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New computer technologies, like virtual reality (VR), have created opportunities to
study human behavior and train skills in novel ways. VR holds significant promise for
maximizing the efficiency and effectiveness of skill learning in a variety of settings (e.g.,
sport, medicine, safety-critical industries) through immersive learning and augmentation
of existing training methods. In many cases the adoption of VR for training has, however,
preceded rigorous testing and validation of the simulation tool. In order for VR to
be implemented successfully for both training and psychological experimentation it is
necessary to first establish whether the simulation captures fundamental features of
the real task and environment, and elicits realistic behaviors. Unfortunately evaluation
of VR environments too often confuses presentation and function, and relies on
superficial visual features that are not the key determinants of successful training
outcomes. Therefore evidence-based methods of establishing the fidelity and validity
of VR environments are required. To this end, we outline a taxonomy of the subtypes of
fidelity and validity, and propose a variety of practical methods for testing and validating
VR training simulations. Ultimately, a successful VR environment is one that enables
transfer of learning to the real-world. We propose that key elements of psychological,
affective and ergonomic fidelity, are the real determinants of successful transfer. By
adopting an evidence-based approach to VR simulation design and testing it is possible
to develop valid environments that allow the potential of VR training to be maximized.

Keywords: fidelity, presence, training, transfer, validity, virtual reality

INTRODUCTION

How real is virtual reality? This question raises weighty metaphysical issues, but it also poses
a very practical challenge for scientists seeking to use virtual reality (VR) technologies for
experimentation and training. A simulation aims to reproduce some aspects of a task (e.g.,
perceptual information and behavioral constraints) without reproducing others (e.g., danger and
cost; Gray, 2002; Stoffregen et al., 2003). Consequently, understanding the degree of concordance
between the simulated environment and the corresponding real-world task is essential for the
successful application of VR, in both the psychology lab and in the field. While this is a challenging
endeavor on its own, there is also considerable confusion within cognitive science about terms
like fidelity, validity, immersion and presence and how VR environments should be evaluated. For
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example, environments are often judged to be “high fidelity” if
they provide a detailed, realistic visual scene, but the superficial
appearance may have little relationship with functionality,
especially in the context of VR for education and training
(Carruth, 2017). In effect, the distinction between presentation
and function is often overlooked.

For VR to be implemented more effectively as a training
tool, greater conceptual clarity is imperative, and more rigorous
ways of testing and validating simulations must be developed.
In this review, we aim to address some of this confusion
by, firstly, addressing some conceptual issues and outlining a
taxonomy of fidelity and validity, and secondly, by proposing
evidence-based methods for establishing fidelity and validity
during simulation design. Here we particularly focus on VR for
training perceptual-motor skills, such as for applications to sport,
surgery, rehabilitation and the military – the kind of active skills
which may be particularly suited to VR training (Jensen and
Konradsen, 2018). However, these principles may also apply to
many uses of VR as a training tool, and as such, we hope to
provide a framework for those seeking to develop more effective,
evidence-based VR simulations.

IMMERSION AND PRESENCE

Immersive VR is an alternate world composed of computer-
generated sounds and images with which the user can
interact using their sensorimotor abilities (Burdea and Coiffet,
2003; Slater and Sanchez-Vives, 2016). The proliferation of
technologies for both using and creating augmented reality (AR),
mixed reality (MR), and VR experiences has led to rapid adoption
of VR as a training tool within human factors (Gavish et al.,
2015), sport (Bird, 2019), rehabilitation (Levac et al., 2019), and
surgery (Hashimoto et al., 2018). The lure of new technologies
for training is sufficiently great that these methods have been
applied before there is a foundational understanding of how to
optimally implement VR training (albeit with some successes,
e.g., Calatayud et al., 2010; Gray, 2017). Particular issues yet to
be addressed include: the determinants of effective transfer of
training (Rose et al., 2000; Rosalie and Müller, 2012); the requisite
levels of fidelity and validity and how to test them (Gray, 2019);
and the effect of VR on basic cognitive and perceptual processes
(Harris et al., 2019d).

As a means of reducing the aforementioned confusion
surrounding key terminology, we adopt Slater and Sanchez-Vives
(2016) definition of immersion as the technical capability of a
system that allows a user to perceive the virtual environment
through natural sensorimotor contingencies. While immersion
is an objective feature of the input provided to the user, the
subjective experience that is created of actually being inside
the virtual environment is termed presence (Baños et al., 2004;
Bowman and McMahan, 2007). Slater (2009) and Slater and
Sanchez-Vives (2016) suggest that there are two important
components to the experience of presence; place illusion (the
illusion of “being there” in the virtual environment), and
plausibility (that the depicted scenario is really occurring).
A consequence of place illusion and plausibility is that users

behave in VR as they would do in similar circumstances in
reality (Slater and Sanchez-Vives, 2016), which is of paramount
importance for VR training. Despite users knowing that the
virtual environment is fictitious (Stoffregen et al., 2003),
researchers have suggested that presence can prompt users to feel
anxious near illusory drops (Meehan et al., 2002), maintain social
norms with virtual others (Sanz et al., 2015), and exhibit stress
when forced to cause harm to avatars (Slater et al., 2006).

For training and experimentation purposes the virtual
environment needs to be only as “real” as is required for achieving
the desired learning outcome, be that training perceptual-
motor skills (Tirp et al., 2015), habituating to stress inducing
stimuli (Botella et al., 2015) or studying sensorimotor processes
(Buckingham, 2019). However, differing target populations may
need to be engaged in different ways to produce similar learning
outcomes. For VR to be effective in a training context, there must
be a correspondence between key elements of the real and virtual
tasks that are functional for task learning. Other elements such
as graphical realism are often inconsequential in comparison
(Dahlstrom et al., 2009). For instance, when using VR to study
the perceptual information that informs catching a ball, there is
no requirement that the ball looks realistic, the scene is highly
detailed, or the task is particularly immersive (see e.g., Fink et al.,
2009; Zaal and Bootsma, 2011). Nonetheless, realistic kinematic
and depth information pertaining to the ball are necessities. It
is elements of the simulation such as these that determine the
fidelity and validity of virtual environments. In the remainder of
the article we outline various types of fidelity and validity, how
they can be assessed, and how they contribute to effective transfer
of training (see Table 1).

TRANSFER OF TRAINING

The capacity to effectively apply and adapt learning in the face of
constant environmental variation (i.e., transfer) is fundamental
to many human activities (Rosalie and Müller, 2012). Transfer
of training occurs when prior experiences in a particular context
can be adapted to similar or dissimilar contexts (Barnett and Ceci,
2002). Ultimately, the test of a successful VR training simulation
is the degree to which skills learned in the virtual environment
can be applied to the real-world. Classical theories of learning,
like Thorndike’s (1906) identical elements theory (later developed
into Singley and Anderson’s (1989) identical productions model)
support the notion that successful transfer is contingent on
the coincidence of stimulus or response elements in learning
and transfer contexts1, suggesting that only near transfer may
be possible. For instance, accurate size estimation of geometric
shapes is dependent on specific learning with objects of similar
size and shape (Woodworth and Thorndike, 1901).

The foremost competing paradigm to similarity-based transfer
is principle-based transfer theory (Judd, 1908), which focuses
on the coherence of principles, rules, or laws between settings,
irrespective of superficial contextual variation. This approach

1Singley and Anderson (1989) describe the key component for transfer as
similarity of the production rule, which specifies the action that must be produced
in a certain situation, taking the form of an IF-THEN rule.

Frontiers in Psychology | www.frontiersin.org 2 March 2020 | Volume 11 | Article 605

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00605 March 28, 2020 Time: 18:57 # 3

Harris et al. Fidelity and Validity in VR Training

proposes that learning can more easily be generalized, provided
equivalent principles or rules are present in learning and transfer
contexts. Achieving far transfer of learning that is generalized
across domains which are only loosely related to each other
is, however, notoriously difficult to achieve (Sala and Gobet,
2017). Nonetheless, VR training generally does not aim to achieve
domain general improvements. Instead, as VR aims to recreate
the performance environment, near transfer between tightly
coupled domains is the goal, such as is common across human
learning. The challenge facing the field of VR training is to
establish whether a simulation is realistic enough, and how to
enhance the aspects of realism that really matter for effective
transfer. We believe that a better understanding of fidelity and
validity in the design and testing of VR environments can help to
meet this challenge.

VALIDITY

In a general sense, validity is the extent to which a test, model,
measurement, simulation, or other reproduction provides an
accurate representation of its real equivalent. For example, a
valid measurement truly represents the underlying phenomenon
it claims to measure. Similarly, a valid simulation is one that is
an accurate representation of the target task, within the context
of the learning objectives and the target population. This is not
to say that the simulation is the same. A simulation aims to
capture key features of the real task and environment, rather
than exactly emulate or imitate it. A number of types of validity
are discussed in relation to measurement methods in Psychology
(e.g., criterion and concurrent validity) but there are two primary
types to consider in simulation design; face validity and construct
validity (see Table 1).

Face Validity
Face validity is the subjective view users have of how realistic
a simulation is. Accordingly, face validity may be an important
contributor toward perceptions of plausibility (Slater, 2009).
Face validity is often highly dependent on the superficial visual
features of the simulation (see section “Physical Fidelity” below)
but is also influenced by structural and functional aspects, such

as how user input relates to actions. Consequently, the design
of the simulation and the technical capabilities of the system
(i.e., immersion) are important determinants of face validity.
Within a learning context, face validity is important in one
sense, and irrelevant in another. It can be important because
it correlates with up-take and is often needed to achieve buy-
in, which can derail training if not achieved. Conversely, it is
also irrelevant because it likely has no correlation with actual
learning. A simulation can have face validity and be useless; a
simulation can have no face validity at all and be an excellent
training tool (Dahlstrom et al., 2009). As discussed, theories of
transfer propose that a coincidence of stimulus and response
elements, or underlying principles between the practice and
target tasks is required for transfer of learning. Face validity is
unlikely to be a good indicator of whether any of these conditions
are met.

Assessment of face validity often relies on participant reports
and verbal feedback about whether the simulation is a good
representation of the real task, either formally or informally (e.g.,
Bright et al., 2012). Collecting participant feedback regarding face
validity is a commonly used approach in the field of surgical
simulation. In this context, the opinions of expert surgeons are
often sought about how the simulation looks and feels and is
an important part of simulation validation (Sankaranarayanan
et al., 2016; Roberts et al., 2017). A similar approach is also
used in the development and testing of aircraft simulations
with expert pilots (Perfect et al., 2014). In many other contexts
face validity is not explicitly tested, but remains an implicit
factor in simulation adoption. Consequently, face validity may
well be a hurdle to overcome, but not a major contributor to
training success.

Construct Validity
Construct validity exists in a more objective sense than face
validity, and is the extent to which the simulation provides an
accurate representation of the real task. As a result, it is crucial
for achieving transfer of learning. Many simulations are used to
track learning, or to index proficiency on a task, which depends
on some level of functional similarity between the simulation and
the real task. A simulation with good construct validity should
be sensitive to variation in performance between individuals

TABLE 1 | Summary of validity and fidelity terminology.

Term Description How to test

Face validity Does the simulation look and feel realistic? Self-reports from users concerning plausibility

Construct validity Does the simulation provide an accurate representation of
real task performance?

Ability of the simulation to distinguish real-world experts
from novices and track improvements

Physical fidelity Is there a high degree of detail and realism in the physical
elements of the simulation?

Participant reports of realism and measures of presence
(both self-report and psychophysiology)

Psychological fidelity Does the simulation accurately represent the perceptual
and cognitive features of the real task?

Measurement and comparison of mental effort, gaze
behavior, neural activity etc., between real and virtual tasks

Affective/emotional fidelity Does the simulation elicit emotional responses (e.g., stress
or fear) in a similar way to the real task?

Self-reported experiences of users or online monitoring of
psychophysiological indices of affect

Ergonomic/biomechanical fidelity Does the simulation elicit realistic motor movements? Assessing the realism of VR movement parameters through
motion tracking, and comparing amplitude, speed,
inter-joint coordination etc., with real actions
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(e.g., real-world novices and experts) and within individuals (e.g.,
learners developing over time), as this would indicate a coherence
of principles, rules or stimulus and response elements between
the real and VR task. These fundamental similarities are likely
required for transfer of training.

Predictive validity refers to the ability to reliably predict future
performance outcomes and is closely related to construct validity.
If the simulated task replicates some core aspect of the real skill
(i.e., good construct validity), then simulation performance is
more likely to accurately predict future real-world performance2.
One possible application of VR simulations is to serve as a tool
for recruitment or selection (e.g., Moglia et al., 2014). Evaluating
the aptitude of trainees in VR is particularly appealing when
assessment on the real task would be impractical or dangerous,
such as in military or surgical settings. For such purposes,
predictive validity must be established to ensure that selection
decisions based on simulation performance are reliable.

There are clear opportunities for testing construct validity
through expert versus novice comparisons and sensitivity to
practice-induced improvements. This validation method has
previously been adopted by Harris et al. (2019a) when comparing
putting performance of novice and elite-level golfers in a VR golf
simulation, and by Bright et al. (2012) when comparing tissue
resected when using a minimally invasive surgical simulation.
Not only did the real-world experts resect more tissue than the
novices in the simulation, but the simulation was sensitive to
practice induced improvements in the novices (Bright et al.,
2012, 2014). Measuring inter- and intra-individual variation is
an effective method for demonstrating construct validity, but
to achieve it in the first place requires an understanding of the
competencies and skills of the to-be-trained task, and ensuring
that the rules, interactions and criteria of the real-task have
one-to-one counterparts in the simulation.

FIDELITY

Fidelity is the extent to which a simulation recreates the real-
world system, in terms of its appearance but also the affective
states, cognitions or behaviors it elicits from its users (Perfect
et al., 2014; Gray, 2019). To achieve construct validity (and
effective transfer) it is necessary to ensure there is a sufficient
level of fidelity in relevant aspects of the simulation. For instance,
when implementing VR as a training tool for perceptual-motor
skills it may be important to assess fidelity for eliciting affective
states like stress, for directing attention to relevant information,
and allowing for movements representative of the real skill.
However, the fidelity of the simulation must be assessed in
relation to training goals. Gray (2002) propose that a simulation
can only be considered “high-fidelity” in relation to the research
question being asked, and the same holds true for training.
A simulation that is developed to train a motor skill (e.g., a golf
swing) would be required to elicit realistic actions, but realistic
ergonomics might be irrelevant for a simulation that is developed
to enhance proficiency of a purely cognitive task.

2Similarly, if a test has good construct validity it is likely to show test-retest
reliability, because it is accurately measuring aspects of the real skill.

Physical Fidelity
Physical fidelity refers to the level of realism provided by the
physical elements of the simulation; primarily visual information
(including field of view) as the principal sensory modality in VR,
but also realistic behavior of objects, adherence to the normal
laws of physics, and level of functionality. As is the case for face
validity, the physical fidelity of the environment is likely to be
important for eliciting a feeling of presence in the participant,
and in particular creating the illusion of plausibility (Slater, 2009),
which will depend heavily on the immersion of the technology. If
basic elements of physical fidelity are low, such as allowing the
user to walk through walls, the illusion will be broken. When
the term “high fidelity” is used in relation to simulations, it is
generally in reference to high physical detail, but as we outline
below, realistic sights and sounds are just one element of a
high-fidelity simulation.

While high graphical realism is likely to increase motivation
to engage with simulation training and adds to the “wow factor”
of VR (a highly positive, but superficial response), it is unlikely
to be what creates effective transfer. For instance, in the context
of sport, high graphical realism would seem to be important,
but sporting performance is dependent on the efficient use of
only a subset of the available perceptual information (Davids
et al., 2005), making much of the detail irrelevant for training.
One instance where physical realism may be important is in
using VR to acclimatize performers to a particular environment
or for a VR equivalent of mental imagery or visualization
(e.g., Sorrentino et al., 2005). Other than adherence to normal
physical laws, high fidelity physical features will often not be
the stimulus-response correspondences or underlying principles
that determine transfer, as outlined in theories of transfer.
Nonetheless, very low physical fidelity may still be a barrier to
effective training if it lowers motivation to use the simulation.

One method for assessing physical fidelity is through either
direct participant reports or measurements of presence (e.g.,
Harris et al., 2019a). As presence is a result of achieving
a sufficient level of fidelity, this is an indirect measure,
but high levels of presence would indicate that the physical
realism is sufficient to make the simulation believable (i.e.,
plausibility) and induce the feeling of “being there” (i.e.,
place illusion). Presence seems to be important for increased
engagement in virtual training (Stanney et al., 2003), and can
be measured either through self-report (Usoh et al., 2000) or
online using psychophysiological indices like eye-movements,
electroencephalography (EEG) and heart rate (Jennett et al., 2008;
Nacke and Lindley, 2008). Whether higher levels of presence are
beneficial for learning beyond the effect of enhanced engagement
remains to be established (Dahlstrom et al., 2009; Fowler, 2015;
Gray, 2019), and is an important question for future research.

Psychological Fidelity
Psychological fidelity is the degree to which a simulation
replicates the perceptual-cognitive demands of the real task
(Gray, 2019). For instance, a high-fidelity driving simulation
should require the participant to attend to similar areas of the
scene (e.g., other cars, pedestrians, street signs) and demand a
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similar level of attentiveness and effort as if they were engaged
in real-world driving. Accordingly, practice in this simulation
should also lead to the development of psychological skills
germane to real driving, such as learning to attend to the most
informative areas of the road and predict the behavior of other
traffic. Developing psychological skills like these would likely
support real-world transfer.

Particular considerations for psychological fidelity include
determining whether individuals: exhibit similar gaze behavior
in real and virtual tasks (e.g., Vine et al., 2014); use similar
perceptual information to control their actions (e.g., Bideau
et al., 2010); and experience similar levels of cognitive demand
(e.g., Harris et al., 2019a). Achieving place illusion will support
these aspects of fidelity. For applications to domains like sport,
surgery, and the military that place demands on perceptual-
cognitive skills, psychological fidelity may be one of the most
important prerequisites for developing an effective simulation.
Encouragingly, perceptual-cognitive skills have been shown
to be transferable between closely related sports (Abernethy
et al., 2005; Causer and Ford, 2014), supporting the notion
that VR environments with good psychological fidelity should
elicit positive transfer. While a number of studies have shown
overall performance benefits as a result of VR training,
few have directly addressed the development of perceptual-
cognitive skills, such as the control of attention or anticipation
(Tirp et al., 2015).

There are a number of ways to test psychological fidelity,
including comparisons of mental effort, gaze behavior or neural
activity between real and VR contexts. For instance, comparisons
of gaze behavior between real and simulated surgery have
previously been used to validate surgical simulations. For
example, Vine et al. (2014) found that, in comparison to
the VR task, during the real operation expert surgeons made
more frequent, shorter duration fixations indicative of a less
efficient visual control strategy. The authors suggested that
the additional auditory and visual distractions, as well as the
stress of the real operation, were responsible for the differences.
Findings such as these highlight how many factors contribute to
psychological fidelity in VR.

Evaluations of psychological fidelity can also address the
mental and physical demands of the virtual task and compare
them to the real task. For instance, Harris et al. (2019c)
compared cognitive demands between real and virtual versions
of a block stacking game (“Jenga”) using a self-report measure
of task load, the SIM-TLX. Similarly, Frederiksen et al. (2020)
compared cognitive load between head mounted immersive
VR and standard screen presentation on a surgical training
simulation, finding cognitive load (indexed by secondary task
reaction time) to be significantly elevated in the immersive
VR condition. Cognitive load is particularly relevant in the
context of education and training as an optimal level of load is
important for successful learning outcomes (Kirschner, 2002).
If VR imposes additional load it could pose a challenge for
training. Cognitive load could also be related to elements of
user experience, like presence, although this was not the case in
the aforementioned study of Harris et al. (2019c). In summary,
assessments of psychological fidelity may require a combination

of approaches, as well as an understanding of the perceptual-
cognitive skills that are responsible for expert performance in the
given task.

Affective Fidelity
There has been considerable interest in VR applications for
training tasks that are too dangerous to rehearse in the real-world
(e.g., critical incidents in heavy industry) or for acclimatizing
trainees to the high levels of stress they are likely to face in
the field (e.g., defense and security). For these purposes, as well
as for applications like treating anxiety disorders, a high level
of affective fidelity is required (Moghimi et al., 2016). Affective
or emotional fidelity requires the simulation to elicit a realistic
emotional response in the user, such as fear, stress or excitement.
The success of Virtual Reality Exposure Therapy (VRET),
where exposure-based treatments for anxiety disorders are
implemented in VR, indicate that realistic emotional responses
can be achieved (Krijn et al., 2004; Morina et al., 2015). Similarly,
Chirico and Gaggioli (2019) found that VR scenes elicited a range
of emotions in a similar manner to the real thing. This realistic
affective reaction relies on achieving the illusion of plausibility
discussed by Slater (2009) and a sense of presence (Diemer et al.,
2015), or no emotional response will occur. Familiarization with
the emotion of anxiety can improve subsequent performance
when anxious (Saunders et al., 1996). Hence, VR environments
capable of eliciting some degree of emotional response may
have significant benefits for preparing performers for pressurized
environments (Pallavicini et al., 2016).

Affective fidelity can be easily assessed through self-report
or psychophysiological measurement during the VR experience
and compared to the real task. The clearest implementation of
assessing affect in VR is in measuring stress during threatening
VR experiences like Slater’s Milgram obedience (Slater et al.,
2006) and the illusory pit room experiments (Meehan et al.,
2002). Online measurements of cardiovascular activity (Ćosić
et al., 2010), skin conductance (Meehan et al., 2002) and EEG
alpha power (Brouwer et al., 2011) have all been employed as
objective, online measures of stress induced by VR experiences.
While strong stress responses have been elicited for phobic
stimuli in VR, creating stress responses similar to those that
will be experienced during high level sport, during complex
surgical procedures or by defense and security personnel may be
more challenging.

Ergonomic and Biomechanical Fidelity
Ergonomic and biomechanical fidelity is the degree to which the
VR environment allows for and promotes realistic movement
patterns in the user, making the immersion of the system a
major determinant of ergonomic fidelity. Despite advances in
VR technology (e.g., haptic gloves, exoskeleton suits, muscle
stimulation), the provision of realistic haptic information in
VR remains a major challenge (Lopes et al., 2017). Haptic
information is important for developing motor control, but
if it is unavailable in VR, movements learned or performed
in a simulation may differ from those learned in the real-
world. Harris et al. (2019d) describe how the combined effect
of artificial creation of depth (e.g., vergence-accommodation
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conflict; Kramida, 2016) and lack of end-point haptic information
(Whitwell et al., 2015; Wijeyaratnam et al., 2019) may combine
to force users toward a more deliberate mode of action control
that is unlike real perceptual-motor skills. Further work is
required to explore these potential limitations to learning and
performing actions in VR, but the difference between real
tennis shots and those performed in Nintendo Wii tennis
provide a stark illustration of how widely action patterns
can diverge. Biomechanical fidelity is a particular issue for
applications to rehabilitation and sport, where low levels of
fidelity could be actively disruptive if suboptimal motor patterns
are reinforced in VR.

Assessment of biomechanical fidelity relies on motion
tracking, and comparisons of movement amplitude, speed and
inter-joint coordination between real and virtual environments.
A number of attempts have been made to test the biomechanical
and ergonomic features of VR environments, which have
generally highlighted the difficulty in achieving this type of
fidelity. Bufton et al. (2014) found that compared to real
table tennis, participants in three different virtual table tennis
games produced larger and faster movements when hitting the
virtual ball. Similarly, in a simple reaching and grasping task
Magdalon et al. (2011) found reaches were slower with wider
grip apertures, and Covaci et al. (2015) found basketball shots
made in a virtual environment had lower ball speed, higher height
of ball release, and higher basket entry angle, compared with
real basketball.

An important action to consider is walking, as VR is being
widely adopted for studying and retraining gait (e.g., Young
et al., 2011), but requires a VR-linked treadmill to allow
users to move any appreciable distance. Work has already
demonstrated biomechanical differences between VR and real
walking (Mohler et al., 2007; Janeh et al., 2017), but the
divergences from conventional movements could be related to
the stationary locomotion methods (i.e., treadmills) rather than
fundamental issues with traversing in the virtual environment.
These differences seem to be a current limitation rather than
prohibitive of gait retraining applications, and may well improve
with technological advances (i.e., greater immersion).

PRACTICAL ISSUES

In addition to establishing that a simulation is a valid recreation
of the target task and is of sufficient fidelity to enable transfer
of training, there are a number of practical concerns for
effective implementation of VR training which may moderate the
effectiveness of the simulation (see Figure 1), some of which we
outline below (Carruth, 2017).

Pedagogical Viability
An important pedagogical consideration is how design intentions
correspond with training requirements. The importance of clear
learning outcomes for designing and evaluating training has
been well documented in the education literature (Kraiger et al.,
1993). Successful training outcomes depend upon being able
to articulate those aims for learners and design and create a

simulation that supports them. A subsequent pedagogical issue
is whether the simulation can be effectively adopted within a
curriculum or training program to provide real learning benefits.
Pedagogical viability is most often a pragmatic issue (e.g., Where
is the simulation? How is it used? How much does it cost?), but
can also be a conceptual and theoretical issue, according to your
view of learning. The simulation is only a tool, and like any other
must be appropriately periodized within the wider curriculum
to achieve benefits. Important elements of instructional design
should be considered to maximize the impact of simulation based
training, such as levels of complexity and specificity in learning
objectives, scaffolding of learning and evaluation of training
(Kirschner, 2002; Carruth, 2017; Jensen and Konradsen, 2018).

Augmenting and Adapting Training
One of the most compelling reasons to use VR for training is
the possibility to augment and improve on existing practices
with new methods, rather than just replacing them. Gray
(2017) illustrates this well in the case of a baseball batting
simulation. Virtual batting practice was found to outperform
real batting practice, but only when the virtual version provided
task demands constantly matched to the skill of the user. The
complete control of the training space afforded by VR allows
environmental constraints to be manipulated to improve skill
acquisition (Renshaw et al., 2009). Guiding information, such
as cues to important information or eye movement patterns of
experts, can also be added to speed learning (Janelle et al., 2003;
Vine et al., 2013). Other approaches include adaptive VR, which
modifies the simulation to suit either the current performance
level or psychophysiological state of the user (Moghim et al.,
2015; Vaughan et al., 2016). An effective implementation of VR
training makes full use of these possibilities.

Task Suitability
The attraction of new technologies for training makes it easy
to fall into the trap of overusing them. VR may allow more
personalized and more accessible training in many instances,
but is unlikely to be the best option when real-world practice is
available. Even in the light of rapidly advancing VR technologies,
the specificity of training principle highlights that to improve
at, say catching a ball, there is one thing above all others that
is likely to provide the greatest benefit – just catching a ball.
For fine sensorimotor skills in particular, the unusual perceptual
information in VR (lack of haptics and conflicting cues to depth)
means that VR is not “real” enough to compete with real practice
(Harris et al., 2019b). Hence, VR can be useful when the skill
could otherwise not be practiced in the real-world (for practical
or safety reasons), or when training can be improved in VR, but
the rationale for using VR over other methods should be clear.

Usability and User Experience
Much like face validity, user experience and usability is not
a primary factor in training effectiveness, but may be a
barrier to implementation and uptake. An otherwise high-
fidelity simulation can be derailed if the user experience
is poor. Issues like interaction and navigation in VR pose
considerable technological challenges and if the solutions that
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FIGURE 1 | Taxonomy of fidelity and validity and successful transfer of learning from VR. We propose that construct validity and psychological, affective and
ergonomic fidelity will have direct effects on successful transfer, while physical fidelity and face validity have indirect effects via the mediator user buy-in. Meanwhile
practical and pedagogical factors will have both a direct and moderating effect on training outcomes (Blume et al., 2010). The degree to which validity and fidelity are
achieved are a result of simulation design intentions and the capabilities of the technology. The degree of immersion of the technology is a key determinant of
whether or not high levels of fidelity can be achieved. The design intentions also influence the level of fidelity and are particularly important for whether the simulation
accurately represents the key elements of the real task in relation to training goals and audience (i.e., dashed lines indicate weaker proposed relationships).

are implemented make using the VR tool difficult, excessively
complicated or unpleasant, then trainees are unlikely to
engage with the simulation (Sutcliffe and Kaur, 2000; Gray,
2002). Questionnaires are typically administered as a means
of assessing usability and are often bespoke to the simulation
(Sutcliffe and Kaur, 2000).

CONCLUSION

In this review we have discussed some of the challenges
of validating VR simulations for applications to training.
Ultimately, a VR training environment is judged on its ability
to elicit positive transfer to the real-world. To achieve this
goal, the VR environment needs to be just real enough to
develop new skills that can be applied to real tasks. While
many realistic behaviors may require the participant to believe
they are present in the virtual environment (i.e., place illusion),
and that the events are really happening (i.e., plausibility),
the perception of presence may not always be the primary
consideration when developing effective training simulations3.
While the concepts of immersion and presence are often

3Presence does appear to correlate with performance in VR, but it is unknown if
the same holds true for learning (Stevens and Kincaid, 2015).

used to determine realism, we have suggested expanding this
into a typology of fidelity (see Figure 1). Factors such as
psychological, affective or ergonomic fidelity are likely to be
the more important determinants of effective transfer and are
important to evaluate during simulation design. Consequently,
researchers are encouraged to address the factors that drive
realism in different contexts (e.g., What is the contribution
of each of the constructs in the typology?) and to explore
the extent to which specific markers of fidelity impact upon
performance outcomes.

Given the speed of recent technological development it is
pertinent to consider what the future of simulated training
might look like. One approach that is poised to assume a
major role in simulated training is AR and MR, as AR through
mobile phone and tablet displays moves into fully immersive
headsets, such as the Magic Leap 1 and Microsoft’s HoloLens.
AR and MR overlay virtual information on the physical world,
which allows real-world training scenarios to be furnished with
additional information and guiding cues. AR and MR were
not addressed in this framework, but may pose new issues
for designing and evaluating training, as fidelity and validity
issues may primarily relate to how well the virtual assets are
perceived to assimilate with physical ones, and how physical
actions interact with virtual assets. Additionally the issue of
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presence in VR is somewhat avoided, provided that virtual assets
are accepted as part of the physical world. Research on AR
and MR in training is in its infancy (e.g., see Gavish et al.,
2015; Palmarini et al., 2018; Vovk et al., 2018), and further
work is needed to explore these issues surrounding testing
and validation.

We have provided a number of suggestions for how fidelity
and validity can be assessed in VR but also simulated training
more generally, and have emphasized the importance of
addressing the right markers for the intended training purpose.
The potential for VR training is huge, but this field could be
hampered by a lack of evidence-based testing and injudicious
application. VR technology will continue to develop, driven by
the huge gaming market, but a fundamental understanding of
the principles underpinning effective design for training purposes

and an evidence-based approach to testing will be key to the
success of VR training across many domains.
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