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We have experimentally demonstrated an O-band Mach-Zehnder interferometer (MZI) based on a N-rich silicon nitride

platform combined with Ge2Sb2Te5 for future optical communication applications. The device operation relies on

controlling the waveguide’s losses using a phase change material cell which can be changed from amorphous (low-

loss) to crystalline (high-loss). An extinction ratio (ER) as high as 11 dB was obtained between the amorphous (ON)

and the crystalline (OFF) states of the MZI optical building block. The insertion loss of the MZI structure per cell

unit length was measured to be as high as 0.87 dB/µm in OFF state and as low as 0.064 dB/µm in ON state for TM

polarisation.

Silicon Photonics is a technology that has emerged to pro-

vide CMOS based low-cost fabrication of photonic integrated

circuits (PICs) for high speed optical data manipulation and

transmission.1,2 Both start-up and established companies are

actively developing CMOS based photonics as the future tech-

nology for high speed data interconnects and high perfor-

mance computing.3 Amongst the CMOS enabling materials,

silicon nitride (SiNx) provides a promising and complemen-

tary platform for the development of low cost CMOS com-

patible waveguides and related photonic components. This

is due to its low-temperature fabrication, the ability to pre-

cisely tailor its optical properties, and the high thermal sta-

bility of the final devices.4,5 Although Si waveguides pro-

vide a tighter confinement that leads to more compact de-

vices, SiNx as a deposited material in their stoichiometric and

non-stoichiometric forms is more cost effective and provides

more freedom in the construction of more complex multilayer

photonics circuitry. As a result, SiNx waveguides have been

widely employed for light propagation in the near infrared and

the visible range of the electromagnetic spectrum.6,7

To date, one of the main challenges faced by silicon pho-

tonics is the lack of volatile and non volatile reconfigurable

components,8 which prevents the development of devices

combining both functionalities such as switches, filters, and

memories.9,10 One of the main emerging material families

that can provide an alternative to non volatile circuit recon-

figurability comprises phase change materials (PCMs).11–13

PCMs have two (or more) reversible states that exhibit large

changes in their optical properties14,15 which make them the

most promising candidates to address non volatile reconfig-

urability in CMOS photonic devices.16–18 The phase change

process can be thermally, optically or electrically driven. The

modulation speed depends on the switching mechanism and

device geometry. Optical switching in integrated photonic de-

vices reaches “ns” modulation (∼ MHz),12 but faster mod-

ulation rates have been demonstrated in the sub-ns regime

(∼GHz)19 by electrical switching, using carbon nanotube

electrodes.20 Using micro-heaters, switching times conven-

tionally lays in the order of "µs", leading to lower modula-

tion rates (∼ kHz).21 Crystallization is achieved by heating

a)Electronic mail: jf481@exeter.ac.uk

the material above the glass transition temperature and then

slowly cooling it down, leading to nucleation followed by the

growth of the nuclei over a small distance until they impinge

on other crystallites. Returning to the amorphous state is more

challenging, and requires the PCM to be molten and then very

rapidly quenched.22

The combination of SiNx photonic waveguides and PCMs

can lead to fast (ns) non volatile reconfigurable technologies

for optical communications applications.23,24 Different sili-

con and SiNx building blocks have been explored in the C-

band using PCMs as the reconfigurable material.25,26 In this

work, we present an O-band N-Rich Silicon Nitride Mach-

Zehnder Interferometer (MZI) based on the commonly used

Ge2Sb2Te5 (GST) phase change material, providing a non-

volatile material for applications in the O-band for optical

communications (Fig. 1).

FIG. 1. Schematic of the MZI with a GST patch of the length LGST=

5, 10 and 15 µm deposited on the longer arm (top arm) of the length

L1 + ∆L , where L1 = 614 µm and ∆L = 20, 40 and 60 µm. MMI

structure with width WMMI = 15 µm and length LMMI= 168 µm are

used as splitters/combiners. The width of the single mode waveguide

(700 nm) is tapered to WIO = 6 µm with tapers of length Ltaper = 100

µm to increase the fidelity of the MMIs.

The optical platform consists of a 700 nm wide SiNx strip

waveguide formed by etching a 600 nm thick SiNx layer.27

This design allows both single TE and TM mode propagation

with low losses in the O-band (<1dB/cm). The propagation

losses measured with this geometry account for both the ma-

terial absorption losses and the scattering losses produced due

to the sidewall roughness of the waveguides. The asymmetric

MZI structure is built with two multi-mode interferometers

(MMI) that split the input signal into two arms of different

length and then combine them into an output signal. A thin

layer (15 nm) of phase-change material (PCM) is deposited
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O-band N-rich Silicon Nitride MZI based on GST 2

on top of the longer arm of the asymmetric MZI with cells of

different length (5, 10 and 15 µm), with a 10 nm thick protec-

tive SiO2 encapsulation layer. By using an asymmetric MZI

design, we enable engineering of the device performance in

two ways: by tuning the length difference between the arms

(∆L) and the geometry of the deposited GST cell.

A PCM cell thickness of 15 nm was selected as it provides

a good balance between attenuation and total transmission in

the device between states (Fig. 2). In this work we focused on

the phase-change alloy GST, due to the well-established fab-

rication methodology and most importantly, due to thorough

characterisation of optical properties in both phases, which

determine the partial attenuation of the guided modes, along

with the characteristic non-volatile tunability and switching

times within the nanosecond scale.28,29 This reconfigurable

material provides a suitable platform for stable optical mod-

ulation exploiting Mach-Zehnder interferometers in the O-

band, as demonstrated in this work. In order to estimate

the waveguide transmissivity, losses, and the interferometer

performances in terms of modulation and frequency selec-

tivity, we numerically analysed the mode profile of each in-

terferometer branch via COMSOL Multiphysics. TM polar-

ization was selected due to the grating couplers fabrication

optimization and the stronger mode overlap compared with

the TE mode (see supplementary material, Figure S1). The

straight waveguide without GST layer demonstrated lossless

propagation with real effective refractive index value for TM

mode of ne f f = 1.6518. For the hybrid waveguide with the

PCM cell, which represents the longer arm of the assymet-

rical MZI, the phase of the GST layer and its effect on the

different refractive index of the thin layer (Fig. 2(a-b)) was

studied for both amorphous and crystalline states. For each

case scenario, we obtain ne f f . The real part of the effective re-

fractive index (nr
e f f ) is related with the propagation constant

and the imaginary part (ni
e f f ) is related with the absorption

due to the phase state of the phase change material (amor-

phous or crystalline). The optical constants used in the simu-

lations at 1310 nm are nSiNx = 1.92, na
GST = 3.96856+ j0.23,

nc
GST = 6.15+ j1.57, nSiO2

= 1.4468 and nPMMA = 1.4823.

This resulted in values for the TM mode effective refractive in-

dex of na
e f f = 1.67+ j1.8 ·10−3 and nc

e f f = 1.68+ j0.016 for

the amorphous and crystalline states respectively (Fig. 2(a-

b)). An interface loss due to the reflection between the bare

(no GST) and the hybrid (GST) structure in the longer arm

of the MZI waveguide is 0.11 dB for the crystalline state and

is 0.03 dB for the amorphous state. Consequently, the dif-

ference in the interface losses due to reflection between the

amorphous and crystalline states is as low as 0.08 dB per inter-

face (see supplementary material, Figure S2). The theoretical

values we have used for the simulations of the crystalline and

amorphous state have been measured using ellipsometry and

are consistent with published values in Ref.30,31 The absorp-

tion and the phase shift of the phase change material strongly

depend on the thickness of the PCM as shown in (Fig. 2(c-d))

for the amorphous and crystalline states.

The assymetric MZIs were fabricated on a 600 nm thick

nitrogen rich SiNx layer with a refractive index of 1.92 at a

wavelength of 1310 nm. This layer was deposited on a 8”(200

FIG. 2. Eigenmode simulation of fundamental TM optical mode

propagating with GST layer on top in the (a) amorphous state, using

PMMA as cladding and (b) crystalline, using SiO2 as cladding; (c)

effective refractive index and (d) mode attenuation both as a function

of cell thickness.

mm) Si wafer with a 2 µm thick thermally grown SiO2 layer

using a NH3-free plasma enhanced chemical vapour deposi-

tion (PECVD) process detailed in Ref4 and Ref.27 The device

layout was defined on the wafer using deep ultraviolet (DUV)

lithography using a wavelength of 248 nm. The written de-

sign was then transferred to the SiNx layer using standard in-

ductively coupled plasma (ICP) etching with an etch depth of

600 nm and a SF6:CHF3 chemistry. The GST cells capped by

10 nm of amorphous SiO2 were then integrated on top of the

MZIs using physical vapour deposition (PVD) of GST thin

film through a lithography mask (see supplementary material,

Figure S3).

The Mach-Zehnder interferometer, was fabricated with a

difference between the arm length (∆L) of 40, 60 and 80 µm.

Three different GST cells with thickness of 15 nm, lengths

of 5, 10 and 15 µm, and 700 nm width were deposited on

top of the longer arm of the MZIs, capped by a second layer

of 10 nm amorphous SiO2 to prevent oxidation. When the

fabrication was completed, the devices were spin coated with

Polymethyl methacrylate (PMMA) to enhance performance

(optimize insertion loss of the grating couplers). PMMA was

selected due to its similar optical properties to SiO2 at 1310

nm, and room temperature process, avoiding thermal crystal-

lization of the GST. Once the amorphous state was character-

ized, PMMA was removed and we induced the crystallization

of the phase change material during the silicon oxide PCVD

deposition process when temperatures as high as 350 oC are

reached32 changing the PCM to its crystalline state.

The phase transition is thermally driven (in this case the

CVD chamber acted as an oven), GST forms a metastable dis-

torted rocksalt phase,33 in which Te atoms occupy one sub-

lattice, while Ge, Sb, and vacancies occupy the second one

in a random fashion. With sufficient thermal energy crystal-

lites will form within the amorphous matrix (nucleation), and

grow.34 SEM and optical microscopy images were taken for
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O-band N-rich Silicon Nitride MZI based on GST 3

the different asymmetric MZI structures with the GST cell de-

posited on the longer arm (Fig. 3).

FIG. 3. (a) SEM image of an asymmetric MZI based on SiNx and

phase change material (GST), SEM image of the MMI splitter as an

inset. (b) Zoom in image verifying the position of the phase change

material cell (yellow) deposited on the longer arm of the MZI.

Using the constructive interference equation of a MZI, the

experimental effective refractive index of the waveguide can

be determined as:

m ·λm = ne f f ∆L

where λm is the resonant wavelength, m is the filter order,

ne f f the effective refractive index of the bare 700 x 600 nm

ridge waveguide mode coated with PMMA on top, and ∆L is

the difference between the length of the two arms of the MZI.

We fabricated a bare MZI with ∆L= 20 µm and filter order

of m = 25. Using the spectral response of the fabricated MZI

(Fig. 4), the TM effective refractive index of the 700 x 600

ridge waveguide structure can be obtained (ne f f = 1.63). A

free spectral range (FSR) of 46 nm and ER of 22.73 dB have

been measured.

FIG. 4. Bare MZI interferometer spectrum for a difference between

the arms of ∆L= 20 µm

The spectral response of the MZIs for different cell lengths

for both amorphous and crystalline states of the phase change

material were characterised using an Agilent 8164B tuneable

laser source with a tunable wavelength of 1260 to 1320 nm

(Fig 5). The polarisation of the light was controlled to ensure

that only TM modes could propagate through the devices. All

MZIs structures were connected to input and output grating

couplers consisting of a 10 µm width and 40 µm length with

a period of 950 nm tapered down to a single-mode waveguide

of 700 nm. The angle of the optical fibres was selected to be

14o to ensure maximum coupling at the wavelength of interest

(1310 nm).

FIG. 5. Experimental normalized transmission from top to bottom

of a MZI with ∆L= 40 µm and LGST = 5 µm in the amorphous state

(black) and in the crystalline state (red) [Top Figure]. Experimental

normalized transmission for a MZI with ∆L= 60 µm and LGST = 10

µm in the amorphous state (black) and in the crystalline state (red)

[Mid Figure]. Experimental normalized transmission for a MZI with

∆L= 80 µm and LGST = 15 µm in the amorphous state (black) and in

the crystalline state (red) [Bottom Figure].

By switching the state of the GST cell, an optical switch

is demonstrated in the O-band. The normalized transmission

was calculated by removing the grating couplers contribution

to optical insertion losses. Consequently, the measured optical

losses are intrinsic to the MZI device. Values for the MZI de-

vice losses (DLs) of 0.14 ± 0.02, 0.42 ± 0.03 and 0.98 ± 0.04

dB are measured in the amorphous state of the phase change

material for 5, 10 and 15 µm cell, respectively. For the crys-

talline state, MZI optical insertion loss values are measured

as high as 3.9 ± 0.8 dB, 7.1 ± 1.7 dB and 13.4± 1.6 dB, for

the different cell lenghts (5, 10 and 15 µm). The theoretical

MZI optical losses for the amorphous and crystalline states of

the cell are 0.075 dB/µm and 0.68 dB/µm respectively. The

experimental losses measured in this device are 0.064 dB/µm

(ON-state) and 0.87 dB/µm (OFF-state) (Fig 6). The discrep-

ancy between experimental and theoretical results are due to

the thickness of the GST cell and fabrication defects that af-

fect the effective refractive index calculation.18 The difference
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O-band N-rich Silicon Nitride MZI based on GST 4

in the insertion loss between the amorphous and crystalline

states is the key component for future non-volatile reconfig-

urable switches in the O-band. An extinction ratio (ER) as

high as 11.5 dB in transmission was measured for a LGST =

5 µm at 1307 nm and ∆L= 40 µm with 4 dB insertion loss

(IL). IL was calculated using the difference between the DL

of the two different material states. Increasing the length of

the cell to LGST = 10 µm and ∆L= 60 µm results in an ER of

12.3 dB at 1273 nm with an insertion loss of 7 dB. Finally, for

a cell of LGST = 15 µm and ∆L= 80 µm, a 13 dB extinction ra-

tio was measured at 1310 nm, with an insertion loss of 12 dB

(Fig. 6). We have experimentally demonstrated an extinction

ratio (ER) difference between the amorphous and crystalline

states for the different cells lengths greater than 11 dB. The

optical switch due to the change of the phase change mate-

rial state (amorphous or crystalline) allows us to distinguish

between different transmission levels. Using the GST based

MZI demonstrated in this paper, future non-volatile memories

and switches with the improved ER, compared with a straight

waveguide design, can be fabricated and further explored in

the O-band.

Different technologies such as: liquid crystals,35

graphene,36,37 p-n junctions,38 and micro-heaters39 have

been used as basic components to create silicon or sili-

con nitride based MZI switches. Other platforms such as

LiNbO3
40,41 or electro-absorption42,43 based switches have

been demonstrated and they present an alternative to the

CMOS compatible silicon photonic platform. All these

technologies are volatile with switching mechanism being

thermo-optic (T-O) or electro-optic (E-O), while the change

in the refractive index between states is relatively small

(∆n∼0.21). Using non-volatile phase change materials,

specifically GST, the refractive index difference can be

achieved as high as ∆n ∼2, however, the losses of the device

in the crystalline state are also increased in comparison to

the other technologies. An overview table which compares

different MZI switches technologies is presented in Table. I.

FIG. 6. Device Losses (DLs) of the MZI device for the amorphous

state (black markers) and crystalline state (red markers) with a linear

fitting for the amorphous state (black line) and for the crystalline state

(red line) for different GST cell lengths (left axis), Extinction ratio

(ER) of the MZI for the different length of the cell (right axis)

TABLE I. Comparison between this work* and the state-of-the-art of

MZI based switches.a Estimated value.

IL ER Switching Power Footprint Technology

(dB) (dB) time (W) (mm2)

MZI - GST* 7-12 11-13 nsa 0.1a 0.4 Non-volatile

T-O MZI39,44–46 4-22 15-35 30-250 µs 0.07-1.9 0.12-2.62 Volatile

E-O MZI47–50 6-17 10-30 ps 0.05-1.2 0.04-0.05 Volatile

We have demonstrated, theoretically and experimentally, an

O-band SiNx MZI based on phase change materials for opti-

cal communications applications. The difference in the atten-

uation between the amorphous and crystalline state can pro-

vide the silicon photonics industry the opportunity of fabri-

cation and generation of optical switches and attenuators in

this range of the spectrum. A TM insertion loss as high as

0.87 dB/µm was measured for the MZI structure per cell unit

length in OFF state and 0.064 dB/µm in ON state. We have

demonstrated an experimental improvement in the E.R up to

11, 12 and 13 dB compared with what is typical of a straight

waveguide 2.5, 5 and 7.5 dB for all the different cell lengths

5,10 and 15 µm between the amorphous and crystalline states

respectively. This work provides scope to open the versa-

tile non-volatile reconfigurable components in the O-band and

provide solutions for non volatile circuit and reconfigurability

for photonic integrated circuits.

See the supplementary material for detailed mode analysis.

The model to calculate the difference in the interface losses

due to reflection between the amorphous and crystalline states,

and finally, fabrication process flow can also be found in the

supplementary material.
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