
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XX XX 1

Safeguard Network Slicing in 5G: A Learning
Augmented Optimization Approach

Xiangle Cheng, Yulei Wu, Senior Member, IEEE, Geyong Min, Member, IEEE, Albert Y. Zomaya, Fellow, IEEE,
and Xuming Fang, Senior Member, IEEE

Abstract—Network slicing, as a key 5G enabling technology, is
promising to support with more flexibility, agility, and intelligence
towards the provisioned services and infrastructure management.
Fulfilling these tasks is challenging, as nowadays networks are
increasingly heterogeneous, dynamic and large-dimensioned. This
contradicts the dominant network slicing solutions that only cus-
tomize immediate performance over one snapshot of the system in
the literature. Instead, this paper first presents a two-stage slicing
optimization model with time-averaged metrics to safeguard
the network slicing in the dynamical networks, where prior
environmental knowledge is absent but can be partially observed
at runtime. Directly solving an off-line solution to this problem
is intractable since the future system realizations are unknown
before decisions. Therefore, we propose a learning augmented
optimization approach with deep learning and Lyapunov stability
theories. This enables the system to learn a safe slicing solution
from both historical records and run-time observations. We prove
that the proposed solution is always feasible and nearly optimal,
up to a constant additive factor. Finally, we demonstrate up to
2.6× improvement in the simulation when compared with three
state-of-the-art algorithms.

Index Terms—Network slicing, 5G, deep learning, Lyapunov
optimization

I. INTRODUCTION

With the evolution of Software-Defined Networking (SDN)
and Network Function Virtualization (NFV), 5G networks
have advocated a revolutionary paradigm called network slic-
ing [1] [2] to construct network services. Unlike the large de-
ployment of dedicatedly built network devices in conventional
networks, network slicing utilizes Virtual Network Functions
(VNF) to implement individually optimized services on top
of a shared physical infrastructure. This enables a more flex-
ible, scalable and agile management towards the end-to-end
physical resources, including communication and computation
resources, radio spectrum, energy, etc.

Network slicing has been accepted as an integrated part of
the latest 3GPP release [3], but its technical implementation
is solution agnostic. With proper assumptions or knowledge
on traffic patterns and networking environment, a myriad
of slicing solutions based on classic optimization theories

Manuscript received April 15, 2019; revised February 03, 2020; accepted
March 02, 2020. (Corresponding authors: Yulei Wu and Geyong Min.)

X. Cheng, Y. Wu and G. Min are with the College of Engineering,
Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF,
U.K. E-mail: {xc272, y.l.wu, g.min}@exeter.ac.uk.

A.Y. Zomaya is with the School of Information Technologies, Uni-
versity of Sydney, Camperdown NSW 2006, Australia. E-mail: al-
bert.zomaya@sydney.edu.au.

X. Fang is with the Key Lab of Info Coding & Transmission, Southwest
Jiaotong University, Chengdu 610031, China. E-mail: xmfang@swjtu.edu.cn.

(e.g., combinatorial/convex optimization) have been proposed
(related surveys can be found in [1], [4]). As with the dominant
implementations of network slicing in the literature, if the full
knowledge of traffic and network states is assumed known,
e.g., observed states or Probability Distribution Functions
(PDFs), we can always compute in offline an optimal or
approximate slicing policy to best respond to these given
network states.

However, with today’s networks becoming increasingly dy-
namic, heterogeneous, and large-dimensioned, the real-time
tracking and explicitly modelling of the networking envi-
ronment are getting increasingly costly or even intractable.
Examples can be easily found from these typical 5G scenarios,
such as massive human-/machine-type connections, or dense
small cells with millimeter-wave spectrum [5]. The system
states in these emerging applications may evolve rapidly on
nearly a millisecond order [6]. In these popular 5G cases, it is
strongly vulnerable to environmental changes for the slicing
schemes that customize the immediate performance over a
given deterministic environment information in the literature.
This requires that a slicing system should be able to make
decisions in the absence of partial system state information
while the resulted solution efficiencies are safeguarded across
the whole running trajectory. Compared with the existing
challenges addressed in the literature, e.g., solving the NP-
hard combinatorial slicing model, this leads to three additional
challenges for the targeted network slicing problem:

• The slice operation environment frequently evolves with
great uncertainties, and explicit environment knowl-
edge/models are unavailable ahead of schedule;

• Timely control response, possibly on a millisecond order,
is required in order to secure the system running as de-
sired. This precludes the traditional scaling or migration
based dynamic slicing solutions, which re-solve slicing
models after each network change. This is because each
attempt of solving a usually NP-hard slicing model in
large-scale networks is costly and time-consuming;

• In addition to preserving the real-time performance and
constraints, the chosen slicing policy should also be
able to work properly across the whole system running
trajectory and to safeguard the system performance in the
long run.

In light of the above insights, it is essential for a slicing
system to observe environment variations, learn uncertainties,
and accordingly plan response actions properly. Therefore, in
this paper, we aim to safeguard the network slicing in dynamic

5G networks so that the returned slicing policy is always
feasible and the resultant system performance is long-term
safeguarded.

To address these challenges and achieve the desired objec-
tives, we first present a two-stage slicing optimization model
with time-averaged metrics. This provides a two-phase control
to secure the slicing process: initial slice deployment and long-
term slice operation. Directly solving an off-line solution to
this problem is intractable since the future system realiza-
tions are unknown before decisions. Therefore, we propose
a learning augmented optimization approach by intertwining
deep learning and Lyapunov stability theories to deploy and
operate network slices with both historical records and real-
time observations. We prove that the proposed slicing solution
is always feasible and nearly optimal, up to a constant additive
factor. In the proposed solution, the involved combinatorial
model only needs to be solved during the initial deployment
phase, while the subsequent operation controls only involve
solving a simple continuous program. Therefore, this solution
is robust and agile to respond to any dynamics. In the
simulation, we demonstrate up to 2.6× improvement when
compared with the state-of-the-art baselines.

The major contributions of this paper can be summarized
as follows:

• We formulate the safe network slicing problem in dy-
namic networks as a two-stage optimization model with
time-averaged metrics. This provides a systematic support
for the slicing systems to achieve robust deployment
and prompt adaptation of sliced services in a dynamic
environment.

• By intertwining the advanced deep learning and Sample
Averaged Approximation (SAA) optimization tools, we
present an approximate solution to deploy network slices
with robustness under incomplete system knowledge. An
analytical probabilistic bound is provided, which can be
improved by increasing the sample size.

• We propose an online slice operation policy with misload-
ing calibration, which enables the deployed network slices
to learn from and adapt to real-time observations. Based
on the Lyapunov stability theory, we present a proven
better performance bound than the referenced online
learning algorithm while maintaining a same solution
feasibility.

• Finally, extensive simulation experiments are conducted
with the settings in accordance with 5G expectations.
Through the comparison with the incumbent network
slicing solutions, we demonstrate the efficacy of the
proposed learning augmented optimization approach for
the targeted network slicing problem.

The rest of this paper is structured as follows. We first
investigate the related works in Section II. The implementation
of the safe network slicing optimization model is presented in
Section III. In Section IV, we extend the classic SAA method
with deep learning based predictions to learn an approximated
slicing deployment policy from historical records. Then, the
safe slice operation control solution is presented in Section V.
The simulation results are summarized in Section VI. Finally,

Section VII concludes this paper.

II. RELATED WORK

Network slicing has been identified as the backbone of the
rapidly evolving 5G technology [1]. By allowing different
parties to instantiate and run software-based network services,
this paradigm facilitates the development of service-tailed and
truly differentiated services on top of a shared underlying
network infrastructure. Gaining momentum from immense 5G
applications [5], network slicing has been the focus of an ever-
growing community of researchers.

A. Network Slice Modelling and Optimization

There are many deterministic network slicing modelling
solutions reported in the preliminary studies, which extensively
investigate the basic implementation of network slicing in
static networks. These studies mainly focus on the optimiza-
tion of the resource solutions with acceptable computing
complexity under a given network state. Thus, these solutions
are not directly applicable in the considered problem. Related
works can be found in e.g., [4], [8]- [10].

There also exist a few studies in the literature striving to
address similar resource utility problems for dynamic NFV
networks. Among these very few work, Ying et al. in [11]
addressed the joint optimization problem of dynamic radio
resources and computing resource. A robust resource alloca-
tion framework is presented in [12] with an iterative algorithm
to auto-scale slices in response to the changing environment.
With a similar motivation, the resource provisioning solution
proposed by Li et al. [13] is proactive although their objective
is to assign requests with bounded response time. This is
achieved by using slice consolidation with timing abstraction,
but the placement of slices is still based on deterministic
models, and the instance migration of VNFs is involved when
new requests arrive. Split/Merge [14] provides system support
for achieving efficient, load-balanced elasticity when scaling in
and out of virtual middleboxes. However, as aforementioned,
scaling or migration based dynamic solutions are precluded
in our problem. In our prior work in [15], we provided a
stochastic solution to the similar problem and showed that
explicit PDF models of environmental knowledge can con-
tribute considerable improvements. In this paper, we release
the dependence of explicit environmental models of our prior
solution by exploiting the learning and online optimization
tools. This makes the resulted slicing solution applicable to
more generic settings.

B. Network Optimization with Online Learning Approaches

Recently, there is also an increasing traction on developing
online solutions to handle dynamic networking problems. The
pioneering works can be traced back to the studies that are
based on online computation and competitive analysis [16].
Among the most related studies, Jia et al. in [17] investigated
the online scaling problem of NFV service chains across geo-
distributed datacenters. Their solution aims to handle time-
varying traffic volumes and relies on the dynamic scaling

of VNF instances. Evan et al. in [18] studied the online
embedding of virtual networks. Their goal is to select high-
benefit requests meanwhile maximizing the likelihood that
future requests can be embedded.

Other major attempts are the applications of Lyapunov
optimization [19] and multi-armed bandits (MAB) theories
[20] to model the resource allocation problems operating in
dynamic systems. In this case, these classic online learning
theories are exploited to make a sequence of control decisions
with progressively learned knowledge about system dynamics
and to optimize the long-term cumulative rewards.

For example, Mao et al. developed in [21] a Lyapunov
optimization based dynamic computation offloading solution
for mobile-edge computing applications. Huang et al. in [22]
studied the learning-aided stochastic network optimization
with dual learning and online queue-based control. Neely
in [23] investigated the application of Lyapunov theories
for the distributed stochastic sensor network problem. The
applications of MAB can also be found in the problems of
antenna beam selection [24], mobile edge computing [25], etc.

However, all these works are mainly focused on addressing
the sequential online control problems under the imperfect
system state information. This is achieved by repeatedly
solving their base models with progressively collected new
observations across time. In contrast, this paper highlights the
stochastic combinatorial hardness of the considered problem.
Herein, it is not supported to repeatedly solve the combina-
torial models with new knowledge. Additionally, we attempt
to intertwine the advanced learning and online optimization
theories so that we can merge both empirical data experience
and domain expertise to enhance the slicing solution.

C. Connections with Existing Optimization Approaches

In this paper, learning augmented optimization, is proposed
to safeguard the optimization of 5G network slicing. As a
combinatorial approach, we can find both connections and
differences of this approach to the related existing ones.
Stochastic/robust optimization approaches [26] [27]: As the
conventional ways to optimize the decision procedures under
the presence of dynamics and uncertainties, this kind of
approaches models the system uncertainties and dynamics
from historical samples as certain stochastic processes or prob-
abilistic events. Accordingly, appropriate actions are chosen
by searching or planning under these constructed models.
Owning to the solid stochastic theories, these approaches find
successful applications in problems, e.g. [28], [29], [30].
Machine learning approaches [31]: However, explicit knowl-
edge models of environment/events are not always available,
and we need to observe and analyze the sample paths of the
system to make the optimization decisions. In this case, the
diverse data-driven machine learning tools are applicable to
directly infer decisions from historical observations. Never-
theless, the data-driven philosophy that underpins machine
learning inherently exhibits poor decision interpretation and
accuracy. Although claimed nearly 90% of accuracy by latest
deep learning models for optimization tasks e.g., in [32], this is
still far from the required reliability for carrier-grade network

services.
Learning augmented optimization approach: Instead, we
reject the exclusive choice between the above two approaches
and advocate for a combinatorial approach which benefits
from their complementary strengths. Concretely, learning aug-
mented optimization aims to intergrate multiple artificial in-
telligence tools (e.g., classic optimization, control theories
and machine learning) into networking architecture to learn
a holistic solution. As depicted in Fig. 1, such an approach,
essentially, retains the basic optimization structure, but more
learned knowledge from historical records and run-time obser-
vations are introduced to improve the optimization outcomes.
The testaments in e.g., [33], [34], [34] have demonstrated the
promissing efficacy of deep learning based predictions for the
tasks of VNF resource management. In this paper, we will
exam the joint application of deep learning and online learning
theories to improve the network slicing optimization in the
long run.

Fig. 1. A general framework of learning augmented optimization system for
network slicing in 5G: The intelligent controller decides the VNF embedding
and routing strategies based on the learning augmented optimization, and then
the requested network slices are embedded and operated accordingly in the
5G infrastructures.

III. SYSTEM MODEL

As portrayed in the system architecture in Fig. 1, a sliced
network service is constructed with solely required VNFs that
are chained in a specific order according to its service policies.
The installation/teardown and operations of network slices are
mutually independent, although the underlying infrastructures
are shared. In this case, one critical task for network slicing is
to plan the utilization of the shared resources with adherence
to diverse service and resource constraints. This is non-trivial
and more challenging than planning 4G network services due
to the rapidly expanded network sizes as well as the frequently
changing network environment in 5G.

Let us treat the 5G slicing system as a discrete-time
stochastic system with time-varying resources ct . Upon the
given limited system resources, slicing requests with random
resource demands dt are required to schedule and control. At
the beginning of each time slot t ∈ {0, 1, 2, . . . }, the system
controller is able to observe a state update ωt = (dt, ct),
which specifies the independent realizations of current traffic
and network states. The network slicing optimization problem

aims to decide a robust slicing policy at the beginning of
every scheduling interval T so that the slicing system can
be configured and operated with full respect to the desired
objectives and constraints.

A. Preliminaries

Considering the system dynamics in this problem, we apply
partial admission control policy. Accordingly, requests can be
accepted (i.e., deployed) but run with compromised flow rates
rather than be directly rejected when the available resources
at the decision time are not enough to fully meet the required
demands. This ameliorates the over-/under-loading problem
caused by partial observations at decision time. In this setting,
the slicing policy can be split into two parts: slice deployment
policy and slice control policy.

We first clearly define the two policies to be optimized in
this paper as follows.

Definition 1 (Slice deployment policy π+ ∈ P+): is a policy
vector specifying which slice requests are accepted, where to
instantiate and how to chain the required VNFs along with
routing paths in the underlying physical networks.

Definition 2 (Slice control policy π− ∈ P−): is a contingency
plan for choosing a single running control action to adapt
the flow rates of deployed slices to a given network event
observation under the chosen slice deployment policy π+.

where P+, P− are the solution spaces for the two policies,
respectively.

In this paper, we denote a slicing policy π := {π+, π−} to be
safe if it is feasible across the runtime (i.e., without violating
any real-time or time-averaged constraints) while optimizing
the long-term system performance.

B. The Deterministic Network Slicing Optimization Problem

As aforementioned, real-time scaling and migration of de-
ployed slice instances are not considered. In this case, the
slicing system can be sequentially controlled as a two-stage
process: (i) decide a long-term feasible and robust slice de-
ployment policy with an initial knowledge, and (ii) then under
the given deployment, adaptively control the running flow rates
allocated to the deployed network slices according to the real-
time environment changing. As with the extensively studied
slicing models in the literature, we can abstract, without loss
of generality1, the network slicing optimization problem under
any given system state ω as the following Two-Stage Slicing
(T2S) Program:

(T2S model) π = argmin
π+,π−

f (π+, π−, ω) (1)

s.t . π+ ∈ P+ and π+ is binary (2)

π− ∈ argmin
π−≥0

{
f (π−, ω |π+)

��ul(π−, ω) ≤ 0, l = 1, 2, . . . , L
}

(3)

where

1Equality constraints can be equivalently expressed through two inequality
constraints.

• { f , ul}: the objective function and a set of utility functions
specifying the real-time constraints required for running
the deployed network slices in the physical network. Their
values are random, dependent on the realization of system
state ω;

• P+: the solution space to be defined by a set of constraints
to guarantee that the chosen π+ is a valid slice deployment
policy (e.g., satisfying flow conservation). A concrete
example is provided in (32)–(34);

• π+: a vector of decision variables indicating which physi-
cal nodes and link paths are used to construct the accepted
network slices;

• π−: real-time running flow rates allocated to the accepted
network slices under the given slice deployment policy
π+ and system state ω;

As claimed in extensive existing studies e.g., [12], under
the given system state ω, solving this problem is NP-hard. By
this token, many reported exact or approximated computing
strategies in the literature can be used to solve this problem,
such as dynamic programming [36] or integer relaxation [37].
However, the resulted solution can only customize the system
performance that is best respond to the given system state.
When the system evolves frequently and explicit models of
the system environment are unavailable a-priori, the obtained
slicing solutions through these traditional approaches are not
safe across time.

Next, we safeguard the long-term performance of this T2S
model by incorporating time-averaged performance metrics.

C. Safeguarding Long-Term Performance with Time-Averaged
Metrics

Let us denote {πt−}
∞
t=0 as the slice control policy across t

and f (π+, πt−, ωt) as the time-variant objective function. Then,
we define the time-averaged objective function as follows:

f̄
(
π+, {π

t
−}
∞
t=0

)
= lim

t→∞

1
t

t−1∑
τ=0
Eω

[
f (π+, πτ−, ωτ)

]
(4)

Likewise, we define a set of time-averaged utility func-
tions ḡk, k ∈ {1, 2, . . . ,K} through its time-variant function
gk(π+, π

t
−, ωt) as follows:

ḡk
(
π+, {π

t
−}
∞
t=0

)
= lim

t→∞

1
t

t−1∑
τ=0
Eω

[
gk(π+, π

τ
−, ωτ)

]
(5)

In order to safeguard the slicing optimization solutions in
5G, we first extend the T2S model in (1) with its time-averaged
objective and constraints. This results in our new proposed
Two-Stage Safe Slicing (T3S) model as follows:

(T3S model) π = argmin
π+, {π t

− }
∞
t=0

f̄
(
π+, {π

t
−}
∞
t=0

)
(6)

s.t . ḡk
(
π+, {π

t
−}
∞
t=0

)
≤ c̄k, k ∈ {1, 2, . . . ,K} (7)

Constraints (2) − (3), ∀t (8)

where c̄k is the upper bound (or cost budget) of the time-
averaged utility ḡk .

In this new slicing model, three differences can be high-
lighted when compared with the existing system formulations.
First, by optimizing the time-averaged objective, it captures
the concerns on the long-term performance safety in the
considered stochastic system. Second, with the time-averaged
constraints in (7), this model provides a higher flexibility to
consolidate both the long-term and real-time running require-
ments for deploying the sliced services in dynamic networks.
Finally, the combinatorial solution for π+ is optimized to
respond to long-term system behaviours. This circumvents the
complicated amendments to π+ (e.g., dynamic scaling or mi-
grating deployed slice instances). Alternatively, the adaptation
to real-time changes is handled through simplified continuous
programs in the slice operation process.

A concrete application example of the T3S model is that
network providers want to optimize their long-term revenues
from the provisioned network slices. The available resource
capacities are time-varying due to e.g., wireless channel fluc-
tuation, traffic variations [15], [38]. In this case, the providers
need to keep the average operation cost for e.g., energy or
bandwidth within given budgets. Meanwhile, both the real-
time (e.g., delay, jitter) and long-term (e.g., packet loss/service
interruption rate) service qualities should meet the contracted
service level agreements. This is fundamentally more compli-
cated than the deterministic counterparts.

In T3S model, we need to infer at the beginning of every
scheduling interval a robust slicing policy that not only has
an impact on the immediate system performance but also on
the future ones. However, the objective function f (π+, πt−, ωt),
utility functions gk(π+, π

t
−, ωt) and gl(π

t
−, ωt) are unknown

before decisions. Thus it is intractable to directly solve an
optimal off-line solution to this problem.

Based on the above analyses, we resort to enhance the
traditional stochastic optimization algorithms with learning
components to solve this problem in two sequential steps.
Specifically, a Deep learning aided SAA (DSAA) approach is
first introduced to learn a robust slice deployment policy from
historical system records. This eschews frequently re-solving
the complicated combinatorial program in T3S. Considering
the imperfect matching of the deployment policy with real-
time operation environment, an online adaptation scheme is
presented in the subsequent slice operation process to further
secure the slicing system.

IV. ROBUST SLICE DEPLOYMENT AIDED WITH DEEP
LEARNING

As the inevitable absence of future system knowledge in the
targeted problem, we resort to improve the slice deployment
policy by learning from historical system records.

A. Predictions with Sequence-to-Sequence LSTM Networks

The Long Short-Term Memory’s (LSTM) ability to success-
fully learn on data with long range temporal dependencies
makes it a natural choice for this application. In our problem,
we need to predict the system realizations of next Wt time
window with the newly observed T time-series sequence about
the system realizations during the previous scheduling interval.

The prediction size Wt may differ with the random lifespans
required by slice requests. Clearly, this is beyond the capability
of regular LSTM networks but can be well captured by
sequence-to-sequence (seq2seq) LSTM Networks [39]. Conse-
quently, we present a seq2seq LSTM based Encoder-Decoder
learning structure for such a prediction task. As depicted in
Fig. 2, the Encoder reads T new time-series observations into
the LSTM network to produce an Encoder Vector as the
representations of current system states. Then, the Decoder
reads the updated Encoder Vector to another LSTM network
and sequentially generates Wt predictions.

Fig. 2. Prediction with sequence to sequence LSTM networks.

B. Slice Deployment with Predictions

Let {ω̂t }
Wt

t=1 be a learned system trajectory for the next
Wt time window. Then, through approximating the cost and
objective functions with the learned trajectory, we can get a
Sampled reduction of the stochastic T3S model (T4S) as the
following deterministic program:

(T4S model) π+ = argmin
π+

1
Wt + 1

Wt∑
t=0

f (π+, πt−, ω̂t) (9)

s.t .
1

Wt+1
∑Wt

t=0 gk(π+, π
t
−, ω̂t) ≤ c̄k, k = 1, 2, . . . ,K

π+ ∈ P+ and π+ is binary
πt− ∈ argminπ t

−≥0 f (πt−, ω̂t |π+), ∀t = 0, 1, . . . ,Wt{
s.t.

ul(πt−, ω̂t) ≤ 0, l = 1, 2, . . . , L

(10)

In T4S, the reduction of a stochastic problem to its deter-
ministic approximation resembles the SAA based techniques
(e.g., [22], [40], [41]). Instead of a direct application of SAA
with random historical samples, the manipulation with learned
outcomes in DSAA/T4S2 reaps two-fold benefits: i) better
extract the temporal dependencies of the underlying system
evolution, and 2) save tremendous computation on unnecessary
samples when solving the combinatorial model. As a determin-
istic problem, many existing algorithms (fractional rounding,
heuristic or decomposition, as surveyed in [9]) can be invoked
to solve an exact or suboptimal solution for the T4S model,
which is out of the focus in this work.

The optimality of the learned deployment policy depends on
both the prediction accuracy and the distribution consistency
between historical samples and future outcomes. Since the
objective function is measured in expectation, a strictly error-
free prediction at each t ∈ {1 · · ·Wt } is unnecessary. When

2DSAA and T4S are used interchangeably in this paper.

the underlying stochastic processes are ergodic3, the simplest
learning strategy would be a directly random sampling from
the historical records. However, in order to preserve the
distribution consistency in the behavioral patterns of dynamic
systems, this requires a vast amount of samples so that all
possible states (peak, normal and valley) and their transition
patterns can be precisely captured. We validated in Section VI
that the proposed solution gains remarkable improvement even
with a random sampling based learning strategy. When the
objective function f is linear with respect to ωt (as the case in
the Benchmark problem in Section VI-A), we can further get
an analytical probabilistic bounds on the objective value that
improves (in expectation) with increasing sample/prediction
window size. This is presented in APPENDIX A.
Misloading discussion: A suboptimal policy π+ solved by an
approximate solver to (9) tends to accept less requests so that
the given cost budget constraint will not be violated. An under-
loaded system will not be able to harvest a better networking
environment later after the decision. Reversely, the imperfect
prediction accuracy may make the system overload, thus more
cost will be devoted to maintaining the active of deployed
slices. Both cases will lead to system degradation. Next,
an online misloading (i.e., under-/over-loading) calibration
scheme will be introduced to ameliorate this issue.

V. ADAPTIVE ONLINE SLICE OPERATION WITH
MISLOADING CALIBRATION

Once instantiated under the learned slice deployment policy
π̂+ from the history records, the original T3S model reduces
to a simplified stochastic continuous program, which aims to
exert a slice running control process to further secure both
the real-time and long-term system performances. Since the
future realizations and PDF models of ωt are unavailable a-
prior, we now propose an online learning approach to solve
the T3S for the slice Running control policy (called T3S-
R model hereafter). In the following, π̂+ is identified as a
known parameter and will not be shown explicitly in the T3S-
R problem. Additionally, we assume the T3S-R is convex on
πt−, which is aligned with most of existing resource allocation
problems for network slicing.

A. Online Running Control with Misloading Calibration

In an online process, a solution has the following structure:
At the beginning of every slot t, the system controller observes
a realization of ωt , and then a slice running control πt−
is derived accordingly. In order to achieve the long-term
objective, we construct the online process with the theoretical
support of virtual queuing networks [19].

Let us treat each time-averaged constraint in (7) as a virtual
queuing process. For each constraint k ∈ {1, 2, . . . ,K}, define
a virtual queue Qt

k
with initial condition Q0

k
= 0. The queue

backlog updates over time via:

Qt+1
k = max{Qt

k + gk(π
t
−, ωt) − c̄k, 0} (11)

3An ergodic process is a stochastic process whose behavior does not depend
on the initial conditions and whose statistical properties do not vary with time
[47].

The connection of such a queuing network with the T3S-R
is that if we control to stabilize the queue Qt

k
, the average of

the “arrival process” gk(π
t
−, ωt) must be less than or equal to

the “service process” c̄k . Consequently, the resultant control
sequence will be a feasible solution meeting the time-averaged
constraint ḡk

(
π̂+, {π

t
−}
∞
t=0

)
≤ c̄k .

Fig. 3. Online slice running with the virtual queuing network.

Let Qt = [Qt
1,Q

t
2, . . . ,Q

t
K] be the vector of queue backlogs,

and define the Lyapunov function Lt as follows:

Lt =
1
2
‖Qt ‖

2 =
1
2

K∑
k=1
[Qt

k]
2 (12)

The value Lt is a scalar measure of the size of the queue
backlogs till t. If we take actions to consistently push this
value down, then the queues will be stabilized (i.e., satisfy the
time-averaged constraints in (7)). Fig. 3 illustrates the online
slice running control process with the virtual queuing network.

In this online framework, the system observes the current
queuing state Qt and new realizations of ωt at the beginning of
every slot t. Then, an one-shot control is exerted accordingly
to adapt the slice running to the new observations. Motivated
by the theory in [19], we implement the one-shot control by
minimizing the following drift-plus-penalty expression:

min
π t
−≥0

V f (πt−, ωt) +

K∑
k=1

Qt
kgk(π

t
−, ωt) (13)

s.t . ul(πt−, ωt) ≤ 0, l = 1, 2, . . . , L (14)

where V is a non-negative weight that will be shown to affect
the performance tradeoff.

Behind the one-shot control strategy is the intuition that
more budget than the average c̄k can be provided so that we
can fully exploit the ‘good’ state ωt to collect a better objective
value f (πt−, ωt). Balanced by the surplus budget from the under
utilization of c̄k when ωt is in ‘bad’ quality, the time-averaged
utility budget constraints in (7) can still be preserved.

With the convergence analysis in [42], the control strategy
from (13) is known to provide an O(1/V) approximation to
the optimality of T3S-R with a convergence time of O(V2).
However, considering the impacts of misloading resulted from
the imperfect prediction accuracy and the approximation for
solving T4S model, we introduce a misloading calibration
scheme by extending the queue update function as following:

Qt+1
k = max{Qt

k + gk(π
t
−, ωt) − (c̄k + δk), 0} (15)

where δk = max{c̄k − 1
Wt+1

∑Wt

τ=0 gk(π
τ
−, ω̂τ), 0}.

δk measures the positive cost gap between the cost budget
and the estimated utility due to the suboptimality of π̂+. With
the calibration from δk , (15) imposes a positive utility offset to
the available cost budget. This avoids the unnecessary penalty
on the objective f (πt−, ωt) in subsequent controls. As analyzed
in Section V-B, such a calibration leads to a better convergence
performance.

Finally, by putting all together, we are now ready to present
the overall learning augmented optimization approach for the
safe network slicing in Algorithm 1.

Algorithm 1 The proposed learning augmented optimization
approach for safe network slicing.

Input: Historical system trajectory, network and requested
slice topologies, V,Wt,T .

Output: Slice deployment policy π̂+ and online running
flow rate πt−.

. Slice deployment at the beginning of every T
1: (Historical Learning) Generate the predictions of ωt for

the next Wt time slots.
2: (Deployment Policy Approximation) Infer the slice deploy-

ment policy π̂+ by solving T4S model under predictions
{ω̂t }

Wt

t=1.
3: Instantiate accepted network slices according to policy π̂+.

. Online slice running control
4: (New Observations) Collect new observations for ωt,Qt

at the beginning of time slot t.
5: (One-shot Control) Decide the current slice running policy
πt− by solving the deterministic problem defined in (13).

6: (Queue Update) Observe the resulting utility gk(π
t
−, ωt),

and update virtual queues by (15).
7: Go to Step 4 if t = t + 1 is not the beginning of new

scheduling interval.
8: Otherwise go to Step 1.

B. Theoretical Analysis

We first show the running constraint violation across itera-
tion in Algorithm 1.

Lemma 1: Let Q0
k
= 0 and Qt

k
updates according to (15).

Then, Algorithm 1 satisfies: for all t > 0, i) Qt
k

is mean-rate
stable (i.e., E[Qt

k
] is upper bounded by a finite value), and ii)

ḡk
(
π̂+, {π

τ
−}

t−1
τ=0

)
− c̄k ≤ E[Qt

k]/t + δk, ∀k = 1, 2, . . . ,K (16)

Proof. The boundedness of E[Qt
k
] can be proved by con-

tradiction. Assume Qt
k

is infinite large at some t. Then, in
order to minimize the expression in (13), it must return a flow
running rate with πt− = 0 and lead to the decrease of queue
length for next slot, Qt+1

k
, by c̄k + δk . This continues until all

Qt
k

stabilize with certain finite queue backlogs. Consequently,
under the control of Algorithm 1, it is impossible for Qt

k
to grow to infinity and thus all Qt

k
are mean-rate stable.

As shown in (16), this property is useful to guarantee a
declined constraint violation across iterations. Next, we prove
the constraint violation in (16).

From (15), we have:

Qt+1
k ≥ Qt

k + gk(π
t
−, ωt) − (c̄k + δk) (17)

Summing over τ ∈ {0, 1, . . . , t − 1} gives:

Qt
k −Q0

k ≥

t−1∑
τ=0

gk(π
τ
−, ωτ) − t(c̄k + δk) (18)

Dividing by t and using the fact that Q0
k
= 0 gives

Qt
k

t
≥

1
t

t−1∑
τ=0

gk(π
τ
−, ωτ) − c̄k − δk (19)

Taking expectations and re-arranging terms yield (16). �

The right side of (16) presents the running violation on
the time-averaged constraints in (7). With the boundness of
Qt

k
, it is clear that the term E[Qt

k
]/t vanishes as t → ∞.

Additionally, the added calibration offset only takes positive
values in the event of system underloading. In this case, π̂+
tends to accept less loads, and the real-time running utility
gk(π

t
−, ωt) is less likely to exceed the average budget c̄k .

Consequently, the added calibration offset is inoffensive to
the constraint in (7). This shows that Algorithm 1 maintains
nearly same solution feasibility as the existing drift-plus-
penalty algorithm [42]. Meanwhile, as we will shown below,
the action of the misloading calibration can enhance Algorithm
1 with a better converged objective than the vanilla drift-plus-
penalty algorithm.
Theorem 1: Let f̄

(
{π̂t−}

t−1
t=0

)
be the achieved objective value

under the online control sequence {π̂t−}
t−1
t=0 by recursively

solving program (13), and f̄ ∗ be the optimum of T3S-R ob-
tained by some ‘genius’ decision maker who holds a complete
knowledge about the true system trajectory {ωt }

t−1
t=0. Then, we

have:

f̄
(
{π̂t−}

t−1
t=0

)
≤ f̄ ∗ +

1
V

(
B −

1
t

t−1∑
τ=0

K∑
k=1
E[Qτ

k]δk
)

(20)

where B is a positive constant that upper bounds the second
moments of the “arrival” and “service” processes of Qt

k
as

follows:

1
2

K∑
k=1
E
[(
gk(π

t
−, ωt) − (c̄k + δk)

)2]
≤ B (21)

Proof. This can be proved by extending the result in [42] with
the misloading calibration scheme. Based on the objective
function analysis in [42], we can bound the weighted-sum
expression in (13) under the new queue update function in
(15) as follows:

E[∆τ] + VE[f (πτ−, ωτ)] ≤ B + V f̄ ∗ −
K∑
k=1
E[Qτ

k]δk (22)

where ∆τ = Lτ+1 − Lτ , called the Lyapunov drift.
Summing (22) over the first t slots gives:

E[Lt]−E[L0]+V
t−1∑
τ=0
E[f (πτ−, ωτ)] ≤ (B+V f̄ ∗)t−

t−1∑
τ=0

K∑
k=1
E[Qτ

k]δk

(23)

Dividing the above by Vt and using the fact that E[L0] =
0, E[Lt] ≥ 0, we have:

f̄
(
{π̂t−}

t−1
t=0

)
=

1
t

t−1∑
τ=0
E[f (π̂τ−, ωτ)] (24)

(a)
≤

1
t

t−1∑
τ=0
E[f (πτ−, ωτ)] (25)

≤ f̄ ∗ +
1
V

(
B −

1
t

t−1∑
τ=0

K∑
k=1
E[Qτ

k]δk
)

(26)

where (a) follows because π̂τ− is the optimal solution of
program (13). Proof ends. �

With the fact that E[Qτ
k
] ≥ 0 and δk ≥ 0, (20) shows

that Theorem 1 always achieves a tighter running performance
bound than the vanilla drift-plus-penalty algorithm. This par-
ticularly improves the performance when Qτ

k
spurts due to a

sudden improvement of the system state when the system is
under-loaded. This stands to the reason that it is less likely
to break the time-averaged constraints in this case. Then, the
action of misloading calibration provides a pullback on Qt

k
to avoid the unnecessary penalty on f (πt−, ωt) in (13), which
contributes the extra performance here.

VI. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we use synthetic scenarios to evaluate the
proposed solutions. Current BT’s IP network topology within
Europe4 is considered as the network topology, from which
arbitrary node is chosen as the destination of each network
slice request. 5 nodes in the whole 21 nodes are randomly
selected to act as the wireless access nodes. For each node
in the network, a fixed number of computing resources is
considered. Nevertheless, the available wireless transmission
capacity within each access node is time-variant. Considering
the long-term co-existence of 5G and legacy networks (3G/4G,
etc.) and the tremendous changes among Line-of-Sight (LOS),
non-LOS (NLOS) and outage stages in 5G wireless channels
[6], we use the Rician fading and Rayleigh fading5 [43] to
emulate the network fluctuation. For each fading status, a fixed
duration T∆ is set, and the transition probabilities between
statuses are equal. The channel parameters are configured so
that the resulted capacity of each access node is on average
within the envisioned capacity range for a 5G cell [44].

A. A Benchmarking Problem

As a benchmark, we extend the deterministic network
slicing model in [12] to maximize the time-averaged system
revenue while safeguarding the time-averaged link resource
cost not exceeding a given budget. For clarity, the involved

4http://www.topology-zoo.org/dataset.html
5But the proposed solution is not limited to any specific type of dynamics.

objective6 and constraint functions are clearly defined as
follows:

f (·) = −
∑
s∈S

(
πst− (bs −

dynamic link cost︷ ︸︸ ︷∑
l∈Ls,e∈E

πle+ ke) +

fixed node cost︷ ︸︸ ︷∑
f ∈Fs,n∈N

π
f n
+ df kn

)
(27)

g(·) =
∑

s∈S,l∈Ls,e∈E

πst− π
le
+ ke (28)

ul(·) :

πst− ≤ π

s
+ds, ∀s ∈ S (29)∑

l∈Ls,s∈S

πle+ π
st
− ≤ ce, ∀e ∈ E (30)∑

s∈{S |Sr(s)=na }

πst− ≤ cna t, ∀na ∈ Naccess (31)

and the solution space for a valid slice deployment policy
π+ ∈ P+ is defined as follows:

P+ :

∑
f ∈Fs,s∈S

π
f n
+ df ≤ cn, ∀n ∈ N (32)∑

n∈N

π
f n
+ = π

s
+, ∀ f ∈ F s, s ∈ S (33)∑

euv ∈O(u)

π
li jeuv

+ −
∑

evu ∈I (u)

π
li jevu
+ = πiu+ − π

ju
+ ,

∀li j ∈ Ls, s ∈ S, u ∈ N (34)

where
• {N, E} are the node and directed link sets in the physical

network, respectively;
• {Ls, F s} are the virtual link and VNF sets for slice

request s ∈ S, respectively;
• π+ = {π

s
+, π

le
+ , π

f n
+ }, ∀s, l, e, f , n are binary variables that

decide whether slice request s ∈ S should be accepted,
whether physical link e should be used to construct the
virtual link l, and whether VNF f should be installed in
physical node n, respectively;

• π− = {π
st
− }, ∀s, t are variables that decide the running

flow rates allocated to s at t;
• {Sr(s), Naccess} are the source node of s and access node

set, respectively;
• {cn, ce, cna t } are the capacities of node, link and access

resources, respectively;
• {bs, ke, kn} are the service benefit per unit rate and prices

for using per unit physical link and node resources,
respectively;

• {ds, df } are the demanded service rate of s, and the re-
quired computing resources to instantiate f , respectively;

• {O(u), I(u)} are the outgoing and incidental links of
physical node u, respectively;

• {euv, li j} are the physical link connecting node v from
node u and virtual link connecting VNF j from VNF i,
respectively.

In this example, we aim to maximize the time-averaged
system revenue f̄ under a given time-averaged link cost budget
c̄ (i.e., only one constraint, ḡ

(
π+, {π

t
−}
∞
t=0

)
≤ c̄, for (7)). Specif-

ically, Constraints (29) and (33) enforce the admission control

6Take minus to change to a minimization problem as defined in our models.

on correlated variables; (30) – (32) bound the capacities of
corresponding link and node resources; (34) expresses the
single-path flow conservation [45].

The proposed solution is compared with three existing
reference algorithms, Current-Greedy (CG) [46] and Predic-
tion Average Approximation (PAA) and Learning Augmented
Optimization (LAO)+CG. In CG, slicing decisions are made
only to optimize instant system revenue while guaranteeing
that the resource cost constraint is not violated under the
current network state. PAA can be viewed as an extension of
SAA with next Wt predictions to approximate the deployment
policy in T4S. The slice running control policies in PAA
are then constructed to best respond to the predicted mean
states. In contrast, in our proposed approach (LAO), the slice
deployment policy is first derived through DSAA. Thereon,
the deployed slices are adaptively operated with Lyapunov
stability and misloading calibration scheme. In light of the
separate efficacy of the slice deployment and running control
policies in LAO, we further exam the combinations of the
proposed slice deployment policy with CG based slice running
control policy (for clarity, this is called LAO+CG).

We first evaluate the system by drawing system realizations
randomly according to the corresponding fading distribution
models. For simplyfication, we directly compare the perfor-
mance of PAA under the approximation with Wt error-free
predictions, which is an upper bound that PAA can achieve. We
first implement the historical learning in LAO with a random
sampling strategy (i.e., directly sampling future realizations
at random from upfront observations) to show the model
robustness. All compared algorithms were solved under a same
greedy solver, which greedily decides the placement policy πs+
for each s through Benders’ decomposition [40].

All algorithms are measured with the following four perfor-
mance metrics: (1) time-averaged system revenue, (2) time-
averaged system throughput, (3) time-averaged link cost, and
(4) number of actively running slice services. The simulation
parameters are shown in Table I.

TABLE I. Simulation Setup

Parameters Value

cn, n ∈ N
Fixed with an initial value uniformly
distributed within [5,10]

ce, e ∈ E 10Gbps
[kn, ke, bs] [10, 20/Gbps, 100/Gbps]
of VNFs |Fs | 3
Rate demand ds 1–3 Gbps, uniformly distributed
Node resource demand d f 1–3, uniformly distributed
Radio bandwidth 1 GHz
Rician factors 1dB
Power ratio of signal to
noise plus interference Rician: 31.3 dB; Rayleigh: 0 dB

Channel duration T∆ 10
Scheduling interval T 20

B. Time-Averaged System Performance

We first test the time-averaged performance of compared
algorithms when the system is converged. In the following
experiments, We applied Poison arrival process with the arrive

400 500 600 700
50

100

150

200

250

300

T
im

e
-a

v
e
ra

g
e
d
 r

e
v
e
n
u
e

LAO

LAO+CG

PAA

CG

(a)

400 500 600 700
250

300

350

400

450

500

550

T
im

e
-a

v
e
ra

g
e
d
 l
in

k
 c

o
s
t

LAO

LAO+CG

PAA

CG

(b)

Fig. 4. Performance comparisons with V = 50,Wt = 40: a) Time-averaged
revenue, b) Time-averaged link cost.

rate = 20 per T and average service lifespan Ts = 40 for the
received network slice requests.

In Fig. 4, we plot the compared time-averaged objective
value (i.e., system revenue) as a function of cost budget c̄.
We observe that the proposed slicing solution achieves an
obvious system performance improvement over the compared
algorithms in all cases. Moreover, under all cases, the con-
verged time-averaged cost constraint is well preserved. Such
improvement manifests particularly when the system is greatly
limited by the cost budget constraint. For the best case, say
c̄ = 400 in Fig. 4(a), LAO gains even up to 2.6×, 1.63×
and 1.37× better performance than CG, LAO+CG and PAA,
respectively. This can be interpreted as follows:

For CG, the slicing policies only best respond to the instant
network states at the decision time. As a consequence, any
over-optimistic decision will lead to high resource occupations
for maintaining the over-loaded active slices. Likewise, any
over-pessimistic decision will not be able to make full use
of the available cost budget to improve the system perfor-
mance. Benefited from the approximation with the partial
future predictions, these situations are slightly alleviated in
PAA. However, the predicted mean state information still fails
to capture the long-term system evolution and then adapt
itself efficiently. By contrast, with full respect to large history
samples and learned dynamics, the proposed slicing solution
well matches the system dynamics, which finally contributes
the significant system improvements.

C. Solution Feasibility and Convergence Analysis

Fig. 5 presents the real-time average performance. The
achieved numerical results in Fig. 5(c) show that all the
compared algorithms meet the required time-averaged re-
source cost constraint throughout the running. However, this is
achieved in CG and PAA by restricting the real-time resource
cost at each running time slot according to the given observa-
tions and predicted mean state information, respectively. These
drawbacks lead to very low utilization of the available cost
budget. However, combined with the virtual queue based slice
running policy in the proposed solution, the practical running
link cost is below but very close to the given cost budget line.
This confirms the solution feasibility of the proposed slicing
policies, as analyzed in Lemma 1. On the other hand, we
notice from both Fig. 4(b) and Fig. 5(c) that the available cost
budget is always under-exploited for all compared algorithms.

0 50 100 150 200 250 300

t

80

100

120

140

160

180

200

220

240

260

LAO+CG

PAA

CG

LAO

(a)

0 50 100 150 200 250 300

t

7.5

8

8.5

9

9.5

10

10.5

11

11.5

LAO+CG

PAA

CG

LAO

(b)

0 50 100 150 200 250 300

t

280

300

320

340

360

380

400

420

LAO+CG

PAA

CG

LAO

(c)

0 50 100 150 200 250 300

t

4

5

6

7

8

9

10

11

12

13

LAO

LAO+CG

PAA

CG

(d)

Fig. 5. Performance comparisons with V = 50,Wt = 40, c̄ = 400: a) Time-
averaged system revenue till t, b) Time-averaged system throughput till t, c)
Time-averaged link cost till t, d) Number of actively running services across
t.

This is resulted from the suboptimality of the solution to
the T4S program. When an approximate solver is applied
during solving the T4S model, only solutions preserving the
time-averaged cost constraint will be returned. Depending on
the suboptimality gap of the applied approximate solver, the
estimated cost is always inevitably lower than the given cost
budget by a certain value.

Under a feasible slicing solution, Fig. 5(a) and Fig. 5(b)
confirm that the benefits of network providers and the provi-
sioned service throughput are all superior in LAO to the other
three ones. In Fig. 5(d), the serrated changes on the number
of actively running services across t are the results of the
scheduling towards new slice requests and the service expi-
ration of deployed slices. Fig. 5(d) shows that all compared
algorithms maintains nearly same level of service loads when
the overloading and underloading cases are averaged. How-
ever, it shows that a similar loading level in LAO contributes
up to 2.6× better revenue than CG. This indicates that LAO
coordinates the available resources for the competing requests
in a more efficient manner. The degradation of the compared
algorithms results from both the misloading during the slice
deployment phase and the inefficient utilization of cost budget
during the slice running control.

D. Parameter Effectiveness

We now test the parameter effectiveness of our proposal.
Fig. 6 plots the running time-averaged performances under
different V . It shows that the solution superiority of our
proposal is preserved under all values of V . Moreover, all
measured system metrics keep sustainable improvement as V
goes larger, but the improvement gradually vanishes when V
reaches a certain value.

Also revealed in Fig. 6, is the property that the running time-
averaged system performance converges more quickly when
controlled by a smaller V . These results are consistent with
the theoretical analysis in Section V-B and [42]. The choice
of a ‘good’ V depends on the balancing requirements between
the convergence speed and desired system performance, which
is subject to practical applications.

In Fig. 6, we can also observe that there is always a
descending slop during the start-up time along t axis. This
is caused by the service expiration and tear-down of the
deployed services with lifespan less than scheduling interval
(i.e., Ts ≤ T). After a slow warm-up, more active services
with lifespan Ts > T will be accumulated and keep active
in the following scheduling intervals. Since these services,
once deployed, will have impacts throughout their lifespans,
the service lifespan imposes a direct influence on the decision
accuracy of the obtained slicing policies. In next section, we
provide a more detailed analysis on the efficacy of different
service lifespans.

E. Efficacy of Different Service Lifespan

Intuitively, if the deployed services only possess a short
lifespan, say Ts < T , the system will get under-loaded during
the remaining time of a scheduling interval. In contrast, if
Ts � T , say Ts = ∞, the system will keep loading new re-
quests until the system is saturated during the peak networking
status. To illustrate this, we examined three different lifespan
settings Ts = {20, 50, 100}. The performance comparisons are
shown in Fig. 7.

When services with short lifespans are largely loaded as
the case of Ts = 20, Fig. 7 discloses that the system always
maintains very low number of running services, resulting in the
underutilization of available resources. Inversely, if it comes
to the case of Ts = 100, more loaded services only lead
to increased service competition and deteriorates the system
performances. By contrast, Ts = 50 achieves the best control
towards the misloading problem. In practice, the scheduling
interval T is fine-tuned according to the features of provisioned
services.

F. Efficacy of Different learning strategies

Next, we exam the efficacy of deep-learning based pre-
dictions. We first generated 10000 time-series system real-
izations according to the transition setting between Rician
and Rayleigh fading to train the seq2seq LSTM model. The
training is conducted with parameters: {3 hidden layers with
size: 250, optimizor: Adam, 250 epochs, learning rate: 0.005}.
Three learning strategies are tested: random sampling based
learning strategy (i.e., LAO with SAA), LAO with perfect
predictions, and LAO with the seq2seq LSTM based predic-
tions. During test, sample/prediction window size Wt takes the
average lifespans of existing requests to be schedulled as the
value. Fig. 8 shows the results of all compared algorithms.

Fig. 8 reveals that the LSTM based predictions improve the
system revenue by 10% over the SAA strategy, although their
superiority over CG is both preserved. Moreover, provided
with the perfect predictions, LAO with perfect predictions

0 50 100 150 200 250 300

t

100

120

140

160

180

200

220

240

260

V=0.1

V=10

V=50 V=100

V=1

(a)

0 50 100 150 200 250 300

t

280

300

320

340

360

380

400

420

V=0.1

V=1

V=10

V=50

V=100

(b)

0 50 100 150 200 250 300

t

7.5

8

8.5

9

9.5

10

10.5

11

11.5

V=0.1

V=1

V=10

V=100

V=50

(c)

Fig. 6. Performance comparisons of LAO under different V with c̄ = 400,Wt = 40: a) Time-averaged revenue till t, b) Time-averaged link cost till t, c)
Timed-average throughput till t .

0 100 200 300 400 500

t

160

170

180

190

200

210

220

230

240

250

Ts=20

Ts=50

Ts=100

(a)

0 100 200 300 400 500

t

7

8

9

10

11

12

13

14

Ts=20

Ts=50

Ts=100

(b)

0 100 200 300 400 500

t

260

280

300

320

340

360

380

400

420

440

460

Ts=20

Ts=50

Ts=100

(c)

0 100 200 300 400 500

t

2

4

6

8

10

12

14

16

Ts=20

Ts=50

Ts=100

(d)

Fig. 7. Performance comparisons of LAO under different Ts with V = 50, T =
40,Wt = 40, c̄ = 400: a) Time-averaged revenue till t, b) Time-averaged
throughput till t, c) Time-averaged link cost till t, d) Number of actively
running services across t.

achieves a better improvement gain by ∼ 25% over the SAA
strategy. However, the overall improvements of both LSTM
based predictions and perfect predictions over the SAA strat-
egy are not significant. This demonstrates that in systems with
independent and identifical distribution, provided with enough
samples, simple sampling based strategy is already efficient
to approximate the system. The temporal-independent system
realizations used in aboved experiments are often viewed as
highly skewed and unpredictable. Consequently, instead of an
accurate predictions for a short time window, samples that can
better approximate the PDF of system realizations play a more
important role.

VII. CONCLUSION

This paper has highlighted the performance safety problem
of slicing operations when the environment is time-varying
and difficult to track with explicit models due to its complexity

and heterogeneity. Based on the advanced deep learning and
online optimization, we have accordingly developed a learning
augmented optimization approach to learn a safe slicing solu-
tion from both historical records and real-time observations.
We have proved that the feasibility of proposed solution with
a sub-optimality, up to a constant additive factor. Finally, we
have demonstrated up to 2.6× improvement in the simulation
when compared with the referenced algorithms. This work is a
good start to stimulate the further researches on the innovative
use of learning augmented optimization approaches for more
dynamic and stochastic networking problems.

APPENDIX A
PROBABILISTIC BOUNDS

Proposition 1: Assume f is linear with respect to the ergodic
process ωt . Let π∗+ be the optimal solution of T3S achieved
through some ‘genius’ algorithm that knows the true system
trajectory {ωt }

∞
t=1 a-priori. Then, we have

f̄
(
{πt−}

W
t=0 | π̌+

)
≥ f̄

(
π∗+, {π

t
−}
∞
t=0

)
≥ E

[
f̄
(
π̂∗+, {π

t
−}

Wt

t=0
)]

(35)

E
[

f̄
(
π̂∗+, {π

t
−}

Wt+1
t=0

)]
≥ E

[
f̄
(
π̂∗+, {π

t
−}

Wt

t=0
)]

(36)

where π̌+ is a fixed policy obtained by some approximation
procedure, e.g., solving T4S with W samples; π̂∗+ is the optimal
solution of T4S under the samples {ω̂t }

Wt

t=1.

Proof. First, under any feasible deployment policy, say π̌+,
the achievable value f̄

(
{πt−}

∞
t=0 | π̌+

)
is clearly a rigor-

ous upper bound on f̄
(
π∗+, {π

t
−}
∞
t=0

)
. As presented in [40],

f̄
(
{πt−}

∞
t=0 | π̌+

)
can be estimated by solving the resultant

continuous program under a large set of historical samples.
Therefore, the left-side inequality in (35) can provides an
upper bound estimation towards the true objective value. The
right-side inequality of (35) shows a probabilistic lower bound,
which can be calculated by solving a set of sampled instances
of T4S. This is proved as follows.

(a) (b) (c)

Fig. 8. Performance comparisons with V = 50, Ts = 40, c̄ = 400: a) Time-averaged system revenue till t, b) Time-averaged system throughput till t, c)
Time-averaged link cost till t .

According to the definition of (4), we can have

f̄
(
π∗+, {π

t
−}
∞
t=0

)
= min lim

t→∞

1
t

t−1∑
τ=0
E
[

f (π+, πτ−, ωτ)
]

(37)

= min
π
E
[

lim
t→∞

1
t

t−1∑
τ=0

f (π+, πτ−, ωτ)
]

(38)

(a)
= min

π

1
Wt + 1

E
[Wt∑
t=0

f (π+, πt−, ωt)
]

(39)

≥ E
[

min
π

1
WT + 1

Wt∑
t=0

f (π+, πt−, ωt)
]

(40)

(b)
≥ E

[1
Wt + 1

Wt∑
t=0

f (π̂∗+, π
t
−, ωt)

]
(41)

= E[f̄ (π̂∗+, {π
t
−}

Wt

t=0)] (42)

where (a) follows with the ergodic theorem [47]; (b) follows
since π̂∗+ is the optimal solution of the T4S model.

Next, we prove the monotonic feature of E
[

f̄
(
π̂∗+, {π

t
−}

Wt

t=0
)]

with respect to Wt as follows:

E
[

f̄
(
π̂∗+, {π

t
−}

Wt+1
t=0

)]
= E

[
min
π

1
Wt + 2

Wt+1∑
t=0

f (π+, πt−, ωt)
]
(43)

= E
[

min
π

1
Wt + 2

Wt+1∑
t=0

1
Wt + 1

Wt+1∑
τ=0,τ,t

f (π+, πτ−, ωτ)
]

(44)

≥
1

Wt + 2

Wt+1∑
t=0
E
[

min
π

1
Wt + 1

Wt+1∑
τ=0,τ,t

f (π+, πτ−, ωτ)
]

(45)

=
1

Wt + 2

Wt+1∑
t=0
E
[

min
π

1
Wt + 1

Wt∑
τ=0

f (π+, πτ−, ωτ)
]

(46)

≥ E
[

f̄
(
π̂∗+, {π

t
−}

Wt

t=0
)]

(47)

Proof ends. �

ACKNOWLEDGMENT

The work of Xiangle Cheng is partially supported by the
China Scholarship Council for the study at the University of
Exeter. This work is also partially supported by the UK EPSRC
project (Grant No.: EP/R030863/1).

REFERENCES

[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing & softwarization: A survey on principles, enabling technologies
& solutions,”, IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2429–
2453, third quarter, 2018.

[2] P. Rost et al., “Network slicing to enable scalability and flexibility in
5G mobile networks,” IEEE Commun. Mag., vol. 55, no. 5, pp. 72—79,
May 2017.

[3] 3GPP Release 15 specifications, http://www.3gpp.org/release-15, June,
2018.

[4] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Trans. Netw. Service Manage., vol. 13,
no. 3, pp. 518–532, Sept. 2016.

[5] A. Osseiran et al., “Scenarios for 5G mobile and wireless communica-
tions: the vision of the METIS project,” IEEE Commun. Mag., vol. 52,
no. 5, pp. 26–35, May 2014.

[6] M. R. Akdeniz et al., “Millimeter wave channel modeling and cellular
capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp.
1164–1179, Jun. 2014.

[7] R. Li et. al., “Intelligent 5G: when cellular networks meet artificial
intelligence,” IEEE Wireless Commun., vol. 24, no. 5, pp. 175–183, Oct.
2017.

[8] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Optimal VNFs
placement in CDN slicing over multi-cloud environment,” in IEEE J.
Sel. Areas Commun., vol. 36, no. 3, pp. 616–627, Mar. 2018.

[9] Z. Liu, S. Wang, and Y. Wang, “Service function chaining resource
allocation: A survey,” Cornell Univ. Library, arXiv: 1608.00095, 2016.
[Online]. Available: https://arxiv.org/pdf/1608.00095.pdf.

[10] T. Taleb, M. Bagaa, and A. Ksentini, “User mobility-aware virtual
network function placement for virtual 5G network infrastructure,” in
Proc. IEEE ICC, Jun. 2015, pp. 3879—3884.

[11] Y. L. Lee, J. Loo, T. C. Chuah, and L. Wang, “Dynamic network slicing
for multitenant heterogeneous cloud radio access networks,” IEEE Trans.
Wireless Commu., vol. 17, no. 4, pp. 2146–2161, April 2018.

[12] M. Leconte et. al., “A resource allocation framework for networkslicing,”
in Proc. INFOCOM, April 2018.

[13] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in Proc. IEEE INFOCOM 2016, Apr.
2016, pp. 1–9.

[14] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in Proc. 10th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2015, pp. 227–240.

[15] X. Cheng, Y. Wu, G. Min, and A. Y. Zomaya, “Network function
virtualization in dynamic networks: a stochastic perspective,” IEEE J.
Sel. Areas Commun., vol. 36, no. 10, pp. 2218–2232, Oct. 2018.

[16] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[17] Y. Jia et al., “Online scaling of NFV service chains across geo-
distributed datacenters,” IEEE/ACM Trans. Netw., vol. 26, no. 2, pp.
2008–2025, April 2018.

[18] G. Even, M. Medina, G. Schaffrath, and S. Schmid, “Competitive and
deterministic embeddings of virtual networks,” Theoretical Computer
Science, vol. 496, pp. 184–194, July 2013.

[19] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems, San Rafael, CA, USA: Morgan
and Calypool, 2010.

[20] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network op-
timization with unknown variables: multi-armed bandits with linear
rewards and individual observations”, IEEE/ACM Trans. Netw., vol. 20,
no. 5, pp. 1466–1478, Oct. 2012.

[21] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3604, Dec. 2016.

[22] L. Huang, M. Chen, and Y. Liu, “Learning-aided stochastic network
optimization with state prediction,” IEEE/ACM Trans. Netw., vol. 26,
no. 4, pp. 1810–1820, Aug. 2018.

[23] M. J. Neely, “Distributed stochastic optimization via correlated schedul-
ing,” IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 759—772, April 2016.

[24] M. Wang et al., “Smart Exploration in HetNets: Minimizing Total Regret
with mmWave,” in Proc. IEEE Int. Conf. Sens., Commun. Netw., June
2016.

[25] Y. Sun, S. Zhou, and J. Xu, “EMM: Energy-Aware Mobility Manage-
ment for Mobile Edge Computing in Ultra Dense Networks,” IEEE J.
Sel. Areas Commun., vol. 35, no. 11, pp. 2637–2646, Nov. 2017.

[26] S. Uryasev, P. M. Pardalos, Stochastic Optimization: Algorithm and
Applications, Kluwer Academic: Norwell, MA, USA, 2001.

[27] A. Ben-Tal and A. Nemirovski, “Robust optimization – methodology
and applications,” Math. Program., Ser. B, no. 92, pp. 453–480, 2002.

[28] S. Deb and P. Monogioudis, “Learning-based uplink interference man-
agement in 4G LTE cellular systems,” IEEE/ACM Trans. Netw., vol. 23,
no. 2, pp. 398–411, April 2015.

[29] Q. Zheng et al., “Delay-optimal virtualized radio resource scheduling
in software-defined vehicular networks via stochastic learning,” IEEE
Trans. Veh. Technol., vol. 65, no. 10, pp. 7857–7867, Oct. 2016.

[30] R. Wen et al., “Robust network slicing in software-defined 5G networks,”
Proc. GLOBECOM, Dec. 2017, pp. 1–6.

[31] C. Jiang et al., “Machine learning paradigms for next-generation wireless
networks,” IEEE Wireless Commun., vol. 24, no. 2, pp. 98–105, April
2017.

[32] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer Networks,” in Proc.
NIPS, Dec. 2015.

[33] J. S. P. Roig, D. M. Gutierrez-Estevez, and D. Gunduz, “Manage-
ment and orchestration of virtual network functions via deep rein-
forcement learning,” IEEE J. Sel. Areas Commun., in press, DOI:
10.1109/JSAC.2019.2959263, 2019.

[34] R. Mijumbi, et al., “A connectionist approach to dynamic re-
source management for virtualised network functions,” in Proc. 12th
IEEE/IFIP/ACM Int. Conf. Netw. Service Manag., 2016, pp. 1–9.

[35] A. S. Jacobs, “Artificial neural network model to predict affinity for
virtual network functions,” IEEE/IFIP Network Operations and Man-
agement Symposium, 2018.

[36] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” in IEEE Trans.
Netw. Service Manag., vol. 13, no. 4, pp. 725—739, Dec. 2016.

[37] G. Even, M. Rost, and S. Schmid, “An approximation algorithm for path
computation and function placement in SDNs,” In Proc. SIROCCO, July
2016, pp. 374–390.

[38] C. Liang and F. R. Yu, “Wireless network virtualization: a survey, some
research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 358–380, first quarter 2015.

[39] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. NIPS, 2014.

[40] H. M. Bidhandi and J. Patrick, “Accelerated sample average approxima-
tion method for two-stage stochastic programming with binary first-stage
variables,” Appl. Math. Model., vol. 41, pp. 582–595, Jan. 2017.

[41] W.-K. Mak, D.P. Morton, and R.K. Wood, “Monte carlo bounding
techniques for determining solution quality in stochastic programs,”
Operations Research Letter, vol. 24, no. 1, pp. 47–56, Feb. 1999.

[42] M. J. Neely, “A simple convergence time analysis of drift-plus penalty
for stochastic optimization and convex programs,” arXiv preprint
arXiv:1412.0791, 2014. [Online]. Available: https://arxiv.org/pdf/1412.
0791.pdf

[43] G. L. Stuber, Principles of Mobile Communication, Second Edition,
Kluwer Academic Publishers, 2001.

[44] 5GMF White Paper, 5G Mobile Communications Systems for
2020 and beyond, 2016, [Online]. Available: http://5gmf.jp/wp/wp-
content/uploads/2016/09/5GMF WP101 All.pdf.

[45] Y. Dinitz, N. Garg, M. X. Goemans, “On the single source unsplittable
flow problem,” Proceedings of the 39th Symposium on the Foundations
of Computer Science, Palo Alto, CA, 1998, pp. 290–299.

[46] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in Proceedings of IEEE
INFOCOM, 2006.

[47] P. Z. Peebles, Probability, Random Variables and Random Signal Prin-
ciples. New York, NY, USA: McGraw-Hill, 1993.

Xiangle Cheng received the M.Sc. degree in com-
munication and information system from Southwest
Jiaotong University, Chengdu, China in 2015. He is
currently a Ph.D. candidate in Computer Science at
the University of Exeter, UK. His research inter-
ests include 5G SDN/NFV, Network AI, Stochas-
tic & Neural Combinatorial Optimization, Intelli-
gent Wireless Networks and Mobile Computing,
and Dynamic System Modelling and Performance
Optimization.

Yulei Wu is currently a Senior Lecturer with the
Department of Computer Science, College of Engi-
neering, Mathematics and Physical Sciences, Uni-
versity of Exeter, U.K. He received the B.Sc. degree
(1st Class Hons.) in Computer Science and the Ph.D.
degree in Computing and Mathematics from the Uni-
versity of Bradford, U.K., in 2006 and 2010, respec-
tively. His expertise is on networking and his main
research interests include autonomous networks, in-
telligent networking technologies, edge computing,
network slicing and softwarization, SDN/NFV, green

networking, wireless networks, network security and privacy, and analytical
modelling and optimization. His research has been supported by Engineering
and Physical Sciences Research Council (EPSRC) of U.K., National Natural
Science Foundation of China (NSFC), University’s Innovation Platform and
industry. He is an Editor of IEEE Transactions on Network and Service
Management, Computer Networks (Elsevier) and IEEE Access. He is a Senior
Member of the IEEE, and a Fellow of the HEA (Higher Education Academy).

Geyong Min is a Professor of High Performance
Computing and Networking in the Department of
Computer Science within the College of Engineer-
ing, Mathematics and Physical Sciences at the Uni-
versity of Exeter, United Kingdom. He received the
PhD degree in Computing Science from the Univer-
sity of Glasgow, United Kingdom, in 2003, and the
B.Sc. degree in Computer Science from Huazhong
University of Science and Technology, China, in
1995. His research interests include Future Inter-
net, Computer Networks, Wireless Communications,

Multimedia Systems, Information Security, High Performance Computing,
Ubiquitous Computing, Modelling and Performance Engineering.

Albert Y. Zomaya is the Chair Professor of High
Performance Computing & Networking in the School
of Information Technologies, University of Sydney,
and he also serves as the Director of the Centre for
Distributed and High Performance Computing. Pro-
fessor Zomaya published more than 550 scientific
papers and articles and is author, co-author or editor
of more than 20 books. He is the Founding Editor
in Chief of the IEEE Transactions on Sustainable
Computing and serves as an associate editor for more
than 20 leading journals. Professor Zomaya served

as an Editor in Chief for the IEEE Transactions on Computers (2011-2014).
Professor Zomaya is the recipient of the IEEE Technical Committee on

Parallel Processing Outstanding Service Award (2011), the IEEE Technical
Committee on Scalable Computing Medal for Excellence in Scalable Com-
puting (2011), and the IEEE Computer Society Technical Achievement Award
(2014), and the ACM MSWIM Reginald A. Fessenden Award (2017). He is a
Chartered Engineer, a Fellow of AAAS, IEEE, and IET. Professor Zomaya’s
research interests are in the areas of parallel and distributed computing and
complex systems.

Xuming Fang received the B.E. degree in electrical
engineering in 1984, the M.E. degree in computer
engineering in 1989, and the Ph.D. degree in com-
munication engineering in 1999 from Southwest
Jiaotong University, Chengdu, China. He was a
Faculty Member with the Department of Electrical
Engineering, Tongji University, Shanghai, China, in
1984-1985. He then joined the School of Informa-
tion Science and Technology, Southwest Jiaotong
University, Chengdu, where he has been a Professor
since 2001. He held visiting positions with the Insti-

tute of Railway Technology, Technical University at Berlin, Berlin, Germany,
in 1998 - 1999, and with the Center for Advanced Telecommunication Systems
and Services, University of Texas at Dallas, Richardson, in 2000 - 2001.
He has published more than 200 high-quality research papers in journals
and conference publications. He has authored or coauthored five books
or textbooks. His research interests include wireless resource management,
mmWave communications, and wireless communications for high speed
railway. Dr. Fang is the editor of several journals including IEEE Transactions
on Vehicular Technology.

