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Abstract
Strong coupling of molecules placed in an optical microcavity may lead to the

formation of hybrid states called polaritons; states that inherit characteristics of

both the optical cavity modes and the molecular resonance. This is possible for

both excitonic and vibrational molecular resonances. Previous work has shown

that strong coupling may be used to hybridize different excitonic resonances,

this can be achieved when more than one molecular species is included in the

cavity. In this thesis I show that under suitable conditions different molecular

vibrational resonances of the same molecular unit may also be coupled together,

the resulting polariton having characteristics of all vibrational resonances. I will

also demonstrate strong coupling between surface plasmon resonances and mo-

lecular vibrational resonances of polymethylmethacrylate (PMMA) molecules

in the mid-infrared range through the use of grating coupling, compliment-

ing earlier work using microcavities and localised plasmon resonances. Many

experiments involving strong coupling make use of metal-clad microcavities,

ones with metallic mirrors. Metal-clad microcavities are well known to support

coupled plasmon modes in addition to the standard microcavity mode. How-

ever, the coupled plasmon modes associated with an optical microcavity lie

beyond the light-line and are thus not probed in typical experiments on strong

coupling. I will investigate, through experiment and numerical modelling,

the interaction between molecules within a cavity and the coupled plasmon

mode and I will show that such modes do undergo strong coupling, making

use of grating coupling to provide an experimental demonstration. Overall,

light-matter hybridization offers many new opportunities for the molecular and

materials sciences. It works in the absence of light, it is simple to implement,

and its full potential is waiting to be explored.
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Chapter 1

Introduction, Outline and

Motivation

The physics of the light-matter interaction is frequently defined in either weak or

strong coupling. In strong coupling, new light-matter hybrid states are created

as energy is exchanged between light and mater on a time scale faster than any

decay process exchange energy faster than any decay process. The new hybrid

states formed in this way are known as polaritons, and the splitting in energy

between the polariton levels is referred as Rabi splitting. This is possible for

both excitonic and vibrational molecular resonances. Previous work has shown

that strong coupling may be used to hybridize different excitonic resonances.

Here I show that under suitable conditions different molecular vibrational

resonances of the same molecular unit or of different molecular units may also

be coupled together, the resulting polariton having characteristics of all of the

vibrational resonances. The important condition which determines vibrational

strong coupling is,
√

N
V , where N is total number of molecules and V is the

mode volume of the system. However the molecule couple with light is not just

inherent to the chemical properties of the molecule. In this thesis these aspects

of strong coupling are explained:
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1. Strong coupling involving multiple vibrational modes of the same molecular

species.

2. Vibrational strong coupling involving surface plasmons and the presence of

surface plasmon stop bands.

3. Vibrational strong coupling involving the coupled plasmon mode in below

cut-off cavities.

I have divided my thesis into 8 chapters.

Chapter 2 is focused on an introduction to the basics of light-matter interac-

tions.

Chapter 3 is focused on the different experimental i.e. Fourier Transform

Infrared Spectroscopy (FTIR), Electron Beam Lithography (EBL), Thermal evap-

oration, Atomic Force Microscopy (AFM) and computational techniques i.e

COMSOL used in the work represented in this thesis.

In chapter 4, I will discuss my results on strong coupling of multiple vibra-

tional resonances of the same molecular unit with confined light fields. The

results indicate opening a path to greater control of molecular systems and

molecular processes via vibrational strong coupling.

Chapter 5 is dedicated to show strong coupling of molecular surface plas-

mons and to the presence of surface plasmon stop bands. In this chapter, I will

present experimental and numerical results which show that surface plasmon

modes provide convenient open cavities for vibrational strong coupling experi-

ments. Further I will show that surface plasmon stop bands which are formed

under appropriate conditions also strong coupling.

Chapter 6 is focused on vibrational strong coupling in a metal clad microcav-

ity below cut-off. Metal-clad microcavities support a coupled surface plasmon
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mode, which appears to have been ignored in previous work on strong coup-

ling, probably because it exists beyond the light-line. In this chapter, through

the addition of a grating to the microcavity structure, I show that this coupled

plasmon mode also interacts with molecular resonances to produce hybrid

polariton modes.

Chapter 7 discuses strong coupling involving photochromatic system. Shin-

ning UV light converts spiropyan to merocyanine. So, strong coupling can be

switched from no coupling to strong coupling by just shinning UV light. I will

also talk about our initial results of strong coupling using Raman spectroscopy.

In Chapter 8, I will conclude with a discussion on manipulate vibrational

resonances in a richer and subtler way than previously considered, opening

a path to greater control of molecular systems and molecular processes via

vibrational strong coupling.
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This chapter provides an introduction to the basics of light-matter interac-

tions relevant to the work carried out for this thesis. In this chapter, I will focus

on light-matter vibrational strong coupling. I will present brief background

of strong coupling and will talk about the important stages in the emergence

of this field. In strong coupling, the interaction between light and matter is

such that new hybrid states are formed, part light and part matter, these hybrid

states are called polaritons- see Figure 1.3 below.

Experimental results on strong coupling of light with vibrational modes will

be a particular focus, highlighting the need to explore this area further for both

applications as well as for the fundamental science. Intra-molecular vibrational

motions can be described as a superposition of simple harmonic vibrations, so

called molecular normal modes.

1.1 Light-matter strong coupling

Hybrid system of light and matter coupling modifies the behaviour and physical

properties of the matter. The quasi-bosonic nature of the polaritons has guided

researcher towards low threshold lasers and photoluminescent devices [1, 2].

1.1.1 Exciton-polariton

One type of strong coupling is when energy is exchanged between excitons and

a confined light field, in this case the polaritons are called exciton-polaritons.

To allow this energy exchange, the system has to have a low energy loss rate.

The energy loss rate can be calculated from the absorption peak width of the

exciton transition. If the peak width is small, the energy loss will also be low.

Most of the experiments done in the past involved narrow absorption exciton
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peaks, thus excitons make exciton good candidates for hybridisation involving

exchanging of energy with a confined field.

As an example recently H. Fernandez et al. [3] has showed electrical control

over the energy exchange between exciton state and cavity polaritons at the

room temperature. They designed a tunable Fabry-Perot microcavity and

placed WS2 and MoS2 monolayers in it. They showed strong modulation of the

Rabi splitting that modifies excitonic and photonic nature of exciton-polariton

by tuning the free carrier density in the WS2.

To understand the light-matter interactions better, let us discuss light field

confinement and the conditions under which this could happen.

1.1.2 Light field confinement

Hybrid light-matter is formed when there is an energy exchange between an

electromagnetic light field and material resonance. The energy exchange rate

between the two has to be faster than rate at which the total energy of the

system dissipates. To have a higher energy exchange rate, there are two factors

which play the important role. First is quality factor Q of the system and the

other is the confined mode volume V.

The first and foremost condition for higher energy exchange is the quality

factor. The quality factor of the system is defined by Q = ωc
∆ωc

where ∆ωc is

the full width half maximum of the resonant frequency ωc. It can be calculated

from the transmission/reflection of an infrared source. The higher the Q factor

the lower the losses. By depositing good smooth quality mirrors, the Q of the

system can be improved.

The second parameter is the mode volume V of the system. It depends on

confining the electromagnetic field to a smaller volume, such as in the localised
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field i.e. optical microcavity or in structured array i.e plasmonic array. In the

confined light fields associated with metallic nanoparticles, the mode volume is

less but the energy losses are higher and in some photonic crystals, the energy

loss is low but the mode volume is high. Therefore microcavities are considered

a reasonable compromise as I can confine field the inside the microcavity tightly,

and by depositing smooth metal layers, we can reduce the losses of the system

as well.

1.2 Study of molecular vibrations

Infrared radiation may cause some molecular bonds to vibrate. Any molecule

above absolute zero vibrates. If there is an electronegativity difference across

this bond then by definition, there must be a dipole. So, if the molecule vibrates,

the dipole moment will change. A changing dipole moment will result in an

oscillating electric field and that’s how the molecular vibration couples to the

electromagnetic field.

A sketch of the structure of a A=B molecule is shown in figure 1.1 (a).

FIGURE 1.1: (a) molecule A=B in equilibrium state (b) when mo-
lecule couples with electromagnetic field
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Molecule vibration is a stretching or the bending or changing shape of

the molecule in question. When the molecule comes into contact with the

electromagnetic wave and if the molecule vibrates then it may stretch or bend

depending on direction of the electric field intensity as shown in figure 1.1 (b).

When the molecule is not in contact with the electromagnetic field (figure

1.2 (a) ) then it remains in the ground state and there is no change in the shape

or the size of the molecule, shown in figure 1.2 (b). If the molecule comes in

contact with the electromagnetic field (figure 1.2 (c)) then the size or shape of

the molecule changes and that means that it has gained energy and has moved

to the excited state as shown in figure 1.2 (d).
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FIGURE 1.2: Molecular vibrations dynamics. (a) when electro-
magnetic light is not in contact with molecule (b) the molecule
inside the microcavity remains in the same position (c) when elec-
tromagnetic source interacts with the molecule (d) the change in

the molecule position is observed.

When the energy of the molecule changes that means the dipole moment

of the molecule has changed. The dipole moment provides information about

the size and direction of the charge separation. If atoms in huge number comes

in contact with electromagnetic field then it will be excited, it’s the same for

the molecule vibration but in the infrared regime. Now, infrared doesn’t carry

the energy to excite electronic states, however it does carry enough energy to

excite vibrational states. The molecule can be excited to a very specific energy

level thus only specific wavelengths of the infrared radiation will interact. The
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specific wavelengths are equal to the difference between the ground state and

the specific energy level. Thus, molecular vibration is caused by infrared light

whereas the atomic excitation is caused by UV/visible light. Now to understand

this better, we will look at the energy level diagram for a hybrid system.

FIGURE 1.3: Energy levels in hybrid system of cavity photons and
molecule vibrational mode.

Figure 1.3 shows schematic of hybrid system where cavity photons and

molecule vibrations both have the same energy level and they start exchanging

energy. If the energy exchange is faster than the decay rate of the overall

system then it leads to the formation of hybrid states called polaritons; states

that inherit characteristics of both the optical cavity modes and the molecular

resonance [4]. The electromagnetic field concentrated in the single mode of a

resonator provides in-phase oscillations of all molecular or atomic transitions

in this mode. This leads to the formation of a collective dipole. The eigenvalues

of the Hamiltonian show an increase in the value of splitting according to the

equation

hΩR = hΩ
√

N (1.1)
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where N is the number of the coupled oscillators and h ΩR is the contribution

of each of them. Consequently,

hΩR ∝
√

N
Vm

=
√

C (1.2)

where C is the concentration of matter in the mode volume. Thus, an increase in

concentration can enhance the coupling strength significantly and make it much

easier to observe Rabi splitting experimentally. Thus, although the coupling

strength of a single emitter in a cavity is rather small, the strong coupling regime

can be reached in the cases of both a single emitter and many emitters in various

cavities.

1.3 Strong coupling in an optical microcavity struc-

ture

Strong coupling is attracting increasing attention, in part because of exciting

prospects for modifying chemistry [5–10]. There are two key features associated

with this kind of strong coupling that underlie the surge of recent interest. First,

strong coupling may change molecular energy levels leading, for example, to

modified chemical landscapes [11, 12], and control over photochemistry [13].

Second, strong coupling results in coherent coupling of the molecules, with

prospects, for example, of changing exciton transport [14]. In addition, strong

coupling can be used to modify the transfer of energy between two species

of molecule in a cavity, both where the species are intermixed [15–17] and

where the two species are spatially separated [17, 18]. In the visible regime a

potentially more radical step is to use strong coupling to hybridize excitonic

resonances associated with two different species [17, 19, 20]. Hybridization of
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different vibrational overtones of an excitonic resonance of a single molecular

species has also been achieved [21, 22].

Strong coupling of vibrational modes was first explored using a planar cavity

filled with the polymer polymethyl-methacrylate (PMMA) where the cavity

mode was strongly coupled to the C=O vibrational resonance in the polymeric

material [5, 23]. Several further investigations have since been reported [24–31],

involving vibrational resonances in liquids [32], transition metal complexes [31]

and liquid crystals [33]. Strong coupling of vibrational resonances has also been

reported to help catalyse and inhibit chemical reactions [34] and to control the

nonlinear optical response in the infrared [35]. Two-dimensional spectroscopy

of molecular vibrations in an optical microcavity have also been explored [36,

37]. Detailed version of this type of system is discussed in chapter 4.

1.4 Strong coupling in plasmonic structure

Recent work has highlighted the important role played by the sub-band of vibra-

tional states in strong coupling involving excitonic resonances [38]. In addition

to their important role in excitonic strong coupling, vibrational resonances may

themselves undergo strong coupling. This may be accomplished by placing the

molecules in a confined light field that has a resonance at a suitable infrared

frequency. This has already been demonstrated using planar microcavities [5,

23], and using surface plasmon resonances, both propagating [28] and localized

[39] to produce confined light fields.

In this thesis I will investigate the strong coupling of vibrational molecular

resonances with the infrared surface plasmon modes associated with metal

surfaces. I will make use of periodic grating structures to probe (momentum

match to) the hybrid polariton modes that arise from such strong coupling. In
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addition to allowing momentum matching, the grating nature of the metallic

surface also modifies the dispersion of the surface plasmon modes, introducing

surface plasmon stop-bands [40–42]. This extra degree of freedom allows me to

make a first exploration of the interaction of surface plasmon stop bands and

hybrid vibro-polariton states produced via strong coupling.

Most experiments on strong coupling with ensembles of molecules involve

planar microcavities, the molecules being placed between two mirrors that

are either metallic [43] or based on distributed Bragg reflectors [44]. Whist

very effective in producing strong coupling, planar microcavities do not allow

easy access to the molecules they contain. The edges of such cavities can be

accessed [45], but it would be preferable to gain fuller access to the molecules

involved. Surface plasmons provide an excellent alternative confined light field

for strong coupling [46], one that is broad-band in nature. Although strong

coupling of surface plasmon modes to excitonic molecular resonances is well

explored, indeed it goes back many years [47], strong coupling of vibrational

resonances with the surface plasmon modes of planar metal films is much less

explored [28]. Through a combination of experiment and numerical model-

ling, I will show how surface plasmon modes may be strongly coupled with

vibrational molecular resonances. Detailed version of this type of system is

discussed in chapter 5.

1.5 Applications

Light-matter hybridization offers new opportunities for the molecular and

materials sciences. It works in the absence of light and it is simple to implement

which guides many of the applications, a few of them are listed below.
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1.5.1 Enhanced IR absorption

Enhanced IR absorption Strong coupling in micro cavity in the MIR spectral

region have wide applications, including exploration of energy transfer between

light and matter, and are ideal for tunable MIR sources. Recently George et

al. [32] have shown that liquid phase strong coupling can be simply achieved

provided peak absorption has sufficient strength to overcome dephasing time.

They have shown that strong coupling could be used to regulate chemical

physical properties and precisely control energy states for each molecule [48].

1.5.2 Resonant Raman scattering

Resonant Raman scattering Raman is inelastic scattering between light and

a medium. When a particular laser frequency irradiates the sample surface,

the material absorbs energy and then scatters the light to a lower frequency.

Molecules with different structures and vibration modes have specific Raman

spectra, the frequency change is thus specific to the scattering material. Thus,

Raman scattering spectra are called fingerprint spectra, identifying molecular

material types according to this principle [49].

In the next chapter I will focus on fundamentals. I will mainly talk about

surface plasmon modes, surface plasmon polariton modes, dispersion plots.
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Chapter 2

Background theory

In this chapter, I will discuss the backgroun theory used in the thesis. On the

theoretical side includes the Lorentz model to account for the optical response

of a dielectric that includes a resonant absorption. Let’s start with surface

plasmon.

2.1 Surface plasmon

Surface plasmons are electromagnetic excitations that propagate along the

interface between dielectric and metal. When it comes to metals, the plasma

frequency is in the UV range, depending on the metal band structure. To

understand the principle of measurements, we will start with Kretschmann’s

configuration.

The schematic for the Kretschmann’s configuration is shown in Fig. 2 (a). The

setup consists of a monochromatic beam of Transverse Magnetic (TM) polarized

light from a laser with vaccum (with relative permittivity of εd ) wave vector
−→
kd

incident on a face of a dielectric prism (shown in light blue color) of permittivity

ε, and εs > εd. Due to the change in permittivity from εd to εs, the wave vector

of the light inside the dielectric prism changes from~kd to~ks as shown in Fig.
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FIGURE 2.1: (a) Shows the schematic of Kretschmann’s configura-
tion for the excitation of surface plasmons. (b) Possible reflected
intensity profile when the dielectric prism is not coated with a
thin layer of metal (Black curve) and coated with a thin layer of

metal (Red curve).

2(a). Let the wave vector of the light inside the dielectric prism be decomposed

into two Cartesian components kx along the x -axis and kx along the z -axis. If

the dielectric prism (shown in light blue color) is coated with a very thin metal

of permittivity of εm shown in yellow in Fig. 2 (a), such that the thickness of the

metal layer (in z-direction) is relatively small compared to the wavelength of the

incident light, then, tunneling of light across the metal layer occurs leading to a

portion of light traveling to the top interface between the metal and vacuum.

By starting with an electromagnetic wave having
(
Ex, Hy, Ez

)
components cor-

responding to the TM polarization, one can apply the continuity boundary

condition at the top metal/vacuum interface, according to which the parallel

components of the E and H fields are continuous. This will lead to the relation-

ships
kx( cemal )

εmal
= kscemaum

εd
and kx( metreet reach

)
= kd

√
εxεd

εm+εd
. The kx( read-temed

)
corresponds to the x -component of the wave vector of fields setup at the top

interface between metal and vacuum, and physically, this corresponds to the

wave vector of surface plasmon resonance at that interface. The actual meaning

of the relationship is that if the x-component of the wave vector, namely kx

of the incident monochromatic is changed (kx may be changed by changing

the angle of . incidence of monochromatic beam of light thereby changing the
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Cartesian components kx and kx while maintaining the same total wave vector

k̂x ), for some value of kx, the light may be coupled to collective oscillations of

the electron cloud on the top interface between metal and vacuum. It can be

proven that, for such a coupling between incident TM polarized monochromatic

beam of light and collective oscillations of electron cloud to occur, the angle

at which the light arrives at the interface of dielectric prism and metal layer,

should be greater than the critical angle of incidence at the interface of dielectric

prism and vacuum (assuming that the metal layer is not present).

An experimental setup corresponding to the Kretschmann’s configuration

may consist of a laser source producing the incident beam of monochromatic

light, that illuminates a dielectric prism coated with a thin layer of metal. A

photodetector can be used to measure the intensity of the reflected beam. The

angle of incidence can be changed by moving the laser and correspondingly,

the angle of reflection changes following the law of reflection. In order to

record the intensity of the reflected light, the photodetector should also be

correctly positioned at the correct angle of reflection. This means that, in a real

time experiment, the laser and photodetector would move such that angle of

incidence varies and the angle of reflection at all instances of time should be

equal to the angle of incidence. Fig. 2(b) shows the possible intensities detected

by the photodetector for two cases. The curve in black shows the intensity

profile of the reflected beam that would be recorded by the photodetector, when

the dielectric prism is not coated with a metal. The curve indicates that upto

the critical angle, almost all of the light is transmitted and beyond the critical

angle, almost all the light is reflected to the photodetector. The red curve of

Fig. 2(b) shows the possible intensity profile that would be recorded by the

photodetector, when the dielectric prism is coated with a thin layer of metal. For

almost all the angles of incidence, the entire light is reflected back in this case,
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except for a small range of angles of incidence, wherein a drop in reflectivity is

observed. This drop in reflectivity at a small range of angles of incidence, when

the dielectric prism is coated with a metal, is attributed to the coupling of light

to collective oscillations of the electron cloud or Plasmons at the metalvacuum

interface.

FIGURE 2.2: Dispersion characterisations of SPP (red curve),
dielectric (green curves), and vacuum (blue curves). The dotted
curves do not account for the angle of incidence while calculat-
ing kx whereas the solid curves take into account the angle of

incidence while calculating kx.

Fig. 2.3 shows the calculated dispersion characteristics (ω vs kx) for different

cases. The dotted blue curve in Fig. 2.3 corresponds to the dispersion curve

of vacuum (or free space) and is calculated simply using ω = ckx, where

c is the velocity of light in vacuum. The solid blue curve is the calculated

dispersion curve of vacuum considering some angle of incidence in vacuum

and this angle changes the × component of the wave vector namely kx. The

solid blue curve is calculated using ω = ckx sin θ, where θ is some angle of

incidence. Note that the maximum possible value of ω occurs for the case when

the incident wave vector is directed along x axis or equivalently, sin θ = 1,

implying grazing incidence at the interface. The solid red curve in Fig. 2.3

is the dispersion relationship calculated from the expression obtained above
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kx( (mat-mace) = kd

√
εmεd

εm+εd
. It can be seen that as kx continues to increase beyond

a value, the angular frequency ou stabilizes to a fixed value and this value

of the angular frequency corresponds to the resonance frequency (ω∇) of the

metal/vacuum interface. This curve is a little interesting in the sense that

for a fixed resonance frequency say ω∞, the value of the wave vector in the

x -direction can be very high and considering the relationship λx = 2π
kx

, the

wavelength of the collective electron cloud oscillations can be extremely small.

The resonance frequency for most naturally occurring metals is in the visible

and UV frequencies. This implies that at visible frequencies, under resonance,

extremely small wavelengths much smaller than the diffraction limit of the

incident wave can be obtained. Hence these resonances pave way for interesting

opportunities in sub-wavelength diffraction unlimited imaging or focusing

systems. Looking at the red curve and blue curves in Fig. 2.2. we can see

that the blue and red curves do not intersect at any point except at origin.

The intersection of curves is very important in order to understand the term

Coupling. When dispersion curves of two material systems intersect each other

at specific point, energy transfer can occur from one material system to another

and this intersection point is called as Wave Vector Matching (or equivalently

Momentum Matching). It should be noted that the blue curves and red curve

of Fig. 2.2, do not intersect at any point other than the origin. This signifies that

no energy transfer can occur or no coupling can occur from a wave traveling

in vacuum to the plasmons on the metallvacuum interface. The dotted and

solid green curves in Fig. 2.2 indicate dispersion relationship of a dielectric

medium with permittivity higher than vacuum, without and with consideration

of angles of incidence respectively. In this case, permittivity was assumed to be

that of glass (corresponding to the dielectric prism in our earlier discussion). It

is immediately apparent from Fig. 2.2 that the green dotted curve intersects the
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red solid curve, which means that at the point of intersection, wave vectors are

matched and energy transfer (or coupling) can occur. In the prior discussion

about Kretschmann’s geometry, the main requirement for the coupling from

incident light to plasmons are therefore firstly, the permittivity of the prism

should be higher than that of vacuum and secondly, the thickness of the metal

layer on top of the prism should be smaller than the penetration depth of the

evanescent field at the dielectric/vacuum interface.
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2.1.1 Excitation of SPP

There have been different way in which we can excite the surface plasmon

polariton. Here we will mainly focus on two types, 1) Prism Coupling and 2

Grating Coupling.

2.1.1.1 Prism coupling

The prism coupling which is also known as attenuated internal reflection which

involves the coupling of the SPP to the electro magnetic evanescent field which

is formed because of the total internal reflection of the light beam at the surface.

FIGURE 2.3: Reflection characteristics on glass/dielectric intertace
(Black curve) and on glassfimetaldielectric intertace (Red curve)

Consider the reflectivity curve shown in Figure 2.3 where the red curve cor-

responds to the excitation of plasmons. This curve is valid for a particular point

on the dielectric/metal interface, whereas in the experimental work performed,
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∼ 2D layer of gold was deposited on the glass substrate. The reflectivity for

such a layer could then be obtained by rotating the red curve in Fig.2.3 about

the y -axis by 360 degrees. This would than mean that in the Kretschmann’s

configuration, normally one would observe a dark ring in a bright background.

A dark ring in a bright background is extremely difficult to observe and study,

since the signal to noise (here signal means dark region corresponding to plas-

mons and noise means bright region not associated with plasmons) is very

poor.

2.1.1.2 Grating coupling

When there is the mismatch in the wavevector between β and in place mo-

mentum, then it can be overcome by using diffraction effects on grating pattern

on the metallic surface.

FIGURE 2.4: (a) Grating pattern with incident wavevector k and
pitch as a.

The condition β = k sin θ ± nG has to be fulfilled where, G = 2π/a is the

reciprocal vector of the grating and n is the positive integer. The SPP dispersion

of the SPP is replicated at interval of G, the grating period. Detailed study of

SPP and dispersion plots will be discussed in chapter 4. Now, we will move to

the Lorentz model of the permittivity in next section.
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2.2 Optical response of materials and model para-

meters

2.2.1 Lorentz model of the permittivity

The Lorentz model is a classical theory for the interaction between bound

charges and an electric field. In the Lorentz model, matter is considered to be

composed of point-like electric dipoles [50]. The dipoles respond harmonically

to an applied oscillating EM field, for example the confined filed associated

with an optical microcavity. Supposing that each electron of charge -e, in a

medium is displaced a distance r from its equilibrium position, the resulting

macroscopic polarization density P of the medium [51] is given by,

P = −N
V

er (2.1)

where N
V is the number of dipoles per unit volume . If the local field of the

dipoles is neglected, the equation of motion for a bound electron is,

(
d2r
dt2 + γ

dr
dt

+ ω2
0r
)
= −eE(r, t) (2.2)

where ω0 is the frequency of the harmonic oscillator and γ is a phenomenolo-

gical measure of the damping force.

If I now suppose that the applied electromagnetic field varies harmonically

with time according to the usual factor eiωt then within the normal dipole

approximation, the EM field is constant in r since the electron movement is

small compared to the wavelength of the EM field at the scale of visible/IR

light, so that,

m
(
−ω2 − iωγ + ω2

0

)
r = −eE (2.3)
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here m is the mass of electron. Consequently, the polarization in equation 3.1, is

given by,

P =
Ne2

Vm
1

ω2
0 −ω2 − iωγ

E (2.4)

The linear polarization is defined as,

P = ε0χE, (2.5)

where ε0 is the vacuum permittivity,and χ is the macroscopic electric susceptib-

ility. I thus obtain,

χ(ω) =
A

ω2
0 −ω2 − iωγ

, (2.6)

where I have denoted A = Ne2

Vε0m . Since I will often need the permittivity, I

note that the permittivity of the medium is associated with the susceptibility

through,

ε(ω) = 1 + χ(ω) (2.7)

Considering my experimental cases, the momentum-energy k−ω dispersion

[52, 53], e.g. of a transverse EM wave in a Fabry-Perot cavity discussed in

chapter 4, or propagating on the metal surface discussed in chapter 5, can be

written as,

k =
ω

c

√
ε(ω) (2.8)

In terms of the reduced momentum, κ = kc, then,

κ2 = ω2ε(ω) = ω2

(
1 +

A
ω2

0 −ω2 − iωγ

)
(2.9)
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For the case that ω is close to ω0, an approximate version of above equation can

be obtained,

(κ −ω)
(

ω0 −ω− i
γ

2

)
=

A
4

(2.10)

This equation is the well-known dispersion relation for coupling between

material dipoles and and EM field [52]. The two solutions of equation 3.10

correspond to two new normal modes of the system, they are ω+ and ω−, given

by,

ω± =
κ

2
+

ω0

2
− i

γ

4
± 1

2

√
A +

(
κ −ω0 + i

γ

2

)2
(2.11)

At resonance, κ=ω0, so that,

ω± = ω0 − i
γ

4
± 1

2

√
A− γ2

4
(2.12)

This result neglects dissipation of the optical mode. To include such dissipation,

κ can be replaced with κ = −iγOM
2 so as to include the losses associated with the

optical mode [52].

ω± = ω0 − i
γ

4
− i

γOM

4
± 1

2

√
A−

(γ

2
− γOM

2

)2
(2.13)

The energy gap between ω+ and ω− known as the Rabi frequency or Rabi

splitting, is given by,

ΩR =

√
A−

(γ

2
− γOM

2

)2
(2.14)

If the damping and losses of both the material resonance and the optical mode

can be neglected, i.e. in the γ = 0 andγOM = 0 limit, then the Rabi frequency
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becomes,

ΩR =
√

A =

√
N
V

e√
ε0m

(2.15)

This last result is important, it shows how the Rabi splitting depends on

the mode volume and the number density of dipoles (molecules) within the

mode volume. More specifically it shows that to increase the Rabi splitting, i.e.

to increase the strength of the interaction, the number density of resonators

(molecules) within the mode volume needs to be as high as possible [47, 54].

At this point it is useful to make the Lorentz model more specific to the

molecular resonance material of choice in this thesis, the C=O bond in PMMA.

2.2.1.1 Permittivity associated with vibrational mode

To model the optical response of the C=O vibrational mode in PMMA, I make

use of the Lorentz model, and include in a phenomenological way the oscillator

strength f so as to account for the strength of the C=O transition.

For the PMMA I used a model based on C=O Lorentz oscillator, with para-

meters shown in Table 3.1, and with ε∞ taken to be 1.99.

ε(ω) = ε∞ + ∑
j

ω2
j,0 f j

ω2
j,0 −ω2 − iγjω

, (2.16)

For PMMA, the following parameters were found to provide a good match to

the experimentally determined transmittance of PMMA, see figure 3.3,

vibrational mode f j ωj( rad s−1) γj( rad s−1)

C=O (j=1) 0.0165 3.26248× 1014 5× 1012

TABLE 2.1: Lorentz model parameters for the C=O PMMA vibra-
tional mode
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FIGURE 2.5: PMMA permittivity in infrared regime (top) real part
(bottom) Imaginary

With these parameters, the permittivity of PMMA with respect to wavenum-

ber is shown in Figure 2.5.

2.2.1.2 Permittivity of metal

In this thesis much use is made of metal mirrors. For metals there is no reson-

ance frequency since the electrons are free to move i.e. ω0 = 0. The permittivity
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given by the Lorentz model, equation 3.9, thus becomes,

ε(ω) = εb −
ω2

p

ω2 + iγω
, (2.17)

which is also known as Drude-Lorentz model of permittivity.

FIGURE 2.6: Au permittivity in infrared frequency regime

For the material parameters, I made use of a Drude-Lorentz model for the

optical response of the gold, with parameters taken from Olmon et al. [55],

specifically, ωp = 1.29× 1016 rad s−1, and γ = 7.30× 1013 rad s−1, with εb = 1.0.

With these parameters, the permittivity of gold with respect to wavenumber

is plotted in Figure 2.6, and shows the real (black) and the imaginary (blue)

components of the permittivity.
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2.2.1.3 Optical parameters for substrates

The parameters for silicon in the infrared are based on data compiled by Ed-

wards [56] and are taken to be, ε = 11.76 + 0.001i, whilst for air I took ε = 1.0.

Finally, for CaF2, data were taken from Malitson [57], at 5.0 µm the refractive

index is n = 1.40.

2.3 Summary

In this chapter, I focused on the fundamentals. I started with surface plasmon

then surface plasmon polariton. I also discussed derivation for Lorentz’ model.

Finally, I ended chapter with providing Lorentz parameters for gold and PMMA

material, about which I will mention in details in the next chapter.
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Chapter 3

Experimental and computational

techniques

I will discuss a number of different experimental techniques used in this thesis,

including Fourier transform infrared spectroscopy, electron beam lithography,

atomic force microscopy, and thermal evaporator techniques. Finally, I will

highlight the computational techniques and numerical modelling used, with a

special focus on the use of the commercial package; COMSOL.

Here I discuss the major experimental techniques used in this thesis.

3.1 FTIR (Fourier Transform Infra-Red spectroscopy)

Figure 3.1 shows a schematic of the FTIR set up used for much of the work in this

thesis. Infrared radiation from the source is first incident on a beam splitter that

divides it into two beams. One beam is is reflected from a moving mirror (that

oscillates back and forth) the other is reflected from a stationary mirror. Both

reflected beams are directed back towards the beam splitter and recombined.

The resulting beam then passes through the sample to the detector. To convert

the detected signal into a spectrum, a fast Fourier transform algorithm is carried
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out [58]. FTIRs are capable of high resolution because the resolution limit is an

inverse of the achievable optical path difference (OPD). Therefore, a 4 cm OPD

instrument can reach a 0.25 cm−1 resolution.

FIGURE 3.1: Schematic of FTIR set-up

A photograph of the FTIR set-up is shown in figure 3.2. A sample holder is

placed on a rotatory stage so as to allow the angle of incidence to be controlled.

All measurements were carried out under vacuum conditions.

FIGURE 3.2: Photograph of FTIR set-up
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In order to produce normalised data, first, a (reference) spectrum is acquired

with the sample holder in placed, but without a sample being present. Second,

the sample mounted into the sample holder and a second (signal) spectrum

acquired. To produce a normalised spectrum the signal spectrum is divided by

the reference spectrum. The rotatory stage allowed steps of 2° to be achieved,

and the spot size of the beam was around 2 mm. The red light in the figure

is only used to determine the position of the source and not used for the

experiment purpose. Figure 3.3 shows the FTIR transmission spectrum of a

PMMA film in solid black line and calculated transmission spectra is shown in

blue dashed line. The PMMA is spin coated on Si substrate. The film thickness

is 2 um. Here, all the measurements were taken in terms of wavenumber. The

sharp dip at 1730 cm−1 shows the strong presence of the C=O bond.

FIGURE 3.3: FTIR transmission spectra of PMMA molecule in
solid black line and calculated transmission spectra in blue dashed
line. The strong presence of C=O bond can be seen at 1732 cm−1
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For the measurements at non-zero angles of incidence, angles up to 60°-70°

could be used, but at higher angles most of the most signal was blocked. Where

data were acquired so as to provide a dispersion diagram, data were acquired

for several angles. Examples of dispersion plots are shown in chapter 4, 5 and 6.

To acquire the data presented in this thesis a careful choice of substrates and of

the metals that form the cavity mirrors was required. The vibrational modes

those I am interested are in in the mid-infrared range and as silicon substrate

has higher transmission in the mid-infrared range, it makes silicon a good

candidate for the study, also gold reflects infrared frequency strongly - with

choices the coupling between molecular resonances and a cavity field could be

demonstrated. The signature of the strong coupling between the C=O band

and the first cavity mode can be observed in data such as those presented in

Chapter 4.

3.2 Electron beam lithography

Electron beam lithography (EBL) is a powerful technique to create nano-structures

which are too small to fabricate with conventional photo-lithography. Feature

sizes down to a few nanometers can be achieved. A highly focused electron

beam is scanned over a sample to write out a pattern, designed with suitable

CAD tools.
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FIGURE 3.4: Process of EBL (a) the resist is spin coated on substrate
(b) the desired pattern is written using electron beam current (c)

with the help of the developers, the sample is developed.

The pattern is written on an electron sensitive resist deposited on the sample

before exposure by spin coating. The electron beam induces a change in solubil-

ity of the resist film and in the molecular structure. Once the resist is exposed

to the electron beam, it is developed in a suitable solvent to selectively dissolve

either the exposed or unexposed areas of the resist depending on the technique

which is selected while writing the pattern.

Figure 3.4 shows schematics of the electron beam lithography process. First

the resist is spun on the substrate. The thickness of the resist is chosen to be

appropriate for the desired thickness of the metal film. The ratio of PMMA to

the metal thickness is kept at around 2:1 so as to facilitate the lift-off process.
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FIGURE 3.5: Photograph of electron beam lithgraphy set-up

For spinning the resist the substrate is mounted on a chuck. Different chuck

heights can been seen in figure 3.5 Depending on the size of the sample, the

chuck is chosen. Once, the sample perfectly fits in the chuck then the chuck

is loaded on the stage and the system is the pumped down. A photograph of

the electron beam lithography system is shown in figure 3.5. Once the system

reaches the desired pressure (2x107 mbar), the pattern is written on the substrate.

The beam current of the machine is chosen according to the smallest feature

size required in the pattern. The pattern is prepared in CAD file. Then, for

development, a mixture of Isopropyl Alcohol (IPA), Methyl isobutyl ketone

(MIBK) and Methyl Ethyl Ketone (MEK) in 15:5:1 is used.

3.3 Thermal evaporator

The thermal evaporation of materials under vacuum is a powerful technique

which provides to make the thin films that were required. In the evaporation

process a given material is heated under vacuum until the materials boils. The
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resulting vapour then condenses on the substrate to form a thin film. The film

may be from a few nanometers to thousands of nm thick. Thermal evaporation

is usually carried out at under high vacuum, typically 2x10−6 mbar.

FIGURE 3.6: Photograph of thermal evaporator set-up

In the thermal evaporation process, the sample is mounted upside down

on the stage as shown in figure 3.6. The shutter is opened while depositing

the gold. The deposition rate is selected according to the behaviour of each

material, in particular with regard to film roughness. Too low a deposition rate

sometimes creates an island effect. For all the samples used in this thesis, I used

a deposition rate at around 0.9 Angstrom/second. Pumping down the vacuum

chamber takes around 3-4 hours.
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3.4 Atomic Force Microscopy

FIGURE 3.7: Photograph of AFM set-up

To determine the topology of some of the samples used, especially those based

on electron-beam lithography , atomic-force microscopy (AFM) was used. The

photograph of AFM set up is shown in figure 3.7
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FIGURE 3.8: An example of AFM showing 100 nm 1D grating
structure with pitch 4.7 µm and gap of 1 µm.

Atomic force microscopy allows information of the surface topography of

two dimensional materials to be determined by measuring the deflection of a

cantilever as the cantilever is raster scanned over the sample. The AFM used

here was a Bruker Innova AFM system in contact mode, employing a standard

Aluminium coated Si cantilever with a spring constant of roughly 35 N/m, and

having a tip radius of ∼ 7 nm. Further, an AFM was used in this thesis as an

additional, independent method to determine gold thickness of the samples

shown in chapter 4. An example showing 100 nm gold thickness of the grating

sample is shown in figure 3.8
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3.5 Computational technique

3.5.1 COMSOL

COMSOL is a powerful numerical package that allows electromagnetic simula-

tions to be carried out using the finite-element method. A full description of

COMSOL’s working is beyond the scope of this thesis. A key factor is using such

an approach is the correct selection of boundary conditions. The most relevant

boundary conditions of COMSOL used in the modelling of light-matter systems

in this thesis are discussed in this section, followed by some brief comments on

meshing.

Throughout this thesis, a numerical technique called the Finite Element

Method (FEM) was used to design and test the electromagnetic response of

various sample systems, via computational simulations. These simulations

helped to build a better understanding of the infrared response of the devices

developed in this thesis and to validate the experimental results. The commer-

cial FEM software package "COMSOL Multiphysics" is used [59] . COMSOL

solves the time-harmonic electromagnetic wave equation by implementing

Maxwell’s equations subject to the material properties and the geometry used

in the models. It employs several boundary conditions to help describe the geo-

metric entities in the modelled system which exploit properties like symmetry

and repetition [60].
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FIGURE 3.9: Graphical representation of unit cell of one dimen-
sional grating structure. To simulate the infinite periodic medium
in the x-direction, periodic condition is applied at the edge of the

unit cell, shown in as blue lines.

A graphical representation of one of the example that I used for my study

(more details are in Chapter 4) is shown in figure 3.9. The figure shows an

example COMSOL model of a single unit cell for a one dimensional grating

structure designed in this work. The pitch of the structure is 4.7 um and the gap

is 1 µm on each side. The gold thickness is 30 nm and the PMMA on the top

is 1.5 µm thick. The top layer is air and the bottom layer is a silicon substrate.

To simulate the infinite periodic grating structure in the x-direction, a periodic

boundary condition is applied at the edge of the unit cell. The blue lines at the

edge represent these periodic boundary conditions. It is often necessary to solve

several variations of a model to find optical design parameters. Parametric

sweeps could be used to evaluate the device’s response for a wide variety of

geometrical parameters, allowing optimal designs to be easily selected.

Ports: In the FEM model, a port is a boundary where the electromagnetic

energy either enters or leaves. For this thesis, the input port is set to launch the

TM mode of the computational region and the output port at the other end of
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the computational region is a ‘listener’ port, which collects the electromagnetic

energy in the TM mode. The ports support the calculation of S-parameters that

can be compared to those experimentally obtained using FTIR. S21/S12 used

for transmission measurements and S11/S22 for reflection measurements.

FIGURE 3.10: An example of COMSOL mesh showing one dimen-
sion grating structure, meshed with triangular elements.

Meshing: Once the geometry is constructed in COMSOL and all the neces-

sary boundary conditions are applied, then the geometry is discretized into

finite mesh elements. Maxwell’s equations are solved at the nodes of the mesh

elements with the appropriate boundary conditions taken into account. Figure

3.10 shows a portion of the meshed geometry of a one dimensional grating

model used to compute the triangular elements employed in COMSOL. The

accuracy of the results can be improved by tailoring the mesh density through-

out the model geometry to include more mesh elements in regions of high field

gradient.
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Here’s the example of bare PMMA on Si substrate. Figure 3.11 shows the

calculated transmission spectra of 2µm bare PMMA film on silicon substrate at

angle .

FIGURE 3.11: Transmission spectra of bare pmma on si substrate

PMMA material properties such as background permittivity, oscillator strength,

resonance frequency, damping rate are defined using Drude Lorentz’s model.

The value of Si substrate is fixed refractive index value. For the calculations,

electromagnetic frequency domain is chosen.

3.6 summary

In this chapter, I mentioned about working of all major experimental techniques

used in this thesis. Later, I also focused specially on the use of COMSOL with

an example.

In the next chapter, I will discuss about hybridization of multiple vibrational

modes in cavity as well as in plasmonic structures.
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Chapter 4

Hybridization of multiple

vibrational modes

In this chapter, I will focus on strong coupling of multiple vibrational modes

of different species with confined light fields, i.e. optical microcavity, plasmon

mode. As in chapter 2 I introduced dispersion plots and the SPP, now I will talk

more in detail about two systems, 1) optical microcavity 2) plasmon mode.

4.1 Introduction

In the infrared regime, hybridization of vibrational resonances associated with

two distinct molecular species has also been reported recently [44, 61]. However,

as far as I am aware, hybridization of different vibrational resonances of a

single molecular species has not so far been reported. In this chapter, I present

results of experiments that demonstrate such hybridization, thereby adding a

potentially important component in the strong coupling toolbox, one that may

further the degree of control possible over molecular vibrational states in any

future polaritonic chemistry.
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In this chapter, I have made use of two different types of confined light field.

First I use the well-established planar optical microcavity, second I make use

of the surface plasmon mode associated with a single metal surface. Surface

plasmons on planar metal films have momenta that cannot be accessed easily by

incident light, I employ grating coupling to overcome this problem, an approach

previously explored for strong coupling of excitonic resonances [62]. In what

follows I briefly describe the sample structure and material properties. The

main probe I use to explore the coupling between vibrational resonances and

the optical modes of confined light fields is to determine the dispersion of the

polaritons involved. I describe how these data are acquired and present results

from both types of cavity. I then discuss the modelling I have undertaken, both

numerical and analytical, before summarising the findings.

I have divided this chapter into two sections. In the first section, I will focus

on molecular vibrational mode study with an optical microcavity mode. Second

section will focus on molecular vibrational mode study with a plasmon mode.

4.2 Optical microcavity mode

A schematic of the structure I used is shown in Figure 4.1. The optical microcav-

ity was based on two gold mirrors 12 nm thick, the space between them being

filled with PMMA so as to form a PMMA-filled planar microcavity.
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FIGURE 4.1: Schematics of the confined light field structures. An
optical microcavity formed of two gold mirrors separated by a
cavity-filling layer of the polymer PMMA, the substrate is a silicon

wafer.

A thickness of 2 µm was chosen for the cavity thickness so as to ensure

that the lowest order cavity resonance was close to the molecular vibrational

resonances of interest.

To study interaction of the vibrational mode with the microcavity mode, I

will first focus on a single vibrational mode and later on multiple vibrational

modes.

4.2.1 single vibrational mode study

I chose the polymer PMMA as the molecular material. A sample infrared

transmittance spectrum, acquired at normal incidence using FTIR, for a 1.0 µm

film of PMMA on a silicon wafer substrate is shown in Figure 4.2.
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FIGURE 4.2: Normal incidence FTIR transmission spectra. The
blue solid shows the measured transmittance of bare PMMA on a
Si substrate. The dashed black lines represents C=O vibrational

mode.
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Setting the oscillator strength of the vibrational resonance in the PMMA to

zero, a transmission dispersion plot of the resulting microcavity was calculated

using COMSOL and is shown in Figure 4.3.

Strong absorption due to the C=O stretching mode is clearly seen at 1732

cm−1 [63, 64]. Although other resonance features are present, C=O has strong

presence. The C=O stretch has a measured Gaussian Full Width Half Maximum

(FWHM) of ∼ 30 cm−1.

FIGURE 4.3: Numerically calculated dispersion plot for the bare
cavity. Calculations were performed using COMSOL with the
same parameters as in the main text except that here the oscillator

strengths were set to zero.
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The oscillator strength of the vibrational resonance in the PMMA was later

added (Parameters and details in Chapter 3). The data in figure 4.4 show a

clear anti-crossing at an angle of θ=0°, indicative of strong coupling between

the C=O (1732 cm−1) and the cavity mode. The Rabi splitting comes around

150 cm−1. This provides clear evidence of strong coupling between the cavity

mode and the molecular resonance.

FIGURE 4.4: Dispersion plot calculated using COMSOL Mul-
tiphysics. Calculated transmittance is shown using a colour scale,
and plotted as a function of wavenumber and in-plane wavevector

kx.



4.2. Optical microcavity mode 55

The electric field distribution of the C=O vibrational mode hybridised with

the optical microcavity mode is shown in figure 4.5. For this calculation, the

thickness of the gold films was chosen to be 12 nm and the thickness of the

PMMA slab was 2 µm, the parameters used for the PMMA are again given

in Table 4.1 The z value (y-axis) is the distance across the total sample in

nanometers. The electric field profile is calculated for normal incidence. These

data provide us with information about how much the electric field is confined

in the cavity. In figure 4.5, the electric field is strong at the centre of the cavity

and fades away towards the edges.

FIGURE 4.5: Electric field distribution in microcavity of single
vibrational specie. Strong coupling between cavity and PMMA

result into two hybrid modes, upper and lower mode.
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4.2.2 Multiple vibrational mode

By reducing the frequency of the cavity mode it is possible to probe additional

molecular resonances in the PMMA.

FIGURE 4.6: Normal incidence FTIR transmission spectra. The
blue solid and dash-dotted curves show the measured transmit-
tance of bare PMMA on a Si substrate and the measured transmit-
tance of the cavity sample respectively. The red curve shows the
numerically simulated transmittance of the bare cavity, as shown
in Figure 4.1(a), calculated by assuming the vibrational resonances
to have zero strength. The dashed black lines represent C=O, CH2

and CH3 vibrational modes.

In fact, many absorption features are present in the PMMA spectrum 4.6 in

addition to the strong absorption due to the C=O stretching mode [63, 64]. The

other features of interest in the present work are those that form the somewhat

complex absorption band centred around 1445 cm−1, arising primarily from a

bending resonance associated with -CH3 together with a band centred around

1481 cm−1, arising primarily from a bending resonance associated with -CH2
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[63, 64]. Hereafter I will refer to these as the C=O, CH3 and CH2 resonances

respectively.

For comparison the numerically calculated normal incidence transmittance

of the bare cavity mode is also shown in figure 4.6 in red, whilst the normal

incidence experimentally measured transmission of PMMA-filled cavity is

shown as a blue dot-dashed curve.

To acquire dispersion plots I recorded FTIR spectra for a range of incident

angles. All measurements were performed with a spectral resolution of 4 cm−1

and an angular resolution of 2 °. An example of a measured dispersion diagram

is presented in Figure 4.7. Data were normalised with respect to a transmittance

spectrum acquired with no sample present. The data in figure 4.7(a) show a

clear anti-crossing at an angle of θ =50 °, indicative of strong coupling between

the C=O (1732 cm−1) and the cavity mode. The strength of the splitting relative

to the modal widths is discussed below. Indeed, coupling of the C−−O, CH2,

CH3 modes to the same cavity mode leads to the formation of four polaritons

bands: a lower polariton (L), a lower middle polariton (M1), an upper middle

polariton (M2), and an upper polariton (U); these are shown as red, blue, green

and magenta dashed lines in Figure 4.7a respectively.
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FIGURE 4.7: Dispersion plots for the cavity system. (a) Experi-
mental data. The measured infrared transmittance of the sample
shown in figure 4.1 is plotted as a function of frequency (cm−1)
and in-plane wavevector (kx). The horizontal dashed grey lines
indicate the energy of the C=O (1732 cm−1), CH2 (1481 cm−1) and
CH3 (1445 cm−1) vibrational resonances. The maximum polar
angle for which these data were acquired was θ=70°. The angles
of incidence equal to ± 50° are indicated as white dotted lines,
and correspond to the angles at which anti-crossing of the cavity
mode occurs with the C=O bond. Also shown are the calculated
positions (coloured dashed lines) of the polariton branches from
the coupled oscillator model: lower polariton (red), lower middle
polariton (blue) upper middle polariton (green) and upper polari-
ton (magenta). (b) Numerically modelled data using COMSOL
Multiphysics. The calculated transmittance is shown as a function

of frequency (cm−1) and in-plane wavevector kx.
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The electric field distribution of multiple vibrational modes hybridised with

the optical microcavity mode is shown in figure 4.8. For this calculation, a

thickness of gold film was chosen as 12 nm and the thickness of the PMMA slab

was 2.26 µm. The electric field for CH3 is weak at the cavity centre compared to

the CH2 and CH3 modes. This is mainly because the damping rate of the CH3

mode is higher that of the CH2 and C=O modes (more details in table 4.1).

FIGURE 4.8: Electric field distribution in microcavity of multiple
vibrational species. The C=O bond at 1732 cm−1 has strong elec-
tric field presence while CH3 has relatively weaker electric field

presence.
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To gain greater insight into these data I undertook both numerical and

analytical modelling. For the numerical modelling I used a commercial finite-

element package (COMSOL Multiphysics1, details in methods section below)

whilst for analytical modelling we used a four coupled oscillator model.

First the numerical modelling. For the material parameters, I made use of a

Drude model for the optical response of gold,

ε(ω) = εb −
ω2

p

ω2 + iγω
, (4.1)

with parameters taken from Olmon et al. [55], specifically, ωp = 1.29 ×

1016 rad s−1, and γ = 7.30 × 1013 rad s−1, with εb = 1.0. For the PMMA

we used a model based on three Lorentz oscillators,

ε(ω) = ε∞ +
3

∑
j

ω2
j f j

ω2
j −ω2 − iγjω

, (4.2)

with parameters given in table 4.1,

vibrational mode f j ωj( rad s−1) γj( rad s−1)

C=O (j=1) 0.0165 3.26248× 1014 5× 1012

CH2 (j=2) 0.0047 2.7896× 1013 9.3× 1012

CH3 (j=3) 0.0087 2.72187× 1013 12× 1012

TABLE 4.1: Lorentz oscillator model parameters for the PMMA
vibrational modes

and with ε∞ taken to be 1.99. The parameters for silicon in the infrared are based

on data compiled by Edwards [56] and are taken to be, ε = 11.76+ 0.001i, whilst

for air we took ε = 1.0. Finally, for CaF2, data were taken from Malitson [57], at

5.0µm the refractive index is n = 1.40.

1COMSOL Multiphysics® v. 5.4. www.comsol.com. COMSOL AB, Stockholm, Sweden.
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Employing these parameters I used COMSOL to evaluate numerically the

transmittance of the structure shown in Figure 4.1a as a function of frequency

and in-plane wavevector, these data are shown in Figure 4.7(b). The data show a

good match to those acquired from experiment (shown in Figure 4.7(a)), giving

me confidence that I have selected appropriate modelling parameters. The dif-

ference in absolute transmittance values between the experimental data, Figure

4.7(a), and the modelled data, Figure 4.7(b), is attributed to the slightly rough

nature of the reverse side of the Si wafer substrate used in our experiments.
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4.3 Plasmon mode

Microcavities are just one class of structure that produce confined light fields, I

also explored a second type of confined light field, that associated with a surface

plasmon [65]. I noted earlier that to couple to such modes with incident light

requires some kind of momentum matching. In contrast with the attenuated

total reflection technique employed by Memmi et al. [28] I made use of grating

coupling [66], a technique previously used with great success by Vasa et al. to

observe Rabi oscillations associated with excitonic strong coupling [67].

4.3.1 Single vibrational mode specie

A schematic of the sample structure I used is shown in Figure 4.9. The plasmonic

surface is provided by a 100 nm gold film fabricated in the form of a grating

using electron beam lithography.

FIGURE 4.9: Schematics of the confined light field structures. A
1D metal grating supporting a surface plasmon mode, on top if a

CaF2 substrate, and overlain by a layer of PMMA.

The grating period was 7.2 µm with a 1 µm gap on a CaF2 substrate. This

choice of period was made to enable coupling of incident light to the surface

plasmon mode on the Au/PMMA interface at a convenient angle of incidence.
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Setting the oscillator strength of the vibrational resonance in the PMMA

to zero, a transmission dispersion plot of the resulting plasmonic mode was

calculated using COMSOL and is shown in figure 4.10. All the parameters

chosen for PMMA are shown in Table 4.1

FIGURE 4.10: Numerically calculated dispersion plot for the bare
grating. Calculations were performed using COMSOL with the
same parameters as in the main text except that here the oscillator

strengths were set to zero.
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The value of oscillation strength was later set to non- zero for the calculation

(Parameters details in Chapter 3). A calculated dispersion plot of the plasmonic

mode for a range of incident angles was acquired and shown in figure 4.11. It

shows strong coupling of C=O vibrational mode with plasmonic mode.

FIGURE 4.11: Dispersion plot calculated using COMSOL Mul-
tiphysics. Calculated transmittance is shown using a colour scale,
and plotted as a function of wavenumber and in-plane wavevector
kx. The dispersion plot is showing coupling between vibrational

mode and plasmon mode
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4.3.2 Multiple vibrational mode species

FTIR spectra for a range of incident angles were acquired, the results, in the

form of a dispersion plot, are shown in Figure 4.12 (a). Again, as for the

microcavity, I also calculated a dispersion plot using numerical modelling,

shown in Figure 4.12 (b). There is broad agreement between the numerically

modelled data and the experiment, some of the differences in detail might be

attributed to variations in the grating across the ∼2 mm spot size used in the

FTIR measurements.

FIGURE 4.12: Dispersion plots for the plasmon system. (a) Dis-
persion diagram derived from experimental data. Infrared trans-
mittance of the plasmon sample shown in Figure 4.9 are shown
as a function of frequency (cm−1) and in-plane wavevector (kx).
The horizontal grey dashed lines indicate the energy of the C=O
(1732 cm−1), CH2 (1481 cm−1), and CH3 (1445 cm−1) vibrational
resonances. The maximum polar angle for which these data were
acquired was θ=30°. Angles of incidence equal to ± 20° are indic-
ated as white dotted lines, and correspond to the angles at which
anti-crossing of the plasmon mode occurs with the C=O reson-
ance. Also shown are the calculated positions (coloured dashed
lines) of the polariton branches from the coupled oscillator model:
lower polariton (red), middle polariton (blue) and upper polari-
ton (magenta). (b) Numerically modelled data using COMSOL
Multiphysics. Calculated transmittance is shown using a colour
scale, and plotted as a function of frequency cm−1 and in-plane

wavevector kx.
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4.4 Analytical model study

Next, for the analytical model, the four oscillators are the confined light field and

the three vibrational modes, C−−O, CH2 and CH3. The model can be captured

by the following matrix equation,



ECL ΩC−−O/2 ΩCH2
/2 ΩCH3

/2

ΩC−−O/2 EC−−O 0 0

ΩCH2
/2 0 ECH2

0

ΩCH3
/2 0 0 ECH3





aL,M1,M2,U

bL,M1,M2,,U

cL,M1,M2,U

dL,M1,M2,U


= EL,M1,M2,U



aL,M1,M2,U

bL,M1,M2,U

cL,M1,M2,U

dL,M1,M2,U


,

(4.3)

where ECL is the energy of the confined light field, i.e. the cavity/plasmon mode

as appropriate, and is a function of the in-plane component of the wavevector,

kx. EC−−O is the energy of the C−−O vibrational mode, ECH2 is the energy of the

CH2 vibrational mode and ECH3 is the energy of the CH3 vibrational mode. The

constants ΩC−−O/2, ΩCH2
/2 and ΩCH3

/2 are the coupling strength of ECL with

EC−−O, ECH2 and ECH3 respectively. The eigenvalues EL,M1,M2,U of this matrix

correspond to the lower (L), lower middle (M1) upper middle (M2), and upper

(U) polariton bands. To fit these polariton bands to the measured dispersion,

I set the three coupling strengths, ΩC−−O, ΩCH2
and ΩCH3

as free paramet-

ers. The composition of the polariton bands are described by the generalized

Hopfield coefficients |aL,M1,M2,U|2, |bL,M1,M2,U|2, |cL,M1,M2,U|2 and |dL,M1,M2,U|2

where |aL,M1,M2,U|2 + |bL,M1,M2,U|2 + |cL,M1,M2,U|2 + |dL,M1,M2,U|2 = 1. The

polariton bands can be written as |aL,M1,M2,U|2 |ECL〉+ |dL,M1,M2,U|2 |EC−−O〉+

|bL,M1,M2,U|2 |ECH2
〉+ |cL,M1,M2,U|2 |ECH3

〉, so that the Hopfield coefficients meas-

ure the extent to which the cavity mode, the C=O mode, the CH2 and the CH3

modes contribute to each polariton band.
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I found that the best fit to my cavity data was obtained with: ΩC−−O =

150 cm−1, ΩCH2
= 40 cm−1 and ΩCH3

= 70 cm−1 and ; these values agree well

with those seen in the experimental data, Figure 4.7a. These Rabi splittings are

greater than a) the measured spectral width of the respective C=O (60 cm−1),

CH2 (30 cm−1), and CH3 (30 cm−1) vibrational modes respectively, and b) the

width of the bare cavity mode – measured using an off-resonance cavity to

be 45 cm−1. These data thus indicate that my microcavity system is in the

strong coupling regime [68]. The results from this coupled oscillator model

are shown in Figure 4.13, in Figure 4.13(a) experimental data (circles) are also

shown corresponding to the maxima of the transmittance spectra shown in

Figure 4.7a. In Figure 4.13a I also show the positions of the uncoupled (bare)

microcavity, and the C=O, the CH2, the CH3 resonances as dotted lines.

In addition to allowing extraction of the coupling strengths, the coupled

oscillator model enables us to determine the contribution of the different reson-

ances to each polariton band through the Hopfield coefficients. In particular I

can use this approach to examine the contribution that the different vibrational

modes make to the upper middle polariton (M2). In Figure 4.13b I show the

contribution of the cavity mode, the C−−O mode, the CH2 mode, CH3 mode to

the upper middle polariton band M2 as a function of in-plane wavevector. At

in-plane wavevector kx ∼ 530 cm−1 I see that the M2 polariton has contributions

of approx. 33% from the C=O, CH2 and CH3 modes (equal contributions of

11% each), the remaining 67% being photonic (cavity mode) in character. These

data show that the upper middle polariton involves hybridization of the three

different vibrational resonances associated with the same molecular unit.

Again, and as for the microcavity system, I also modelled the surface plas-

mon system using the four coupled oscillator model. Here the surface plasmon

mode replaces the cavity mode as one of the oscillators, together with the three
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FIGURE 4.13: Coupled oscillator model for the planar cavity. (a)
Comparison between experimental (circles) and coupled oscillator
model (dashed lines) for: the lower polariton (L) (red), the lower
middle polariton (M1) mode (blue), the upper middle polariton
(M2) mode (green) and the upper polariton (U) mode (magenta)
for grating mode. The horizontal dotted lines in black show the
energies of the C−−O, CH2 and CH3 vibrational modes respect-
ively. The bare cavity mode is shown as a brown dashed line. (b)
Hopfield coefficients of the upper middle polariton (M2). The
contribution of the cavity mode is shown in red, the C−−O mode
in magenta, the CH2 mode in brown and the CH3 mode in blue.
The data shown were found by calculating the eigenvalues and

eigenvectors of equation 4.3

vibrational modes, C=O, CH2 and CH3. For the plasmon mode I took the un-

coupled dispersion from numerically modelled data in which the oscillators

strengths were set to zero. The best match between the eigenvalues obtained

from this approach and those seen in the experimental data, Figure 4.12, was

obtained with: ΩC−−O = 75 cm−1, ΩCH2
= 20 cm−1 and ΩCH3

= 35 cm−1.

The resulting polariton frequencies are plotted as coloured dashed lines in

Figure Figure 4.12a. These splittings are approx. half those obtained from the

planar microcavity, the microcavity mode appears to offer a higher (average)

electric field strength [68]. Again, these splittings need to be compared to: a)

the measured spectral width of the respective C=O (60 cm−1), CH2 (30 cm−1),

and CH3 (30 cm−1) vibrational modes respectively, and b) the width of the bare
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FIGURE 4.14: Coupled oscillator model for the plasmon sys-
tem. (a) Comparison between experimental data (circles) and
the coupled oscillator model (dashed lines) for: the lower polari-
ton (L) (red), the lower middle polariton (M1) mode (blue), the
upper middle polariton (M2) mode (green) and the upper polari-
ton (U) mode (magenta). The horizontal dotted lines (black) show
the energies of the C−−O, CH2 and CH3 vibrational modes respect-
ively. The bare plasmon mode is shown as a brown dashed line.
(b) Hopfield coefficients of the upper middle polariton (M2). The
contribution of the plasmon mode is shown in red, the CH3 mode
in blue, the CH2 mode in brown and the C−−O mode in magenta.
The data shown were found by calculating the eigenvalues and

eigenvectors of equation 4.3

cavity mode, 45 cm−1. I see that for the plasmon system only the splitting asso-

ciated with the C−−O vibrational resonance fully satisfies the strong coupling

condition.

In Figure 4.14 I show the calculated Hopfield coefficients for the lower middle

polariton in the plasmon system. I see that although the lower middle polariton

does have some character inherited from all three vibrational resonances, their

contribution is relatively small, around ∼ 5% each. This lower contribution

than for the cavity mode might also be attributed to the lower field strength of

the plasmon mode as sampled by the PMMA film. It is also clear that the match

between data and model for the plasmon system (Figure 6(a) is poorer than it
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was for the microcavity system (Figure 4(a)). Several factors may contribute to

this: first, more than one diffracted plasmon mode contributes to the data shown

in Figure 5(a), for simplicity I only included one of them; second, the dispersion

of the plasmon mode depends sensitively on the profile of the grating [40], for

simplicity I have taken a simple rectangular profile here, and I have ignored any

band distortions due to grating coupling of plasmon modes; third, determining

the position of the plasmon using dispersion data from transmittance data

can be problematic owing to the Fano-like character of the features involved.

Despite these limitations, the coupled oscillator reproduces reasonably well the

anti-crossings seen in experiment.

4.5 Summary

In summary, my results show that distinct molecular vibrational resonances,

here associated with C=O, CH2 and CH3 may be hybridized by strong coup-

ling each of them to the same cavity/plasmon mode. The extent to which the

three vibrational resonances contribute to the upper middle polariton in the

cavity system, ∼ 11%, is comparable to that in the first report of hybridizing

two excitonic resonances via strong coupling [19]. For the case of the plasmon

mode I found that only the coupling with the C=O bond fully met the strong

coupling criteria, and that the associated polariton, although involving all three

molecular resonances, only did so to the extent of 5%. Nonetheless, it is clear

that strong coupling can hybridize multiple different molecular resonances

of a single molecular unit, and that consequently strong coupling offers an

interesting means by which to control molecular systems. Hybridized vibra-

tional resonances may also be interesting in the context of vibrationally dressed

states [12, 69]. A challenge for the strong coupling community is to devise

means by which to increase the extent of hybridization possible. Increasing the
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extent of hybridization might be achieved by employing confined light fields

that exhibit greater field enhancement than the planar metal-clad cavity used

here. Possible routes to achieving this include planar cavities that use dielectric

stacks rather than metal mirrors [70], and localised resonances [39]. Care will be

needed though since there is often a trade-off between field enhancement and

cavity volume to consider [71]. An interesting alternative may be to explore a

hierarchical approach that mixes plasmonic resonances and vibrational ones,

much as was recently accomplished for exciton resonances by Bisht et al. [72].

In the next chapter, I will focus on interaction of surface plasmon and the

surface plasmon stop bands with molecular vibrations.
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Chapter 5

Vibrational strong coupling with

surface plasmons and the presence

of surface plasmon stop bands

In this chapter, I will discuss vibrational strong coupling in the context of

plasmonic structures that involve modified band structures. In chapter 4 I

looked at vibrational strong coupling involving the confined light fields offered

by surface plasmons. In the present chapter I will explore how the periodic

micro-structure used to access the plasmon mode does more than just provide

access, i.e. momentum matching–as I shall see, the periodic micro-structure

also modifies the plasmon, and hence polariton, bands.

5.1 Introduction

It is useful to first look at the modes supported by the structures investigate here,

this is done through a numerical simulation performed using the commercial

finite-element software COMSOL. Figure 5.1(a) shows a schematic of the system

I consider, a 1D gold grating on a silicon substrate, overlain with a film of the
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FIGURE 5.1: (a) Schematic of sample geometry shows a schematic
of the gold grating samples used in this work. A gold grating was
formed on top of a silicon substrate, upon which was deposited a
layer of the polymer PMMA. Also shown is the plane of incidence,
the green arrow represents the incident light direction, the black
arrow the reflected direction. The polar angle of incidence θ and
the azimuthal angle φ, are as shown. For all measurements and
calculations the incident IR light was TM polarised, i.e. the electric
field was in the plane of incidence. (b) Calculated dispersion for
a planar version (no grating) of my structures; the system com-
prises a silicon substrate, 100 nm of gold (the plasmon-supporting
metal), a 2 µm layer of the polymer PMMA and air as the super-
strate. The calculated (COMSOL) transmittance is shown as a
function of frequency (cm−1) and in-plane wavevector on a colour
scale, high transmittance indicates a mode of the system. The
material parameters are given at the end of the main text. The
green and red dashed lines represent the air light-line and the
PMMA light-line respectively. The horizontal white dashed line at
1732 cm−1 represents C=O vibrational mode. Notice that the plas-
mon mode, and the anti-crossing with the molecular resonance, is
beyond the air light-line. (c) Here I have taken the data from (b)
and superimposed a shifted and folded copy so as to produce a
dispersion plot to give an idea of what I expect for a grating rather
than a planar structure. The grating period was taken as 4.5 µm,

for which kx/2π = 1/λg = 2222 cm−1.
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polymer PMMA. Specifically I looked at the transmission of a planar stack com-

prising a silicon substrate, a 100 nm gold film (the plasmon-supporting metal),

a 2 µm layer of the polymer PMMA, and finally air as the superstrate. The trans-

mittance was calculated as a function of frequency and in-plane wavevector,

and is plotted on a colour scale. The surface plasmon modes can be seen as

peaks in the transmittance for p-polarised (TM) incident infrared light–plasmon

modes on planar surfaces are p-polarised. The gold/PMMA plasmon mode is

clearly seen in Figure 5.1(b) and (c), and lies, as expected, between the air and

the PMMA light lines. Indeed, this plasmon mode always lies beyond the air

light-line and it is for this reason that some means of momentum matching is

required if this mode is to be observed in a reflection/transmission experiment.

This calculation also shows the splitting of the plasmon mode at a frequency

equivalent to 1732 cm−1, a direct result of the interaction between the plasmon

mode and the molecular vibrational resonance in PMMA.

Recently Memmi et al. used prism coupling to provide momentum matching

and thus probe the hybridization of surface plasmons with molecular vibra-

tional resonances [28]. Here, as in chapter 4, I adopt an alternative approach,

that of grating coupling [73]. I chose to make my grating in the form of a

metal stripe array, i.e. a periodic sequence of metal strips, see Figure 5.1 (a).

The relevant fabrication techniques were discussed in chapter 3. To facilitate

coupling to the surface plasmon mode at convenient angles of incidence, I chose

a period of 4.5 µm.

It is useful first to try and model what the dispersion will look like using

COMSOL. Next I wished to see the effect of the vibrational resonance on the

dispersion. To do this I re-introduced the oscillator strength of the molecular

(C=O) resonance into my model (more details in Chapter 3). The results of this

calculation are shown in the left-hand panel of Figure 5.2 (a), hybridization
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between the plasmon mode and the molecular vibrational resonance can now

be seen. In addition I see that the unperturbed vibrational resonance is still

clearly evident, this is the horizontal dark (low transmittance) feature at 1732

cm−1. As I will see below (Figure 5.5), this is because there are many regions of

the PMMA film that do not couple well to the surface plasmon mode.
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FIGURE 5.2: (a) Surface plasmon dispersion for φ = 0°. On the left-
hand side are numerically calculated transmittance data for TM
polarised light, on the right-hand side are experimentally meas-
ured data; both show coupling between the vibrational resonance
and the plasmonic mode. The maximum polar angle for these
data is 18°. The period of the grating is 4.5 µm with a 1 µm gap
between metal stripes. The PMMA thickness is 1.5 µm and θ = 1°.
The dashed blue and green lines are the ±1 scattered air and
±2, 3 scattered silicon light-lines respectively, the white dashed
line indicates the position of the C=O resonance. The calculated
data have been scaled by a factor of 0.1 to allow easy comparison
with the experimental data, as discussed in the text. The PMMA
thickness is 1.5 µm, and φ = 0°. (b) Dispersion for φ = 90°. On
the left-hand side are numerically calculated transmittance data
for TM polarised light, on the right-hand side are experimentally
measured data. Again, both show coupling between the vibra-
tional resonance and the plasmonic mode. The maximum polar
angle for these data is 18°. The period of the grating is 4.5 µm with
a 1 µm gap between metal stripes. The PMMA thickness is 1.5
µm and β = 1°. The green dashed lines represents the ±2 and ±3
scattered Si light lines, the white dashed line indicates the position
of the C=O resonance. As for Figure 5.2, the calculated data have
been scaled by a factor of 0.1 to allow easy comparison with the

experimental data.

Using FTIR I also acquired transmittance data from a sample nominally the

same as that shown schematically in Figure 5.1 (a), in my sample the PMMA

thickness was 1.5 µm. The results of these measurements are shown in Figure 5.2
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(a) (right half), where again, transmittance is shown as a function of frequency

(ω) and in-plane wavevector kx. Note that in Figure 5.2 (a) the calculated data

have been scaled by a factor of 0.1. This has been done to facilitate comparison

of experimental and calculated data; in the experiment, the scattering nature of

the rear side of the Si wafer used as a substrate reduces the overall measured

transmittance. The first thing to note when comparing the experimental data

with the calculated data is the broad agreement about the presence and extent

of the anti-crossing of the plasmon mode with the C=O vibrational resonance.

In addition to the anti-crossing of the plasmon mode and the C=O vibrational

resonance, at kx ∼ 0 I see an additional small splitting of the surface plasmon

mode, at a frequency of ∼ 1830 cm−1. Where scattered surface plasmon modes

cross (on a dispersion diagram) stop bands may occur, their presence depending

on the details of the grating profile [40]. Looking at the data in Figure 5.2 (a)

it appears that a surface plasmon stop band, around ∼ 1830 cm−1 has been

produced. To further investigate this I measured the dispersion for a plane of

incidence for which φ = 90°; such a configuration maps out the modes for which

kx = 0, thus enabling the stop-band position to be tracked as a function of ky,

Figure 5.2 (b) (right half) is the result of such measurements. As a comparison,

numerically calculated data for the same situation, i.e. φ = 90°, are shown

in Figure 5.2 (b) (left half). Both experimental data and calculated data show

surface plasmon stop bands that gradually rise in frequency as |ky| is increased

away from zero, tracking the expected dispersion for this configuration, as

given by the third-order scattered Si light-line (shown as a green dashed line in

the figure). Also evident in the experimental data in Figure 5.2 (b) (and indeed

in Figure 5.2 (a)) are additional vibrational resonances for frequencies around

∼ 1460 cm−1. These are due to CH3 and CH2 resonances that are not included

in the model I have used here [63, 64], see also Figure 5.1b. This was earlier



5.1. Introduction 79

discussed in chapter 4.
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5.2 Surface plasmon stop bands and band gaps

A feature of surface plasmon stop bands and band gaps (a band gap implies that

for some range of frequencies a stop band exists for all in-plane directions) is that

coupling to the band edges is sensitive to the way the sample is illuminated [40].

To investigate this I calculated the line spectra associated with the transmittance

for normal incidence, i.e. θ = 0°, and near-normal incidence, θ = 1°, these data

are shown in Figure 5.3. For these data the azimuthal angle was φ = 90°. I

see that transmittance minimum at 1800 cm−1 and associated with the lower

surface plasmon stop band is visible for off-normal incidence (red curve) but

not for normal incidence (blue curve). This is consistent with the symmetry

of the charge and field distributions expected in this geometry [40]. Careful

observation of the data in Figure 5.3 shows that something similar happens

where the scattered plasmon modes cross at ∼ 1670 cm−1.
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FIGURE 5.3: Coupling to band edges. Calculated transmittance
for φ = 90° for two polar angles of incidence, θ = 0° (blue) and
θ = 1° (red). The lower band edge at both ∼ 1670 cm−1 and 1800
cm−1 is only seen for off-normal incidence illumination (red). See

text for details.

To be more accurate, the data in Figures 5.2 (b) and 5.3 both show that the

polariton modes (rather than simply the plasmon modes) exhibit stop bands.

Extending these results by introducing a grating structure in the second (y)

direction would offer the prospect of introducing a polariton band gap, and

would form a bridge between studies of strong coupling between molecular

resonances and surface plasmons on planar surfaces, and the strong coupling
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of molecular resonances with the lattice resonances associated with periodic

arrays of metallic nanoparticles [22, 74–76].

FIGURE 5.4: Effect of grating period. Calculated transmittance
spectra for φ = 90° and for θ = 1° as a function of grating period.
The PMMA thickness was 1.5 µm, and the gap between the metal
stripes was kept constant at 1.0 µm. The green dashed lines are
the second and third order grating scattered silicon light lines.
The somewhat diagonal features (transmittance minima) in the
data are associated with these light lines. The vertical feature
at kg/2π ∼ 2000cm−1 is an artefact of the numerical calculation.
upper polariton band edge and lower polariton band edge are

mentioned as UP and LP respectively in the figure.
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FIGURE 5.5: Electric field distributions. Calculated normalised
electric field distributions for light incident at θ = 1° and φ = 0°
for the lower band edge (1817 cm−1) and the upper band edge
(1847 cm−1). The plotted values are the magnitude (norm) of the
electric field, relative to the incident field (these enhancements are
higher than one would expect in the visible owing to the higher Q

of these IR resonances).

I also wanted to find out what happened to the two polariton stop band

edges under strong coupling. To do this I again looked at the transmittance,

for θ = 1° and φ = 90°, and varied the period of the grating. This approach

has been used successfully before in explorations of strong coupling involving

lattice resonances of periodic arrays [77]. I simulated the transmittance, again
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using COMSOL, varying the period, but keeping the spacing between the

metallic elements fixed at 1 µm. The results of such calculations are shown in

Figure 5.4. I see that both the upper and lower band edge undergo an anti-

crossing. The associated field distributions, shown in Figure 5.5, show the

expected symmetry [40], with the lower band edge having fields concentrated

on the metal slab, whilst the upper band edge has field maxima over both

metallic and gap regions. As an additional comment, I see in Figure 5.5 the

reason why the low transmittance feature at the molecular resonance frequency

(1732 cm−1) is always present (see Figures5.2 (a) and 5.2(b)), there are regions

on these samples where the field strength in minimal, so that molecules in

these regions do not couple to the plasmonic modes and do not therefore

undergo strong coupling, something that has been seen before for excitonic

resonances [67].

5.3 Summary

In summary I have demonstrated strong coupling between molecular vibra-

tional resonances and surface plasmons in the infrared by exploiting grating

coupling. In addition to enabling light to be coupled to the hybrid vibro-

plasmon polaritons, the grating nature of the surface also leads to the formation

of polariton stop bands. I further showed that both upper and lower stop bands

undergo strong coupling. A future study might extend my understanding by

exploring the role of 2D periodic structures, e.g. to provide a full band gap. It

would for example be interesting to see what would happen if such a gap was

centred around the frequency of the molecular vibrational resonance, would

the strong coupling be completely blocked? Finally I might add that although I

have used a stripe array, a metal film with a modulated surface profile should

also work [78], therefore enabling, for example, electrical access. These initial
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results on strong coupling involving plasmon band edges would benefit from a

more detailed investigation.

In the next chapter, I will study the interaction between a molecular vi-

brational mode and a coupled plasmon mode, a mode that, like the surface

plasmon mode occurs outside light-line.
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Strong coupling beyond the light

line

In this chapter, I will focus on interaction between the coupled plasmon mode

and a molecular vibrational mode.

6.1 Introduction

The dispersion of microcavity modes is well-known [79, 80], and easily determ-

ined through angle-resolved measurements of, for example, reflectance and/or

photoluminescence [72, 81]. However, metal-clad microcavities also support a

coupled surface plasmon mode, a mode that appears to have been ignored in

previous work on strong coupling in metal-clad cavities, probably because it

exists beyond the light-line. The coupled plasmon mode may be understood as

a hybrid mode associated with what would be two degenerate surface plasmon

modes if the metallic mirror surfaces of the cavity were far apart. When the

mirrors are separated by a wavelength or less the fields of these modes overlap,

and the modes associated with the two surfaces couple together. One of the

coupled modes is the standard lowest-order TM mode of a microcavity, which I

label here the TM0 mode, the other is the coupled plasmon mode [82] which
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I label the TM−1 mode. This coupled plasmon mode, sometimes known as a

gap mode plasmon [83, 84], or particle-on-film plasmon [71, 85, 86], or MIM

plasmon (metal-insulator-metal) [87–89] is well known and indeed has been

important in reaching single molecule strong coupling [90]. The key attribute of

this mode in achieving single molecule strong coupling is that the mode has no

lower frequency cut-off, enabling an outstanding degree of field confinement to

be achieved.

Here I look at a less extreme cavity situation than that used for the single

molecule strong coupling mentioned above. I show that the coupled plasmon

mode, though so far not seen in typical strong coupling experiments, is non-

etheless present, and that it too is strongly coupled to the molecular resonance.

Since such modes are beyond the light-line I need to provide some kind of

momentum matching, here I do this by introducing a grating structure into the

cavity, allowing the coupled plasmon mode to be coupled to incident light – and

thus probed – by grating scattering [73]. Furthermore, I show that beyond-the-

light-line modes also exist for DBR-based (distributed Bragg reflector) cavities.

My results thus highlight the fact that the majority of microcavities used in

strong coupling experiments ignore strongly coupled modes that lie beyond

the light-line, and that more work is needed to better understand the contribu-

tion strong coupling to such modes may make to modified material/chemical

properties.

6.2 Strong coupling with coupled plasmon mode

In this chapter I make use of strong coupling between the molecular vibra-

tional resonance of the C=O bond in the polymethylmethacrylate (PMMA)

polymer, at 1732 cm−1, and the resonant infrared modes of suitable metallic
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micro-structures. Strong coupling involving vibrational resonances [5, 23–31,

44, 61] has been less intensively studied than that of excitonic resonances;

however, vibrational resonances have allowed strong coupling to be observed

in liquids [32], and in transition metal complexes [31], as well as in liquid

crystals [33]. In addition, strong coupling of vibrational resonances has been

reported to catalyze and inhibit chemical reactions [34], and to allow the con-

trol of the nonlinear infrared properties [35]. For the present work vibrational

resonances offer the benefit of narrow linewidth transitions and the advant-

age of involving longer wavelengths, thus simplifying some of the fabrication

tolerances required.

In figure 6.1, I summarize the structures and modes that form the basis of

the investigation reported here. The top row shows schematics of the structures

considered, the lower row shows numerically calculated dispersion plots to

indicate the modes supported by the different structures. I look at two types

of confined light field, those associated with the surface plasmon mode of a

single metallic interface, figure 6.1a, and those associated with a planar metal

microcavity, figure 6.1c & e. For the microcavity I consider two different cavity

thicknesses, one that places the usual cavity cut-off at the same frequency as

the molecular resonance, figure 6.1c, the other (thinner) only supports the usual

lowest order cavity mode for frequencies much higher than the molecular

resonance.

The surface plasmon (SP) mode is considered in the left-hand column. The

structure I consider consists of a CaF2 substrate coated with a 30 nm thick

planar layer of gold, the structure is completed by adding a 1µm thick film of

the polymer PMMA, figure 1a. The dispersion of the modes supported by this

structure is shown in figure 1b. Here a Fresnel coefficient formalism [91] was

used to calculate the absolute value of the p-polarized amplitude transmission
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coefficient, |tp|, which I have plotted as a function of frequency and in-plane

wavevector. (The in-plane wavevector, kx, is the wavevector component in the

plane of the structure.) For these calculations the PMMA molecular resonance

at 1732 cm−1 was represented by a single Lorentzian oscillator, details of this

model, together with other parameters used, details are given in the chapter 3.

The data in figure 6.1b show the surface plasmon mode, indicated by the bright

region. This mode lies, as expected, just beyond thew air light-line (indicated as

a blue dashed line). Importantly, a clear anti-crossing of this mode is seen where

the mode’s frequency matches the frequency of the C=O molecular resonance.

This anti-crossing is the result of strong coupling between the surface plasmon

mode and the C=O resonance. Although the surface plasmon mode is beyond

the light-line, it is not the main focus of the investigation reported here, however,

I have begun by examining this mode so as to provide a familiar starting point;

indeed, strong coupling between vibrational molecular resonances and surface

plasmon modes has been observed before [28, 92, 93].

The structure of the metal-clad microcavity is shown in figure 6.1c, a cavity

has been formed by adding an upper layer (30 nm) of gold to the structure used

for the surface plasmon investigation, figure 6.1a. For this central column of

figure 6.1 the cavity thickness was been chosen to be 2 µm, so as to place the

usual fundamental cavity mode resonance close to the molecular resonance

of the C=O bond at 1732 cm−1. The dispersion of the modes supported by

this structure are shown in figure 6.1d, where, as for figure 6.1b, the absolute

value of the p-polarized amplitude has been plotted as a function of frequency

and in-plane wavevector. Two modes are seen in these data, and both show

an anti-crossing with the molecular resonance. Let us first concentrate on

the fundamental cavity mode (TM0), seen for lower values of the in-plane

wavevector, i.e. inside the light-line. The anti-crossing seen here is again
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a result of strong coupling between the fundamental cavity mode and the

molecular resonance. This combination has been the workhorse of many strong

coupling experiments [5, 23], yielding a very clear splitting that produces upper

and lower hybrid polariton modes. These hybrid polariton modes lie inside

the air light-line (the blue dashed line in figure 6.1d). The second mode lies

beyond the air light-line, and importantly does not have a cut-off, i.e. it has now

lower frequency limit. This second mode looks similar to the surface plasmon

mode seen in figure 1b, this is perhaps not so surprising since this mode is the

coupled plasmon mode (TM−1).

The coupled plasmon mode also shows clear evidence of strong coupling, a

fuller analysis, including an evaluation of the appropriate Hopfield coefficients,

will be discussed below. In previous work on strong coupling employing metal-

clad microcavities this mode was not been seen because it lies beyond the

light-line. In the remainder of this chapter I will show how grating coupling

can be used to gain access to this mode, in this way I am able to show that it is

strongly coupled, and thus led to consider what role it might play in the way

molecules within the cavity behave.

In addition to the usual cavity mode of metal-clad cavities, strong coupling

also arises due to the coupled plasmon modes present in such structures. My

results indicate that this mode should be taken into account when looking

at how strong coupling may be used to alter/create molecular properties via

strong coupling.

Before moving to the experimental section I want to consider what happens

when I reduce the cavity thickness so that the usual fundamental mode is

shifted well above the molecular resonance in frequency. The dispersion of

modes present in such a cavity are shown in figure 6.1f. The structure I consider,

shown in figure 6.1e, is the same as for figure 6.1c & d except that the thickness
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of the PMMA has been halved, from 2 µm down to 1 µm. Although the

fundamental cavity mode (TM0) is no longer seen, the coupled plasmon mode

is still present, lying at higher in-plane wavevector values than for the thicker

cavity, figure 6.1d, a direct result of the greater degree of field confinement in

this thinner cavity. Importantly, a clear anti-crossing signature is seen, again

the result of strong coupling. This result will be discussed in more detail below.
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FIGURE 6.1: Structures and modes investigated. Top row, schem-
atics of the different structures considered: (a) A single planar gold
metal film (30 nm) overlain with a 2 µm polymer PMMA film,
supported on a CaF2 substrate, this structure is used to invest-
igate the surface plasmon mode; (c) Standard microcavity - a 2
µm thick film of PMMA is sandwiched between two 30 nm thick
planar gold mirrors, the substrate is CaF2; (e) A microcavity below
the usual cut-off. This structure is the same as for (c) except that
here the PMMA thickness is 2 µm, again, the substrate is CaF2.
Bottom row, numerically calculated dispersion plots for the struc-
tures shown in the top row. Calculations were based on Fresnel
coefficients, and the absolute value of the complex p-polarised
amplitude transmission coefficient is shown as a function of fre-
quency (wavenumber) and in-plane wavevector. The modes in
the lower row are indicated: SP, surface plasmon; TM0, stand-
ard cavity mode; TM−1, coupled plasmon mode. The horizontal
whites dashed line in each dispersion plot indicates the position
of the molecular resonance. Also shown in each dispersion plot
(bottom row) are two light lines. These are the: air light-line, blue-
dashed; and polymer light-line (assuming the C=O resonance is
absent), green-dashed. Note that to calculate the dispersion data
shown here I set the refractive index of the superstrate and the
substrate to be n = 10, I did this to avoid the date showing surface
plasmon modes associate with the metal/air and metal/substrate
interfaces. Further calculations (not shown) indicate that making
this choice (n = 10) does not significantly alter the dispersion of

the modes I are interested in.

Now that I have established the structures and modes for study, figure 6.1,

I next consider their experimental investigation. To access modes beyond the
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air light-line I make use of grating coupling. I do this making (one of) the gold

film(s) in the form of a 1D stripe array, see figure 6.2b & e. Figure 6.2 provides the

key information associated with using gratings to couple to the modes I wish to

investigate. The central column, figure 6.2b & e, shows the structures I consider:

figure 6.2b is a 1D gold stripe array that allows us to explore the surface plasmon

mode; figure 6.2e is a metal-clad microcavity where the lower mirror is in the

form of a 1D strip array to allow me to explore the cavity coupled plasmon

mode. In the left-hand column I show indicative dispersion plots for the two

structures. Here I have simply made use of the Fresnel-based data shown in

figure 6.1b & f, except that now I have plotted two copies of the data, one shifted

by an in-plane wavevector that matches the grating wavevector,−kg/2π = 2127

cm−1, the other reversed in wavevector and also shifted, this time by +kg; these

two sets thus represent the effect I expect the grating scattering to have on

the transmission of incident light. My choice of grating wavevector (grating

period = 4.7 µm) was made so as to place the anti-crossing region of the modes

I am interested in close to zero in-plane wavevector (normal incidence). In

the right-hand column I show a combination of numerically simulated and

experimental data. For both plots in the right-hand column, figure 6.2c & f, the

left-hand half shows data calculated using COMSOL whilst the right-hand half

shows experimental data. For the experimental data I measured the infrared

transmission or samples using Fourier transform infrared spectroscopy (Details

are in chapter 3). By measuring transmittance spectra as a function of angle of

incidence (in the x− z plane, see figure6.2) a dispersion plot can be constructed

[5, 23, 94], such plots are shown in figure 6.2c & f.
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FIGURE 6.2: Modes supported by structures incorporating grat-
ings. Top row, surface plasmon (SP) mode. Bottom row, ’below
cut-off’ microcavity (TM−1) mode (the coupled plasmon mode).
Central column, grating structures; shown here are schematics
of: upper, 1D metal grating supporting a surface plasmon mode,
on top of a CaF2 substrate, overlain by a 1 µm layer of PMMA;
lower, a microcavity incorporating a 1D metal grating as the lower
mirror, the cavity is filled by a 1 µm layer of PMMA. The gold
films for both structures were 30 nm thick. Left-hand column,
calculated grating-scattered dispersion plots. These data were
produced by taking the data in figure 1b & f and applying both
+kg and +kg grating scattering, so as to produce figures 1a & d
respectively; details are given in the text. The grating period was
taken as 4.7 µm, for which kx/2π = 1/λg = 2127 cm−1. The
±kg scattered air and PMMA light-lines are shown as yellow and
light-blue dashed lines respectively. Right-hand column, these
dispersion plots are divided into two halves. In the left half, data
calculated using COMSOL are shown, in the right half, experi-
mentally measured data are shown. The maximum polar angle
for these data is 18°. Details of the grating profile are provided
in the Supp Info. As for the calculated dispersion plots, here the
±kg scattered air and PMMA light-lines are shown as yellow and

light-blue dashed lines respectively.

For both the surface plasmon mode, figure 6.2c, and the coupled plasmon

mode associated with the cavity below cut-off, figure 6.2f, I see anti-crossings

that agree well with what I expect from my indicative Fresnel-based modelling
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(figure 6.2a & d) and my more thorough numerical calculations (figure 6.2c & f).

Having established that strong coupling may occur between molecular res-

onances and modes beyond the light-line I can begin to look at the implications

this may have. One way to explore this is to make use of a coupled oscillators

model to look at the contribution the different cavity modes and the molecular

resonance make to the polaritons. This is a well known approach, I now adopt

this approach to look at a cavity close to the usual cut-off, i.e. the situation

shown in figure 6.1c & d. I chose this particular situation since a cavity close to

cut-off is the commonly used system, I can thus use it to see how the presence of

the TM−1 mode beyond the light-line modifies thus commonly adopted picture.

As a first step I represent dispersion of the TM0 and TM−1 modes analytically,

6.2.1 Coupled oscillators model

The coupled oscillators model can be represented through the following matrix

equation,


ETM0(kx) 0 Ω1/2

0 ETM−1(kx) Ω2/2

Ω1/2 Ω2/2 EC−−0




aL,M,U

bL,M,U

cL,M,U

 = EL,M,U


aL,M,U

bL,M,U

cL,M,U

 . (6.1)

In this equation: ETM0(kx) is the energy of the cavity (TM0) mode, ETM−1(kx

is the energy of the coupled plasmon (TM−1) mode, and EC−−0 is the energy

of the vibrational resonance; EL,M,U are the eigenvalues of the characteristic

matrix (left) and are the energies of the three hybrid polaritons, indicated by the

subscripts - L for the lower polariton, M for the middle polariton and U for the

upper polariton; a, b and c are the (Hopfield) coefficients of the eigenvectors,
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they are subject to the condition |a|2 + |b|2 + |c|2 = 1, the individual coefficients

giving the contribution of the TM0 mode, the TM−1 mode and the vibrational

resonance to the three polaritons, L, M, and U. Finally Ω1 and Ω2 are the

coupling strengths (Rabi-splittings) for the interaction between the TM0 and

the TM−1 with the molecular resonance.

The results from solving for the eigenvalues and coefficients of equation 6.1

are shown in figure 6.3. The top row of figure 6.3 is the result of a two coupled

oscillators model, one that includes only the cavity (TM0) mode and the mo-

lecular resonance; this provides a useful reference for the three oscillator model

involving the (TM0), the (TM−1) and the molecular resonance in the lower

row. For the three oscillator model (lower row), a reasonable match with the

experimental data was obtained for Rabi-splittings of Ω1 = Ω2 = 150 cm−1: I

made use of the same splitting in the two oscillator model (upper row). These

splittings compare with mode widths of cavity mode 60 cm−1 and coupled

oscillator 75 cm−1. In the left-column of figure 6.3 I present the dispersion of

the modes in the two (upper) and three (lower) coupled oscillator systems. Also

shown as dashed lines are the dispersion of the uncoupled modes.

The data shown in figure 6.3 allow me to make an initial assessment of

the role played by the coupled plasmon mode in strong coupling in a typical

microcavity. Looking first at the standard two oscillator model (top right), I see

the expected contribution of the molecular resonance to the upper polariton

and the lower polariton. There molecular resonance is equally split between the

two polaritons at the wavevector corresponding to the crossing point. As the

wavevector increases the lower polariton becomes resonance-like, the upper

polariton photon-like. If I now look at the three oscillator model–where the

influence of the coupled plasmon mode is included–then a rather different

picture emerges. There are now three polariton modes, an upper, middle and
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lower polariton. In the lower right panel the extent to which the molecular

resonance contributes to these three polaritons is shown. At low wavevectors

the situation looks very similar to that of the two oscillator system (upper right),

however, as the wavevector rises the molecular contribution shifts to the new

lower polariton. What consequences might this have? Two possibilities can be

readily identified.

First, in considering disordered cavity materials (rather than crystalline)–as

is usually the case in experiments, and is certainly the case here for the polymer

PMMA– the range of wavevectors over which the lower polariton branch of

the two oscillator model makes physical sense is limited, as pointed out by

Agarnovich and Lidzey [80]. However, their upper limit on wavevector far

exceeds the range over which the cavity (TM0) mode is the only significant

mode. I might therefore expect that, for example, relaxation from initially

uncoupled states into the lower polariton will be modified by the presence

of the TM−1 mode. Second, I need to think about the spatial location of the

molecules involved in the different polaritons.This is because the two modes,

the cavity (TM0) mode, and the coupled plasmon (TM−1) mode, have rather

different field profiles.

In figure 6.4 I show the field distribution associated with the two modes.

On the left, the time-averaged electric field components associated with the

TM0 mode are shown, on the right those for the TM−1. The net electric field

near the cavity mirrors is significantly greater for the TM−1 mode - molecules

near the mirrors will preferentially couple to this mode. It thus looks as though

the dynamics of some phenomena associated with strong coupling and the

way different molecules couple with different modes both act to make strong

coupling in these candidate systems more complex and richer than previously

thought. These initial observations needs following up with a more detailed
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study.

FIGURE 6.3: Coupled oscillators model. Left column: calculated
dispersion of the polariton bands Top row, upper plot for a cavity
mode and the molecular resonance, lower for a cavity mode, a
coupled plasmon mode, and a molecular resonance. Right column:
Hopfield coefficients for the fraction of molecular resonance in the
different polaritons shown in the dispersion plots (left). Figure

courtesy of William L. Barnes
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FIGURE 6.4: Field profiles. Top row: the absolute value of the
complex TM-polarised and TE-polarised amplitude transmission
coefficients in the absence of the molecular resonance (vibrational
mode) is shown in (a) and (d) respectively, as a function of fre-
quency (wavenumber) and in-plane wavevector. The remaining
plots show the time averaged electric fields. (b) and (d) are for the
TM0, (c) TM−1 modes, with Ex and Ez in blue and red respectively.
(e) is for the TE0 mode, here with Ey and Ez in magenta and red
respectively. The field profiles were calculated at a frequency of
1732 cm−1, and for the following in-plane wavevector values: TM0

and TE0 mode at ∼ 138 cm−1, TM−1 mode at ∼ 2450 cm−1.

In Figure 6.3 the calculated dispersion plot of the polariton bands in the
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cavity system is shown in top left and in the coupled plasmon system is shown

in bottom left. Hopfield coefficients of molecular resonance in the cavity and in

the coupled plasmon mode is shown in top right and bottom right respectively.

The contribution of the Hopfield coefficient is around ∼ 50% for cavity system.

The similar contribution is also observed for the coupled plasmon system.

6.2.2 Change in PMMA thickness

In figure 6.5 as I are increasing the thickness of the PMMA layer, the coupled

plasmon mode drifts away from air light line. The blue dotted line represents

the air-light line. The important characteristic of the coupled plasmon mode

for the present work is that it has no lower frequency cut-off, enabling an out-

standing degree of field confinement to be achieved. Indeed, this combination

of field confinement and no cut-off has been exploited recently to achieve single

molecule strong coupling, by placing a molecule in the gap–only a few nm

thick–between a planar metal film and an overlying metal particle [90].
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FIGURE 6.5: Dispersion plot showing changing pmma thickness
to 1 µm , 100 nm and 30 nm respectively. The Top and the bottom
mirrors were kept constant with 30 nm thickness each. As the
thickness is increased, the coupled plasmon mode shifts away

from light line
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6.2.3 Field profiles

In figure 6.4 (panels b & c) we show the calculated field distributions associated

with these two modes. For completeness we also show the field distribution for

the TE polarised lowest order cavity mode, TE0 (panel e). Note that there are

subtle differences between the dispersion of the TE0 and TM0 modes [95], and

in addition when the dipole moment associated with a molecular resonance

is oriented in the plane of the cavity, the polarisation of the modes that the

molecules may couple to also becomes important [96]. The data in figure 6.4

indicate that the net electric field near the cavity mirrors is significantly greater

for the TM−1 mode, so that molecules near the mirrors will preferentially

couple to this mode. It thus looks as though the dynamics of some phenomena

associated with strong coupling and the way different molecules couple with

different modes both act to make strong coupling in these candidate systems

more complex and richer than previously thought.

6.2.4 DBR based cavity

At this point it is also worth looking at cavities made with distributed Bragg

reflecting (DBR) mirrors, rather than metallic mirrors, with the aim of investig-

ating whether there are modes in such cavities that also lie beyond the light line,

and if so whether they undergo strong coupling. Muallem, et al. [97] presented

results on strong coupling between molecular vibrational resonances in PMMA

and the cavity mode of a DBR-based cavity. They showed that strong coupling

to the standard cavity mode occurs using these cavities, much as it does for the

usual metal-based cavities. However, their investigation did not go beyond the

light-line. Here we extend this investigation to regions beyond the air light-line.

Figure 6.6(a) shows a schematic of the structure we consider, employing ZnS

and Ge DBR mirrors (see methods for further details). In figure 6.6(b) we show
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FIGURE 6.6: DBR-based cavity (a) Schematic showing DBR cavity
structure. (b) Dispersion plot based on Fresnel-type calculations.
The absolute value of the TM polarised Fresnel coefficient is shown
as a function of frequency (wavenumber) and in-plane wavevector.
The blue and green dashed lines represent the air and PMMA
light lines respectively. The molecular resonance is shown as a
horizontal dashed white line. Layer thicknesses and material
parameters for the DBR mirrors are given in the methods section.

a dispersion plot for this structure, calculated using the Fresnel-based approach

we used for figures 6.1 and 6.4. As for the metal-clad cavities discussed above,

in addition to strong coupling of the standard cavity mode we see that there is

also strong coupling between the molecular resonance and the mirror modes of

the DBR that lie well beyond the light line.

6.3 Summary

In Summary, the results show that in addition to the usual cavity mode of

metal-clad cavities, strong coupling also arises due to the coupled plasmon

modes present in such structures. My results indicate that this mode should

be taken into account when looking at how strong coupling may be used to

alter/create molecular properties via strong coupling.
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The next chapter will focus on areas for future work, in which I present some

initial results on each topic discussed. I will primarily discuss vibrational strong

coupling involving photochromic molecules, increasing the extent of strong

coupling, and a three cavity system.





107

Chapter 7

Future work

A number of ideas and projects emerged during the work on this thesis for

which there was insufficient time to complete. Some of these ideas for future

work are discussed here. In this chapter, I will briefly mention these ideas and,

where possible, present some preliminary results.

7.1 Vibrational strong coupling involving photo-

chromic molecules

Schwartz, T. et al. [13] looked at strong coupling in the visible for an interesting

system in which the molecules within the cavity were photochromic. They used

spiropyran molecules. These molecules, when place in a cavity, showed only

weak coupling. However, when the cavity was illuminated with UV light the

molecules were transformed from spiropyran to merocyanine . Merocyanine

has a strong absorption in the visible, and in this form the cavities showed

strong coupling. Importantly, this conversion under UV illumination was

reversible - a photochromic process. The Rabi splitting of cavities exhibiting the

merocyanine form was around 700 meV. I wanted to see whether there were



108 Chapter 7. Future work

differences in the vibrational spectra of the spiropyran/merocyanine forms,

and if there were, whether one of them might show strong coupling.

Figure 7.1 shows an infrared spectrum of spiropyran vibrational modes for

different UV illumination times. The data show that after shinning UV light,

the intensity of certain vibrational modes change. For example, the mode at

around 1340 cm−1 goes from being a sharp and strong signal to being a weak

signal. For the first set of experiments, only 6 minutes of total UV illumination

was used, at one minute intervals.

The main idea of the experiment was to put the spiropyran inside the mi-

crocavity and monitor the vibrational modes as UV light was applied. As we

know from figure 7.1 that UV light changes the intensity of the modes, so we

should be able to control the coupling strength to a microcavity mode via UV

illumination.

FIGURE 7.1: FTIR transmission spectra of spiropyran taken at
different time duration. Initially the first spectrum was taken
when no UV light was shone on to the sample. As I started shining
UV light, the intensity of few of the vibrational mode started to

get shrunk i.e 1340 cm−1 and 1275 cm−1

The schematic of the system is shown in figure 7.2 (a) The spectra in orange
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in figure 7.2 (b) is the reference transmission spectra of spiropyran on top

of silicon substrate. The spectra in blue shows the FTIR transmission of the

spiropyran-filled cavity sample. The addition peak around 1275 cm−1 may be

because of strong coupling between vibrational mode of spiropyran molecule

and the cavity mode. Future research might be based on pursuing these results

further and looking at what UV illumination conditions are required to achieve

strong coupling.

To understand the system better, further study is required.

FIGURE 7.2: (a) Schematics of an optical micro-cavity formed of
two gold mirrors separated by mixture of spiropyran and pmma.
(b) FTIR transmission spectra of spiropyran film is in orange and
transmission spectra of spiropyran inside the cavity at zero angle

is in blue.

7.2 Increasing the extent of strong coupling

As discussed in the Chapter 4, the coupling strength between confined light

and molecule can be increased by adding different molecule vibrational species.

This section is further divided into two parts. 1) Increasing the extent of strong

coupling in microcavity structure. 2) Increasing the extent of strong coupling in

coupled plasmonic structure. I will first begin with microcavity structure.
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7.2.1 Increasing the extent of strong coupling in micro-cavity

structure

Instead of using PMMA for vibrational mode study, I added PMGI in between

two PMMA layers and spun them on top on silicon substrate. Figure 7.3 (b)

shows FTIR transmission spectrum of vibrational modes of PMMA and PMGI

in solid black line. The numerical calculated transmission spectra is shown in

blue dotted line.

FIGURE 7.3: (a) Schematics of sample geometry. 400 nm of PMGI is
sandwiched between two 600 nm PMMA layers. (b) experimental
transmission spectra is shown in black solid line and numerically

calculated transmission spectra in blue dashed line.

Vibrational modes of PMGI are visible around 1750 cm−1 close to C=O

vibrational mode of PMMA at 1732 cm−1. The idea is to show that adding more

than one vibrational mode of different species at approx. the same frequency

will help to increase the vacuum Rabi splitting of the overall system.
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FIGURE 7.4: (a) Schematics of (b) experimentally calculated dis-
persion spectra of figure 7.4 (a). The white dashed line is C=O
vibrational mode of PMMA and the two solid white lines are

vibrational modes associated with PMGI

Figure 7.4 (a) shows the schematics of an optical micro-cavity consisting of

two gold mirrors and the mixture of PMGI and PMMA sandwiched between

them. Using FTIR the dispersion plot of the system, 7.4(a), was acquired and

is shown in figure 7.4 (b). The solid white dashed lines are vibrational modes

present in PMGI and the dotted white lines show the presence of the PMMA

vibrational mode.

An increase in the Rabi splitting by almost 33 % is observed compared to

what I observed in chapter 4. Specifically, the Rabi splitting comes around 210

cm−1 compared to Rabi splitting around 150 cm−1 for just the PMMA.



112 Chapter 7. Future work

7.2.2 Increasing the extent of strong coupling in coupled plas-

monic structure

Similar to strong coupling of C=O vibrational mode with coupled plasmonic

mode discussed in chapter 6, now I will introduce vibrational modes of different

species into the system i.e. PMGI.

FIGURE 7.5: Schematics of coupled oscillator filled with mixture
of PMMA and PMGI.

The schematic of the system is shown in figure 7.5. The 200 nm of PMGI

is sandwiched between two 300 nm pmma layers on one dimensional gold

grating structure. The pitch is 4.7 µm and the gap is 1 µm. The thickness of

bottom as well as the top deposited gold films is 30 nm.
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FIGURE 7.6: (a) Numerically calculated transmittance data of
coupled plasmon system with mixture of PMGI and PMMA in-
between two gold metal layer (b) experimentally measured data

of the same system

Figure 7.6 shows the comparison between the numerically and experiment-

ally calculated dispersion plots of figure 7.5 system. Similar to the previous

microcavity section, an increase in the Rabi splitting by almost 33 % is observed

compare to what I observed in chapter 6. Here, the Rabi splitting also comes to

around 210 cm−1 compare to 150 cm−1 with just the PMMA.

7.3 Strong coupling and Raman spectroscopy

Later in this thesis a modulated Raman technique is discussed, it is used to

obtain a better signal to noise ratio specially in the presence of fluorescence.

Tunable sacher laser is of 1 W. The laser wavelength is 785 nm and the numerical

aperture (NA) is 1.4 oil objective lens. Modulated Raman works through a

periodic modulation of the laser excitation wavelength. It has many important

features such as multi-channel lock in detection but the most important feature

is the stationary fluorescence, and is widely used for medical applications [98,
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99]. Strong coupling of molecular vibrations and a micro-cavity mode has

been demonstrated using FTIR in chapter 4. Recently, Shalabney et al. [100]

reported that the same large Rabi splitting could be seen in Raman scattering

measurements of the micro-cavity system .

FIGURE 7.7: Schematic of Raman laser on one dimensional gold
grating structure

Pushing that idea to further, I looked at a one-dimensional gold grating

structure on silicon substrate rather than a microcavity. The idea was to see

whether strong coupling between a surface plasmon mode and a vibrational

resonance could be seen using the Raman technique. A 1 µm layer of PMMA

was spin coated on top of the gold grating. A schematic of the system is shown

in figure 7.7 In conventional Raman spectroscopy fluorescence from metals

usually leads to a high level of background noise that makes identification of

Raman peaks difficult. To avoid this happening, in my experiments I used

the technique called modulated Raman [101, 102]. Here, instead of single

input wavelength, the modulated Raman has multiple input wavelengths over

the span of pico wavelength. Later, the averaged of all the output signals
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is calculated and thus it minimises the effect of noise. For this work, I have

collaborated with Dr. Mingzohu and Prof. Kishan Dholakia of the St.Andrews

University.

FIGURE 7.8: (a) Modulated Raman signal on top of the gold grat-
ing (b) Modulated Raman signal at the edge of gold/PMMA. The
top row shows data using the unmodulated technique, the lower

row shows data from the modulated-Raman approach.

Figure 7.8 shows some preliminary data, in the top row the data are based

on the un-modulated (i.e. standard) Raman technique, the lower row shows

the output from the modulated Raman. The laser wavelength used here is 785

nm. The modulated Raman signal at different positions on the sample was

recorded every 500 nm along a line scan of the sample. Figure 7.8 (a) shows the

modulated Raman signal when the laser is on the metal regions. Only features

of the PMMA vibrational modes are present. However, when the laser is at

the edge of a metal region, then the an additional peak appears somewhere

between 1450 cm−1 and 1730 cm−1 in figure 7.8 (b). Perhaps this appears due

to strong coupling between the vibrational mode and the plasmonic mode

because in these regions (edge of metal film) the electric field intensity of the
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plasmon mode is expected to be greatest. These are the preliminary results, to

understand the system better, further research is required.

7.4 Three cavity system

Three cavity system allows the on-off switching of the coupling rate without

perturbing the emitter and without introducing frequency chirps on the emitted

photons. This can be used to control Rabi oscillations and also as a gain-

modulation method in lasers. Coupling of three in-line cavities with molecular

vibration placed in the central cavity (target cavity) is demonstrated below. Sim-

ilar work has been previously shown by Robert Johne et al. [103] theoretically.

FIGURE 7.9: Schematic of three cavity system is shown. ∆ is varied
for first and last block.

A schematic of the three cavity system is shown in figure 7.9. Here, PMMA is

in the central cavity. Air is used as the spacer in the first and last cavities. Here,

I am assuming the frequency of the outer two cavities as ωl,r= ωt+∆, where

detuning ∆ is same for both but a different sign. First I will start will empty

three cavity system.
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The Hamiltonian for the empty three cavity system is,

Htriplecavity =


(ωt + ∆)− iκl η 0

η ωt − iκt η

0 η (ωt − ∆)− iκr

 (7.1)

where, Kr, l, t are the loss rate of the left, the right and the target cavity. η

denotes the coupling rate between the adjacent cavities.

Figure 7.10 shows calculated transmission spectra of three cases. In the first

case, the value of ∆ is kept zero. Thus I observe three peak positions in blue

as expected. Second case when ∆ is 100 nm. The central peak remains at the

same position while the other two peaks shift slightly further away and similar

pattern can be observed for the third case when ∆ is 200 nm.

FIGURE 7.10: (a) Transmission spectra of at zero angle. The thick-
ness of gold mirror were kept constant. Three cases 1) PMMA
thickness is constant and is 2 µm 2) PMMA thickness of first block
is 1.9 µm, 2 µm for the middle block and 2.1 µm for the last block
3) PMMA thickness of first block is 1.8 µm, 2 µm for the middle
block and 2.2 µm for the last block (b) Zoomed in version of (a)

A good next step might be to measure the calculated transmission spectra

with the vibrational mode inside the central cavity. Then experiments could be
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done to verify the numerical calculation.

7.5 Summary

In this chapter, I discussed various ideas which due to insufficient time were

remain unfinished. I started with vibrational strong coupling involved in

photochromic molecules in the midinfrared region. Photochromic molecules

change intensity of their vibrational modes if they are in continuously contact

with UV light. Later, I mentioned that we can increase the extent of strong

coupling by choosing different materials which have strong vibrational modes

close to each other. By that, we could easily extend the strong coupling. Finally,

I talked about modulated Raman spectroscopy technique. Traditional Raman

spectroscopy faces lots of problem due to background noise from metals. To

reduce the background noise and to understand the signal better,

In the next chapter I will summarise all the chapters and the work done in

the thesis.
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Chapter 8

Summary

In summary, this thesis has presented experimental as well as calculation-based

investigations of hybridisation of multiple vibrational modes using confined

light fields, vibrational strong coupling with surface plasmons, including the

presence of surface plasmon stop bands, and finally strong coupling involving

modes beyond the light-line.

In chapter 2, I focused on fundamentals. I started with Surface plasmon

and then discussed about various way to couple surface plasmon polaritons

with emitters. Later, I discussed about Drude-Lorenz model for metallic and

non-metallic such as polymer materials.

Chapter3 was mainly focused on different experiment techniques which were

used during my PhD period. In the end of the chapter, I discussed thoroughly

different sections in comsol with an example.

In chapter 4, my results showed that distinct molecular vibrational reson-

ances, here associated with C=O, CH2 and CH3 may be hybridized by strong

coupling each of them to the same cavity/plasmon mode. The extent to which

the three vibrational resonances contribute to the upper middle polariton in the

cavity system, ∼ 11%, is comparable to that in the first report of hybridizing

two excitonic resonances via strong coupling [19]. For the case of the plasmon
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mode I found that only the coupling with the C=O bond fully met the strong

coupling criteria, and that the associated polariton, although involving all three

molecular resonances, only did so to the extent of 5%. Nonetheless, it is clear

that strong coupling can hybridize multiple different molecular resonances

of a single molecular unit, and that consequently strong coupling offers an

interesting means by which to control molecular systems. Hybridized vibra-

tional resonances may also be interesting in the context of vibrationally dressed

states [12, 69]. A challenge for the strong coupling community is to devise

means by which to increase the extent of hybridization possible. Some dis-

cussion of this was given in Chapter 7. Increasing the extent of hybridization

might be achieved by employing confined light fields that exhibit greater field

enhancement than the planar metal-clad cavity used here. Possible routes to

achieving this include planar cavities that use dielectric stacks rather than metal

mirrors [70], and localised resonances [39]. Care will be needed though since

there is often a trade-off between field enhancement and cavity volume to

consider [71].

In chapter 5, I demonstrated strong coupling between molecular vibrational

resonances and surface plasmons in the infrared by exploiting grating coup-

ling. In addition to enabling light to be coupled to the hybrid vibro-plasmon

polaritons, the grating nature of the surface I used also led to the formation of

polariton stop bands. I further showed that both upper and lower stop bands

undergo strong coupling. A future study might extend my understanding by

exploring the role of 2D periodic structures, e.g. to provide a full band gap. It

would be interesting for example to see what would happen if such a gap was

centred around the frequency of the molecular vibrational resonance, would

the strong coupling be completely blocked? Finally I might add that although I

have used a stripe array, a metal film with a modulated surface profile should
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also work [78], therefore enabling, for example, electrical access. These initial

results on strong coupling involving plasmon band edges would benefit from a

more detailed investigation.

In chapter 6, my results showed that in addition to the usual cavity mode

of metal-clad cavities, strong coupling also arises due to the coupled plasmon

modes present in such structures. My results indicate that this mode should

be taken into account when looking at how strong coupling may be used

to alter/create molecular properties via strong coupling. Vibrational strong

coupling provides an interesting alternative to explore a hierarchical approach

that mixes both plasmonic and vibrational resonances something I discussed in

Chapter 7.

To conclude, a number of advances in our understanding of strong coupling

between confined light fields and molecular vibrational resonances have been

made, and routes for follow-up investigations identified. It is to be hoped that

these new avenues will be explored soon.
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Appendix A

Matlab codes

A.1 COMSOL dispersion plot code

1 clear all

2 %figure()

3 h=4.135667516e−15;

4 c=3e8;

5 n_si=3.48;

6 n_air=1;

7 grating = 4500*10^−7; %Grating constant in centi−metres

8 %k_g= pi/grating;

9 %period=2*pi/grating;

10 k_g=1/grating;

11 %wpmma=1742;

12

13 %data = importdata('D:\daily progress\comsol\paper3\4.5um ...

pitch−1.5um pmma_Ian_new.txt');

14

15 data = importdata('D:\daily ...

progress\comsol\zns_ge_pmma_beyond_light_line.txt');

16 Nx = length(unique(data(:,1)));

17 %Nxx=unique(data(:,1));
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18 %Nxx1=unique(data(:,1)):4:96;

19 Ny = length(unique(data(:,2)));

20

21 frequency = h.* data(:,2);% time being

22 kx=sin( data(:,1));

23 y=(data(:,2)./c)*0.01;

24 x=kx.*y;

25 x1=(kx./3.48).*y;

26 sin_x = ((2.*pi.*data(:,2)./c)) .*sin(data(:,1).*pi/180 );

27

28 X = reshape(sin_x,Ny,Nx);

29 %X = reshape(x,Ny,Nx);

30 Y = reshape((data(:,2)./c)*0.01,Ny,Nx);

31 YPMMA=1730;

32 Z = reshape(data(:,3),Ny,Nx);

33

34 %waterfall (X,Y,Z)

35 figure

36 hold on

37 disp_pos= surface(X,Y,Z, 'EdgeColor','none');

38 cl = colorbar;

39 cl.Label.String = 'Transmission';

40 cl.Label.FontWeight = 'bold';

41 disp_neg = surface(−X,Y,Z, 'EdgeColor','none'); %dispersion ...

for −kx

42

43

44 hold on

45 z_max = max(max(get( disp_pos,'Zdata')));

46

47 % light lines

48

49 x1=−100000:1:100000;
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50 %

51

52 %air

53 %

54 %plot(k_g)

55 % %air_light line

56 plot(−(x1−k_g),x1)

57 plot(x1−k_g,x1)

58 %

59 % %plot(−(x1−k_g),x1,z_max*ones(1,x1))

60 %

61 % %plot(−(x1−k_g),x1)

62 % %plot(x1−k_g,x1)

63 %

64 % %si

65 plot(−(x1*3.48−k_g),x1)

66 plot(x1*3.48−k_g,x1)

67 % % % % % %

68 plot(−(x1*3.48−2*k_g),x1)

69 plot(x1*3.48−2*k_g,x1)

70 % % % % %

71 plot(−(x1*3.48−3*k_g),x1)

72 plot(x1*3.48−3*k_g,x1)

73 % % % % %

74 plot(−(x1*3.48−4*k_g),x1)

75 plot(x1*3.48−4*k_g,x1)

76 % % %

77 plot(−(x1*3.48−5*k_g),x1)

78 plot(x1*3.48−5*k_g,x1)

79 %

80 %C=O line

81 % max_Z = max(Z(:));

82 % pmma_x = −10000:1:10000;
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83 % pmma = 1740*ones(1,length(pmma_x));

84 % pmma_z = max_Z*ones(1,length(pmma_x));

85

86 % %

87 %

88

89 %title(strcat('1D−Au 100nm−4.5um',x))

90 % xlabel('in−plane wavevector k_x/ m^{−1}') % x−axis label

91 % ylabel('Circular Frequency \omega / rad s^{−1}') % y−axis label

92 xlabel(' k_x/2\pi ...

(cm^{−1})','FontSize',16,'FontWeight','bold') % x−axis label

93 xt= get (gca, 'XTick');

94 set (gca, 'FontSize', 14,'FontWeight','bold');

95 ylabel('Wavenumber ...

(cm^{−1})','FontSize',16,'FontWeight','bold') % y−axis label

96 %surf(peaks)

97 set(gcf,'PaperPositionMode','auto')

98 % end points for light−line

99 P1 = [−22222,0,3];

100 P2 = [0,22222,3];

101

102 pts = [P1; P2];

103 % %

104 % plot3(pts(:,1), pts(:,2), ...

pts(:,3),'Color','white','LineWidth',1);

105 % %

106

107 %

108 % max_Z = max(Z(:));

109 % pmma_x = −2000:1:2000;

110 %

111 % pmma = 1730*ones(1,length(pmma_x));

112 % pmma1 = 1444*ones(1,length(pmma_x));



A.1. COMSOL dispersion plot code 127

113 % %pmma2 = 1697*ones(1,length(pmma_x));

114 % %pmma3 = 1668*ones(1,length(pmma_x));

115 %

116 % pmma_z = max_Z*ones(1,length(pmma_x));

117 %

118 % xlim([−2000 2000])

119 % ylim([1300 2000])

120

121 %angle2=linspace(0,60,500);

122 %cavity_mode_func = 1503.5+0.094*angle2.^2;

123

124 %k=cavity_mode_func.*sin(pi*angle2/180);

125 %k1=(((2*pi).*(cavity_mode_func)).*sin(pi*angle/180))./(2*pi);

126

127 %plot(k,cavity_mode_func);

128 %hold on

129 %plot(−k,cavity_mode_func);

130 set(gca,'linewidth', 2,'fontsize',24)

131 xlim([−2000 2000])

132 ylim([1300 2000])

133 view([180 −90])
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A.2 FTIR dispersion plot code

1 clear all;

2 path('D:\daily progress\FTIR\4.7um_longer_angle')

3 h=4.135667516e−15; %h/e

4 c=3e10;

5 c1=3e8/10^−9;

6 n_si=3.43;

7 n_air=1;

8 n_sub = 1.0;

9 grating = 400e−9;

10 kx_to_ev = h*c*n_sub*1e6./(1*2*pi);

11 k_g = h*c./(1*grating);

12

13

14 core = 'au100nm−pmma1um−pitch4.7um−angle';

15 ext = '.0.dpt';

16

17 x='−transmission';

18

19

20 dataSet = 1;

21

22 angleMin = 0;

23 angleMax = 30;

24 angleStep =2;

25 angles = [];

26

27

28 raw = [];

29 dataSet = 0;

30
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31 for jj = angleMin:angleStep:angleMax

32 dataSet = dataSet + 1;

33

34 %dynamically create the filename to be loaded

35 myfilename = sprintf(strcat(core,'%i',ext), jj);

36

37 %store the relevant angle

38 angles(dataSet) = jj;

39

40 %load the datafile

41 raw(:,:,dataSet) = importdata(myfilename);

42 end

43

44

45 numAngles = dataSet;

46

47

48 numK = size(raw,1);

49

50 angles

51

52

53 freqArr = zeros(numK, numAngles);

54 wavevectorArr = zeros(numK, numAngles);

55 transmissionArr = zeros(numK, numAngles);

56

57

58 for i = 1:numK

59 for j = 1:numAngles

60 freqArr(i,j) = raw(i,1,j);

61 end

62 end

63
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64 %Wavevector; this is a function of both angle and kSpec.

65 for i = 1:numK

66 for j = 1:numAngles

67 wavevectorArr(i,j) = freqArr(i,j)*sind(angles(j));

68 end

69 end

70

71 %Transmission assignment

72 for i = 1:numK

73 for j = 1:numAngles

74 transmissionArr(i,j) = raw(i,2,j);

75 end

76 end

77

78

79 kx_max = max(wavevectorArr(i,j));

80 %kx_min = min(k_x_all);

81 ev_max = max(freqArr(i,j));

82 ev_min = min(freqArr(i,j));

83 %z_max = max(max(get( transmissionArr,'Zdata')));

84 %hold all;

85

86

87 xlim([−2000 2000])

88 ylim([1000 3000])

89 freqAr=transpose(freqArr);

90 freqA= freqAr(:,1);

91

92

93

94 hold on

95 disp_pos=surface(wavevectorArr, freqArr,(transmissionArr ...

),'EdgeColor','none');
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96 disp_neg=surface(−wavevectorArr, ...

freqArr,(transmissionArr),'EdgeColor','none');

97

98

99 x=−2000:10:2000;

100 y=1000:5:3000;

101 height_pos = get(disp_pos,'ZData'); %lower +kx dispersion ...

plot so lines are visible

102 set(disp_pos,'ZData',height_pos−10)

103 height_neg = get(disp_neg,'ZData'); %and for −kx

104 set(disp_neg,'ZData',height_neg−10)

105 kx = linspace(−kx_max,kx_max);

106 ev_0 = abs(kx_to_ev*kx);

107 plot(kx,ev_0)

108 %+1

109 ev_p1 = abs(kx_to_ev*kx+k_g);

110 plot(kx,ev_p1,'color','m')

111 %−1

112 ev_n1 = abs(kx_to_ev*kx−k_g);

113 plot(kx,ev_n1,'color','m')

114 %+2

115 ev_p2 = abs(kx_to_ev*kx+2*k_g);

116 plot(kx,ev_p2,'color','m')

117 %−2

118 ev_n2 = abs(kx_to_ev*kx−2*k_g);

119 plot(kx,ev_n2,'color','m')

120

121

122 shading interp;

123

124

125

126 %colorbar & settings
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127 cl = colorbar;

128 cl.Label.String = 'Transmission';

129

130 %axes & title

131 %title(strcat('1D−Au 100nm−4.625um',x))

132 % xlabel('in−plane wavevector k_x/ m^{−1}') % x−axis label

133 % ylabel('Circular Frequency \omega / rad s^{−1}') % y−axis label

134 xlabel(' k_x /cm^{−1}','FontSize',16,'FontWeight','bold') % ...

x−axis label

135 xt= get (gca, 'XTick');

136 set (gca, 'FontSize', 14,'FontWeight','bold');

137 ylabel('Wavenumber ...

(cm^{−1})','FontSize',16,'FontWeight','bold') % y−axis label

138 hold off;
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