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Abstract. Ant Colony Optimization (ACO) is a swarm-based algorithm inspired
by the foraging behavior of ants. Despite its success, the efficiency of ACO has
depended on the appropriate choice of parameters, requiring deep knowledge of
the algorithm. A true understanding of ACO is linked to the (social) interactions
between the agents given that it is through the interactions that the ants are able to
explore-exploit the search space. We propose to study the social interactions that
take place as artificial agents explore the search space and communicate using
stigmergy. We argue that this study bring insights to the way ACO works. The
interaction network that we model out of the social interactions reveals nuances
of the algorithm that are otherwise hard to notice. Examples include the ability
to see whether certain agents are more influential than others, the structure of
communication, to name a few. We argue that our interaction-network approach
may lead to a unified way of seeing swarm systems and in the case of ACO,
remove part of the reliance on experts for parameter choice.

Keywords: Swarm Intelligence · Swarm-based algorithms · Ant Colony Opti-
mization · Interaction network · Social interactions.

1 Introduction

Swarm intelligence algorithms have been successfully applied to solve a wide range
of optimization problems due to the simultaneous use of multiple artificial agents on
high dimensional search problems [5,4]. Even though they are effective, the usability of
swarm-based algorithms is limited by the lack of knowledge on why the interaction of
simple reactive agents lead to such a complex system. Another challenge is the diversity
of algorithms inspired by different animals such as ants, bees, fish, wolves and birds.
Knowing what is the best swarm-based algorithm and its initialization to each type of
problem requires deep expertise.
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Bratton and Blackwell [1] proposed a simplified version of the Particle Swarm Op-
timization (PSO) algorithm [3] by removing the randomizing factors from the equations
of the algorithm. Their simplification gives insight into the swarm behavior and helps us
understand what makes PSO an effective algorithm. However, this still could not quite
capture why the social behaviour emerges from the simple rules.

In our previous works, we showed the value of using an interaction network to
analyze the social interactions occurring during executions of swarm-based algorithm
[7,8,9,10]. In this paper, we show that applying the same principles of analyzing social
interactions to Ant Colony Optimization can provide a better way to initialize the algo-
rithm for higher usability and understanding. This paper contributes to the literature in
ACO and Interaction Networks because it is the first work that tracks social interaction
even though these interactions are indirect via stigmergy.

2 ACO and TSP

Ant Colony Optimization (ACO) is a meta-heuristic technique inspired by the behaviour
of ants [2]. In nature, ants solve complex problems by indirectly communicating via the
environment (stigmergy). While an ant travels to a food source, it drops an amount of
pheromone along the path that other ants can follow. Then, the ants that come next
choose a path probabilistically; the paths already taken by previous ants are more likely
to be selected because the pheromone amount is longer. Given that ACO was exten-
sively used in TSP, we also chose the TSP to model the interaction network in ACO.

Artificial ants move on a fully connected graph where the vertices represent cities
and the edges represent the paths to go from one city to another. The goal for each ant is
to find the shortest path that visits each city and returns back to the origin city. During
the tour of the cities, an ant is presented with many choices on which city to visit next.
As the ants travel through the cities, they drop pheromone on the path allowing them
to use it and make decisions on which city to go to next. The pheromone τij associated
with the edge joining cities i and j, is updated as follows:

τij(t+ 1) = ρ · τij(t) +
m∑
k=1

∆τkij(t) , (1)

where ρ is the evaporation rate, m is the number of ants, and ∆τkij(t) is the amount
of pheromone dropped by ant k on the edge (i, j) at iteration t calculated based on a
heuristic that represents the goodness of the path taken.

Ants drop more pheromone on edges which lead to good solutions, and the pheromone
from sub-optimal solutions is evaporated over time. Thus, an ant k going from city i
chooses city j using the following probability equation:

pkij(t) =
ταij(t) · η

β
ij(t)∑

u∈Nk(t)
ταiu(t) · η

β
iu(t)

, if j ∈ Nk(t), (2)

where Nk is the list of cities that the ant k has not yet visited, and ηij = 1/dij is
the visibility, where dij is the distance between cities i and j. The parameters α and β
control, respectively, the importance of pheromone and edge visibility.
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3 Interaction Network

Swarm-based algorithms, like ACO, consist of artificial agents interacting with each
other and with the environment [2]. These algorithms are useful tools to solve real-
world problems [4,5]. Despite their effectiveness, they lack explainability; we are still
unable to explain the dynamics that make these techniques useful [10]. Notably, the
pivotal feature in these algorithms is the social interactions enabling the system to solve
problems. Indeed, each algorithm has its own rules defining the way agents interact with
others and determining how they change themselves as result of interaction. This inter-
play among agents leads to the emergence of a network of interaction which provides a
mezzo-level perspective of swarms [10].

Such network-based viewpoint was first introduced by Oliveira et al. in the context
of Particle Swarm Optimizers [7,9] and then extended to swarm-based algorithms in
general [10]. The concept of interaction network enables the analysis of social influence
among the agents in the swarm [10]. The approach unveils the dynamics of swarm
systems via tracking the evolution of social interactions.

In the interaction network I(t) nodes represent the agents and links (or edges) be-
tween the nodes represent the influence between the agents. This network allows us to
capture the social behavior of the swarm at different points in time during an execution
of the algorithm. Formally, the network I(t) at iteration t is represented by an adjacency
matrix where each element of the matrix can be defined by the presence, 1, or the ab-
sence, 0, of influence between the artificial agents i and j. However, this definition only
tells us whether or not two artificial agents in a swarm interacted with each other over
time. Oliveira et al. [7] developed an expanded version of the interaction network that
keeps track of the history of information exchanges, by creating a separate interaction
network for each iteration and summing all of them up at the end to get an accurate
picture of all the interactions that took place among the artificial agents in the swarm.
The matrix resulting from this sum is a weighted interaction network Iwt as shown in
Eq. 3:

Iwt =

t∑
t′=1

I(t′) (3)

The weighted interaction network Iwt allows us to analyze the history of interactions
of each agent in a swarm, and determine if there are any particular agents that had a
major influence on the interactions of other agents. Moreover, we can analyze different
time windows to identify the peculiarities of swarm-based techniques.

To capture the structure of the information flow within the swarm, Oliveira et al.
also proposed a metric called Interaction Diversity (ID) to measure how quickly the
interaction network can be destroyed by removing the edges from the network. The
precise definition of ID can be found in [8]. If the graph becomes completely discon-
nected with the removal of only a few edges, it indicates that the swarm lacked diversity
in its interactions. On the other hand, if the graph remains well connected even after the
removal of edges, it indicates higher diversity in the interactions that occurred among
the agents.
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4 Interaction Network in ACO

In the Ant System (AS-ACO) [2], the decision-making of each ant (Eq. 2) considers the
aggregated pheromone deposited by all ants. Given that ants indirectly communicate
with one another, the interaction network for ACO algorithms attempts to estimate the
interaction between ants based on the pheromone they deposit on the environment and
how this pheromone is used by other ants.

Kromer et al. [6] previously defined an interaction network for the Ant System. Ac-
cording to their definition, the interaction between two ants depends on the similarity of
their current tours. In this sense, it ranges from 0 (i.e., disjoint tours) to 1 (i.e., identical
tours). This definition, however, neglects the fact that pheromone deposited in previous
iterations still enables ants to influence each other in subsequent iterations regardless
of the similarity of their current tours. Technically, having similar tours at a specific
iteration does not necessarily imply ants exerted influence on each other towards the
decision-making that led to their final tours. It implies that at the end of such a tour,
ants will similarly deposit pheromone on the constituting edges of that tour, which in
turn will influence ants in the subsequent interactions.

Conversely, our definition of the interaction network for the Ant System accounts
for the effective interaction between ants as measured by the pheromone they leave on
the environment. It captures how the decision-making of an individual ant is effectively
influenced by other ants in terms of their deposited pheromone. This definition con-
siders that the pheromone existing between cities i and j is actually an aggregation of
pheromones deposited by all ants. If not completely evaporated, pheromone deposited
at previous interactions can still influence the decision-making of ants at current itera-
tion.

The interaction Ikl between ants k and l is formally defined as

Ikl(t) =
∑

(i,j)∈Tk(t)

τ lij(t), (4)

where Tk(t) is the set of edges visited by ant k at iteration t, and τ lij(t) is the cumulative
pheromone deposited by ant l between cities i and j at iteration t after evaporation.
Although it accumulates past pheromone, the interaction network does not necessarily
become denser with more iterations because the cumulative pheromone of less visited
edges tends to decrease (due to ρ in Eq. 1).

5 Analysis of ACO’s Interaction Network

The AS algorithm was applied to the Symmetric Traveling Salesman Problem. As the
TSP has been widely replicated in optimization problems, we argue that this work may
refrain from the analyses of its fitness performance. We evaluated our implementation
against four different instances of the TSP (Groetschel): 17 cities, 21 cities, 24 cities
and 48 cities1. The considered initial parameters for the simulation of AS-ACO was
2,000 iterations, Q (used in the calculation of ∆τkij(t) of Eq. 1) is 1.0, α = β = 0.85

1 https://github.com/pdrozdowski/TSPLib.Net
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and five different values for ρ : {0.0, 0.3, 0.5, 0.7, 1.0}. The ρ value reflects the amount
of memory each ant carries, so the five different values for ρwere chosen in order to test
how different levels of memory affect the finding of the solution. The weighted degree
analyzed in this section was normalized to ensure that the values are scaled to the same
range for all the four problems.

Fig. 1 compares the evolution of shortest paths found in the simulations for several
problems, and several evaporation rates for the problem with 48 cities. Fig. 1(A) shows
that in each problem, the shortest path is found within the first hundred iterations. In
Fig. 1(B), it can be noted that the excess of evaporation is not positive for the system
because it removes the memory of the system.

Fig. 1. (A) Fitness evolution of all the problems using the evaporation rate equal to 0.5. (B) Fitness
evolution of the 48 cities problem varying the evaporation rate as 0.0, 0.3, 0.5, 0.7 and 1.0.

Fig. 2 depicts the Empirical Distribution Function (EDF) from the final interaction
network in each problem simulated using ρ = 0.5, and the final interaction network in
the problem of 48 cities simulated using ρ equals to 0.0, 0.3, 0.5, 0.7 and 1.0. All the
distributions are a Gaussian distribution which means that the majority of ants display
similar behaviour but a few of the ants can be seen as hubs or in the periphery. In Fig.
2(A), we can observe that the values of weighted degree change based on the magnitude
of the paths. In Fig. 2(B), the excess of pheromone evaporation changes the distribution
of weighted degrees, as the memory of system is removed as defined in Eq. 1.

In Fig. 3, both cumulative interaction networks from 24 and 48 cities are displayed
at 200 and 2000 iterations. The red, orange, yellow, green and blue are the represen-
tations from the highest to the smallest amount of interaction. Each row indicates the
strength of influence of each ant, and each column indicates how much an ant was in-
fluenced by another ant. The presence of homogeneous lines demonstrates that the ants
influence more equally than are influenced. We observe that the lack of pheromone his-
tory has a different impact on both problems. On 24 cities, accounting a percentage of
memory decreases the ants interaction. However, on 48 cities, the opposite is identified,
the ants strength increases. As the presence of memory is positive for the system, the
heatmaps for ρ equal to 0.5 are better for the problem. In this way, the high presence of
more hubs seems to be benefit only for the 48 cities problem. As the majority of ants
start to follow the same path over time, the contribution of pheromone could be more
similar between them. However, some ants get lost in the process and they usually are
less influenced by the other ants, which are perceived as blue dots/lines on the heatmap.
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Fig. 2. (A) Empirical Distribution Function (EDF) of the weighted degree from the final inter-
action network on the problems: 17, 21, 24 and 48 cities using the evaporation rate set to 0.5.
(B) Empirical Distribution Function (EDF) of the weighted degree from the final interaction net-
work on the problem of 48 cities. The important issue here is that the interaction network allows
us to get a deeper understanding of the execution of the algorithm. Note that by studying such
behaviour, one can make better decisions about the parameters in Eqs. 1 and 2.

In the beginning, some ants are more likely to contribute more because some ants might
find first a good path than the others.

Fig. 3. Cumulative interaction network from different time windows on the problems 24 and 48
cities using the evaporation rate (ρ) set to 0.0 and 0.5.

In order to understand the exploration-exploitation balance of the system, we ana-
lyzed the Interaction Diversity of the interaction networks in Fig. 4. In the beginning of
the process, the interaction diversity goes down quickly. This decrease might be caused
by the rules of the system because even when we remove the memory of previous itera-
tions, we still notice such behaviour. In Fig. 4(A), we observe that the total evaporation
of pheromone makes the convergence of the swarm more difficult by adding on the
swarm a constant growth of exploration. When the evaporation rate gets bigger than
0.0, as in Fig. 4(B), the exploitation is maintained which helps on the convergence of
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Fig. 4. Dynamics of Interaction Diversity (ID). (A) Problems with 17, 21, 24, and 48 cities, using
the evaporation rate (ρ) as .0. (B) Problem with 48 cities using ρ equals to .0, .025, .05, .075, and
.1. The ID is calculated over the weighted degree interaction network with time windows equal
to [10, 20, 30, 40, 50, 100, 150, 200].

the swarm. The 48 cities problem can be highlighted by its dynamic behaviour of in-
creasing and decreasing the ID. If we increase the evaporation rate for bigger than 0.1,
we identified that the dynamic behaviour gets smaller. Moreover, in 24 cities, we could
notice that the dynamicity is higher than the other problems. In summary, we can ob-
serve that the memory of the system is important for the convergence of the swarm, and
that different problem sizes may show more deviation on the interaction diversity.

6 Conclusion

Swarm-based algorithms are computational models containing multiple agents simul-
taneously searching for optimal solutions while sharing with each other the solutions
they find. Though swarm-based algorithms are effective, they depend on the appropri-
ate adjustment of their parameters, and such adjustment requires significant knowledge
about the algorithm. Previous research has demonstrated that the dynamics of these al-
gorithms can be characterized and better understood by the social interactions among
individuals and that, by changing the parameters of a swarm-based algorithm at the
micro level, we actually create different conditions for social interactions to occur at
the mezzo level which, in turn, can ultimately improve the overall performance of the
algorithm at the macro level. In this work, we sought to answer the question of whether
it would be possible to extract the social interactions of the Ant System—a well-known
Swarm Intelligence algorithm—even though the communication in this system is based
on stigmergy (indirect communication). We show that indeed the use of an Interaction
Network framework can help us understand how to properly adjust its parameters with-
out deep knowledge of the algorithm.

In order to show the effectiveness of the Interaction Network approach, we ana-
lyzed the social interactions occurring among ants of an Ant System while they solve
four different instances of the Traveling Salesman Problem (TSP). Then, we examined
the Ant System with different rates of pheromone evaporation. For future works, we
argue that further experiments should be performed to understand the impact of other
parameters to the interaction network. Also, we want to further explore why the current
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influence strength as measured by the weighted degrees in the network seems to be ho-
mogeneously distributed around a well-defined typical value. Such type of distribution
implies that ants tend to exert similar levels of influence on each other and might pro-
hibit the algorithm to appropriately balance the extent of exploration and exploitation.
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