seems to

provide the best performance not only in terms of size, but also in terms of size-adjusted

power.

6 Extension to asymmetric innovations

One of the assumptions in Ling (2004) and that we have assumed so far is that the

third order moment of the innovations, � = Ez3t , equals zero. This condition ensures

that the two Brownian motions characterizing the asymptotic distribution in (3) are

independent.

If this moment condition fails to hold, the limiting distribution of LRn can no

longer be expressed as the (weighted) sum of a squared Dickey-Fuller and a half-�21
independent random variables, see Remark 2.6. More precisely in Theorem 3, as shown

in Klüppelberg et al (2002, Theorem 3.1), the second term in the expression for the

LR1 (�) in (3) for general � is given by:

1
2 max

�
0;

�
�

Z
B2dB +

q
�� �2

Z
B2dW �

Z
B2du

�
�B1 +

q
�� �2W1

���2
(19)

�
"Z

B4udu�
�Z

B2udu

�2#�1

where, as before, B and W are independent standard Brownian motions.

Interestingly, the bootstrap may take care of this non-pivotality and we can establish

the following result.

Theorem 7 The results of Theorem 4 and Theorem 6 hold independently of whether

� = 0 or not.

For the restricted bootstrap, where the z�t �s are based on the restricted (standard-
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ized) residuals ~zs;t, a key insight is the following. It holds that the bootstrap (condi-

tional) third order moment ��n, is given by,

��n = E
� �z�3t � = 1

n

nX
t=1

~z3s;t,

such that, under suitable moment restrictions on the fztg sequence, ��n !p �. This

implies, under some additional algebra, that Z�n (�) of (7) satis�es in this more general
setting,

Z�n (�) := n�1=2
[n�]P
t=1

�
z�t ; z

�2
t � 1

�0 w�!p

 
1 0

�
p
�� �2

! 
B��
W �
�

!
;

see Appendix A.5.1, eq.(A.40). Hence, the bootstrap mimics the asymptotic distribu-

tional properties of the original statistics even if � 6= 0.

7 Conclusions

In this paper we have discussed several issues which may arise in the implementation

of the bootstrap hypothesis testing to time series econometric models. Essentially,

these are related to the assessment of bootstrap validity under the null hypothesis (i.e.,

establishing that the bootstrap mimics the correct limiting distribution of the original

test statistic under the null hypothesis) as well as to the behavior of the bootstrap

statistic under the alternative hypothesis.

Our discussion has focused on the double-autoregressive, or DAR, model, where

the time series properties of the data �such as strict stationarity or the existence of

moments �are determined through a very delicate balance between the parameters of

conditional mean and the conditional variance equations.

Focusing on tests of the null hypothesis of non-stationarity, i.e. reduction to the

pure random walk, we have initially shown that �due to the possible presence of unit

roots and of parameters on the boundary of the parameter space a classic �unrestricted

bootstrap fails to mimic the null distribution under the null. Conversely, the restricted

bootstrap works, irrespectively of a parameter of the conditional variance equation being

on the boundary of the parameter space under the null hypothesis.

Next, we have discussed the possible issues which may arise under the alternative.

Here, the crucial issue is that, under the alternative, the data may have in�nite vari-

ance. Hence, the restricted bootstrap, based on re-sampling the residuals with the

null imposed, may in fact be based on re-sampling an in�nite variance sequence. As

a consequence, the bootstrap statistic may have a random limiting distribution which

may lead to a lack of power over the infeasible size-adjusted asymptotic test. This
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observation is the basis of our next suggestion, which is a hybrid implementation of

the bootstrap where the parameters used to generate the bootstrap sample are based

on restricted estimation while the residuals used to construct the bootstrap shocks are

based on unrestricted estimation.

Although most of our analysis is based on the DAR model, many of these issues are

common to the great majority of econometric models. Hence, a thorough investigation

of the properties of the bootstrap under the null and under the alternative is always

required before its practical implementation.

There are further issues which have not been touched in this paper but may as well

be important to establish bootstrap validity. For instance, in our testing example the

parameters of the model are (up to an intercept) all restricted by the null hypothesis.

In most cases, however, the null hypothesis restricts only a subset of the parameters.

An example is testing if a parameter is on the boundary of the parameter space when

the remaining parameters might be on the boundary, as in Cavaliere, Nielsen, Pedersen

and Rahbek (2019). In this case the limiting distribution of the bootstrap statistic

depends on the asymptotic properties of the estimators used to generate the bootstrap

data. Validity would then require (i) determination of the pseudo-true values to which

the estimators converge and at what speed, and (ii) the implications of this convergence

on the properties of the bootstrap sample.
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A Mathematical Appendix

A.1 Introduction

This appendix contains the proofs of the theory for the bootstrap implementation in

the DAR model for testing the null of non-stationarity, that is H0 : � = � = 0.

In Appendix A.2 and A.3, we �rst establish new asymptotic (non-bootstrap) results

for the QMLE �̂n := (�̂n; �̂n; !̂n)
0 under both stationarity as well as under the null

H0 of non-stationarity, see Theorem 1 and Theorem 2, respectively. Appendix A.3

36



additionally provides asymptotic theory for the LRn statistic under H0, see Theorem 3.

The asymptotic results for the QMLE, as well as LRn, are then applied in Appendix

A.5, where asymptotic results for the (restricted and hybrid) bootstrap variants LR�n
of LRn are derived.

As to the general (nonstandard) likelihood theory, recall that the parameter (or,

optimization) set for the DAR model is given by

T := f� = (�; �; !)0 : � 2 [��L; �U ] ; � 2 [0; �U ] and ! 2 [!L; !U ]g,

and, for estimation with the null hypothesis imposed, by T0 := f� = (�; �; !)0 : � =

� = 0 and ! 2 [!L; !U ]g. As � � 0, inference and testing is nonstandard and we apply
theory from Andrews (1999, 2001) which treats estimation and testing under inequality

constraints (and more general boundary issues), see also Vu and Zhou (1997), Klüp-

pelberg et al. (2002) and Cavaliere, Nielsen and Rahbek (2017). Thus, the asymptotic

distributions of the QMLE �̂n and the associated LRn statistic follow by verifying regu-

larity conditions for (i) the parameter spaces T and T0; (ii) consistency of �̂n; and, (iii)
convergence of the score, information and third derivative of the log-likelihood function.

For the bootstrap asymptotic theory, we verify the analogous regularity conditions for

the bootstrap log-likelihood quantities, applying convergence (weakly, and in probabil-

ity) conditional on the data, see e.g. Cavaliere, Nielsen and Rahbek (2015, 2017) and

Cavaliere, Rahbek and Taylor (2012).

As to (i), consider �rst the stationary case, where the true parameter �0 2 �S , with
�0 = (�0; �0; !0)

0 : In this case, T � �0, in the sense of Andrews (1999, 2001), is locally
equal to the cone(s),

� (A) = R�A� R; (A.1)

where A = R if �0 > 0, and A = R+ if �0 = 0, such that Assumption 52�(b) in Andrews
(1999) holds with BT = n1=2. For the non-stationary case, where �0 2 �N , then T � �0
and T0 � �0 are locally equal to the cones � := � (R+) and

�0 := f0g � f0g � R, (A.2)

respectively. That is, with BT := Gn := diag
�
n; n3=2; n1=2

�
in the non-stationary case,

Assumption 52�(b) in Andrews (1999) holds.

With respect to (ii), the regularity conditions veri�ed under (iii) imply, with proba-

bility tending to one, that �̂n !p �0. As to (iii), note that we verify suitable bounds on

the third-order log-likelihood derivative(s), rather than, as is standard, establish uni-

form convergence of the information (that is, the second order log-likelihood derivative);

see Jensen and Rahbek (2004, Lemma 1) and Kristensen and Rahbek (2010, Lemmas 11

and 12) for general asymptotic likelihood theory in the stationary and non-stationary
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cases respectively.

Finally note that while the results quoted in Theorems 1 and 2, and Theorem 3, are

for the case of the nuisance (asymmetry) parameter � = 0, the results are derived in the

next Subsections under the general assumption of � 6= 0 as needed for the discussion in
Section 6 where we extend the asymptotic (and bootstrap) theory to address also the

nuisance parameter � (in addition to �).

A.2 QMLE under stationarity �Proof of Theorem 1

In this Section we derive the asymptotic theory for the QMLE �̂n = (�̂n; �̂n; !̂n)
0 in

Theorem 1 for the stationary case where �0 2 �S . We verify conditions (A.1)�(A.3)
in Jensen and Rahbek (2004, Lemma 1) [JR hereafter] which imply, with probability

tending to one, that �̂n !p �0. Conditions (A.1) and (A.2), that is convergence of

the score and information, are detailed below, while condition (A.3) for the third order

derivative follows as for the proof of establishing condition (C.ii) in Section A.6 for the

non-stationary case.

A.2.1 Score and observed information

In terms of the log-likelihood function Ln (�) =
Pn
t=1 lt (�), de�ne the score quantities,

Sn (�) =

nX
t=1

st =

nX
t=1

@lt (�) =@� and Sn = Sn (�)j�=�0 . (A.3)

Likewise, the observed information is given by

In (�) =

nX
t=1

it =

nX
t=1

(�@lt (�) =@�@�0) and In = In (�)j�=�0 : (A.4)

The terms in score Sn (�) are given by

s0t = (s
�
t ; s

�
t ; s

!
t ) (A.5)

=
�
"txt�1=�

2
t ;
1
2

�
"2t =�

2
t � 1

�
x2t�1=�

2
t ;
1
2

�
"2t =�

2
t � 1

�
=�2t
�
.

At the true value �0, the score is (the sum of) a martingale di¤erences (MGD) sequence,

s0t;0 := s0t
��
�=�0

=
�
ztvt�1;

1
2

�
z2t � 1

�
v2t�1;

1
2

�
z2t � 1

�
=�2t
�
, (A.6)

with vt�1 := xt�1=�t.
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The terms it of the observed information are given by

it =

0B@ i��t i��t i�!t

i��t i��t i�!t

i�!t i�!t i!!t

1CA (A.7)

=

0B@ v2t�1 ("t=�t) v
3
t�1 ("tvt�1) =�3t

("t=�t) v
3
t�1

�
"2t =�

2
t � 1=2

�
v4t�1

�
"2t =�

2
t � 1=2

�
v2t�1=�

2
t

("tvt�1) =�3t
�
"2t =�

2
t � 1=2

�
v2t�1=�

2
t

�
"2t =�

2
t � 1=2

�
=�4t

1CA
which at the true value �0 reduces to

it;0 := itj�=�0 =

0B@ v2t�1 ztv
3
t�1 (ztvt�1) =�2t

ztv
3
t�1

�
z2t � 1=2

�
v4t�1

�
z2t � 1=2

�
v2t�1=�

2
t

(ztvt�1) =�2t
�
z2t � 1=2

�
v2t�1=�

2
t

�
z2t � 1=2

�
=�4t

1CA . (A.8)

A.2.2 Asymptotics for the Score and the Hessian �Proofs of
Conditions (A.1) and (A.2) in JR

Note initially that, by � < 1, standard application of central limit theory for i.i.d.
variables gives

n�1=2
nX
t=1

�
zt; z

2
t � 1

� w! V , Var (V ) =

 
1 �

� �

!
. (A.9)

Next, the MGD representation of the score st;0,

s0t;0 =
�
zt; z

2
t � 1

� vt�1 0 0

0 1
2v
2
t�1

1
2�2t

!
;

together with (A.9), implies by standard arguments that condition (A.1) holds, i.e.:

n�1=2Sn (�0) = n
�1=2

nX
t=1

st;0
w! S1 :=

�
S�;S 0

�0
; S := (S�;S!)0 :

Here S1 is Gaussian with covariance matrix


S :=

 

S;�� 
0S;�

S;� 
S;

!
; (A.10)

where


S;�� = E
�
x2t�1=�

2
t

�
; 
0S;� =

�
�
2E
�
x3t�1=�

3
t

� �
2E
�
xt�1=�3t

� �
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and


S; =
�

4

 
E
�
x4t�1=�

4
t

�
E
�
x2t�1=�

4
t

�
E
�
x2t�1=�

4
t

�
E
�
1=�4t

� !
.

Note that on the one hand for �0 > 0, it follows that E
�
x4t�1=�

4
t

�
< 1 under sta-

tionarity of xt as in JR. If, on the other hand, �0 = 0, then Ex4t < 1 is implied by

� <1. Moreover, for �0 = 0 and denoting 
S under �0 = 0 by 
0S , the covariance 
S
simpli�es to the following


0S;�� =
1

!0
E
�
x2t�1

�
, 
00S;� = (

�

2!
3=2
0

E
�
x3t�1

�
, 0) and (A.11)


0S; =
�

4!20

 
E
�
x4t�1

�
E
�
x2t�1

�
E
�
x2t�1

�
1

!
.

As to condition (A.2) for the observed information, it follows by the same arguments

used for the score that by standard application of the law of large numbers,

n�1In (�0) = n
�1

nX
t=1

it;0
p! I1 =

 
I�� 0

0 I

!
=

 

S;�� 0

0 2
�
S;

!
. (A.12)

A.2.3 Asymptotics for the QMLE

De�ne �rst the tri-variate Gaussian variable, Z :=
�
Z�;Z 0

�0 with Z := (Za;Z!)0 and
Z := I�11 S1

d
= N (0;
Z) , where 
Z = I�11 
SI�11 : (A.13)

For �0 � 0, 
S is given by (A.10), while from (A.12) it follows that

I�11 =

 
I�1�� 0

0 I�1

!
=

 

�1S;�� 0

0 �
2


�1
S;

!
. (A.14)

Hence,


Z = I�11 
SI�11 =

 

Z;�� 
0Z;�

Z;� 
Z;

!
; (A.15)

where


Z;�� = 

�1
S;��, 
Z; =

�
2


�1
S;

and


Z;� =
�
�
Z;��

0@ E( 1
�4t
)E(

x3t�1
�3t
)� E(x

2
t�1
�4t
)E(xt�1

�3t
)

E(
x4t�1
�4t
)E(xt�1

�3t
)� E(x

2
t�1
�4t
)E(

x3t�1
�3t
)

1A , (A.16)

with � = E(
x4t�1
�4t
)E( 1

�3t
)� (E(x

2
t�1
�4t
))2.
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Now, with �̂n := argmax�2T
P
lt by Andrews (1999, Theorem 3),

n1=2(�̂n � �0)
w! arg inf

�2�(A)
k��Zk2I1 ; (A.17)

where A = R if �0 > 0 and A = R+ if �0 = 0, see (A.1).
In the case of �0 > 0, it follows that for � (R), with Z de�ned in (A.13),

n1=2(�̂n � �0)
w! Z =

�
Z�;Z 0

�0 .
Consider now the case of �0 = 0. For � (R+), use the block-diagonality of I1 to rewrite

the quadratic form on the right hand side of (A.17) as

arg inf
�2�(R+)

k��Zk2I1 = (Z�; (arg inf
�2R+�R

k��Zk2I )
0)0

where Z = I�1 S has covariance 
Z; = I�1 = �
2


�1
S; , see (A.15).

Next, diagonalization of I is obtained by using the matrix M ,

M :=

 
1 �%
0 1

!
, % := Ex2t ,

such that I is diagonalized by post- (and pre-multiplying) with M (M 0). That is,

I =MIM 0 =
1

2!20

 
�0 0

0 1

!
, (A.18)

with �0 := E
�
x4t�1

�
�
�
E
�
x2t�1

��2. De�ne next,
Z := (Z�; Z!)

0 :=
�
M 0��1Z = (IM)�1 S ,

which by de�nition, using the identity 
S; = �
2I , has covariance

�

2

�
MIM 0��1 =  �!20=� 0

0 �!20

!
.

Finally, note that � (R+) is invariant under transformation with the transpose of M�1.

That is, for any (x; y)0 2 � (R+),�
M 0��1 (x; y)0 = (x; y � %x) 2 � �R+� .

Collecting terms,

inf
�2R+�R

k��Zk2I = inf
�=(��;�!)

02R+�R
k� � Zk2I (A.19)
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= 1
2!20

inf
�2R+�R

f(�� � Z�)2 �0 + (�! � Z!)2g:

It follows that

arg inf
�2R+�R

f(�� � Z�)2 �0 + (�! � Z!)2g = (max (0; Z�) ; Z!)0 ,

such that by (A.19), and using that by de�nition, � =M 0�,

arg inf
�2R+�R

k��Zk2I =M
0 (max (0; Z�) ; Z!)

0 (A.20)

= (max (0; Z�) ; Z! � %max (0; Z�)) :

Here, Z� and Z! are independent Gaussian distributed with

Z�
d
= N

�
0; �!20=�

�
and Z!

d
= N

�
0; �!20

�
(A.21)

This establishes Theorem 1.

Remark A.1 Note that if � = 0, the covariance of Z, see (A.15) becomes block-
diagonal,


Z =

 

Z;�� 0

0 
Z;

!
. (A.22)

Remark A.2 The above also reduces to Ling (2004, Theorem 1) for the case of �0 > 0
and � = 0.

A.3 QMLE and LR test under non-stationarity �Theorem 2 and
Theorem 3

We proceed in the following by establishing regularity conditions under which the as-

ymptotic distribution of the QMLE and the likelihood ratio test can be derived for

the non-stationary case where �0 2 �N . Speci�cally, we verify the following regularity
conditions (C.i)-(C.ii) in terms of the log-likelihood function, Ln (�), and its derivatives.

Condition (C.i). With Gn =diag(gn;i)i=1;2;3, where

(g1;n; g2;n; g3;n) = (n; n
3=2; n1=2);

it holds that �
G�1n Sn (�0) ; G

�1
n In (�0)G

�1
n

� w! (S1; I1) . (A.23)

Condition (C.ii). With � := (�1; �2; �3)
0 = (�; �; !)0, and i; j; k = 1; 2; 3,

sup
�2Nn(�0)

n1=2 �@3Ln (�) =@�i@�j@�k� = (gi;ngj;ngk;n) = Op (1) (A.24)
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where the supremum is over a the sequence of neigborhoods given by,

Nn (�0) =
n
� : g21;n�

2 + g22;n�
2 + g23;n (! � !0)

2 < "=n
o
:

Conditions (C.i) and (C.ii) are from Kristensen and Rahbek (2010, Lemma 11 and

Lemma 12) where general asymptotic theory is presented for (non-)stationary variables.

With the parameter spaces T and T0 satisfying (i), that is, shifted they are locally equal
to � and �0, it follows as in Klüppelberg et al. (2002, Lemma B.1), see also Vu and

Zhou (1997) and Andrews (2001), that with

Z := I�11 S1;

then the LRn statistic converges in distribution:

LRn !w LR1 (�) = inf
�2�0

k��Zk2I1 � inf
�2�

k��Zk2I1 : (A.25)

Likewise, as in Andrews (1999, Theorem 3), under (C.i)-(C.ii) it follows that

Gn(�̂n � �0)!w arg inf
�2�

k��Zk2I1 . (A.26)

A.3.1 Preliminaries

Note initially, that under the null hypothesis H0, Sn (�0) =
Pn
t=1 st;0, see (A.3), where

with �0 2 �N ,

st;0 = (vt�1zt;
1
2v
2
t�1
�
z2t � 1

�
; 1
2!0

�
z2t � 1

�
)0; with vt :=

tX
i=1

zi.

Standard application of the invariance principle implies convergence to the Brownian

motion Vu, u 2 (0; 1):

n�1=2
bn�cX
t=1

�
zt; z

2
t � 1

�0 w! V := (V1; V2)
0 ; E(V1V

0
1) =

 
1 �

� �

!
. (A.27)

De�ne next the matrix

Q =

 
1 0

��=
p
�� �2 1=

p
�� �2

!
, with Q�1 =

 
1 0

�
p
�� �2

!
, (A.28)

and use it to de�ne the bivariate standard Brownian motion (B;W )0:

(B;W )0 := QV = (V1; (V2 � �V1)=
q
�� �2)0. (A.29)
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It then follows that

n�1=2
bn�cX
t=1

Q
�
zt; z

2
t � 1

�0 w! (B�;W�)
0 . (A.30)

A.3.2 Score �Condition (C.i)

Consider next the score Sn (�0), normalized by Gn where

G�1n = diag
�
n�1; n�3=2; n�1=2

�
: (A.31)

It follows, with

G�1n Sn (�0) =
1

n1=2

nX0BB@
0BB@
n�1=2

Pt�1
i=1 zt 0

0
�
n�1=2

Pt�1
i=1 zt

�2
=2

0 1
2!0

1CCA
1CCA�zt; z2t � 1�0 ,

that

G�1n Sn (�0)
w! S1 (�) =

�
S�;S 0

�0
= (S�;S�;S!)0 (A.32)

=

�Z
BdB; �2

Z
B2dB +

p
���2
2

Z
B2dW; �

2!0
B1 +

p
���2
2!0

W1

�0
.

A.3.3 Information �Condition (C.i)

Under H0, it follows by standard arguments that (jointly with the score) the information

In (�0) =
Pn
1 it;0 converges weakly

G�1n In (�0)G
�1
n

w! I1 =

 
I�� 0

0 I

!
, (A.33)

with

I =
1

2

 R
B4du 1

!0

R
B2du

1
!0

R
B2du 1

!20

!
; and I�� =

Z
B2du:

Also observe that by de�nition,

I�11 =

 
I�1�� 0

0 I�1

!
; I�1 =

2

�

 
1 �!0

R
B2du

�!0
R
B2du !20

R
B4du

!
(A.34)

with � =
R
B4du�

�R
B2du

�2.
A.3.4 Third order derivatives �Condition (C.ii)

It follows that (C.ii) holds by the considerations in Appendix A.6 below.
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A.4 QMLE �Proof of Theorem 2

By (A.26) we have,

Gn(�̂n � �0)
w! arg inf

�2�
k��Zk2I1 =: (��; ��; �!)

0 ,

with Z given by (A.35). As before, by block-diagonality of I1 in (A.34) and the

de�nition of Z in (A.35),

�� = Z� =
Z
BdB=

Z
B2du.

For � = (��; �!)
0 use that by de�nition of Z := (Z�; Z!)0 de�ned in (A.37), we have

inf
�2R+�R

k� �Zk2I = inf
�2R+�R

k� � Zk2I :

In terms of � = (��; �!)
0 we �nd

arg inf
�2R+�R

k� � Zk2I = arg inf
�=(��;�!)

02R+�R

�
(�� � Z�)2 + (�! � Z!)2

�
= (max (0; Z�) ; Z!)

0 :

Finally, use the identity � = (��; �!)
0 =M 0� to see that

� =M
0 (max (0; Z�) ; Z!)

0 = (max (0; Z�) ; Z! � (!0
Z
B2du)max (0; Z�))

0.

Collecting terms, and setting � = 0, ends the proof of Theorem 2.

A.4.1 LRn convergence �Proof of Theorem 3

From (A.25),

LRn
w! LR1 (�) = inf

�2�0
k��Zk2I1 � inf

�2�
k��Zk2I1 ,

where Z := (Z�;Z�;Z!)0 =
�
Z�;Z 0

�0
= I�11 S1 satis�es Z� =

R
BdB=

R
B2du,

Z� = 1
� ((�

Z
B2dB +

q
�� �2

Z
B2dW )�

Z
B2du(�B1 +

q
�� �2W1)); (A.35)

and

Z! = !0
� (

Z
B4du(�B1 +

q
�� �2W1)�

Z
B2du(�

Z
B2dB +

q
�� �2

Z
B2dW )):
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By the block-diagonality of I1 in (A.34), we may write LR1 (�) as

LR1 (�)= Z2�I�� + inf
�2f0g�R

k��Zk2I � inf
�2R+�R

k��Zk2I

Diagonalization of I can next be obtained by using the matrix M de�ned as

M :=

 
1 �!0

R
B2du

0 1

!
,

such that

I :=MIM 0 = 1
2

 
� 0

0 1
!20

!
. (A.36)

Next, note that Z = I�1 S , and hence we can de�ne Z := (Z�; Z!)
0, where

Z =
�
M 0��1Z = �IM 0��1 S . (A.37)

By de�nition,

IM 0 = 1
2

 
� 1

!0

R
B2du

0 1
!20

!
and hence

Z =

 
��1((�

R
B2dB +

p
�� �2

R
B2dW )�

R
B2(fdu�B1 +

p
�� �2W1))

!0(�B1 +
p
�� �W1)

!

Finally, the cones R+ �R and f0g �R are invariant to multiplication by (M 0)�1, such

that we get, using the identity (A.36),

inf
�2R+�R

k��Zk2I = inf
�2R+�R

(��Z)0 I (��Z) (A.38)

= inf
�2R+�R

(�� Z)0
�
MIM 0� (�� Z)

= �
2 inf
�2R+

(�� Z�)2 + inf
�2R

(�� Z!)2 =
�
2!20

�
= �

2Z
2
�I (Z� < 0) :

Here, by de�nition,

Z� = �
�1((�

Z
B2dB +

q
�� �2

Z
B2dW )�

Z
B2du(�B1 +

q
�� �2W1)). (A.39)

Collecting terms we �nd

LR1 (�) = Z2�I�� +
�

2
Z2�1 (Z� < 0)
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= (

Z
BdB)2=

Z
B2du+

�

2
Z2�1 (Z� < 0) ;

and setting � = 0 ends the proof of Theorem 3.

A.5 Bootstrap �Proof of Theorem 4

We verify here the equivalent of the conditions (C.i) and (C.ii) for the bootstrap from

which the bootstrap results are derived.

A.5.1 Bootstrap score and information

It follows that the bootstrap score is given by

s�t;0 =
�
v�t�1z

�
t ;
1
2v
�2
t�1
�
z�2t � 1

�
; 1
2~!n

�
z�2t � 1

��0
; with v�t =

tX
i=1

z�i .

The bootstrap invariance principle (cf. Cavaliere, Rahbek and Taylor, 2012) implies

the main result of convergence to the Brownian motion V �, as stated in the following

Lemma.

Lemma A.1 Assume that E(z8t ) <1. Then, as n!1,

n�1=2
bn�cX
t=1

�
z�t ; z

�2
t � 1

�0 w�!p V
�
� = (V

�
1�; V

�
2�)
0 ; E(V �1 V

�0
1 ) =

 
1 �

� �

!
.

Proof. By de�nition, z�t is re-sampled with replacement from ~zs;t,

~zs;t=
~zt � n�1

Pn
t=1 ~zt

(n�1
Pn
t=1(~zt � n�1

Pn
t=1 ~zt)

2)1=2
;

where, under H0,

~zt = ~!�1=2n �xt = ~!�1=2n !
1=2
0 zt.

With m�
t :=

�
z�t ; z

�2
t � 1

�0 consider, for any � 2 R2, � 6= 0,
�0m�

t = �1z
�
t + �2

�
z�2t � 1

�
.

Again, conditional on data, �0m�
t is i.i.d., and hence as in Swensen (2003, eq. (10),

proof of Theorem 1) it su¢ ces to establish

E�
�
�0m�

t

�2 p! E
�
�0mt

�2 , and E�
�
�0m�

t

�4 p! E
�
�0mt

�4
where mt =

�
zt; z

2
t � 1

�0, which by standard arguments holds if Ez8t < 1. This ends
the proof of Lemma A.1. �
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Next, with Q� = Q in (A.28), construct the bivariate standard Brownian motion

(B�;W �)0 as

(B�;W �)0 = Q�V � = (V �1 ; (V
�
2 � �V �1 ) =

q
�� �2)0,

such that

n�1=2
bn�cX
t=1

Q�
�
z�t ; z

�2
t � 1

�0 w�!p (B
�
� ;W

�
� )
0 . (A.40)

Then, the following lemma follows.

Lemma A.2 If Ez8t < 1, and with Gn de�ned in (A.31), then the bootstrap score
satis�es,

G�1n S
�
n
w�!p S�1;

where S�1 = (S��;S��;S�!)
0 with,

S�01 = (

Z
B�dB�; �2

Z
B�2dB� �

p
���2
2

Z
B�2dW �; �

2!0
B�1 �

p
���2
2!0

W �
1 ).

We also have the following result on the information.

Lemma A.3 Under the conditions of Lemma A.2 it follows that the bootstrap informa-
tion converges jointly with the score as follows:

G�1n

 
nX
1

i�t;0

!
G�1n

w�!p I�1 =

 
I��� 0

0 I�

!
, with

I� =
1

2

 R
B�4du 1

!0

R
B�2du

1
!0

R
B�2du 1

!20

!
;

and I��� =
R
B�2du.

Finally, condition (C.ii) is shown in Appendix A.6 to hold also for the bootstrap

case.

A.5.2 Bootstrap LR�n statistic

Observe that by de�nition

I��11 =

 
I��1�� 0

0 I��1

!
; I��1 =

2

��

 
1 �!0

R
B�2du

�!0
R
B�2du !20

R
B�4du

!
;

with �� =
hR
B�4du�

�R
B�2

�2i. We de�ne Z�=(Z��;Z��;Z�!)0 = I��11 S�1 (�), where

Z�� =
Z
B�dB�=

Z
B�2du (A.41)
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Z�� = 1
�� (f�

Z
B�2dB� +

q
�� �2

Z
B�2dWg �

Z
B�2duf�B�1 +

q
�� �2W1g)

Z�! = �!0
�� (

Z
B�2duf�

Z
B�2dB� +

q
�� �2

Z
B�2dWg

+

Z
B�4duf�B�1 +

q
�� �2W1g)

It follows that, as for the LRn statistic under H0; LR�n
w�!p LR�1 (�), where,

LR�1 (�)= (Z��)
2 I��� +

��

2
Z�2� 1 (Z

�
� > 0)

= (

Z
B�dB�)2=

Z
B�2du+

��

2
Z�2� 1 (Z

�
� > 0) ;

with

Z�� = �
��1(f�

Z
B�2dB� +

q
�� �2

Z
B�2dW �g (A.42)

�
Z
B�2duf�B�1 +

q
�� �2W �

1 g):

which ends the proof of Theorem 4 using LR�1 (�)
d
= LR1 (�).

A.5.3 Bootstrap �Proof of Theorem 6 and Theorem 7

The proof of Theorem 6 follows by replicating the proof of Theorem 4, as Lemma A.1

also applies to the case where the bootstrap innovations z�t are resampled from

ẑs;t=
ẑt � n�1

Pn
t=1 ẑt

(n�1
Pn
t=1(ẑt � n�1

Pn
t=1 ẑt)

2)1=2
; (A.43)

where the unrestricted residuals are given by

ẑt = (�xt � �̂nxt�1) =
�
!̂n + �̂nx

2
t�1
�1=2

:

The proof of Theorem 7 holds trivially as all arguments used to establish Theorems 4

and 6 allow � 6= 0.

A.6 On the third order derivatives �Condition (C.ii)

A.6.1 Non-bootstrap case

With c and (ci)
3
i=1 generic constants, it follows that (C.ii) holds as follows:

@3Ln (�) =@�
3 = 0.

g�31;n@
3Ln (�) =@�

2@� = n�3
nX
t=1

x4t�1
�4t

� cn�3
nX
t=1

x4t�1 = Op (1) .

49



n1=2g�21;ng
�1
3;n@

3Ln (�) =@�
2@! = n�2

nX
t=1

x2t�1
�4t

� cn�2
nX
t=1

x2t�1 = Op (1) .

���n1=2g�32;n@3Ln (�) =@�3��� =
�����n�4

nX
t=1

[3
"2t
�2t
� 1]

�
x6t�1
�6t

������
� c1n�4

nX
t=1

x6t�1
�
z2t � 1

�
+ c2n

�4
nX
t=1

x6t�1 = Op (1) .

���n1=2g�22;ng�13;n@3Ln (�) =@�2@!��� =
�����n�3

nX
t=1

[3
"2t
�2t
� 1]

�
x4t�1
�6t

������
� c1n�3

nX
t=1

x4t�1
�
z2t � 1

�
+ c2n

�3
nX
t=1

x4t�1 = Op (1) .

���n1=2g�22;ng�11;n@3Ln (�) =@�2@���� =
�����n�7=2

nX
t=1

2
"tx

5
t�1
�6t

�����
� c1n�7=2

nX
t=1

(jztj � E jztj)
��x5t�1��+ c2n�7=2 nX

t=1

��x5t�1�� = Op (1) .
���n1=2g�33;n@3Ln (�) =@!3��� =

�����n�1
nX
t=1

[3
"2t
�2t
� 1]

�
1

�6t

������
� c1n�1

nX
t=1

[z2t � 1] + c2 = Op (1) .

���n1=2g�11;ng�23;n@3Ln (�) =@!2@���� =
�����n�3=2

nX
t=1

2
"txt�1
�6t

�����
� c1n�3=2

nX
t=1

(jztj � E jztj) jxt�1j+ c2n�3=2
nX
t=1

jxt�1j = Op (1) .

���n1=2g�23;ng�12;n@3Ln (�) =@!2@���� =
�����n�2

nX
t=1

[3
"2tx

2
t�1
�2t

� 1]
�
1

�6t

������
� c1n�2

nX
t=1

[z2t � 1]x2t�1 + c2n�2
nX
t=1

�
x2t�1 + 1

�
= Op (1) .

���n1=2g�13;ng�12;ng�11;n@3Ln (�) =@�@!@���� =
�����n�5=2

nX
t=1

2
"tx

3
t�1
�6t

�����
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� c1n�5=2
nX
t=1

(jztj � E jztj)
��x3t�1��+ c2n�5=2 nX

t=1

��x3t�1�� = Op (1) .
Remark A.3 Note that we here used that an invariance principle applies to the term,P[n�]
t=1 (jztj � E jztj) normalized by n�1=2.

A.6.2 Bootstrap case

With c and (ci)
3
i=1 generic constants, it follows that (C.ii) holds for the bootstrap by

replicating the arguments in Appendix A.6. That is, we have:

@3L�n (�) =@�
3 = 0.

g�31;n@
3L�n (�) =@�

2@� = n�3
nX
t=1

x�4t�1
��4t

� cn�3
nX
t=1

x�4t�1 = O
�
p (1) .

n1=2g�21;ng
�1
3;n@

3L�n (�) =@�
2@! = n�2

nX
t=1

x�2t�1
��4t

� cn�2
nX
t=1

x�2t�1 = O
�
p (1) .

���n1=2g�32;n@3L�n (�) =@�3��� =
�����n�4

nX
t=1

[3
"�2t
��2t

� 1]
�
x�6t�1
��6t

������
� c1n�4

nX
t=1

x�6t�1
�
z�2t � 1

�
+ c2n

�4
nX
t=1

x�6t�1 = O
�
p (1) .

���n1=2g�22;ng�13;n@3L�n (�) =@�2@!��� =
�����n�3

nX
t=1

[3
"�2t
��2t

� 1]
�
x�4t�1
�6t

������
� c1n�3

nX
t=1

x�4t�1
�
z�2t � 1

�
+ c2n

�3
nX
t=1

x�4t�1 = O
�
p (1) .

���n1=2g�22;ng�11;n@3L�n (�) =@�2@���� =
�����n�7=2

nX
t=1

2
"�tx

�5
t�1

��6t

�����
� c1n�7=2

nX
t=1

(jz�t j � E� jz�t j)
��x�5t�1��+ c2n�7=2 nX

t=1

��x�5t�1�� = O�p (1) .
���n1=2g�33;n@3L�n (�) =@!3��� =

�����n�1
nX
t=1

[3
"�2t
��2t

� 1]
�
1

��6t

������
� c1n�1

nX
t=1

[z�2t � 1] + c2 = O�p (1) .

���n1=2g�11;ng�23;n@3L�n (�) =@!2@���� =
�����n�3=2

nX
t=1

2
"�tx

�
t�1

��6t

�����
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� c1n�3=2
nX
t=1

(jz�t j � E�jz�t j)
��x�t�1��+ c2n�3=2 nX

t=1

��x�t�1�� = O�p (1) .
���n1=2g�23;ng�12;n@3L�n (�) =@!2@���� =

�����n�2
nX
t=1

[3
"�2t x

�2
t�1

��2t
� 1]

�
1

��6t

������ .
� c1n�2

nX
t=1

[z�2t � 1]x�2t�1 + c2n�2
nX
t=1

x�2t�1 + c3 = O
�
p (1) .

���n1=2g�13;ng�12;ng�11;n@3L�n (�) =@�@!@���� =
�����n�5=2

nX
t=1

2
"�tx

�3
t�1

��6t

����� :
� c1n�5=2

nX
t=1

(jz�t j � E�jz�t j)
��x�t�1��3 + c2n�5=2 nX

t=1

��x�t�1��3 = O�p (1) :
Remark A.4 We have here used that a bootstrap invariance principle holds for the
term, n�1=2

P[nu]
1 (jz�t j � E� jz�t j) ; under the conditions in Lemma A.1.
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Table 1: Size of the asymptotic and bootstrap tests

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

zt � N 50 0:6 4:0 9:0 1:0 4:7 9:8 1:0 5:0 10:1
100 0:5 3:9 8:8 0:9 4:7 9:6 1:0 4:9 10:0
200 0:6 4:2 9:2 1:0 4:8 9:8 1:0 5:1 9:9
500 0:8 4:9 10:5 1:1 5:7 10:8 1:1 5:8 10:9

zt � t 50 2:1 6:5 11:7 0:8 4:4 9:7 1:8 5:9 10:7
100 2:8 7:8 13:6 0:9 5:0 10:3 2:0 6:3 11:2
200 3:2 8:1 14:1 0:9 4:9 9:8 1:8 5:8 10:5
500 3:9 9:9 16:4 0:9 5:2 10:5 1:4 5:9 10:9

zt � �2 50 2:7 7:6 13:2 0:9 4:7 9:8 2:4 6:8 11:8
100 3:8 9:8 15:3 0:9 5:0 10:8 2:3 7:4 11:9
200 4:6 11:2 16:9 1:0 5:2 10:8 2:1 6:8 11:7
500 5:5 12:5 19:2 1:2 5:6 11:0 1:8 6:5 11:5

Notes: The parameter setting under the null is � = 0; � = 0 and ! = 1. The innovation
process (zt) is drawn, respectively, from standard normal distribution, standardized t
distribution with degrees of freedom 5:5, and standardized symmetric �2 distribution
with degrees of freedom 3. The results are obtained from 10000 Monte Carlo simulation
iterations each of which is evaluated using 399 bootstrap samples.
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Table 2: Size-adjusted power of the asymptotic and bootstrap tests under the local
alternative � = cn�1; � = 0.

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

zt � N 50 22:0 61:6 81:2 24:9 63:1 82:1 21:9 61:3 80:5
100 21:9 60:3 81:0 24:2 62:3 81:0 24:6 60:8 80:3
200 21:6 58:8 78:8 23:7 59:5 78:9 20:3 58:0 79:0
500 20:0 55:0 77:2 20:3 54:8 76:3 20:4 54:4 76:1

zt � t 50 7:3 45:0 72:9 17:5 53:7 72:8 9:2 41:5 67:9
100 4:5 35:7 66:0 14:6 44:0 65:5 7:8 34:8 61:5
200 2:9 33:0 63:7 11:3 38:6 62:3 6:1 33:1 59:9
500 2:6 26:7 58:2 8:3 33:4 57:4 5:5 28:9 55:2

zt � �2 50 4:6 36:2 66:5 15:5 44:6 66:9 5:5 32:0 57:4
100 4:0 26:2 55:9 11:5 36:5 57:2 7:0 25:9 50:3
200 2:5 21:8 49:6 7:9 30:6 53:0 4:2 22:6 46:6
500 1:8 18:5 44:7 4:4 22:7 46:8 2:7 20:4 43:2

Notes: The parameter setting is c = �10, and ! = 1. See also notes to Table 1.

Table 3: Raw power of the asymptotic and bootstrap tests under the local alternative
� = cn�1, � = 0.

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

zt � N 50 16:2 54:5 78:2 21:2 60:0 80:7 21:9 59:9 80:5
100 15:4 53:4 77:6 20:5 59:4 79:7 21:1 59:2 79:5
200 15:7 53:6 76:8 20:3 57:9 78:2 20:3 58:0 78:2
500 16:4 54:7 78:5 20:3 57:7 78:5 20:4 57:8 78:5

zt � t 50 17:9 55:2 78:3 14:4 49:4 71:3 15:5 47:6 69:6
100 18:2 54:5 78:4 11:9 42:7 66:3 12:9 42:3 65:2
200 18:6 54:3 77:7 9:3 37:3 61:5 10:1 37:1 60:9
500 20:0 57:7 79:7 6:5 33:4 58:2 7:4 33:5 58:0

zt � �2 50 17:4 54:0 78:3 12:8 43:4 66:0 14:8 42:0 63:4
100 18:6 54:8 78:5 9:5 36:5 60:4 11:4 35:8 59:1
200 19:7 56:0 79:8 6:2 30:6 55:3 7:8 30:8 54:9
500 21:8 57:4 79:6 4:4 25:2 50:1 5:3 25:4 49:7

Notes: The parameter setting is c = �10 and ! = 1. See also notes to Table 1.



Table 4: Size-adjusted power of the asymptotic and bootstrap tests under the local
alternative � = 0; � = cn�3=2.

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

zt � N 50 24:3 39:6 50:3 21:5 38:2 50:0 24:5 40:2 50:6
100 29:1 43:7 54:6 27:8 43:6 54:6 30:3 44:4 55:0
200 32:4 46:9 56:9 31:9 46:6 57:0 31:4 46:6 57:4
500 34:8 48:6 59:1 34:3 48:3 58:6 35:0 48:8 58:7

zt � t 50 17:0 32:3 43:2 16:3 33:0 43:5 17:9 32:1 43:5
100 18:8 34:7 45:1 20:6 35:4 45:4 20:1 34:0 45:0
200 20:3 37:7 48:2 23:9 38:7 48:2 21:7 37:3 48:0
500 22:7 38:2 48:7 26:1 39:7 49:0 24:7 38:5 48:5

zt � �2 50 15:8 30:6 40:5 15:6 30:8 41:1 14:6 29:9 40:2
100 18:4 31:9 41:4 18:8 33:2 42:2 19:4 31:6 41:3
200 19:0 34:1 43:4 20:8 35:2 44:3 19:8 33:1 42:8
500 21:1 35:9 45:9 22:3 36:3 46:2 20:5 36:1 45:4

Notes: The parameter setting is c = 10 and ! = 1. See also notes to Table 1.

Table 5: Raw power of the asymptotic and bootstrap tests under the local alternative
� = 0; � = cn�3=2.

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

zt � N 50 21:7 36:4 48:4 19:6 36:8 49:1 24:5 39:6 50:6
100 25:9 41:2 52:6 25:9 42:4 53:7 28:9 43:8 54:6
200 29:4 44:6 55:9 30:1 45:8 56:5 31:4 46:6 56:8
500 33:4 48:5 59:8 34:3 49:8 59:8 35:0 50:1 60:0

zt � t 50 23:0 35:9 46:2 14:7 30:8 42:5 21:6 34:7 44:2
100 27:6 40:8 50:3 18:8 34:8 45:8 24:1 37:1 46:7
200 31:6 44:9 54:3 22:2 38:1 47:9 25:6 39:1 48:4
500 35:6 48:5 57:8 24:4 39:7 49:4 26:6 40:6 49:7

zt � �2 50 23:5 36:1 45:2 14:1 30:3 40:6 21:9 34:0 42:3
100 28:8 41:2 50:1 17:1 33:2 43:5 22:9 35:8 44:5
200 33:1 45:1 53:3 19:2 35:2 45:1 23:5 36:8 45:8
500 37:3 49:9 58:0 22:3 37:7 47:5 24:8 38:5 48:1

Notes: The parameter setting is c = 10 and ! = 1. See also notes to Table 1.


