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Abstract:
We study the relationship between lead times and the bullwhip effect produced by the order-up-
to policy. The usual conclusion in the literature is that longer lead-time increase the bullwhip
effect, we show that this is not always the case. Indeed, it seems to be rather rare. We achieve
this by first showing that a positive demand impulse response leads to a bullwhip effect that
is always increasing in the lead time when the order-up-to policy is used to make supply chain
inventory replenishment decisions. By using the zeros and poles of the z-transform of the demand
process, we reveal when this demand impulse is positive. To make concrete our approach in a
nontrivial example we study the ARMA(2,2) demand process. Copyright c© 2019 IFAC.
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1. INTRODUCTION

The bullwhip effect, where outgoing order fluctuations are
larger than incoming customer demand fluctuations at
each supply chain echelon, has been extensively studied
since the important contributions by Lee et al. (1997)
and Lee et al. (2000). Wang and Disney (2016) provide
a recent review of the literature on the bullwhip effect.
The most often studied replenishment policy in bullwhip
investigations is the linear order-up-to (OUT) policy. The
OUT policy is often used in high volume settings where
products are ordered and replenished every period. The
OUT policy is incorporated into many ERP systems as a
standard replenishment policy.

Often the first order auto-regressive, AR(1), demand pro-
cess is considered in a bullwhip study (Zhang, 2007; Ur-
ban, 2005; Luong, 2007) as this is the simplest demand
process with an auto-correlated structure. ARMA(1,1) de-
mand processes were studied by Chen and Disney (2007);
Gaalman (2006); Duc and Kim (2008). The second order
ARMA(2,2) process is studied less often, although Gaal-
man and Disney (2009) considered the bullwhip implica-
tions of using a variety of the order-up-to (OUT) policies
for this demand process.

General statements about the interaction between the
bullwhip effect and the lead-time are missing in the lit-
erature. Dejonckheere et al. (2003) provide one of the only
other references that explicitly considers the link between
lead times and the bullwhip effect. They showed that for
all demand processes, for all lead times, the OUT replen-
ishment policy, with exponential smoothing and moving
average forecasts, always generates bullwhip.

Our contribution herein is to determine the conditions
under which the bullwhip effect increases in the lead time.
We focus on the specific case of the ARMA(2,2) demand
process. As a side contribution we also determine, for
the class of second-order discrete time systems, when the
system has a non-negative impulse response.

2. DEMAND AND REPLENISHMENT POLICY.

Ali et al. (2012) found that 75% of 1798 different SKU’s
in a European retailer belonged to, or were sub-sets
of, the ARMA(2,2) demand process. Thus, we assume
ARMA(2,2) demand is present, Box et al. (2008). The
ARMA(2,2) process is given by

dt = µd +

2∑
i=1

φi (dt−i − µd)−
2∑

j=1

θjεt−j + εt. (1)

Here, dt is the demand in time period t, µd is the mean
demand, φi are the auto-regressive coefficients, θj are
the moving average coefficients, and εt is a stochastic
independent and identically distributed (i.i.d.) random
variable with zero mean and variance σ2

ε .

The z-transform transfer function of the ARMA(2,2) de-
mand process is given by

D[z] =
B[z]

A[z]
=

z2 − θ1z − θ2
z2 − φ1z − φ2

. (2)

The order-up-to policy, Li et al. (2014), creates replenish-
ment orders, ot, via

ot = d̂t+k+1|t − (it − µi)−
k∑

j=1

(
ot−j − d̂t+j|t

)
, (3)
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where d̂t+k+1|t is a forecast of the demand in period
t + k + 1 conditional upon the information available at
time t. Herein we create the minimum mean squared error
(MMSE) forecasts of the ARMA(2,2) demand process, Box
et al. (2008). µi is the mean inventory, or safety stock, a
constant that can be set arbitrarily. However, setting µi =
F−1[b/(b+h)] to the critical newsvendor fractile minimizes
the expected per period inventory holding, h, and backlog
b cost, where F−1[·] is the inverse of the cumulative
distribution function of the inventory distribution. The
inventory balance equation completes the definition of the
order-up-to policy,

it+1 = it + ot−k − dt+1. (4)

2.1 Stability and invertability of the ARMA(2,2) process

A stable system exists, if after a finite input, the system
returns to a finite state in a finite amount of time. This is
equivalent to the poles of the system transfer function lying
within the unit circle in the complex plane. Jury (1974)
provides an easy-to-use method to determine the stability
conditions directly from the denominator of the demand
transfer function, (2). Using his approach produces the
following (triangular) set of stability conditions,

{φ1 < 1− φ2, φ1 > φ2 − 1, φ2 > −1}. (5)

Box et al. (2008) show that for a demand process’ structure
to be uniquely identified from a time series, the process
must be invertable. The invertability conditions can be
readily obtained by applying Jury’s stability criterion to
the numerator of the demand transfer function, (2):

{θ1 < 1− θ2, θ1 > θ2 − 1, θ2 > −1}. (6)

2.2 The bullwhip criterion and the impulse response

The usual way to measure bullwhip effect is the ratio, BI,

BI = (σ2
o/σ

2
d) > 1 (7)

where σ2
o is the variance of the replenishment orders ot

and σ2
d is the variance of the demand, dt, Disney and

Towill (2003). These variances only exist is the demand
is stationary. When demand becomes non-stationary, (7)
suggests that BI = 1 and bullwhip is not present, but this
is not true when demand is non-stationary, or near non-
stationary, Gaalman and Disney (2012). In these cases, the
bullwhip criterion CB[k] provides a better measure,

CB[k] = (σ2
o − σ2

d)/σ
2
ε . (8)

When CB[k] > 0, a bullwhip effect exists; when CB[k] <
0 the orders have less variance than the demand. To
understand CB[k] we need the variance of the orders,
σ2
o , and the variance of the demand σ2

d. These variances
can be readily obtained by Tsypkin’s squared impulse
response theorem. The impulse response of the system is
the system’s output when the system’s input is zero for all
t except at t = 1 when the input is unity.

Lemma 1. (Tsypkin’s squared impulse response theorem).
The long-run variance, σ2

x, of the output, xt, from a linear
system reacting to an i.i.d. white noise input with variance
σ2
ε is given by the sum of its squared impulse response, x̃2

t .

σ2
x = σ2

ε

∞∑
t=0

x̃2
t . (9)

Proof. We refer to Tsypkin (1964, 183-192) for proof of
Tsypkin’s relation and Dejonckheere et al. (2003) for its
link to the bullwhip effect. �

3. THE ARMA(2,2) DEMAND IMPULSE RESPONSE

A rational transfer function (2) can be represented in zero-
pole form,

D[z] =

∏2
i=1(z − λθ

i )∏2
i=1(z − λφ

i )
(10)

where {λθ
i , λ

φ
i } are the zeros and poles (eigenvalues) of

the transfer function. The eigenvalues of the ARMA(2,2)
demand process are{

λθ
1 =

1

2

(
θ1 −

√
θ21 + 4θ2

)
,

λθ
2 =

1

2

(
θ1 +

√
θ21 + 4θ2

)}
(11)

and {
λφ
1 =

1

2

(
φ1 −

√
φ2
1 + 4φ2

)
,

λφ
2 =

1

2

(
φ1 +

√
φ2
1 + 4φ2

)}
, (12)

Gaalman et al. (2018). Note, the poles and zeros can be
real, (conjugate) complex, and can have common poles or
zeros. Complex zeros (poles) exist when θ21 + 4θ2 < 0,
(φ2

1 + 4φ2 < 0).

Lemma 2. (Impulse response of the ARMA(2,2) demand).
The ARMA(2,2) demand impulse response is

d̃t =

{
1, if t = 0,

r1(λ
φ
1 )

t−1 + r2(λ
φ
2 )

t−1, if t ≥ 1,
(13)

where,

r1 =
(λφ

1 − λθ
1)(λ

φ
1 − λθ

2)

(λφ
1 − λφ

2 )
and r2 =

(λφ
2 − λθ

1)(λ
φ
2 − λθ

2)

(λφ
2 − λφ

1 )
.

(14)
�

Proof. [Patterned on Moudgalaya (2007)] Using polyno-
mial long division, we re-write (10), as

D[z] = 1 +

∏2
i=1(z − λθ

i )−
∏2

i=1(z − λφ
i )∏2

i=1(z − λφ
i )

. (15)

Partial fraction expansion then leads to

D[z] = 1 +
2∑

j=1

rj

z − λφ
j

. (16)

The inverse z-transform of (16) provides (13). �

Gaalman et al. (2018) derives a more general expression
based on the same approach for ARMA(p,q) demands.
Furthermore, common poles do not lead to fundamentally
different insights.

4. THE ORDER IMPULSE RESPONSE

Having obtained the impulse response of the ARMA(2,2)
demand, we now derive the corresponding impulse re-
sponse for the orders.
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Lemma 3. (Impulse response of the orders). The impulse
response of the orders is given by

õt =




k+1∑
j=0

d̃t+j , if t = 0,

d̃t+k+1, if t > 0.

(17)

Proof. Under the order-up-to policy,

ot = dt +

k+1∑
j=1

d̂t+j|t −
k+1∑
j=1

d̂t+j|t−1,

Also, for demand as an impulse response, d̂t+j|t = d̃t+j for

t � 0 and d̂t+j|t = 0 otherwise. �

5. DEMAND AND ORDER VARIANCES

Using Tsypkin’s relation, the demand variance is

σ2
d = σ2

ε

∞∑
t=0

d̃2t , (18)

the order variance is

σ2
o = σ2

ε

(( k+1∑
j=0

d̃j

)2

+

∞∑
t=1

d̃2t+k+1

)
. (19)

Using these variances, CB[k] becomes

CB[k] =

( k+1∑
j=0

d̃j

)2

+

k+1∑
t=0

d̃2t . (20)

Theorem 4. (Necessary-sufficient condition for increasing

bullwhip). Iff {d̃1, d̃2, ..., d̃k+1} > 0 then CB[k] is positive
and increasing in the lead time.

Proof. Consider CB[k] − CB[k − 1] = 2d̃k+1E[k] with

CB[0] = 2d̃1E[0] = 2d̃1 and E[k] =
∑k

j=0 d̃j , E[0] = d̃0 =

1. For k = 0, iff d̃1 > 0 then CB[0] > 0. By this, E[1] > 0.

For k = 1 the CB[1] − CB[0] > 0 iff d̃2 > 0. The same
reasoning can be iterated for all other k (= 2, 3, ...). �

Theorem 4, the main result of this paper, reveals the
question of whether bullwhip is always increasing in the
lead-time is the same as the whether the demand impulse
response is positive for all t; that is, if ∀t, d̃t > 0, then
CB[k] is increasing for all lead-times and vice versa.

Theorem 5. (Sufficient condition for a positive impulse

response). If, for each AR eigenvalue between 0 ≤ λφ
j ≤ 1,

the number of MA eigenvalue smaller than λφ
j is larger

than the number of AR eigenvalues smaller than λφ
j , then

a positive impulse response exists.

Proof. The proof is based on the z-transform of the
demand process and uses the convolution theorem. First,
note the z-domain pole-zero transfer function of d̃t given
in (10). Theorem 4 showed the increasing monotonicity of
bullwhip is equivalent to a positive impulse response of

D[z]. Due to the dominance of the λφ
j eigenvalues over the

λθ
j eigenvalues in Theorem 5 we can write

D[z] =

2∏
j=1

Dj [z]; where Dj [z] =

(
z − λθ

j

z − λφ
j

)
, (21)

with λφ
j > λθ

j and λφ
j > 0. By this, each Dj [z] has a pos-

itive impulse response. Multiplication in the z-domain is
equivalent to convolution in the time domain. Convolution
involves addition and multiplication operations. Any com-
bination of addition and multiplication of positive terms
produces a positive outcome. This convolution property
shows that the product D[z] also has a positive impulse
response. �

Note, Theorem 5 can be easily extended to all ARMA(p,q)
demands, Gaalman et al. (2018). Theorem 5 shows the

dominance of the λφ
j eigenvalues over the λθ

j eigenvalues.
The largest eigenvalue must always be a pole, and the
smallest one must always be a zero. Theorem 5 is insightful
because it depends only on the eigenvalue ordering rather
than the specific value of the eigenvalues.

In control terms, the dominance of the λφ
j eigenvalues over

the λθ
j eigenvalues means that the demand process has the

characteristics of a low pass frequency filter, Nise (2004);
the high frequencies are less dominant in the demand
process compared to low frequencies. The OUT policy is
less able to filter low frequencies, and by this, the order
variance increases (and bullwhip increases) over the lead-
time. Several eigenvalue orderings have the potential to
satisfy Theorem 5. With ARMA(2,2) demand there are a
total number of six orderings, of which, two are low pass
orderings. Many well-known demand forecasting methods,
such as exponential smoothing, (Brown and Meyer, 1961),
Holt-Winters linear trend model Chatfield (1978), and the
general polynomial model of Harrison (1967), also have
pole and zero orderings that satisfy Theorem 5.

The inverse of Theorem 5: If for each λθ
j , the number of AR

eigenvalues smaller than λθ
j is larger than the number of

MA eigenvalues smaller than λθ
j then the impulse response

is not always positive and bullwhip does not increase in
the lead-time. Here, the λθ

j eigenvalues dominate, and the
demand process exhibits large high-frequency harmonics.
The proof is trivial as always d̃1 < 0.

From these insights, the whole set of orderings can be
split into 3 subsets: one set of orderings which potentially
satisfies Theorem 5, one set of orderings that satisfies the
inverse of Theorem 5, and the remaining set of orderings,
see Figure 1. The remaining subset contains orderings
where r2 and/or d̃1 are positive or negative. Also, there
are orderings that have an increasing bullwhip behaviour
here. For instance, the ordering considered by Liu (2011)
and Liu and Bauer (2008) has positive impulse responses
that are not covered by Theorem 5.

In the next section will investigate when the ARMA(2,2)
demand impulse response is positive, and by Theorem 4,
when bullwhip always increases in the lead time.

6. INCREASING BULLWHIP IN THE LEAD TIME

Here, we focus on real poles only as complex poles result
in a demand impulse response that oscillates and does not
have an always increasing bullwhip effect in the lead time.
Complex conjugate zeros are allowed. The projection of
these conjugate zeros to the real axis in the complex z
plane determines its eigenvalue ordering.
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õt =




k+1∑
j=0

d̃t+j , if t = 0,

d̃t+k+1, if t > 0.

(17)

Proof. Under the order-up-to policy,

ot = dt +

k+1∑
j=1

d̂t+j|t −
k+1∑
j=1

d̂t+j|t−1,

Also, for demand as an impulse response, d̂t+j|t = d̃t+j for

t � 0 and d̂t+j|t = 0 otherwise. �

5. DEMAND AND ORDER VARIANCES

Using Tsypkin’s relation, the demand variance is

σ2
d = σ2

ε

∞∑
t=0

d̃2t , (18)

the order variance is

σ2
o = σ2

ε

(( k+1∑
j=0

d̃j

)2

+

∞∑
t=1

d̃2t+k+1

)
. (19)

Using these variances, CB[k] becomes

CB[k] =

( k+1∑
j=0

d̃j

)2

+

k+1∑
t=0

d̃2t . (20)

Theorem 4. (Necessary-sufficient condition for increasing

bullwhip). Iff {d̃1, d̃2, ..., d̃k+1} > 0 then CB[k] is positive
and increasing in the lead time.

Proof. Consider CB[k] − CB[k − 1] = 2d̃k+1E[k] with

CB[0] = 2d̃1E[0] = 2d̃1 and E[k] =
∑k

j=0 d̃j , E[0] = d̃0 =

1. For k = 0, iff d̃1 > 0 then CB[0] > 0. By this, E[1] > 0.

For k = 1 the CB[1] − CB[0] > 0 iff d̃2 > 0. The same
reasoning can be iterated for all other k (= 2, 3, ...). �

Theorem 4, the main result of this paper, reveals the
question of whether bullwhip is always increasing in the
lead-time is the same as the whether the demand impulse
response is positive for all t; that is, if ∀t, d̃t > 0, then
CB[k] is increasing for all lead-times and vice versa.

Theorem 5. (Sufficient condition for a positive impulse

response). If, for each AR eigenvalue between 0 ≤ λφ
j ≤ 1,

the number of MA eigenvalue smaller than λφ
j is larger

than the number of AR eigenvalues smaller than λφ
j , then

a positive impulse response exists.

Proof. The proof is based on the z-transform of the
demand process and uses the convolution theorem. First,
note the z-domain pole-zero transfer function of d̃t given
in (10). Theorem 4 showed the increasing monotonicity of
bullwhip is equivalent to a positive impulse response of

D[z]. Due to the dominance of the λφ
j eigenvalues over the

λθ
j eigenvalues in Theorem 5 we can write

D[z] =

2∏
j=1

Dj [z]; where Dj [z] =

(
z − λθ

j

z − λφ
j

)
, (21)

with λφ
j > λθ

j and λφ
j > 0. By this, each Dj [z] has a pos-

itive impulse response. Multiplication in the z-domain is
equivalent to convolution in the time domain. Convolution
involves addition and multiplication operations. Any com-
bination of addition and multiplication of positive terms
produces a positive outcome. This convolution property
shows that the product D[z] also has a positive impulse
response. �

Note, Theorem 5 can be easily extended to all ARMA(p,q)
demands, Gaalman et al. (2018). Theorem 5 shows the

dominance of the λφ
j eigenvalues over the λθ

j eigenvalues.
The largest eigenvalue must always be a pole, and the
smallest one must always be a zero. Theorem 5 is insightful
because it depends only on the eigenvalue ordering rather
than the specific value of the eigenvalues.

In control terms, the dominance of the λφ
j eigenvalues over

the λθ
j eigenvalues means that the demand process has the

characteristics of a low pass frequency filter, Nise (2004);
the high frequencies are less dominant in the demand
process compared to low frequencies. The OUT policy is
less able to filter low frequencies, and by this, the order
variance increases (and bullwhip increases) over the lead-
time. Several eigenvalue orderings have the potential to
satisfy Theorem 5. With ARMA(2,2) demand there are a
total number of six orderings, of which, two are low pass
orderings. Many well-known demand forecasting methods,
such as exponential smoothing, (Brown and Meyer, 1961),
Holt-Winters linear trend model Chatfield (1978), and the
general polynomial model of Harrison (1967), also have
pole and zero orderings that satisfy Theorem 5.

The inverse of Theorem 5: If for each λθ
j , the number of AR

eigenvalues smaller than λθ
j is larger than the number of

MA eigenvalues smaller than λθ
j then the impulse response

is not always positive and bullwhip does not increase in
the lead-time. Here, the λθ

j eigenvalues dominate, and the
demand process exhibits large high-frequency harmonics.
The proof is trivial as always d̃1 < 0.

From these insights, the whole set of orderings can be
split into 3 subsets: one set of orderings which potentially
satisfies Theorem 5, one set of orderings that satisfies the
inverse of Theorem 5, and the remaining set of orderings,
see Figure 1. The remaining subset contains orderings
where r2 and/or d̃1 are positive or negative. Also, there
are orderings that have an increasing bullwhip behaviour
here. For instance, the ordering considered by Liu (2011)
and Liu and Bauer (2008) has positive impulse responses
that are not covered by Theorem 5.

In the next section will investigate when the ARMA(2,2)
demand impulse response is positive, and by Theorem 4,
when bullwhip always increases in the lead time.

6. INCREASING BULLWHIP IN THE LEAD TIME

Here, we focus on real poles only as complex poles result
in a demand impulse response that oscillates and does not
have an always increasing bullwhip effect in the lead time.
Complex conjugate zeros are allowed. The projection of
these conjugate zeros to the real axis in the complex z
plane determines its eigenvalue ordering.
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Fig. 1. The six possible real eigenvalue orderings for
ARMA(2,2) demand

6.1 Potentially satisfying Theorem 5

Case A. Here the eigenvalues are in the following order:

−1 < Re[λθ
1] ≤ Re[λθ

2] < λφ
1 ≤ λφ

2 < 1. It is easy to verify

that r1 < 0 < r2, d̃1 > 0, and −r2/r1 > 1. This case
can exist when complex zeros are present. Depending of

the sign of the poles, {λφ
1 , λ

φ
2}, we need to consider the

following three sub-cases:

Case A1: 0 < λφ
1 ≤ λφ

2 . Using r1 = d̃1−r2 in (13) provides

d̃t+1 = d̃1(λ
φ
1 )

t + r2((λ
φ
2 )

t − (λφ
1 )

t) > 0, (22)

which is positive for all t as d̃1, r2, λ
φ
1 , λ

φ
2 > 0 and λφ

2 > λφ
1 .

This means that the bullwhip effect is increasing in the
lead time. Note, this case satisfies the requirements of
Theorem 5.

Case A2: λφ
1 < 0 < λφ

2 . The increasing in the lead time

bullwhip condition, d̃t+1 = r1(λ
φ
1 )

t+r2(λ
φ
2 )

t > 0, becomes
(
λφ
1

λφ
2

)t

< −r2
r1

. (23)

As λφ
1 < 0 < λφ

2 and −r2/r1 > 1, two further sub-cases
exist.

• A2i. When −λφ
1 < λφ

2 the RHS of (23) oscillates with
decaying amplitude, with amplitude strictly less than
one, meaning that the impulse response is positive.

The −λφ
1 < λφ

2 condition is equivalent to λφ
1 + λφ

2 >
0 =⇒ φ1 > 0, see (12). Interestingly, case A2i does
not meet the requirements of Theorem 5, but still an
increasing bullwhip in the lead time is present.

• A2ii. If −λφ
1 > λφ

2 , the impulse may initially be
positive, but the LHS of (23) will oscillate with ever
increasing amplitude and eventually the increasing
bullwhip condition will not hold.

Case A3: λφ
1 ≤ λφ

2 < 0. First note, that for a positive

impulse response (λφ
1/λ

φ
2 )

t < (−r2/r1) is required for an

even t and (λφ
1/λ

φ
2 )

t > (−r2/r1) is required for an odd t.

That λφ
1/λ

φ
2 > 1, implies (λφ

1/λ
φ
2 )

t is increasing in t. This
means that while a positive impulse may initially exist,
with a large enough t, eventually the impulse response will
be negative for large odd t, while for even t the impulse
response is always positive. The increasing in the lead time
bullwhip criteria will be violated.

Note, case A1 conforms to the requirements of Theorem 5,
whereas the A2 and A3 cases do not.

Case B. The eigenvalues are ordered as −1 < λθ
1 <

λφ
1 < λθ

2 < λφ
2 < 1, both {r1, r2} > 0, and 0 < d̃1 = r1 +

r2 < 1. As the zeros enclose a pole, this ordering cannot
exist with complex conjugate zeros.

Case B1: 0 < λφ
1 < λφ

2 . As {r1, r2, λφ
1 , λ

φ
2} > 0, it is

obvious that ∀t, d̃t+1 = r1(λ
φ
1 )

t + r2(λ
φ
2 )

t > 0.

Case B2: −λφ
1 < 0 < λφ

2 . The increasing in the lead time

bullwhip condition, d̃t+1 = r1(λ
φ
1 )

t + r2(λ
φ
2 )

t > 0 becomes(
λφ
1

λφ
2

)t

> −r2
r1

. (24)

In case B2, all odd t have positive impulse responses. Extra
conditions lead to positive impulse responses for even t:

Sub-case B2i. If −λφ
1 < λφ

2 , (λ
φ
1/λ

φ
2 )

t oscillates between
positive and negative numbers that tend towards zero as
t increases. This leads to two further sub-cases:

• B2ia. When d̃2 > 0, the minimum (λφ
1/λ

φ
2 )

t, which
occurs at t = 1, means all impulses are positive,
revealing bullwhip increases in the lead time.

• B2ib. When d̃2 < 0, the impulse response initially has
a negative impulse for even t, but with a large enough

t, (λφ
1/λ

φ
2 )

t > −r2/r1, implying that d̃t+1 > 0, and
as E[∞] > 0 then an increasing bullwhip in the lead-
time effect will return with long lead-times.

Sub-case B2ii. If λ
φ
1 > λφ

2 , (λ
φ
1/λ

φ
2 )

t oscillates with ever-
increasing amplitude which will eventually break the con-

dition (λφ
1/λ

φ
2 )

t > −r2/r1. There are two further sub-
cases:

• B2iia. If d̃2 < 0 then for all odd t, d̃t+1 < 0 and for

even t, d̃t+1 > 0, indicating that bullwhip does not
always increasing in the lead time.

• B2iib. If d̃2 > 0 then for small t, d̃t+1 > 0; for

large odd t, d̃t+1 < 0 and for large even t, d̃t+1 >
0, indicating that the bullwhip effect may initially
increase in the lead time for small k, but for large k
is does not.

Case B3: λφ
1 < λφ

2 < 0. From d̃t+1 = r1(λ
φ
1 )

t + r2(λ
φ
2 )

t,

r1, r2 > 0, and λφ
1 , λ

φ
2 < 0. Together these imply d̃t+1 > 0

for even t and d̃t+1 < 0 for odd t. This oscillating impulse
response does not produce a bullwhip effect that always
increasing in the lead time.

Case B1, satisfies the conditions of Theorem 5, but cases
B2 and B3 do not. Case B2ia, with its positive impulse
response, is an example that confirms Theorem 5 is a
sufficient, but not a necessary, condition.

6.2 Satisfying the inverse of Theorem 5

This set of orderings do not conform to the requirements
of Theorem 5. That is, it is not possible to pair up all poles
and zeros such that each pair has a zero to the left of a pole.
For this class of eigenvalue orderings, a positive demand
impulse response does not always exist, and bullwhip is
not always increasing in the lead-time.

Case C. The eigenvalue order is λφ
1 ≤ λφ

2 < Re[λθ
1] ≤

Re[λθ
2] and r1 < 0 < r2. It is clear from the order of the

eigenvalues that −r1 > r2. As a consequence the demand
impulse at t = 1 is d̃1 = r1 + r2 < 0, from which we
can immediately conclude that the bullwhip is not always
increasing in the lead-time for case C 1.
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Case D. The eigenvalue ordering is λφ
1 < λθ

1 < λφ
2 <

λθ
2. As there is a pole between the two zeros, this ordering

does not exist when there are complex zeros. Using the
ordering it is easy to show that {r1, r2} < 0 and d̃1 = r1+
r2 < 0. So immediately, we know that bullwhip is not
always increasing in the lead-time 1 .

6.3 Other eigenvalue orderings

This set of ordering is not covered by Theorem 5 or its
inverse, so must be considered separately. This can be done
by building upon Theorem 4 in the same manner that we
used to verify the previous two sets.

Case E. The eigenvalue ordering in this case is λθ
1 <

λφ
1 ≤ λφ

2 < λθ
2 and r1 > 0 > r2. As the two zeros are

separated by the two poles, this ordering does not exist
when complex poles are present.

Case E1: 0 < λφ
1 ≤ λφ

2 . Using d̃t+1 = r1(λ
φ
1 )

t + r2(λ
φ
2 )

t

and λφ
2 > λφ

1 , as t becomes large −r2(λ
φ
2 )

t > r1(λ
φ
1 )

t and

d̃t+1 turns negative after one change of sign, indicating
that bullwhip does not always increase in the lead-time.

Case E2: λφ
1 < 0 < λφ

2 . As λφ
1 < 0, r1(λ

φ
1 )

t os-

cillates between positive and negative numbers. r2(λ
φ
2 )

t

is always negative. Depending on the relative sizes of

{r1, r2, λφ
1 , λ

φ
2}, d̃t+1 is either always negative or oscillating

between positive and negative:

• Sub-case E2i. If −λφ
1 > λφ

2 , after t = 0, d̃t is initially
negative, but after some time, falls into an oscillation,
where for odd t, d̃t > 0, and for even t, d̃t < 0.

• Sub-case E2ii. If −λφ
1 < λφ

2 , after t = 0, d̃t is
initially oscillating between a positive and negative
number, but after some time will become forever after
negative, d̃t < 0.

Case E3: λφ
1 ≤ λφ

2 < 0. Using d̃t+1 = r1(λ
φ
1 )

t +

r2(λ
φ
2 )

t > 0, as λφ
1/λ

φ
2 > 1, (λφ

1/λ
φ
2 )

t quickly tends to ∞ as
t increases. The finite −r2/r1 > 0. For even t, we require

(λφ
1/λ

φ
2 )

t > −r2/r1; for odd t, we require (λφ
1/λ

φ
2 )

t < −r2/
r1. For even t, the increasing bullwhip criterion is satisfied,
for odd t, it is not. This leads to an odd/even lead time
effect in the bullwhip behaviour.

Case F. In case F, the eigenvalue order is λφ
1 <

Re[λθ
1] ≤ Re[λθ

2] < λφ
2 and r1 < 0 < r2. Nothing is known

about the relative size of r1 and r2. Case F can exist with
complex conjugate poles.

Case F1: 0 < λφ
1 ≤ λφ

2 . Using the time domain impulse

response, d̃t+1 = r1(λ
φ
1 )

t + r2(λ
φ
2 )

t, as λφ
2 ≥ λφ

1 over time

r2(λ
φ
2 )

t > −r1(λ
φ
1 )

t implying that limt→∞ d̃t+1 = 0+.
Consider now the increasing bullwhip criterion (23), as

0 < (λφ
1/λ

φ
2 ) < 1 then (λφ

1/λ
φ
2 )

t is decreasing t. We know

−r2/r1 > 0, thus d̃1 is sufficient to reveal the long term
behaviour of F1 solutions.

1 Further insights for case C and D can be gained but as they have
no positive impulse responses we have omitted the details for brevity.

• Sub-case F1i. Here d̃1 = φ1 − θ1 < 0, and thus
bullwhip is not always increasing in the lead-time.
However, when t gets sufficiently large, d̃t becomes,
and remains, positive.

• Sub-case F1ii. If d̃1 = φ1 − θ1 > 0 then −r2/r1 > 1

and ∀t d̃t+1 > 0. As the requirements of Theorem
5 are not satisfied here, then is another illustration
that Theorem 5 is a sufficient, but not a necessary
condition for increasing bullwhip in the lead-time.

Case F2: λ
φ
1 < 0 < λφ

2 . Consider the increasing bullwhip

criterion, (23); λφ
1/λ

φ
2 < 0 and −r2/r1 > 0.

• Sub-case F2i. If d̃1 = φ1 − θ1 > 0 and −λφ
1 < λφ

2 ,

then −r2/r1 > 1 and ∀t d̃t+1 > 0. That is, bullwhip
is increasing in the lead-time.

• Sub-case F2ii. If d̃1 = φ1 − θ1 < 0 and −λφ
1 < λφ

2

then (λφ
1/λ

φ
2 )

t oscillates, but over time the oscillations

dampen out and ∀t (λφ
1/λ

φ
2 )

t ≤ 1. As d̃ < 0 then

initially for small odd values of t, d̃t < 0; however, as
t becomes large d̃t > 0 for both odd and even t.

• Sub-case F2iii. If −λφ
1 > λφ

2 , then (λφ
1/λ

φ
2 )

t oscillates
with ever increasing amplitude as t increases and the
bullwhip criterion does not hold.

Case F3: λφ
1 ≤ λφ

2 < 0. For exactly the same reasons as
case E3, case F3 does not have an increasing in the lead
time bullwhip behaviour.

7. CONCLUSIONS

We have introduced a new bullwhip metric, CB[k], use-
ful when large order and demand variances are present.
Theorem 4 showed the positivity of the order impulse re-
sponse determines the essential character of CB[k] over the
lead-time. We confirmed this by studying the eigenvalues,

{λφ
i , λ

θ
j} of the demand process rather than AR and MA

parameters, {φi, θj}, directly. This proved to be efficient
as only the order of the eigenvalues determines a lead-
time/bullwhip relationship, not the specific value of the
eigenvalues or the demand parameters. We found three
different sets of eigenvalue orderings exist:

• a set where increasing bullwhip increases over the
lead-time is possible,

• an inverse set in which bullwhip is not increasing in
the lead-time,

• and a third set which includes decreasing bullwhip
over the lead-time, and a bullwhip/lead-time relation-
ship that depends on specific values of eigenvalues.

Theorem 5 identified a class of easy-to-identify orderings
for which the general demand processes behaves as a low
pass filter that is sufficient to describe when the bullwhip
is an increasing function of the lead-time. This class is
important because well-known forecasting methods are
part of this class, Li and Disney (2018). Within this class,
the strength of the low pass filter directly influences the
strength of CB[k].

We illustrated our results by studying all the possible
eigenvalue orderings of the ARMA(2,2) demand process.
We were able to fully characterize bullwhip over the lead-
time, for all possible stable and invertible ARMA(2,2)
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Case D. The eigenvalue ordering is λφ
1 < λθ

1 < λφ
2 <

λθ
2. As there is a pole between the two zeros, this ordering

does not exist when there are complex zeros. Using the
ordering it is easy to show that {r1, r2} < 0 and d̃1 = r1+
r2 < 0. So immediately, we know that bullwhip is not
always increasing in the lead-time 1 .

6.3 Other eigenvalue orderings

This set of ordering is not covered by Theorem 5 or its
inverse, so must be considered separately. This can be done
by building upon Theorem 4 in the same manner that we
used to verify the previous two sets.

Case E. The eigenvalue ordering in this case is λθ
1 <

λφ
1 ≤ λφ

2 < λθ
2 and r1 > 0 > r2. As the two zeros are

separated by the two poles, this ordering does not exist
when complex poles are present.

Case E1: 0 < λφ
1 ≤ λφ

2 . Using d̃t+1 = r1(λ
φ
1 )

t + r2(λ
φ
2 )

t

and λφ
2 > λφ

1 , as t becomes large −r2(λ
φ
2 )

t > r1(λ
φ
1 )

t and

d̃t+1 turns negative after one change of sign, indicating
that bullwhip does not always increase in the lead-time.

Case E2: λφ
1 < 0 < λφ

2 . As λφ
1 < 0, r1(λ

φ
1 )

t os-

cillates between positive and negative numbers. r2(λ
φ
2 )

t

is always negative. Depending on the relative sizes of

{r1, r2, λφ
1 , λ

φ
2}, d̃t+1 is either always negative or oscillating

between positive and negative:

• Sub-case E2i. If −λφ
1 > λφ

2 , after t = 0, d̃t is initially
negative, but after some time, falls into an oscillation,
where for odd t, d̃t > 0, and for even t, d̃t < 0.

• Sub-case E2ii. If −λφ
1 < λφ

2 , after t = 0, d̃t is
initially oscillating between a positive and negative
number, but after some time will become forever after
negative, d̃t < 0.

Case E3: λφ
1 ≤ λφ

2 < 0. Using d̃t+1 = r1(λ
φ
1 )

t +

r2(λ
φ
2 )

t > 0, as λφ
1/λ

φ
2 > 1, (λφ

1/λ
φ
2 )

t quickly tends to ∞ as
t increases. The finite −r2/r1 > 0. For even t, we require

(λφ
1/λ

φ
2 )

t > −r2/r1; for odd t, we require (λφ
1/λ

φ
2 )

t < −r2/
r1. For even t, the increasing bullwhip criterion is satisfied,
for odd t, it is not. This leads to an odd/even lead time
effect in the bullwhip behaviour.

Case F. In case F, the eigenvalue order is λφ
1 <

Re[λθ
1] ≤ Re[λθ

2] < λφ
2 and r1 < 0 < r2. Nothing is known

about the relative size of r1 and r2. Case F can exist with
complex conjugate poles.

Case F1: 0 < λφ
1 ≤ λφ

2 . Using the time domain impulse

response, d̃t+1 = r1(λ
φ
1 )

t + r2(λ
φ
2 )

t, as λφ
2 ≥ λφ

1 over time

r2(λ
φ
2 )

t > −r1(λ
φ
1 )

t implying that limt→∞ d̃t+1 = 0+.
Consider now the increasing bullwhip criterion (23), as

0 < (λφ
1/λ

φ
2 ) < 1 then (λφ

1/λ
φ
2 )

t is decreasing t. We know

−r2/r1 > 0, thus d̃1 is sufficient to reveal the long term
behaviour of F1 solutions.

1 Further insights for case C and D can be gained but as they have
no positive impulse responses we have omitted the details for brevity.

• Sub-case F1i. Here d̃1 = φ1 − θ1 < 0, and thus
bullwhip is not always increasing in the lead-time.
However, when t gets sufficiently large, d̃t becomes,
and remains, positive.

• Sub-case F1ii. If d̃1 = φ1 − θ1 > 0 then −r2/r1 > 1

and ∀t d̃t+1 > 0. As the requirements of Theorem
5 are not satisfied here, then is another illustration
that Theorem 5 is a sufficient, but not a necessary
condition for increasing bullwhip in the lead-time.

Case F2: λ
φ
1 < 0 < λφ

2 . Consider the increasing bullwhip

criterion, (23); λφ
1/λ

φ
2 < 0 and −r2/r1 > 0.

• Sub-case F2i. If d̃1 = φ1 − θ1 > 0 and −λφ
1 < λφ

2 ,

then −r2/r1 > 1 and ∀t d̃t+1 > 0. That is, bullwhip
is increasing in the lead-time.

• Sub-case F2ii. If d̃1 = φ1 − θ1 < 0 and −λφ
1 < λφ

2

then (λφ
1/λ

φ
2 )

t oscillates, but over time the oscillations

dampen out and ∀t (λφ
1/λ

φ
2 )

t ≤ 1. As d̃ < 0 then

initially for small odd values of t, d̃t < 0; however, as
t becomes large d̃t > 0 for both odd and even t.

• Sub-case F2iii. If −λφ
1 > λφ

2 , then (λφ
1/λ

φ
2 )

t oscillates
with ever increasing amplitude as t increases and the
bullwhip criterion does not hold.

Case F3: λφ
1 ≤ λφ

2 < 0. For exactly the same reasons as
case E3, case F3 does not have an increasing in the lead
time bullwhip behaviour.

7. CONCLUSIONS

We have introduced a new bullwhip metric, CB[k], use-
ful when large order and demand variances are present.
Theorem 4 showed the positivity of the order impulse re-
sponse determines the essential character of CB[k] over the
lead-time. We confirmed this by studying the eigenvalues,

{λφ
i , λ

θ
j} of the demand process rather than AR and MA

parameters, {φi, θj}, directly. This proved to be efficient
as only the order of the eigenvalues determines a lead-
time/bullwhip relationship, not the specific value of the
eigenvalues or the demand parameters. We found three
different sets of eigenvalue orderings exist:

• a set where increasing bullwhip increases over the
lead-time is possible,

• an inverse set in which bullwhip is not increasing in
the lead-time,

• and a third set which includes decreasing bullwhip
over the lead-time, and a bullwhip/lead-time relation-
ship that depends on specific values of eigenvalues.

Theorem 5 identified a class of easy-to-identify orderings
for which the general demand processes behaves as a low
pass filter that is sufficient to describe when the bullwhip
is an increasing function of the lead-time. This class is
important because well-known forecasting methods are
part of this class, Li and Disney (2018). Within this class,
the strength of the low pass filter directly influences the
strength of CB[k].

We illustrated our results by studying all the possible
eigenvalue orderings of the ARMA(2,2) demand process.
We were able to fully characterize bullwhip over the lead-
time, for all possible stable and invertible ARMA(2,2)
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demand processes. This is a unique and important contri-
bution to the study of the bullwhip problem. Our analysis
is also important beyond the bullwhip application we have
studied here. Having obtained a complete understanding
of stable and invertible ARMA(2,2) we have actually ob-
tained a complete (necessary and sufficient) understanding
of all second order discrete time control systems. We be-
lieve this also is a unique and important contribution to
the field of automatic control.

The impulse response and bullwhip properties for higher
order ARMA demand processes that do not belong to the
low pass subset is generally complex and we do not yet
understand its behaviour completely. The characteristics
of both the demand process and the OUT policy are
important factors that determines whether a bullwhip
effect is increasing in the lead-time or not. Studying how
the lead-time influences the bullwhip behaviour in other
inventory replenishment policies is an interesting topic for
future research.

The practicing manager, having observed an ARMA(2,2)
process structure in demand, may what to consider lead
time reduction. Depending on the demand process ob-
served, there may or may not be a bullwhip benefit from
reducing the lead time. If there is a benefit, the cost of
reducing the lead time may be offset against the reduced
capacity costs, (Hosoda and Disney, 2012); if bullwhip does
not increase in the lead time, perhaps different (cheaper,
slower, more ecologically friendly) transport modes or pro-
duction technology can be used.
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