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Abstract 

Meta-analyses based on systematic literature reviews are commonly used to obtain a 

quantitative summary of the available evidence on a given topic. However, the 

reliability of any meta-analysis is constrained by that of its constituent studies. One 

major limitation is the possibility of small study effects, when estimates from smaller 

and larger studies differ systematically. Small study effects may result from reporting 

biases (i.e., publication bias), from inadequacies of the included studies that are related 

to study size, or from reasons unrelated to bias. We propose two estimators based on 

the median and mode to increase the reliability of findings in a meta-analysis by 

mitigating the influence of small study effects. By re-examining data from published 

meta-analyses and by conducting a simulation study, we show that these estimators 

offer robustness to a range of plausible bias mechanisms, without making explicit 

modelling assumptions. They are also robust to outlying studies without explicitly 

removing such studies from the analysis. When meta-analyses are suspected to be at 

risk of bias because of small study effects, we recommend reporting the mean, median 

and modal pooled estimates. 

Keywords: Meta-analysis; Small study effects; Robust estimation; Median; Mode. 
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1. Introduction 

Meta-analysis is used to obtain a quantitative summary of the evidence from multiple 

studies on a given topic, and is often undertaken as part of a systematic review.1,2 In 

its archetypal form, meta-analysis provides an overall effect estimate for a well-defined 

intervention that has been assessed across several independent clinical trials, 

although it can also be applied to other study designs. Meta-analyses also provide an 

opportunity to explore between-study heterogeneity, which might highlight possible 

explanations for variation in treatment effects.1,2 

Systematic differences between effect estimates from different studies may also 

indicate the presence of bias, which we wish to understand if possible and, ultimately, 

seek to remove from the analysis. Such differences may be due to flaws or limitations 

in the design, conduct or analysis of the included studies: for example, the failure of 

some randomized trials to conceal the allocation sequence from those recruiting 

participants, or the use of inappropriate imputation methods for missing endpoint data. 

The seriousness of these types of limitations may be associated with the size of the 

study, leading to a type of heterogeneity in which estimates from larger and smaller 

studies differ systematically. 

A further threat to the validity of meta-analyses is publication bias2, when the probability 

that results are reported and published is related to their direction or magnitude,3 so 

that published results are a biased sample of all results generated. This bias is less 

likely to affect larger than smaller studies, due to a combination of pressure to publish 

by external funders or collaborators, the greater inherent publishing appeal of larger 

studies, and because an increased sample size raises the likelihood of achieving 

conventional statistical significance when the true treatment effect is non-zero.2 

It is not necessarily the case that, in the presence of systematic differences associated 

with study size, smaller studies are less reliable than larger ones: Systematic 

differences between large and small studies may be to reasons other than bias: for 

example if the intervention was implemented more effectively in the smaller studies.4 

Therefore, the phenomenon where the reported treatment effect is associated with 

study size in a meta-analysis encompasses many different mechanisms, and is 

referred to with the umbrella-term “small study effects”.5 It is difficult to identify whether 

an association between study size and reported treatment effect is due to true 



4 
 

heterogeneity, biases in the results of individual studies, selective reporting (or 

publication), or a combination of these.2,6 

Many methods to detect and correct for small study effects have been proposed. One 

of the earliest of such methods is the funnel plot (where study-specific point estimates 

are plotted against their precision), which was proposed more than 30 years ago.7 

Difficulties in visual interpretation of funnel plots motivated the development of tests for 

funnel plot asymmetry4,8 and approaches that “correct” for asymmetry, such as 

regression and trim-and-fill estimators.9-11 However, these approaches make either 

implicit or explicit assumptions about the selection process, so that their performance 

suffers when the true bias mechanism differs from that assumed. 

Here, we propose two simple estimators that are robust to small study effects, whilst 

making no assumptions about their precise nature. They were originally proposed for 

causal inference in summary data Mendelian randomization12,13. From a statistical 

perspective, this technique has strong parallels with meta-analysis14,15. 

2. Meta-analysis datasets 

Before presenting the estimators, we describe four meta-analysis datasets that will be 

used throughout the paper to explain the proposed estimators and illustrate their 

application. In addition to funnel plots (Figure 1), we characterise these datasets using 

the following statistics: i) Asymmetry, which we defined as the Egger test’s coefficient 

(𝛾) – i.e., slope in inverse variance weighted linear regression of effect estimates on 

standard errors.4 P-values were calculated using t-test with 𝐾 − 2 degrees of freedom, 

where 𝐾 is the number of studies; and ii) Between-study inconsistency, defined as the 

conventional 𝐼2 statistic. Importantly, the 𝐼2 statistic does not quantify variation in the 

true effect sizes across studies, but rather statistical inconsistencies in the results of 

the studies.16 For example, for a given data-generating mechanism producing a given 

amount of variation in the true effect sizes (i.e., heterogeneity), increasing the size of 

the studies will generally increase 𝐼2 (because the study-specific confidence intervals 

will get narrower, thus increasing the statistical power to detect inconsistencies). 

 Catheter dataset (Figure 1A): this meta-analysis, originally conducted by Veenstra 

et al.17 evaluated 11 trials comparing chlorhexidine-silver sulfadiazine-impregnated 

vs. non-impregnated catheters with regards to risk of catheter-related bloodstream 
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infection. These data presented a large correlation between effect estimates and 

their precision (𝛾=3.05 [P-value=0.007]) (which translates into substantial 

asymmetry on the funnel plot), and high between-study inconsistency (𝐼2=60%). 

 Aspirin dataset (Figure 1B): this meta-analysis, originally conducted by Edwards et 

al.,18 evaluated 63 trials investigating the effect of a single dose of oral aspirin on 

pain relief (50% reduction in pain). Asymmetry was also strong in magnitude (𝛾=2.11 

[P-value=5.2×10-9]), but there was low between-study inconsistency (𝐼2=10%). 

 Sodium dataset (Figure 1C): this meta-analysis was originally conducted by Leyvraz 

et al.,19 and assessed the effect of sodium intake on blood pressure in children and 

adolescents. We focused on the meta-analysis of 13 experimental studies (three of 

which were not randomized trials) of systolic blood pressure. Asymmetry was strong 

in magnitude (𝛾=2.60), but there was no strong statistical evidence against the null 

hypothesis of no asymmetry (P-value=0.679). Moreover, there was high between-

study inconsistency (𝐼2=99%). As shown in section 4, both 𝛾 and 𝐼2 are substantially 

attenuated upon removal of two studies classified as influential by Leyvraz et al. 

 Streptokinase dataset (Figure 1D): this meta-analysis, originally conducted by Yusuf 

et al.20 and updated by Egger et al.4, includes 21 trials evaluating the effect of 

streptokinase therapy on mortality risk. These data presented moderate 

inconsistency (𝐼2=34%), but very little evidence of asymmetry (𝛾=-0.06, P-

value=0.868). Given that in this dataset there is no strong indication of small study 

effects, these data were used as a positive control, where all estimators are 

expected to give similar answers. 

3. Methods 

We now give a non-technical explanation of our proposed estimators to motivate their 

utility. We then provide a more technical summary of our approach, by first describing 

the assumed data generating mechanism and the proposed estimation procedures. 

3.1. Non-technical intuition 

The standard way to combine studies in a meta-analysis is via a weighted mean of 

study-specific results, where the weight given to each study estimate is the inverse of 

its variance (thus reflecting its precision). Under the assumption that all included 
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studies provide valid estimates of the same underlying treatment effect, this “fixed 

effect” approach provides the summary estimate that is the most efficient – i.e., most 

precise and therefore with the highest power to detect a non-zero treatment effect. 

Skewness affects the utility of the mean as a measure of central tendency. For 

example, the distribution of income is typically positively skewed due to the presence 

of a few individuals who are much wealthier than most of the population. In such cases, 

statistics such as the median or the mode are often used instead of the mean as central 

tendency measures to quantify “typical” income, although for some applications the 

mean will still be the statistic of interest. 

Skewness in individual participant datasets is analogous to funnel plot asymmetry in 

meta-analyses. Examples of funnel plot asymmetry are shown in Figure 1 (panels A 

and B). In the aspirin dataset (Figure 1B), smaller studies have generally larger point 

estimates. Given that the mean is more sensitive to asymmetry than the median and 

the mode (and the same for their inverse variance weighted versions, described in 

section 3.3), estimates obtained using the latter two measures would be closer to the 

bulk of evidence in the meta-analysis. In cases where the strong asymmetry makes it 

implausible to discard the possibility of bias, estimators that yield combined estimates 

closer to the bulk of weights are likely to be more reliable.  

A second situation where the mean may not be a useful central tendency statistic is 

when there are outliers. Using again the example of income, the mean income of a 

population will be largely influenced by the extreme wealth of a tiny proportion of 

individuals and will not reflect the typical income of the majority. Again, the median or 

the mode provide a central tendency statistic that is closer to most data points than the 

mean. The presence of a few outliers in a large population may not be problematic in 

typical studies using individual participant data, because their influence is diluted. 

However, a meta-analysis often contains a small number of data points (study results), 

increasing the relative influence of outliers on the combined estimate. For example, in 

the sodium dataset (Figure 1C), Leyvraz et al.19, using a statistical criterion, classified 

two studies as outliers. In the Results section, we show that these two studies have a 

substantial influence in the results by pushing the weighted mean, but neither the 

median nor the mode, away from the bulk of the funnel plot.  
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We now provide a more formal justification for using the median or mode in the meta-

analysis context to achieve robustness to small study effects and outlying studies, 

focusing on small study effects. We return to the topic of outlying studies when 

analysing real meta-analysis datasets. 

3.2. Data generating mechanism 

We first define a summary data generating mechanism with 𝐾 studies indexed by 𝑗 

(𝑗 = 1,2, … , 𝐾) in a form that allows us to incorporate different types of small study 

effects (Box 1). We assume each study reports an estimated mean difference between 

groups (e.g., an experimental intervention and a standard intervention) denoted by �̂�𝑗, 

where: 

�̂�𝑗 = 𝛽 + 𝑏𝑗 + 𝜎𝑗휀𝑗                                                                                 (1). 

Here: 

 𝛽 is the average effect of the experimental compared with standard intervention on 

the outcome; 

 𝑏𝑗 denotes the bias/heterogeneity parameter for study 𝑗; 

 𝜎𝑗 is the standard error of the mean difference; 

 휀𝑗~𝑁(0,1, 𝑙𝑗 , 𝑢𝑗) is a draw from a standard truncated normal distribution with lower 

limit 𝑙𝑗 and upper limit 𝑢𝑗;  

 The parameters 𝑏𝑗, 𝑙𝑗, and 𝑢𝑗 are all allowed to depend on the study size, 𝑛𝑗. 

Standard meta-analysis models correspond to 𝑙 = −∞ and 𝑢 = ∞, in which case 휀𝑗 

denotes random error due to sampling variation. A conventional fixed-effects model 

would correspond to 𝑏𝑗 = 0 for all studies, and a random-effects model to 𝑏𝑗~𝑁(0, 𝜏2). 

This conventional random-effects distribution allows for between-study differences due 

to biases or due to other sources of heterogeneity; often it is not possible to distinguish 

one from the other. 

Throughout this paper we assume a fixed treatment effect (as assumed by our 

proposed estimators, which do not explicitly model between-study heterogeneity), so 

that non-zero values of 𝑏𝑗 occur only due to bias and not to other sources of 

heterogeneity. Small study effects are present if the biases 𝑏𝑗 are correlated with study 
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sizes 𝑛𝑗. We recognize that not all systematic differences between small and large 

studies are due to differential bias. Small study effects also arise if 𝑏𝑗 represents (non-

bias-related) treatment effect heterogeneity that happens to be correlated with 𝑛𝑗. Our 

methods are not intended to address such situations. We discuss the practical 

application of the proposed estimators in the presence of heterogeneity in section 5. 

Small study effects may also arise due to selective reporting and publication, which 

can be induced in our model by allowing the truncation limits for 휀𝑗 (i.e., 𝑙𝑗 and 𝑢𝑗) to be 

correlated with 𝑛𝑗. In sections to follow, we will use 𝑏𝑗 and the truncation limits for 휀𝑗 to 

induce different types of small study effects in the data, as described in Box 1. A 

general expression for the expected value of study 𝑗’s effect estimate �̂�𝑗, based on 𝑛𝑗 

participants is: 

𝐸[�̂�𝑗|𝑛𝑗] = 𝛽 + 𝑏𝑗 + 𝜎𝑗𝐸 [휀𝑗|𝑛𝑗]                                                              (2). 

3.3. Robust central tendency statistics in meta-analysis 

We now introduce three estimators for 𝛽: the standard weighted mean plus two novel 

estimators, and discuss their ability to return consistent estimates under the assumed 

data generating mechanism. For the purposes of clarity only, we will assume 

throughout the remainder of section 3 that 𝑏𝑗 is the sole source of bias in equation (1) 

– i.e., that 𝐸[휀𝑗|𝑛𝑗] = 0. 

3.3.1. The weighted mean 

A standard fixed-effect meta-analysis estimates the effect size parameter 𝛽 as an 

inverse-variance weighted average (or combined mean) of the individual study 

estimates. That is: 

�̂�𝐹𝐸 =
∑ �̂�𝑗𝜎𝑗

−2𝐾
𝑗=1

∑ 𝜎𝑗
−2𝐾

𝑗=1

                                                                                       (3). 

If even a single study contributes a biased estimate to the meta-analysis (e.g., via a 

non-zero 𝑏𝑗), then the combined mean will also be biased (unless the biases in 

different studies happen to cancel out). That is, using the notation of formula (1): 

𝐸[�̂�𝐹𝐸] ≠ 𝛽 in general, whenever 𝑏𝑗 ≠ 0 for at least one study 𝑗 in 1, … , 𝐾. 
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For this reason, in the language of robust statistics, the mean is said to have a 0% 

“breakdown” level. The exception would be in a situation where 𝑏𝑗 is negative for some 

studies and positive for other studies, such that the net bias is zero – i.e., ∑ 𝑏𝑗𝜎𝑗
−2𝐾

𝑗=1 =

0. 

3.3.2. The weighted median 

The weighted median12 estimate is defined as the 50th percentile of the inverse-

variance weighted empirical distribution of the study specific estimates, which can be 

calculated as follows. Assume that the �̂�𝑗 ’s are sorted in ascending order, so that �̂�1 ≤

�̂�2 … ≤ �̂�𝐾. Let the standardized inverse-variance weight for study 𝑗 be defined as 𝑤𝑗 =

𝜎𝑗
−2

∑ 𝜎𝑗
−2𝐾

𝑗=1

 and sort them in the same order as the �̂�𝑗 ’s. Let 𝑠𝑗 = ∑ 𝑤𝑔
𝑗
𝑔=1  denote the sum 

of standardized weights up to and including the 𝑗th study. This means that �̂�𝑗 is the 

𝑞𝑗 = 100 (𝑠𝑗 −
𝑤𝑗

2
)th percentile of the weighted empirical distribution of �̂�𝑗 ’s. 

The weighted median estimate is the 50% percentile of this weighted empirical 

distribution, so it will be equal to �̂�𝑗 if 𝑠𝑗 = 0.5. In practice, no study lies exactly at the 

50th percentile, so this quantity is estimated by linear interpolation between its 

neighbouring estimates �̂�𝑗∗ and �̂�𝑗†, which correspond to the effect estimates reported 

by the studies located immediately before and after the 50% percentile, respectively 

(i.e., 𝑞𝑗∗ = max(𝑞1, 𝑞2, … , 𝑞𝑗∗), 𝑞𝑗† = min(𝑞𝑗† , 𝑞𝑗†+1, … , 𝑞𝐾), and 𝑞𝑗∗ < 0.5 < 𝑞𝑗†). In this 

case, the weighted median estimate �̂�𝑊𝑀 is: 

�̂�𝑊𝑀 = �̂�𝑗∗ + (�̂�𝑗† − �̂�𝑗∗)
0.5 − 𝑞𝑗∗

𝑞𝑗† − 𝑞𝑗∗
                                                           (4). 

The weighted median does not require that all �̂�𝑗 ’s are consistent estimates for the true 

effect 𝛽. More specifically, provided that both �̂�𝑗∗ and �̂�𝑗† are consistent for 𝛽, the �̂�𝑊𝑀 

is consistent. This implies that, as the number of studies grows indefinitely large, the 

�̂�𝑊𝑀 is consistent if up to (but not including) 50% of the total weight in the analysis 

comes from biased studies – i.e., (∑ 𝐼(𝑏𝑗 > 0)𝐾
𝑗=1 𝑤𝑗) < 50%. This means that the 

weighted median has a breakdown level of 50%. Of note, if 𝑏𝑗 is negative for some 
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studies and positive for other studies, it is possible that both �̂�𝑗∗ and �̂�𝑗† are consistent 

for 𝛽 even if more than 50% of the weight comes from biased studies. 

3.3.3. The mode-based estimate  

The mode-based estimate13 (MBE) exploits an assumption we refer to as the zero 

modal bias assumption (ZEMBA). This states that the most common value of the bias 

parameter 𝑏𝑗 is zero. If ZEMBA holds, the mode of all �̂�𝑗 ’s (hereafter referred to as 

�̂�𝑀𝐵𝐸) is consistent for 𝛽, even if the majority of �̂�𝑗 ’s are biased. 

More formally, �̂�𝑀𝐵𝐸 is consistent if 𝜔0 > max(𝜔1, 𝜔2, … , 𝜔𝑣), where 𝜔0 = ∑ 𝑤𝑗𝐼(𝑏𝑗 =𝐾
𝑗=1

0) denotes the sum of weights provided by studies with zero bias, and 𝜔1, 𝜔2 and 𝜔𝑣 

are the sum of weights provided by studies that have the smallest, the second smallest 

and the largest identical bias terms, respectively. For example, suppose that there are 

10 studies and 𝑏1 = 𝑏2 < 𝑏3 < 𝑏4 = 𝑏5 = 𝑏6 = 0 < 𝑏7 = 𝑏8 = 𝑏9 < 𝑏10. In this case, 

𝜔0 = ∑ 𝑤𝑗𝑗∈{4,5,6} , 𝜔1 = ∑ 𝑤𝑗𝑗∈{1,2} , 𝜔2 = ∑ 𝑤3,  𝜔3 = ∑ 𝑤𝑗𝑗∈{7,8,9}  and 𝜔4 = ∑ 𝑤10. 

It is possible to exploit ZEMBA in different ways. Here, as in Hartwig et al.,13 we use 

the mode of the smoothed, inverse-variance weighted empirical density function of all 

�̂�𝑗 ’s as the MBE. More specifically, �̂�𝑀𝐵𝐸 is the value of 𝑥 that maximizes 𝑓(𝑥) (i.e., 

𝑓(�̂�𝑀) = max [𝑓(𝑥)]). 𝑓(𝑥) is the normal kernel density function: 

𝑓(𝑥) =
1

ℎ√2𝜋
∑ 𝑤𝑗 exp [−

1

2
(

𝑥 − �̂�𝑗

ℎ
)

2

]

𝐾

𝑗=1

                                             (5), 

where ℎ is the smoothing bandwidth parameter.21 This parameter regulates a bias-

variance trade-off, with smaller values of ℎ reducing both bias and precision. Given 

that the error terms in equation (1) were drawn from a standard truncated normal 

distribution, a normal kernel is expected to yield adequate density estimates. 

Silverman’s rule is commonly used with a normal kernel to calculate ℎ. We used the 

modified Silverman’s bandwidth selection rule proposed by Bickel et al.22, which 

reduces the influence of outliers compared with the conventional Silverman’s rule: 

ℎ =
0.9min (sd(�̂�𝑗), 1.4826mad(�̂�𝑗))

𝐿
1

5

                                                 (6), 
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where sd(�̂�𝑗) and mad(�̂�𝑗) respectively denote the standard deviation and the median 

absolute deviation of the median of the study-level point treatment effect estimates. 

The exact breakdown level of the MBE depends on max(𝜔1, 𝜔2, … , 𝜔𝑣), which is 

unknown. If all biased studies estimate exactly the same effect parameter, then 

ZEMBA will only be satisfied if up to (but not including) 50% of the weight comes from 

biased studies. The upper limit of the breakdown level is up to (but not including) 100%, 

and corresponds to the situation where all invalid studies estimate different effect 

parameters. Therefore, the breakdown level of the MBE ranges from 50% to 100%. 

3.3.4. Standard errors for the weighted median and the MBE 

Standard errors of the weighted median and the MBE can be calculated using 

parametric bootstrap, which naturally incorporates any between-study heterogeneity. 

More specifically, suppose that 𝑅 bootstrap iterations are to be performed. For each 

iteration 𝑟 ∈ {1, … , 𝑅}, the bootstrapped point estimate from the 𝑗th study (�̂�𝑗
𝑟) is 

sampled from the normal distribution �̂�𝑗
𝑟~𝑁(�̂�𝑗, 𝜎𝑗

2). Then each estimator is applied to 

the current set {�̂�𝑗
𝑟}

𝑗=1

𝐾
 of resampled point estimates, generating �̂�𝑊𝑀

𝑟 and �̂�𝑀𝐵𝐸
𝑟 . 

Repeating this step 𝑅 times yields the sets {�̂�𝑊𝑀
𝑟 }

𝑟=1

𝑅
and {�̂�𝑀𝐵𝐸

𝑟 }
𝑟=1

𝑅
, which are empirical 

sampling distributions of the weighted median and the MBE, respectively. We used a 

robust standard deviation estimator (the median absolute deviation from the median 

corrected for asymptotic normal consistency) to calculate the standard deviation from 

each empirical distribution, which is an estimate of the standard error. Finally, these 

can be used to calculate confidence intervals based on a normal approximation. 

3.4. Illustrating the identifying assumptions of the mean, median and mode 

Figure 2 illustrates the assumptions underlying the combined mean, median and mode 

in a hypothetical meta-analysis of 10 studies, sorted in ascending order of their 𝛽𝑗 ’s. 

The true effect 𝛽 is zero. For simplicity, all studies have the same weight and no 

sources of heterogeneity other than bias are present. Chiefly: 

 when all 10 studies (i.e., 100%) are unbiased (Panel A), all three estimators identify 

the true effect (zero); 
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 when 4 out of 10 studies are biased (Panel B), the mean is biased, but the median 

and the mode are unbiased; 

 when 7 out of 10 studies are biased (Panel C), or whenever more than 50% of 

studies are biased in general, and ZEMBA is satisfied, both the mean and the 

median are biased, but not the mode; and 

 when more than 50% of the studies are biased (Panel D) and ZEMBA is violated, 

all estimators are biased. 

An attractive property of the weighted median and MBE is that they are naturally robust 

central tendency statistics, but do not make any specific assumptions about the 

selection mechanism at play. Therefore, they are robust to a range of possible causes 

of small-study effects. However, as Figure 2 illustrates, these estimators are not 

guaranteed to provide consistent estimates of 𝛽, failing to do so when their identifying 

assumptions are violated. Nevertheless, the assumptions they require are weaker than 

those of the standard weighted mean. 

3.6. Regression-based extrapolation and trim-and-fill 

We compared the weighted median and the MBE with two meta-analysis estimators 

developed to adjust for small-study bias. The first, described by Moreno et al.11, is 

extrapolation to the estimated effect of intervention in a study of infinite size based on 

a linear regression weighted by 𝜎𝑗
−2. This estimator assumes a linear relationship 

between the 𝑏𝑗 ’s and 𝜎𝑗 ’s, so that 𝑏𝑗 = 𝛽1𝜎𝑗. Plugging this expression for 𝑏𝑗 in equation 

(1) to the regression-based extrapolation model yields: 

�̂�𝑗 = 𝛽0 + 𝛽1𝜎𝑗 + 𝜎𝑗휀𝑗                                                                                        (6). 

In equation (6), 𝛽0 is the estimated effect in a study of infinite size, obtained by 

extrapolation based on the model assumptions. 𝛽1 is the parameter that allows 

accounting for bias via non-zero 𝑏𝑗 ’s, so that testing 𝐻0: 𝛽1 = 0 is a test for the presence 

of small-study effects. Indeed, this test has been shown5 to be identical to the test of 

funnel plot asymmetry proposed by Egger et al.4 For simplicity, equation (6) shows the 

fixed-effect regression-based extrapolation model, which can be extended into an 

additive or multiplicative random effects model23; the latter was used in the simulations 
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and real data examples described below. This approach is illustrated in Supplementary 

Figure 1 (panels A and C). 

The second estimator is trim-and-fill, a non-parametric data augmentation method that 

estimates the number of missing studies (for example, due to publication bias) by 

supressing (or “trimming”) the most extreme studies from one side of the funnel plot. 

Then, the data is augmented so that the funnel plot is more symmetric. The augmented 

data is then used to calculate the combined effect10. In our simulations and real data 

examples, we used a random effects model throughout the trim-and-fill process 

(sometimes referred to as random-random effects trim-and-fill) and the 𝐿0 estimator to 

estimate the number of missing studies. This approach is illustrated in Supplementary 

Figure 1 (panels B and D). 

4. Re-analysis of published meta-analyses 

To illustrate the application of the proposed meta-analysis estimators and compare 

them with existing approaches, we re-analysed the four meta-analysis datasets 

described in section 2 (Table 1). 

In our re-analysis of the catheter dataset (for which both 𝑟 and 𝐼2 were high), the 

weighted mean yielded an odds ratio of bloodstream infection of 0.47 (95% CI: 0.38; 

0.58), while the weighted median and the MBE yielded the same smaller (in magnitude) 

estimate of 0.57 (95% CI: 0.44; 0.75). Trim-and-fill yielded 0.45 (95% CI: 0.31; 0.65), 

similar to the weighted mean results. Regression-based extrapolation yielded a 

qualitatively different estimate of 1.27 (95% CI: 0.70; 2.31). This is likely an over-

correction, especially given that the individual-study odds ratio estimates in the data 

ranged from 0.09 to 0.83 (Supplementary Figure 1B). 

For the aspirin dataset (which presented low 𝐼2 and marked asymmetry), the combined 

odds ratio estimates of at least 50% of pain relief comparing active treatment to 

placebo were 3.43 (95% CI: 2.96; 3.98) for the weighted mean, 2.99 (95% CI: 2.41; 

3.73) for the weighted median and 2.55 (95% CI: 1.78; 3.63) for the MBE. Trim-and-fill 

yielded an odds ratio of 2.87 (95% CI: 2.38; 3.47), which was closer to the weighted 

median and the MBE results than to the weighted mean. Regression-based 

extrapolation yielded an odds ratio of 1.03 (95% CI: 0.71; 1.48), suggesting no effect 

of aspirin whatsoever (and again likely over-corrected – Supplementary Figure 1D). 
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For the sodium dataset, removing the outlying study (as classified by Leyvraz et al.19) 

with the largest weight reduced between-study inconsistency (I2=87%). Removing both 

studies eliminates between-study inconsistency (I2=0%). Removing these studies also 

substantially attenuates asymmetry (𝛾=-0.22 and 𝛾=0.68, respectively). This suggests 

that, unlike the previous examples, between-study inconsistency and asymmetry 

mostly stemmed from two studies (out of 13). Without removing any studies, the 

weighted mean, regression-based extrapolation and trim-and-fill estimators suggested 

an average decrease in systolic blood pressure due to sodium intake-lowering 

interventions of 1.48 (95% CI: 1.39; 1.57), 1.24 (95% CI: -0.72; 3.21) and 2.62 (95% 

CI: 0.99; 4.26) mmHg, respectively. All these results are higher than the bulk of the 

funnel plot (Figure 1C). Conversely, the weighted median and the MBE yielded 

combined estimates of 0.62 (95% CI: 0.52; 0.72) and 0.61 (95% CI: 0.51; 0.70), 

respectively, which is in line with the majority of the studies and located within the bulk 

of the plot. Indeed, these results are similar to those obtained by Leyvraz et al.19 after 

they explicitly excluded these two studies from the meta-analysis. 

For the streptokinase dataset (which was used as a positive control), the combined 

risk ratio estimate comparing treatment and control groups was 0.82 (95% CI: 0.76; 

0.88) using the weighted mean. Results from the other four estimators ranged from 

0.81 to 0.83. Given that the largest trial24 corresponded to a substantial proportion of 

the total weight in the meta-analysis, the observed consistency between the estimators 

could simply be that they were all driven by this large study. However, in a sensitivity 

analysis where this study was removed, there was no material effect on the results. 

Therefore, the observed consistency between the approaches in this example was 

likely due to the symmetry of the data rather than to the effect of a single large trial. 

The results above indicate that the weighted median and the MBE are less influenced 

by outlying studies compared to the weighted mean, regression-based extrapolation 

and trim-and-fill. This is a useful property at least for sensitivity analysis purposes, 

especially for meta-analyses with a small number of datapoints (and thus more 

sensitive to outliers). The proposed estimators appeared more robust to the presence 

of small study effects than the weighted mean. In a dataset with substantial asymmetry 

but low between-study inconsistency (the aspirin dataset), the weighted median and 

the MBE gave similar results to the trim-and-fill estimator. In a dataset with substantial 

asymmetry and between-study inconsistency (the catheter dataset), the proposed 
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estimators were less influenced by the left skew in the funnel plot than the trim-and-fill, 

which gave very similar results to the weighted mean. This suggests that presence of 

between-study inconsistency has a more limited effect on the robustness of the 

proposed estimators to small-study effects than on trim-and-fill (in the simulations, 

these estimators are compared in scenarios with varying degrees of between-study 

inconsistency). In the datasets with asymmetry, regression-based extrapolation 

yielded results that were likely overcorrected. 

5. Simulation study 

5.1. Brief description 

We performed a simulation study to evaluate the performance of the weighted mean, 

regression-based extrapolation, trim-and-fill, weighted median and MBE. Summary 

data were generated using equation (1). We assume that each study measured a 

binary exposure variable 𝑋~Bernoulli(0.5) (e.g., an intervention: yes=1, no=0) and a 

continuous outcome variable 𝑌 with variance equal to one. Therefore, the standard 

error of the mean difference is one for all values of 𝑗, and 𝜎𝑗 = √4 𝑛𝑗⁄ . We assume that 

studies range in size from 𝑛1 to 𝑛2 uniformly, so that 𝑛𝑗~Uniform(𝑛1, 𝑛2). 

Data were generated to contain two forms of bias (see Box 1 for their general 

principles). Type (a) bias, is a fundamental property of each study (e.g., bias due to 

lack of intervention allocation concealment, or residual confounding in the case of 

meta-analyses of observational studies). For simulations under type (a) bias, the 

proportion of biased studies is dictated by the parameter 𝛿 ∈ [0,1]. Among biased 

studies, 𝑏𝑗 varies linearly with 𝑛𝑗. 

Type (b) bias, is the result of publication bias, not a property of each study. For 

simulations under type (b) bias, we assumed (in common with most publication bias 

models) that results achieving conventional levels of statistical significance are more 

likely to be published. Therefore 𝑙𝑗 was defined to correspond to the maximum one-

sided P-value (null hypothesis: true mean difference ≤0) allowed for publication for a 

given study size (𝑝𝑗), up to 𝑁. That is, for 𝑛𝑗 ≥ 𝑁, then there are no P-value 

requirements for publication – i.e., 𝑝𝑗 = 1 for all values of 𝑗 (because the study size is 

sufficient for publication regardless of its results). For 𝑛𝑗 < 𝑁, larger studies are more 
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likely to be published than smaller studies, where 𝑝𝑗 is a non-decreasing function of 𝑛𝑗. 

Therefore, 𝑁 is the minimal study size required for the P-value to have no influence on 

the publication probability, which can be used to increase (if 𝑁 is larger) or decrease 

(if 𝑁 is smaller) the degree of type (b) bias. We evaluated four distinct functions: linear, 

square root, quadratic and step function. The relationship between 𝑝𝑗 and 𝑛𝑗 in each 

one of these four type (b) bias mechanisms is illustrated in Supplementary Figure 2. 

In all simulations, 𝐾 was set to 5, 10, 30 or 50. In Scenarios 1-6, 𝛽 = 0. In scenario 1, 

there is neither type (a) nor type (b) bias. Scenario 2 evaluated type (a), but not type 

(b), bias. Scenarios 3-6 evaluated type (b) bias (but not type (a) bias), where 𝑝𝑗 was a 

linear, square root, quadratic or step function (respectively) of 𝑛𝑗, up to 𝑁. Scenario 7 

was identical to Scenario 1, except that 𝛽 = 0.02. Table 2 describes the main 

characteristics and aims of each scenario. 

The functional relationship between the bias (i.e., 𝐸[�̂�𝑗|𝑛𝑗] − 𝛽 = 𝑏𝑗 + 𝜎𝑗𝐸[휀𝑗|𝑛𝑗]) and 

𝑛𝑗, and between standard error (i.e., 𝜎𝑗√Var[휀𝑗|𝑛𝑗]) and 𝑛𝑗, in scenarios 1-7 is illustrated 

in Figure 3. 

The data generating mechanism and simulation parameters are described in more 

detail in the Supplement. Mean combined effect estimates, standard errors, coverage 

and rejection rates of 95% confidence intervals were computed for the weighted mean, 

weighted median, MBE, regression-based extrapolation and trim-and-fill estimators 

across 10,000 simulated datasets. All analyses were performed using R.25 We used 

the “metafor” package to calculate the 𝐼2 statistic and to perform the weighted mean 

and trim-and-fill estimators.26 The “truncnorm” package was used to generate random 

draws from the standard truncated normal distribution.27 The “doParallel” package was 

used for parallel computing.28  

5.2. Simulation study results 

Simulation scenario 1 showed that confidence intervals for the weighted mean, 

weighted median and MBE are valid under the null in the sense that they all achieve 

at least 95% coverage when 𝛽 = 0 and in absence of small study effects, although only 

the weighted mean had exact 95% coverage (Supplementary Figure 3 and 

Supplementary Table 1). Regression-based extrapolation showed under-coverage 
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when the number of studies was small, but this attenuated as the number of studies 

increased. Conversely, trim-and-fill showed under-coverage that increased with 

number of studies, indicating that its confidence intervals are invalid (at least in our 

implementation of the estimator). The weighted mean had smallest standard errors, 

followed by trim-and-fill, which was slightly more precise than the weighted median. 

The MBE was less precise than the latter, but substantially more precise than 

regression-based extrapolation. 

Supplementary Table 2 shows that scenario 2 leads to high values of 𝐼2 and 𝛾. Under 

this scenario the weighted median was less biased than the weighted mean, and the 

MBE was the least biased among all approaches (Figure 4). Those differences became 

more apparent as the number of studies increased. Trim-and-fill was more biased than 

the standard weighted mean, and regression-based extrapolation substantially 

overcorrected for the bias. 

Scenario 3 leads to high asymmetry, but not a substantial inflation of 𝐼2 

(Supplementary Table 3), and the bias in the combined estimates was much smaller 

than in scenario 2. Again, regression-based extrapolation substantially overcorrected 

for small study effects, and the weighted median and MBE were less biased than the 

weighted mean (Figure 5). However, the performance of trim-and-fill relative to the 

weighted median and the MBE was substantially different than in scenario 2: if the 

number of studies is low (𝐾 = 5), trim-and-fill performed similarly to the weighted 

median, but was more biased than the MBE; for 𝐾 = 10, it outperformed the weighted 

median and performed similarly to the MBE; for larger values of 𝐾, trim-and-fill was 

generally less biased than the other estimators, unless all studies were affected by 

small study effects (in this case, 𝑁 = 6000). However, as the number of studies 

increased, trim-and-fill overcorrected for small study effects when 𝑁 = 1500. In 

general, the differences between the weighted median, the MBE and trim-and-fill were 

much less marked in scenario 3 than in scenario 2; indeed, the coverage of the 

weighted median and trim-and-fill was similar for all values of 𝐾. 

In scenario 4, small study effects resulted in less marked asymmetry than for scenario 

3 and in reduced 𝐼2 – i.e., under-dispersion (Supplementary Table 4). In general, 

results were similar to scenario 3 (see Supplementary Figure 4), with two main 

differences. First, the weighted median had better coverage than trim-and-fill, unless 
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𝐾 = 50 and 𝑁 = 4500. Second, the overcorrection showed by trim-and-fill in scenario 

3 was more apparent, especially for larger values of 𝐾. Scenario 5 was in between 

scenarios 2 and 3 regarding 𝛾 and 𝐼2 (Supplementary Table 5). In this scenario, trim-

and-fill was more biased than the weighted median and the MBE when the number of 

studies was low (𝐾 = 5 or 𝐾 = 10), and in between them when there were more studies 

(𝐾 = 30 or 𝐾 = 50). The difference between the weighted median and the MBE was 

small regardless of the number of studies (Supplementary Figure 5). In scenario 6, 

there was more between-study inconsistency  compared with the last scenario, but 

less than in scenario 2 (Supplementary Table 6). The weighted median and the MBE 

performed substantially better than the other estimators (as shown in Supplementary 

Figure 6), with the MBE being close to unbiased in all cases when the number of 

studies was large (𝐾 = 30 or 𝐾 = 50). 

Supplementary Table 7 and Supplementary Figure 7 display the performance of the 

estimators in detecting an effect in absence of small study effects (scenario 7). The 

weighted mean was the estimator with the highest power to detect a non-zero 

treatment effect, followed by trim-and-fill and the weighted median. Importantly, trim-

and-fill was slightly more precise than the weighted median, but had substantially more 

power due to its under-coverage (which increased with number of studies and study 

size). The MBE was substantially more precise than regression-based extrapolation, 

but had lower power due to under-coverage of the latter when the number of studies 

was low.  

Our simulation study corroborated the well-known notion that the weighted mean is 

biased in the presence of small study effects (either type (a) and type (b)). In all small 

study effects mechanisms, regression-based extrapolation overcorrected the 

treatment effect (this is discussed in more detail in the Supplementary Text). Trim-and-

fill was more biased in the presence of type (a) bias (which lead to substantial between-

study inconsistency) than the weighted mean. Trim-and-fill was less affected by type 

(b) than type (a) bias, thus highlighting the dependence of this estimator to the 

underlying data generating mechanism. Moreover, for most variations of type (b) bias, 

this estimator presented more bias than the weighted median and the MBE, as well as 

under coverage in the absence of any small study effects. Conversely, the weighted 

median and the MBE had confidence intervals with coverage ≥95% in the absence of 

small study effects and were relatively robust to both type (a) and type (b) bias. 
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6. Discussion 

We have proposed the weighted median and the MBE for meta-analysis as 

approaches that are robust to the presence of small-study effects and outliers. 

Application to a series of examples indicates that both approaches give sensible 

estimates of the intervention effect in real meta-analyses where small study effects are 

suspected, even when regression-based extrapolation or trim-and-fill do not. They also 

give similar results to the weighted mean and other meta-analysis approaches in 

absence of bias. Our real data examples also illustrated the robustness of the proposed 

estimators to outliers. Our comprehensive simulation study confirmed these findings, 

and showed that these estimators are less influenced by small study effects than the 

conventional weighted mean and previously proposed approaches to estimate 

intervention effects in the presence of small study effects. Software for their 

implementation is provided in the Supplementary Material. 

There are several strategies to investigate the presence and degree of small study 

effects in meta-analysis, all of which have limitations.6,29 If, after careful examination, 

small study effects are suspected, we recommend that investigators apply the 

weighted median and the MBE in addition to standard estimators as sensitivity 

analyses. These estimators reduce the influence of small and/or outlying studies 

without excluding them formally from the meta-analysis. Exclusion often involves 

arbitrary study size cut-offs and artificially reduces the heterogeneity in the data. 

When applying the weighted median and the MBE, it is important not to rely entirely on 

“statistical significance”, especially given that they are less precise than the weighted 

mean. Instead, meta-analysis authors should examine confidence intervals for the 

different estimators and assess their consistency with standard meta-analysis 

estimates. In general, the weighted median and the MBE will be robust when studies 

that provide consistent effect estimates receive most of the weight in the fixed-effect 

meta-analysis. This might occur in a meta-analysis with just one or two large studies 

providing consistent estimates, despite the inclusion of many other biased, smaller 

studies. Conversely, the weighted median and the MBE will give misleading results 

when the majority of the weight in the analysis stems from biased studies and, in the 

case of the MBE, the magnitude of the individual study biases are very similar (as 

illustrated in Figure 2, Panel D). The Cochrane tool for assessing risk of bias in 
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randomized trials30 could be used as a guide to the likely proportion of biased studies 

in a given meta-analysis, and to the value of applying these techniques. As such the 

proposed estimators is a natural extension of exploring between study heterogeneity 

due to perceived risk of bias.30 

We have presented the weighted median and the MBE assuming treatment effect 

homogeneity. Under this assumption, any heterogeneity between effect estimates is 

indicative of bias. By supplementing this assumption with additional assumptions (such 

as the 50% rule for the weighted median or ZEMBA for the MBE) then allows consistent 

estimation of the treatment effect even in the presence of (some forms of) small study 

effects. In the absence of bias and heterogeneous treatment effects the weighted 

mean, weighted median and MBE estimate the inverse-variance weighted average, 

median and modal treatment effects (in the case of unique treatment effects for each 

study, the latter would simply be the most precise effect estimate). However, in this 

case, a more sensible approach would be to perform a random effects meta-analysis 

to estimate the average treatment effect. But doing so requires the assumption that 

there is no form of bias in any of the studies included in the meta-analysis (because all 

studies have non-zero weight in the meta-analysis), which may itself not be warranted 

at least in some applications. This illustrates the more general notion that relaxing one 

assumption often requires more contrived versions of one or more other assumptions. 

In this case, assuming absence of bias allows interpreting systematic differences 

between studies as being solely due to treatment effect heterogeneity (and thus a 

random effects weighted mean can be used to estimate the average treatment effect), 

while assuming treatment effect homogeneity allows interpreting such differences as 

being solely due to bias (and thus estimators such as the weighted median and the 

MBE can be used to estimate the treatment effect under some forms of bias). 

Importantly, the proposed estimators here cannot be regarded as providing a general 

“correction” for funnel plot asymmetry or heterogeneity between studies. Heterogeneity 

between studies should be expected in real meta-analyses,31 and exploring whether it 

is explained by measured study characteristics (e.g., via subgroup analyses and meta-

regression) may yield important insights regarding treatment effect modification and/or 

potential sources of bias. Such insights cannot be achieved by simply applying the 

proposed estimators, nor any other approach that yields a single point estimate. This 

is especially relevant for the MBE estimator, which assumes that there is a subset of 
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homogeneous studies that yield consistent estimates of the treatment effect. 

Therefore, ideally the proposed estimators would be applied if plausible effect 

modifiers do not account for observed heterogeneity between studies, or if there is 

residual heterogeneity within subgroups (although in this case the number of studies 

per subgroup may be prohibitive for meaningful comparisons between different 

estimators). Otherwise, the MBE can be used as a sensitivity analysis and interpreted 

as a test of the sharp null hypothesis (i.e., the hypothesis that the intervention has no 

effect whatsoever on anyone in the population). Supplementation with further 

assumptions would allow some learning about the average treatment effect. For 

example, if the true treatment effect can be assumed to be monotonic (i.e. in the same 

direction for all studies), then the MBE can be interpreted as a test of the direction. 

As mentioned in section 3.3.3, the MBE is just one way of exploiting the ZEMBA 

assumption to mitigate the influence of small study effects in meta-analysis. There are 

many other ways of estimating the mode of continuous data, such as the half-sample 

mode method,21 Grenander’s estimators,32 model-averaging33 and explicit selection34 

methods. Even restricting to only kernel-based methods such as the MBE, there are 

many available choices of bandwidths and kernels. It is therefore possible that there 

are estimators more adequate than the MBE to exploit the ZEMBA assumption in meta-

analysis, a topic that remains to be investigated. The goal of the present study was to 

present ZEMBA as an alternative identification assumption, and compare the 

performance of one estimator that relies on this assumption (the MBE) against 

established meta-analysis estimators. 

In summary, many systematic reviews and meta-analyses contain studies that are 

methodologically flawed and likely biased.35 We have proposed new weighted median 

and mode-based estimators that provide inferences that are robust to small study 

effects under a variety of reasonable simulation scenarios. Their application in real 

datasets supports their likely utility as a sensitivity analysis in comparison to standard 

mean-based meta-analytic estimates. We hope that these estimators will be used to 

strengthen the conclusions of systematic reviews and meta-analyses. 
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Table 

Table 1. Combined estimates with 95% confidence intervals for different meta-analysis datasets and estimators. 

Estimator Dataset 

 CatheterA AspirinA SodiumB StreptokinaseC 

 𝐼2=60% 𝐼2=10% 𝐼2=99%D 𝐼2=34% 
 𝛾=-3.05 (P=0.007) 𝛾=2.11 (P=5.2×10-9) 𝛾=2.60 (P=0.679)D 𝛾=-0.06 (P=0.868) 
Weighted mean 0.47 (0.38; 0.58) 3.43 (2.96; 3.98) 1.48 (1.39; 1.57) 0.82 (0.76; 0.88) 
Regression-based extrapolation 1.27 (0.70; 2.31) 1.03 (0.71; 1.48) 1.24 (-0.72; 3.21) 0.83 (0.72; 0.94) 
Trim-and-fill 0.45 (0.31; 0.65) 2.87 (2.38; 3.47) 2.62 (0.99; 4.26) 0.81 (0.71; 0.93) 
Weighted median 0.57 (0.43; 0.75) 2.99 (2.41; 3.72) 0.62 (0.52; 0.72) 0.83 (0.75; 0.91) 
Weighted mode 0.57 (0.44; 0.75) 2.55 (1.82; 3.56) 0.61 (0.51; 0.70) 0.83 (0.75; 0.90) 

AOdds ratio. BMean difference. CRisk ratio. DRemoving outlying studies substantially attenuates both 𝛾 and 𝐼2 (see section 
4). 

𝐼2: between-study inconsistency. 𝛾: Egger test’s coefficient (i.e., slope in inverse variance weighted linear regression of effect 
estimates on standard errors). 
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Table 2. Brief description of the simulation scenarios. 

Scenario 𝜷A Bias type Aim 

1 0 None Assess bias and FRRB under neither 
treatment effect nor small study effects, for 
various numbers of studies included in the 
meta-analysis. 

2 0 Type (a) Asses bias and FRRB in the presence of type 
(a) bias, for various numbers of studies 
included in the meta-analysis. 

3 0 Type (b) Asses bias and FRRB in the presence of type 
(b) bias, for various numbers of studies 
included in the meta-analysis. 

In scenario 3, the minimum P-value required 
for publication is a linear function of study 
size. 

4 0 Type (b) Same as scenario 3, except that the minimum 
P-value required for publication is a square 
root function of study size. 

5 0 Type (b) Same as scenario 3, except that the minimum 
P-value required for publication is a quadratic 
function of study size. 

6 0 Type (b) Same as scenario 3, except that the minimum 
P-value required for publication is a step 
function of study size. 

7 0.02 None Assess power to detect a non-zero treatment 
effect in the absence of small study effects, 
for various numbers of studies included in the 
meta-analysis. 

ATreatment effect. 
BSince 𝛽 = 0 in scenarios 1-6, the FRR under small study effects is simply the overall 
rejection rate. 
FRR: false-rejection rate.  
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Figure legends 

Figure 1. Funnel plots of the catheter (panel A), aspirin (panel B), sodium (panel 

C) and streptokinase (panel D) meta-analyses. 

 

Figure 2. Illustration of the assumptions underlying the weighted mean, 

weighted median and the mode-based estimate (MBE) estimators. Studies are 

assumed to have the same weights in the meta-analysis, and are sorted in 

ascending order of point estimate. The true effect is zero. 

A: no heterogeneity between studies. B: 4 out of 10 studies are biased. C: 7 out of 10 

studies are biased, but unbiased studies comprise the largest subgroup of studies that 

reported the same result. D: 7 out of 10 studies are biased, and biased studies 

comprise the largest subgroup of studies that reported the same result. 

 

Figure 3. Illustration of the relationship between bias and 𝒏𝒋 (panel A), and 

between standard error and 𝒏𝒋 (panel B), induced by different models of small 

study effects. 

 

Figure 4. Bias (solid lines) and coverage (dashed lines) of the weighted mean 

(black), regression-based extrapolation (red), trim-and-fill (green), weighted 

median (dark blue) and mode-based estimate (light blue) under scenario 2: zero 

true effect (i.e., 𝜷 = 𝟎), small study effects through the bias term 𝒃𝒋, and study 

sizes uniformly ranging from 100 to 5000 individuals. 

The grey line indicates zero bias. The dashed grey line indicates 95% coverage. 

 

Figure 5. Bias (solid lines) and coverage (dashed lines) of the weighted mean 

(black), regression-based extrapolation (red), trim-and-fill (green), weighted 

median (dark blue) and mode-based estimate (light blue) under scenario 3: zero 

true effect (i.e., 𝜷 = 𝟎), small study effects through publication bias (assuming a 
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linear relationship between 𝒑𝒋 and 𝒏𝒋), and study sizes uniformly ranging from 

100 to 5000 individuals. 

𝑝𝑗: maximum P-value allowed for publication for a study with 𝑛𝑗 participants. 𝑁: study 

size threshold, with studies larger than or equally sized to 𝑁 not being affected by small 

study effects. 

The grey line indicates zero bias. The dashed grey line indicates 95% coverage. 
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Box 1. General principles of our small study effects models 

We use model (1) to explore two types of small study effects: bias due to systematic 

differences between small and large studies due to study quality (type (a)), and bias 

due to the specific environment of selective reporting and publication in operation at 

the time when study 𝑗 was conducted (type (b)). 

For type (a), we imagine that differences between small and large published studies 

are due to fundamental properties of each study that are correlated with study size 

(𝑛𝑗). For this, the fixed bias parameter 𝑏𝑗 is a function of 𝑛𝑗 such that: 

0 ≤ 𝑏𝑗 ≤ 𝑏𝑘 or 0 ≥ 𝑏𝑗 ≥ 𝑏𝑘, whenever 𝑛𝑘 ≤ 𝑛𝑗. 

We will investigate cases where the bias disappears only asymptotically as a study 

size grows infinitely large, and cases where the bias disappears beyond a threshold 

study size, 𝑁. That is: 

𝑏𝑗 → 0 as 𝑛𝑗 → ∞, or 𝑏𝑗 = 0 if 𝑛𝑗 ≥ 𝑁 for some (large) 𝑁. 

Type (b) bias is not a fundamental component of the study itself, but instead the 

result of selective reporting and publication (i.e., publication bias). We induce this 

through the random error component of model (1), 휀𝑗, by defining 𝑙𝑗 or 𝑢𝑗 as functions 

of 𝑛𝑗 such that, whenever 𝑛𝑘 ≤ 𝑛𝑗: 

𝑙𝑗 ≤ 𝑙𝑘 ≤ 0, and therefore 0 ≤ 𝐸[휀𝑗|𝑛𝑗] ≤ 𝐸[휀𝑘|𝑛𝑘]; or 

𝑢𝑗 ≥ 𝑢𝑘 ≥ 0, and therefore 0 ≥ 𝐸[휀𝑗|𝑛𝑗] ≥ 𝐸[휀𝑘|𝑛𝑘]. 

For example, assume that type (b) bias is always positive, so that and 𝐸[휀𝑗|𝑛𝑗] ≥ 0. 

This corresponds to a situation where the selection process favours the publication 

of studies that reported positive effect estimates. This could be achieved defining 𝑙𝑗 

as a non-increasing function of 𝑛𝑗. 

Similarly to the type (a) bias model, we will explore cases where: 

𝑙𝑗 → −∞ and 𝑢𝑗 → ∞ ⇒ 𝐸[휀𝑗|𝑛𝑗] → 0 as 𝑛𝑗 → ∞; or 

𝑙𝑗 = −∞ and 𝑢𝑗 = ∞ ⇒ 𝐸[휀𝑗|𝑛𝑗] = 0 if 𝑛𝑗 ≥ 𝑁 for some large 𝑁. 
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Box 1. General principles of our small study bias models (continued) 

An important distinction between type (a) and type (b) bias is their respective effect 

on the variance of the study-specific estimates. Type (a) bias will generally increase 

their variability, leading to over-dispersion, or heterogeneity. Type (b) bias, by 

contrast, can have the opposite effect of reducing their variability, because of the 

truncation in the distribution of 휀𝑗. That is, in the presence of this bias, Var[휀𝑗|𝑛𝑗] will 

generally be less than 1, and Var[휀𝑗|𝑛𝑗] ≥ Var[휀𝑘|𝑛𝑘] whenever 𝑛𝑘 ≤ 𝑛𝑗.This 

phenomenon leads to under-dispersion across the set of study-specific estimates 

constituting the meta-analysis. 


