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Abstract: Cultivation in open fields mainly depends on the location and time of farming, which
itself highly depends on the quality and quantity of water for irrigation, weather conditions and
soil characteristics. Water resources are highly dependent on the limited freshwater resources from
the groundwater system, or rainwater. Countries in MENA (the Middle East and North Africa) rely
mostly on desalination technologies for agriculture, due to water scarcity. Therefore, greenhouse (GH)
agriculture can be developed to succeed in dealing with the water scarcity and provide sufficient
sources of agricultural products as a sustainable solution. These indoor agriculture facilities, which
are enclosed by transparent covers, can produce different sources of fruits and vegetables, using
a controlled amount of water. By reducing the exchange rate of air with the outside environment,
which is known as the confinement effects, greenhouses generate a suitable environment for the
plants to grow under transparent covers to trap the sunlight. This raises the inside temperature above
the maximum threshold levels, especially within the warm season, due to the high solar radiation
intensity, having an adverse influence on the microclimate conditions and consequently the crop
growth. In order to sustain maximum agricultural yield, greenhouse ventilation is an important
parameter in which its trends and emerging practices were reviewed in this study.

Keywords: greenhouse; sustainability; ventilation; agriculture; energy and water efficiency

1. Introduction

Climate change, increasing population and lack of resources have led the countries around
the world to choose sustainable development solutions. Increasing water-use efficiency, tackling
water scarcity and poverty among societies and providing food are some of the main issues for
sustainable development in the United Nations’ 2030 agenda [1]. In order to supply food for the
growing population, sustainable agriculture is essential. Open field agriculture is highly reliant on the
agronomy’s time and location, weather conditions and the soil properties. Compared to the open-field
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agriculture systems, greenhouse (GH) systems allow to growing the plants very effectively under
controlled environmental conditions. GH systems were originally conceptualised by Romans [2].
In the 1970s, the energy crisis was the main reason for modern horticulture development [3]. Since
then, several studies have been performed to increase the resilience of such structures by analysing
their interior environmental conditions to increase crop quality and production. GHs have been shown
to reduce the water irrigation requirements by up to 90% compared with open field agriculture. This is
very important in areas that have very little available freshwater and infertile soil [4,5]. In order
to increase the horticultural yield, the micro climate conditions generated inside GHs can also be
controlled by analysing the temperature, air velocity and humidity for optimal conditions of plant
growth [6]. This helps to compensate for the possible negative effects by applying sufficient shading,
proper ventilation and/or greenhouse cooling [7]. It is important in the Middle East and North Africa
(MENA) region, especially within the current climate change era [8], where water is very scarce [4,5],
and high temperatures, high solar intensity, and low humidity mean open field agriculture is not
economical [5]. On the other hand, water scarcity has caused competition for water and instabilities [9],
especially in the MENA region [10,11]. Therefore, the countries in this region have invested heavily
in desalination technologies, which have the potential to be coupled with GHs and solar power to
produce a free-standing solar-powered GH using water produced from desalination technologies, such
as a zero-liquid discharge (ZLD), membrane distillation (MD) or solar still (SS) [12]. Previously, both
experimental and computational studies have been performed to research the effects of ventilation,
humidity, and solar intensity, on the indoor environment quality of different built environments [13],
including GHs [14–16]. CFD (computational fluid dynamics) has been used to replicate GH conditions
and study the effect of ventilation arrangements, air velocities, and other parameters on the conditions
inside the GH [15]. However, all these depend on the type, location and direction of greenhouse
and also the technologies that allow automated monitoring of greenhouse crops [17]. Although
the Information and Communication Technologies (ICT) in water management for agriculture have
advanced in recent years [18], they are not yet available in low income countries.

Greenhouses can be divided into several types based on their shape, utility, construction and
covering materials. There is no single type of greenhouse that can be considered the best. However,
there are advantages of each type for selected applications. Distinct types of greenhouses are designed
to satisfy the specific needs of the agricultural system. This paper reviews the literature dealing with
GH climate control technologies that have been researched and applied for many years. These are
divided into: (i) Shape and orientation selection; (ii) ventilation systems; and (iii) cooling systems.

2. Greenhouse Shape and Orientation Selection

The shape and orientation of the greenhouses are mainly selected based on the solar radiation
requirements, either to decrease the rate of cooling in hot regions, or maximize the rate of absorbed
solar energy in the cold environments. This mathematical model developed by Gupta and Chandra
analysed various energy conservation measures in order to achieve different design features for an
energy efficient greenhouse in Delhi, India [19]. The developed model showed that the shape of the
greenhouse is a significant parameter which envisioned that the rate of required heating for a gothic
arch shaped greenhouse would be less than the heating requirements for the gable and Quonset shapes
by around 2.6 and 4.2%, respectively.

In terms of the greenhouse direction, Sethi [20] showed that the heating requirements for an
east-west oriented gothic arch greenhouse were nearly 2% less than for a north-south oriented one.
It also showed that up to 30% could be saved on heating costs when the north wall is insulated in
the east-west oriented gothic arch greenhouse. Sethi’s study also predicted that by insulating the
north wall, using night curtains, and utilizing inflated double wall glazing for the southern wall,
the needs for greenhouse heating could potentially be reduced by around 80% [20]. It also analysed
the total transmitted solar radiation for the five main types of single span shapes of greenhouses,
which are even-span, uneven-span, vinery, modified arch and Quonset type [20]. The computed
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results showed that uneven span types of GH could potentially secure the maximum solar radiation
energy, while the Quonset shape received the least amount of radiation for all months during the
experiment year, at any latitude. While the east-west orientation showed superior performance, due
to absorbing a higher amount of radiation in winter and less in summer, the results of this study
mainly emphasized that the shape of the greenhouses was more important than their direction for
increasing GH performance. The optimal orientation is hard to analyse, since different parameters
have simultaneous effects. Gupta et al. [21], showed that 45◦ clock-wise orientation had the lowest
radiation loss during winter and the maximum loss during summer and therefore, orientation has to be
selected carefully. Çakır, and Şahin [22] showed that the elliptic type of greenhouse provides optimal
solar availability among the five types of the investigated greenhouse; even-span, uneven-span, vinery,
semicircular and elliptic, while the orientation to the south was selected as a preferable direction in
El-Maghlany et al.’s study [23]. Çakır, and Şahin also showed that for the low latitude angles (< 24◦),
the east-west orientation provides optimal conditions, similar to Stanciu et al. [24] who also found this
orientation could save energy load in even-span shape greenhouses in Romania.

Mono-span GHs are the simplest form of GH studied in the literature [16,25–30]. Investigations
have focused on the effects of wind direction, vent combinations, wind speeds and the interaction of
the wind with the crop. However, there are many other types of GH that have been studied, such
as Multi-span [29,31,32], Open-roof [33,34], Saw-tooth [35], Venlo [36], Parral [37], Canarian [38,39],
and Tropical [40,41] GHs. A full review of the different GHs can be found in Bournet and Boulard [42].

3. Ventilation Systems

In order to maximize the crop quality and quantity in warm regions, different cooling systems
are utilized to remove the extra heat from greenhouses. This has been one of the major research areas
studied by various researchers in this field. The principles incorporated by basic cooling techniques
are listed below.

3.1. Ventilation

Ventilation is required to allow air movement and to maintain the lowest possible temperature
gradient between the outside and inside of the greenhouse. This can happen naturally by means of
the airflow, due to the density differences of the hot air inside the GH and the cooler ambient air,
or forced ventilation, in which additional mechanical systems are deployed to improve the airflow and
extract the heat from the greenhouse. In order to analyse the rates of ventilation, several studies have
investigated the ventilation rates and their locations. Experiments on GH ventilation are performed
either using a scale model in a wind tunnel or in situ [42]. Sase et al. [27], Okushima et al. [43],
Boulard et al. [26,44], Lee et al. [45], Bailey et al. [46], Kacira et al. [47], and Teitel et al. [48] all analysed
scale models of GHs using wind tunnels. In another scale model developed by Montero et al. [49],
GH was submerged in a flume tank filled with water. The advantage of scale models is that wind
velocity can be easily controlled [42]. Experiments using in situ GHs are also available for a variety
of GH types, which all use full-size GHs to analyse airflow patterns and temperature contours.
These studies have been performed on many different types of GH. The articles that studied the
effect of ventilation on real GHs can be found in Kittas et al. [50,51], Boulard et al. [52], Wang and
Deltour [53,54], Demrati et al. [55], Molina-Aiz et al. [56], Perez Parra et al. [57], Katsouas et al. [58],
Ould Khaoua et al. [59], Bournet et al. [60,61], Teitel et al. [48,62], Baeza et al. [37], Fatnassi et al. [63],
and Majdoubi et al. [64]. Most experimental studies focused on the ventilation rate of the GH, which is
the number of greenhouse volumes renewed per hour [42]. The most common method of analysing
the ventilation rate is the tracer gas technique [50,57,65]. This involves injecting an external gas,
such as N2O into the GH, and then measuring the time taken for the gas to decay to a certain level.
The full procedure is described in Baptista et al. [65]. A number of experimental studies have analysed
the temperature and velocity contours in the GH through physical modelling. Using scale models,
Sase et al. [27] and Kacira et al. [47] used hot-wire anemometers and thermocouples placed at points
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of interest around a GH to measure the air velocity and temperature. Okushima et al. [43] and
Lamrani et al. [25] used thin thermocouples, and Lee et al. [66] used particle image velocimetry (PIV)
in addition to anemometers to analyse the airflow throughout the GH. Boulard et al. [26] used a similar
technique, with laser sheets instead of PIV, to visualize the air velocity. A full explanation of the
use of PIV is given in Lee et al. [45], who compared it to CFD models and found good accuracy in
the results. When physical models of GHs are used, due to the size, it is more difficult to accurately
measure velocities and temperatures without incurring a high cost. Heber et al. [67] developed a
similar technique to that used in the scale models, using thermocouples to measure temperatures and
a sonic anemometer to measure ventilation rates and air velocities, which were also measured using an
omni-directional hot wire probe. This method was used and improved upon during various studies,
as it could be used to detect very low wind speeds, with an error of ±0.04 cm/s [42]. Boulard et al. [52]
measured the velocities and heat flows at vents and extrapolated the data to estimate the air exchange
rate, which could then be compared to the tracer gas method described above. Boulard et al. [68] used
a similar technique to infer the temperature distribution inside the GH, while Boulard et al. [69] looked
at the turbulence in the GH. Bartzanas et al. [70,71], Shilo et al. [72], and Teitel et al. [62] also used a 3D
sonic anemometer to measure air velocities and temperatures in the GH, and successfully compared
the results to the tracer gas and CFD techniques. Wang and Deltour [54] used 2D sonic anemometers to
measure the same parameters as Shilo et al. [72], Teitel et al. [48], and Molina-Aiz et al. [56] used a hot
ball anemometer and smoke tracing technique to measure the air velocities. Besides the experimental
techniques to analyse the rates of ventilation, computational fluid dynamics was also utilized to find
this rate based on the air velocity, interior temperature and humidity levels. The CFD methods largely
use ANSYS Fluent or COMSOL to divide the geometry into small elements, and solve the equations for
mass, momentum and energy in each element [42]. The software then runs iterations until the solutions
converge [73,74]. Generally, the surrounding air and external boundary conditions are also included,
to minimize the effect of the boundaries on the flow of air through the GH. As Norton et al. [14]
suggest, recent studies without the outdoor environment have sometimes shown no resemblance to
experimental data. This is especially the case where the buoyancy effect is the driving force. Modelling
the external domain, however, requires a much larger computational power, as the size of the geometry
should be up to three times the GH ridge height upstream, seven times the height downstream and
five times the vertical height [61]. Some other studies also 4odelled the external conditions, especially
around a greenhouse [16,75,76]. The majority of studies available using the standard k-εmodel, as it is
the most popular and most widely used turbulence model for fluid modelling [45,48,56,59–61,64,70,77].
However, Mistrotis et al. [16], and Norton and Sun [78] both showed that the standard k-εmodel could
give poor results in certain cases. Both the Re-Normalization Group (RNG) k-εmodel and realizable
k-εmodel have been shown to give better results in certain circumstances, but not enough information
is available to say for certain which model is more effective [42]. However, Rouboa and Montero [79]
suggest that the RNG model is most effective when studying the microclimates in the GH. Also, Roy
and Boulard [76] studied the three models mentioned above in the same GH setup and found that
the standard k-ε model gave the best convergence, but poor results, and the RNG k-ε model gave the
best mixing of vortices. On the other hand, Nebbali et al. [80] found that comparing the results of the
humidity, temperature and air velocity between the three models and experimental data of the same
GH showed that the standard k-εmodel had the lowest number of errors and was the most accurate.
It should also be mentioned that the vast majority of CFD studies use the Boussinesq assumption to
model the buoyancy effect [14], which is especially important for low wind speeds, where the buoyancy
effect dominates [29].

Mostly, the studies were performed based on two-dimensional analysis, and assumed that the
wind direction was perpendicular to the ridge axis of the GH, as for a 3D GH with a long length
compared to the ridge height, the perpendicular flow should cause a 2D flow to develop that is
consistent along the ridge. The work done by Sase et al. [27] in a scale model experimental study was
replicated using CFD by Okushima et al. [28] and Mistrotis et al. [29], which both models successfully
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obtained similar flow patterns to those found during the experiment. However, not all studies show
good replication of the experimental data, both in situ and using scale models. This is especially the
case when the wind direction is not perpendicular to the ridge, as this affects the ventilation rate,
contrary to what was believed until CFD tools improved, and more studies were conducted to analyse
the effect of the wind direction [42]. Campen and Bot [77], Shyklar and Arbel [81], and Teitel et al. [48]
have all shown that the wind direction can improve the ventilation rate. As a result, and due to the
improving computational facilities available, more studies are using 3D models to perform analysis of
the velocity patterns under different conditions. Most studies have been performed using steady-state
analysis and suppressing unsteady sections of the flow. However, some studies showed that as the
force of nature is not steady, thus, the quantitative solutions of steady-state analysis cannot be fully
accurate [14], and therefore, analysed unsteady characteristics of airflow around greenhouses [82–84].
Some studies were mainly focused on replicating the solar radiation in the GH in order to accurately
model the effect of the radiation on the airflow and temperature distribution in the GH, while most of
the CFD studies simplify the radiation model by calculating or experimentally obtaining temperatures
or heat fluxes at the GH walls, instead of setting fluxes or using models to replicate the radiation at the
external boundaries [14]. However, models have been developed in CFD that can accurately estimate
the radiation from the sun based on the time of day and latitude and longitude coordinates of the GH’s
location. Wang and Boulard [85] developed a simple model to calculate the radiation on the walls of
the GH, using theoretical knowledge. The models that have been used explicitly in CFD methods are
the P1 model and the Discrete Ordinate (DO) model, which both solve the Radiative Transfer Equation
(RTE) and calculate the luminance of the sun [42]. The DO model is much more commonly used, as it
allows the user to set the transparency of materials and requires less computational time. Crop-based
models were also analysed in previous studies to simulate the effect of the crops in the model, usually
as a porous medium that is used to determine pressure loss in the flow [86]. Some models also use
the porous medium to attempt to model heat fluxes from the plants, based on the solar radiation
intensity, as well as convective air exchanges, in each element that models the crop area [42,86]. Lee and
Short [87] studied the effect of the crop, using the porous medium method, and found that it reduced
the ventilation rate by 12% for the same GH. Boulard also found that the presence of crop in the
simulation reduced the ventilation rate by 28% [88], and transpiration rate reductions of 30% [89] were
observed in areas where the airflow was weaker. Fatnassi et al. [63] also studied the effect of crops on
the ventilation rate, and found that it decreased with larger crops, or proportionally to the leaf density.
However, the process of photosynthesis is well analysed experimentally, but has not been accurately
modelled using CFD [42]. This can affect the air temperature, humidity and CO2 content in the air,
and must also be modelled for more accurate simulations.

Different experimental techniques were developed to measure the rate of air exchange for natural
ventilation. One of these showed that the air exchange rate was mainly affected by wind speed and
also the effective vents opening [88]. In terms of wind speed, when it reaches a certain value, the rate
of efficiency is reduced, as shown by the fact that the turbulent types of flows do not exceed 45% of the
total heat flux [52].

In terms of ventilation rate, the American Society of Agricultural Engineers [37] recommends
0.04 m3s−1 per unit of floor area in summer. In another approach, the natural rate of ventilation was
predicted to be in the range of 0.36 kg·s−1 to 1.65 kg·s−1 [37] for its specific GH model. In order to analyse
sufficient rate of ventilation, the optimum temperature and humidity ranges for different plants have
to be analysed, and these were studied by Campiotti et al. [90]. Computational fluid mechanic (CFD)
techniques are used instead of, or along with, the experimental approaches for mapping the air flows
and analysing the microclimate conditions within the GH. Such models can help new designs in order
to maximize the crop quality [42], such as colour, texture, size, flavour and nutraceutical value [91].
For example, the effects of sidewall vents on buoyancy-driven natural ventilation in parral-type GHs,
with and without insect screens, were analysed using CFD [37], which resulted in a novel GH design
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utilizing two ventilators on the opposite sidewalls combined with a roof ventilator and higher rate of
air exchange and lower inside temperature.

Several studies worked on different systems to have forced ventilation. Fan cooling is one such
mechanical system showing little advantage over natural ventilation [92]. Adding evaporative pad
cooling to the fans increased the rates from 0.05 m3/m2

·s to 0.13 m3/m2
·s, while the temperatures of

both air and canopy also decreased [92]. The two main forces behind the ventilation of the GH are
the ‘stack effect’ or ‘buoyancy effect’, which is caused by different temperatures that induce density
gradients in the air, and the forced convection associated with air velocity, due to the wind [42].
Sase et al. [27] experimentally observed that the transitional period between the two forces occurred at
a wind velocity of 1–2 m/s, depending on the vent configurations, with lower velocities producing
ventilation dominated by the buoyancy effect, and higher velocities producing ventilation dominated
by wind velocity.

3.2. Effect of Forces Driving Ventilation

The airflow patterns in closed (no vents) GHs have been studied by various authors. The driving
force of the air in these studies is only, due to the buoyancy effect, as no external air can enter the GH,
and thus, external wind speeds have no effect. Lamrani et al. [25] experimentally studied a closed
mono-span GH with different wall conditions, and found that for symmetrical boundary conditions,
two counter-rotative air loops formed when a floor heat flux was first applied, but this developed into
a single loop under steady-state conditions. The temperature within the GH was found to decrease
very rapidly at the first 5 cm above the floor, and then gradually decrease with increasing height.
Montero et al. [31] and Bournet et al. [32] studied a closed multi-span GH under night-time conditions
and found that two counter-rotative flows developed, due to the design of the GH.

The effect of the wind speed on the force in ventilated GHs has also been studied. Sase et al. [27]
experimentally found that the air velocity increases, due to the effect of wind and stack by about
1–2 m/s. This has also been analysed by Mistrotis et al. [16], Kittas et al. [50], and Papadakis et al. [30],
who all found the wind speeds above which the buoyancy effect can be neglected lie between 1.5 m/s
and 2.0 m/s. Furthermore, Boulard and Baille [93] found that the actual value depended on the GH
geometry and vent locations, and the temperature difference between the inside and outside of the GH.

Studies have been performed with low-velocity wind speeds, where the buoyancy effect still
dominates. Boulard et al. [26] compared a scale model and CFD study of the same mono-span
GH with a single vent. They found that with no external wind, the experimental and CFD results
both showed that the air came through the vent and moved towards the floor, before creating a
single loop of air circulation around the GH, with the highest air velocities found close to the walls,
decreasing to very low velocities in the centre. The comparison between the two also showed very
good agreement. The temperatures were also in good agreement, with a rapid decrease in temperature
at the floor, remaining the same until the roof, where a further decrease occurred. Sase et al. [27] also
experimentally studied a scale model mono-span GH with vents on the walls and at the centre of
the roof, for low-velocity wind speeds, and found that the air entered through the side vents, was
warmed by the floor, and then moved upwards and exited through the roof vents. The same GH
was investigated by Okushima et al. [28] and Mistrotis et al. [29] using CFD. Okushima et al. [28]
obtained similar results to the airflow pattern found by Sase et al. [27], although computational
resources were limited at that time. Mistrotis et al. [29] also simulated the heat fluxes involved,
and for both a zero-wind speed and a 0.2 m/s wind speed, quantitatively produced the same results
as Sase et al. [27]. Mistrotis et al. [29] also studied a multi-span GH using CFD with various vent
combinations, which showed that a combination of both roof and side vents was required for efficient
ventilation when the method was via the buoyancy effect. They also proved that when the ventilation
was buoyancy-driven, the solar radiation intensity had a significant effect on the ventilation rate,
as higher temperatures produced larger gradients, which increased the buoyancy effect and raised
the ventilation rate. Similarly, Baeza et al. [37] showed the effect of the vent combinations on a parral
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GH (Almeria type), validated by an experimental method, and proved the importance of side vents in
increasing the ventilation rate when the ventilation was buoyancy-driven.

There have been many more studies that analyse the ventilation of the GH at high wind speeds,
when the buoyancy effect has a negligible impact on the ventilation. The most common type of study is
on a mono-span GH. Sase et al. [27] studied a mono-span GH at higher wind velocities, where the wind
effect dominates the ventilation rate, and found that the airflow pattern and temperature distribution
did not change with higher wind speeds. However, the temperature rise was found to decrease
proportionally to the logarithm of the wind speed [27]. Okushima et al. [28] and Mistrotis et al. [16]
both validated the findings using CFD. Bartzanas and Kittas [94], and Bartzanas et al. [70] used CFD to
study the effect of different vent configurations on the ventilation rate of the GH, and concluded that
using roof and side vents could double the ventilation rate when compared to only using side vents.
They also concluded that the temperature difference between the inside and outside and the wind
velocity at plant level should be considered to optimize ventilation, and that the height of the side
vents greatly affected the airflow pattern. Montero et al. [49] performed an experimental study on
a similar GH, which resulted in very similar airflows to those in Bartzanas and Kittas [94]. Boulard
and Wang [89], and Boulard et al. [68] studied a mono-span GH, both experimentally and using CFD
simulations with crops modelled, and found that the heterogeneity of the climate (the difference in
temperatures in the GH) was affected by the strong airflow from the windward side to the leeward
side of the GH, with strong temperature gradients also predicted at the floor. Boulard et al. [26]
experimentally and computationally studied the air velocity and temperature in a mono-span GH with
a single vent and two vents, when the wind direction was perpendicular to the GH ridge. They found
that for the single-sided vent, the air entered the lower portion of the vent, formed a loop around the
GH with fast-moving air at the walls and still air in the middle, and exited through the top of the vent.
For the two-sided ventilation, the same loop developed, but the cool air entered the GH from both
sides, causing lower temperatures.

Multi-span GHs have also been studied by some authors. Boulard et al. [52] experimentally studied
a wind parallel to the main axis of a multi-span GH with side vents, and obtained good agreement
between results for the comparison of different ventilation measurement techniques. Boulard et al. [68]
also experimentally studied the same GH and found that the section of the GH further upwind
was warmer than the downwind section. The same results were produced using CFD models by
Mistrotis et al. [16], who found that for a wind speed of 2.0 m/s, the external air entered through the
leeward end and exited the windward end of the GH. Lee and Short [95] used CFD to analyse the
effect of vents, opening area and a number of spans on a multi-span GH with side and roof vents,
for different wind speeds. They analysed different conditions when the wind was parallel to the GH
ridge, and found that the side vent significantly contributed to the air renewal rate of the GH. They
also concluded that when the side vent was located at the bottom of the wall, the temperatures were
more homogeneous, and therefore, the ventilation rate was better, whereas, for a high side vent, over
half of the air was lost through the first roof vent [95].

3.2.1. Effect of Wind Direction

The effect of the wind direction on the GH has also been analysed [96]. Teitel et al. [48] experimentally
and computationally investigated a multi-span GH with different wind directions, and found that
for wind directions that were not perpendicular to the vents, the general trend was that there was
an inflow at the leeward part of the vent, and an outflow at the windward part. They also found
that the lowest ventilation rate occurred when the wind direction was at an angle of 30◦ to the vents,
and the highest ventilation rate when the wind direction was at an angle of 60◦. However, the results of
Shyklar and Arbel [81] disagreed, showing that the ventilation was most efficient with a wind direction
perpendicular to the vent, and least efficient when the wind was parallel to the vent. Campen and
Bot [77] also showed that small variations in the wind direction could increase ventilation rates by
large amounts. Bartzanas et al. [97] achieved a similar air-flow pattern to Teitel et al. [48], finding that
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the windward end of the GH was consistently warmer than the leeward end for a wind parallel to and
at an angle of 45◦ to the GH ridge.

3.2.2. Effect of Greenhouse Dimensions

The ventilation rate and air-flow pattern are strongly affected by the length and type of the GH,
particularly the number of spans. Mistrotis et al. found that the same GH design with continuous
vents and a different length had different flow patterns, and Kacira et al. [98] and Molina-Aiz et al. [99]
found that the ventilation rate of a GH decreased exponentially with an increasing number of spans,
with the latter also showing an increase in temperature at the plant level. Lee et al. [45,66] found that
increasing the number of spans led to different flow patterns, with a GH with more spans developing
flows that move against the wind direction.

The height of the GH also appears to affect the ventilation, although very few studies of this have
been reported. Boulard and Fatnassi [100] used CFD to study the ventilation of three GHs varying
only in their height, and concluded that increasing the height of the GH decreased the temperature.
However, this has not been experimentally studied, due to the difficulty and cost of manufacturing
and studying many different GHs. This is also the case with other GH dimensions that could affect the
ventilation process and its energy requirements [19,101,102].

3.2.3. Effect of Vent Configurations

The effect of different vent configurations on the ventilation process has been studied in more
detail. Bartzanas et al. [70] showed that adding side openings can increase the ventilation rate by a
factor of five. Kittas et al. [51] also showed that the type of vent used could affect the ventilation rate,
as roll-up side vents produced a more efficient ventilation rate than pivoting side vents, which also
obstructed the air-flow and changed the internal pattern. The vertical position of the side vent was
shown to have less of an effect on the ventilation rate [60,61], although lower side vents provided
better air quality and a more consistent temperature at the plant level [103]. It has also been shown
that ventilation is more efficient when vents are windward, but this may subject the plants to damage
and cause more heterogeneity in the climate at plant level [59]. Many studies have looked at the
effect of the size of the vent, and good agreement has been reached that increasing the vent size
increases the air velocity at plant level and lowers the difference between the internal and external
temperatures [103–105].

3.2.4. Analysing Humidity Range

Comparatively, little research has been performed on the humidity around the GH, and the
crop transpiration rate under different conditions. Some experimental and CFD studies have been
performed, which demonstrated that the similarities between the air temperature and humidity depend
on the ventilation rate, external air humidity and plant transpiration mechanisms [106–108]. Humidity
control in a GH has also been studied using a fog cooling system, with successful results [109,110].
Pearcy et al. [111] theorized that it was possible to measure the transpiration rate and leaf conductance
in plants using simple measurements. Boulard et al. [112] showed that it was possible to measure
the internal GH air humidity and temperature, and the internal airspeed and leaf transpiration
rate, to determine the microclimate around the leaf. Boulard and Wang [89] implemented a crop
model into a CFD simulation to model the transpiration rate of the plants, which was also used by
Bartzanas et al. [70], Fatnassi et al. [113], and Majdoubi et al. [64]. Fatnassi et al. [114] also developed a
linear crop model to analyse the effect on the humidity and found good agreement with experimental
results. Hagishima et al. [115] experimentally studied the effect of the plant density on the transpiration
rate of the plants and concluded that the plant transpiration rate was affected by the density of the
plants, as greater plant density decreased the transpiration rate per plant. Kichah et al. [116] also
estimated the transpiration rate, both experimentally and using a CFD model, and found good accuracy
for the analysis, with an accurate estimation of the transpiration rate throughout the day.
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4. Cooling Systems

4.1. Evaporative Cooling Systems

In order to cool the greenhouses, various evaporative cooling systems were developed and utilized
to enhance the performance inside greenhouses.

In order to analyse the efficiency of the fan-pad systems, two distinct models were developed
with fan and pad evaporative cooling systems [117], with the results showing the greenhouse efficacy
could be increased through the use of such systems. When opening the fan-pad cooling systems,
the relative humidity changes along with the greenhouses, from the pad panels to the exhaust fans,
shows uniformity, but the temperature changes were usually non-uniform [118], which has to be
considered while employing such mechanical systems within the greenhouses. The employed system
in this study reduced the GH temperature from 30–33 ◦C to the range of 20–27 ◦C, and increased
the humidity rate of 30–47% to 50–68%, where the outside climate conditions were 32 ◦C and 25%
humidity. This showed how effective this system is for improving the GH microclimate conditions.

Thermodynamic simulations were performed to analyse the rate of freshwater production
and energy consumption for a seawater greenhouse utilizing the humidification-dehumidification
framework [119]. The results of this study proved that the greenhouse dimensions had the greatest
overall effect on the amount of produced water and the required energy. While the wide shallow
greenhouse offered 125 m3 of freshwater per day, the narrow deep structure produced only 58 m3 of
water per day and used around five times more energy. While the effects of dimensions cannot be easily
implemented for different greenhouses, researchers investigated the GH’s width to length ratio [120].
Davies [121] proposed a liquid-desiccant system for GH in Abu Dhabi and compared it with two
systems, the first of which was a GH with simple fan ventilation, while the second case employed
conventional evaporative cooling. The results proposed that the novel liquid-desiccant cooling system
could potentially lower the maximum summer temperatures by around 15 ◦C compared to a GH
cooled by simple fan ventilation which is 5 ◦C lower than similar conventional evaporative cooling
systems, while to be self-sufficient in water, the minimum rate of condenser efficiency was evaluated
based on the concept of seawater GH [122]. When utilizing the evaporative cooling technique, there
was a limitation on the inside air relative humidity, since it is highly dependent on the ambient air
dry-bulb temperature [123]. The researchers of the same study also concluded that for the cooling
machines and deep seawater cooling methods, the capacity of cooling and the flow rates are mainly
dependent on the inlet and outlet temperatures of the condenser.

Condenser configuration for the HDH seawater GH desalination was analysed by Kabeel and
El-Said [124], which showed that passive condenser was superior in terms of efficiency than the
pump-driven one [125]. This was also investigated in another study by Mahmoudi et al. [126] in which
they developed a mathematical model for a new proposed passive condenser in order to enhance its
performance. Three methods of condensation were rigorously analysed; a pump-driven condenser,
a passive cooling system with a condenser submerged in a water basin, and an external passive
condenser connected to a basin of water located on top of the cooling unit. This study showed that the
passive condenser could produce more water than the existing pump-driven system.

In terms of influential parameters on the rate of water production, studies raised the importance
of the inlet air relative humidity [127]. In addition, the results of a similar study proved that as the
inlet water flow rate increases, so does the water production, and the differential temperature and floor
temperature both decreased. Moreover, by increasing the air into the system, the water production
and floor temperature decrease and the differential temperature increases, which means the water
produced can be used for irrigation using solar energy controllers [128] to water an area of about
2333 m2 to plant tomato, cucumber, pepper and lettuce. This technology of seawater greenhouse could
potentially be used to reduce the crop water requirement by almost 67% when compared to open-field
cultivation [129].
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Since the greenhouse humidity affects the transpiration rate and sensible heat flux [108], the effects
of greenhouse cooling using a high-pressure fog system on its microclimate and on eggplant
(Solanum melongena) crop response in the coastal area of western Greece were studied [130]. This study
showed that fog cooling could potentially reduce mean fruit temperature by about 3 ◦C and keep the
greenhouse air temperature below 32 ◦C, while the maximum temperature without cooling could reach
40 ◦C. This fogging system can control the rate of vapour pressure deficit (VPD) to analyse its effects on
the greenhouse environment and tomato plant growth in the winter [131]. This study found that the
VPD was dramatically reduced by the fogging system from 1.4 to 0.8 kPa on average at midday during
the entire winter season. Furthermore, mean tomato biomass and yield were increased by 17.3% and
12.3%, respectively.

Roof evaporative cooling is another technique that can be utilized for sustainable greenhouse
cooling. The reduction of air and surface temperatures induced by evaporative cooling of the outer
roof of the greenhouse were compared experimentally by wetting the top of the canopy and soil
surfaces [132]. Without the cooling system, the temperature differential was raised by 0.015 ◦C·W−1

·m−2,
while by wetting the upper surface of the roof, or the soil surface, the solar air heating was reduced to
0.0067 and 0.0016 ◦C·W−1

·m−2, respectively, which justified the effectiveness of this cooling method.

4.2. Shading and Reflection

In order to decrease or avoid the intense solar radiation in the hot regions, shading and reflection
are two methods that have been widely used. Radiometric properties related to global and diffuse
PAR (photo-synthetically active radiation) of seven types of shading nets were quantified, including
nets with colours and shading rates that are frequently utilized in hot regions [133]. The results
revealed that the radiometric properties rely on both net porosity and colour under clear sunny and
cloudy conditions; however, net reflectance staunchly formed on the net colour, net transmittance and
absorptance, mainly based on colour and porosity.

4.3. Greenhouse Integrated System

Integrated Solar Green House (ISGH), which integrates the water desalination system into a
greenhouse roof, could supply the water demands for the plants’ growth with around one-third of
the efficiency for the tilted solar stills [134], while also being self-sufficient for irrigation water [135].
This was studied by a mathematical model based on a set of heat balance equations to quantify
the freshwater production. The differences in seasonal crop yields between the greenhouses with
desalination systems and conventional roofs in arid climates were also investigated by Chaibi and
Jilar [136]. Marí et al. [137] studied the functioning of a solar still integrated into a greenhouse for
Mediterranean climatic conditions in south-eastern Spain. In this study, 28 water basins were located at
the top of a greenhouse, and the inner surface of the roof was used as a condensation surface. The study
depicted that opposite to what happens in the traditional solar stills, distillation resulted after solar
noon and during the night mainly because of the low absorption of solar irradiation when the solar
still is integrated into a greenhouse.

One other system that can be used for greenhouse cooling is the Earth-Air heat exchanger. This
technique was developed mainly to analyse the exegetic functionality of a solar photovoltaic (PV)
system [138] operating a heat exchanger in an underground air tunnel, which might be reasonably
used for greenhouse cooling in the Mediterranean and Aegean regions of Turkey.

By coupling an aquifer cavity flow with one heat exchanger, a thermal model was presented to
be used for agricultural cooling [139]. The results showed that the temperature of the air and plant
could be kept within the range of 6–7 K and 5–6 K below ambient, respectively for an extreme summer
day, and also 7–8 K and 5–6 K above ambient, respectively for an extreme winter night. The humidity
control practices with soil fortifications were also studied by Entezari et al. [140] for a sustainable
air-water-harvesting (AWH) greenhouse management.
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5. Discussion

GHs are used to (i) provide plants with proper conditions (temperature and relative humidity),
(ii) protect them from high wind speeds, (iii) reduce plants’ need for water, (iv) provide plants with
suitable solar radiation (required for the photosynthesis process), and (v) protect plants from open
field diseases. The climate becomes colder further away from the Equator, and there is insufficient
solar radiation for plant growth. In these regions, the main GH purpose is to warm the plant region by
the GH effect. In contrast, the closer we get to the Equator, an additional system is added to the GH to
reduce its temperature.

In hot regions, ventilation, shading and/or cooling systems are required for GHs to provide
plants with a suitable temperature. There are many parameters affecting ventilation performance,
such as wind direction, GH dimensions, vent configurations, humidity range, type of crop and
cultivation system.

In dry regions, evaporative cooling systems are required to reduce GH temperature and raise GH
relative humidity. The benefits of these systems appear when there is a lack of clean irrigation water.
The Fan-Pad system is the easiest and least expensive cooling system. In order to maximize the benefit
of this system, a new version of the system was developed known as the Seawater GH (humidification
and dehumidification system). In addition to cooling offered by this system, freshwater is condensated
before leaving the GH. Also, there is another type known as a roof evaporative cooling system which
is used to achieve a good distribution for humidity in a GH. Additionally, there is a different type for
evaporative cooling systems known as a fog-mist system. This system is easier to control when the
water is sprayed directly into the GH cavity. This system should use water with suitable salinity for
plant growth. In hot and high solar radiation regions, shading and reflection are used to avoid high
temperatures. This system is mostly used with ventilation systems in wet regions where evaporative
cooling systems are not preferred, as they would raise humidity inside the GH cavity.

6. Conclusions

Many studies have been carried out on the most suitable shape and orientation of the GH to
maximize or minimize the solar radiation availability towards a more sustainable built environment.
East-West orientation is recommended in areas far from the Equator to maximize the solar radiation
availability in the winter and warm the GH. East-West orientation is recommended in areas near the
Equator to minimize the solar radiation availability in the summer and reduce the GH cooling load.
The uneven-span shape greenhouse receives the maximum solar radiation, and the quonset shape
receives the minimum solar radiation during each month of the year at all latitudes. Different cooling
systems are utilized to remove the extra heat from greenhouses and increase the quality and quantity of
the crops. The effects of forces driving ventilation, wind direction, GH dimensions, vent configurations,
and the humidity range were the parameters researched in the published studies. Evaporative cooling
systems were also developed and utilized to enhance the performance of the greenhouse cavities, while
shading and reflection was another influential parameter on such systems. While cooling is a necessity
for the warm regions or hot seasons, heating for the cold seasons can be supported by renewable energy
technologies to have a sustainable greenhouse. Future works should include integrating sensors and
live data from the GH, using the internet, to provide smart automated feedback.
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