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Abstract 

Cell-cell or paracrine signalling is a form of cellular communication in which a cell 

produces a signal that influences the behaviour of neighbouring cells, which is 

important because it allows for the local coordination of the activities of groups of 

cells. This coordination is indispensable during development; for example, 

paracrine Wnt signalling is fundamental to body patterning in all metazoans 

where it helps to determine cell fate in a developing embryo. Wnt can regulate 

the transcription of target genes including cyclin and peroxisome-proliferator 

activated receptor-ẟ. The importance of Wnt signalling is not temporally limited, 

and Wnt has roles throughout the life of an organism such as the management 

of stem cells and the cellular abundance of mitochondria, the ‘sister organelle’ of 

the peroxisome. The peroxisome is a single membrane-bound organelle with 

diverse roles in healthy development and life, inclusive of the breakdown of very 

long chain fatty acids (VLCFAs) and the production of plasmalogens for efficient 

nervous conduction. The relationship between the Wnt signalling pathway and 

peroxisomes is unknown. Here I investigate the influence of Wnt signalling on 

peroxisome dynamics in zebrafish. To do so, canonical wnt8a was knocked out 

and knocked down using the genomic engineering tool CRISPR and Morpholino 

oligomers. The number and morphology of peroxisomes was observed in Wnt8a-

deficient zebrafish embryos and appeared to be aggregated and less numerate 

than in wild type zebrafish. Consistently, in zebrafish embryos overexpressing 

wnt8a, peroxisomes were visualised as highly numerate singular puncta. I 

hypothesise that - in addition to a set of functions in development and tissue 

homeostasis - Wnt signalling has a novel role in regulating peroxisome 

proliferation in zebrafish.  
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1.0 Introduction 

1.1 The history of Wnt discovery 

All cells contain the same genetic information, yet there is intrinsic variation in the 

way that it is expressed due to properties such as single-molecule kinetics 

(Sanchez & Goulding, 2013). The impact of this inherent variability is that even in 

a homogenous environment, a group of cells will respond in a heterogeneous 

manner. Paracrine signalling is a way of locally controlling this inherent variability 

and coordinating the behaviour and identity of cells by producing signals which 

are taken up by neighbouring cells (Handly et al., 2015). A typical example of 

paracrine or cell-cell signalling is Wnt signalling.  

Wnt signalling is fundamental to embryogenesis. Present in all metazoans 

(Holstein, 2012), Wnt proteins have been closely examined in many model 

organisms such as the fruit fly (Drosophila melanogaster), the African clawed frog 

(Xenopus laevis), and zebrafish (Danio rerio). The presence of Wnt genes in the 

earliest branches of the animal kingdom, such as Nematostella (Kusserow et al., 

2005), has generated speculation that the early diversification of the Wnt protein 

family is at the crux of the development of more complex bilaterian animal body 

plans (Holstein, 2012). 

Wnt was discovered in mice by Roel Nusse and Harold Varmus (Nusse & Varmus 

1982), in parallel with Christiane Nüsslein-Volhard and Eric Wieshaus in 

Drosophila (Nüsslein-Volhard & Wieschaus, 1980). Wnt made its debut 

respectively as the putative mouse proto-oncogene Int-1 and the Drosophila 

segment polarity gene wingless (wg)  combined as wnt-1 (Nusse et al, 1991). 

Rijsewijk and colleagues (1987a) isolated Drosophila int-1 (Dint-1) and showed 

that it was almost identical (54%) to and mapped to the same location as wg. 
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Thus, wnt was established as one of the first genes to be implicated in both 

morphogenesis and oncogenesis.  

Wnt signalling was initially associated with breast cancer due to the discovery 

that the mouse proto-oncogene Int-1/Wnt1 caused mammary hyperplasia and 

tumours in mice, either via proviral insertion into the Wnt1 locus or transgenic 

overexpression (Tsukamoto et al., 1988). Wnt rapidly became interesting to 

cancer biologists seeking to shed light on human oncogenesis, and yet it was 

difficult to find the link between the human WNT homologue and the breast 

cancer studied by Nusse and Varmus, until the focus shifted to the downstream 

components of the WNT signalling pathway (Nusse & Varmus, 2012). The 

research that followed identified components of the now infamous canonical 

signalling pathway such as adenomatous polyposis coli (APC) (Groden et al., 

1991), β-catenin (Peifer & Wieschaus, 1990, Peifer et al., 1993) and glycogen 

synthase kinase 3 (GSK-3) proteins (Siegfried et al., 1992). The pathway 

stretches from the cell membrane to the nucleus and culminates, via stabilisation 

of intra-cellular β-catenin, in the expression of WNT target genes which include 

cell cycle-regulators and oncogenes (Huelsken & Behrens, 2000).  

APC, a component of the canonical Wnt signalling pathway, downregulates Wnt 

pathway signalling by binding to β-catenin in the cytosol and thereby assisting its 

degradation by the multi-module β-catenin degradation complex. Loss of APC 

results in reduced degradation of β-catenin and enhanced canonical Wnt 

signalling, thus β-catenin can complex with T-cell factor 4 (Tcf-4) at a steady level 

and induce transcriptional transactivation. This mechanism, triggered by Wnt 

pathway component APC, was found to underpin hereditary familial 

adenomatous polyposis – a form of colon cancer (Korinek et al., 1998).  
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The canonical Wnt signalling pathway, or the β-Catenin pathway, is one of 

multiple pathways which construct the Wnt signalling network and underscore the 

multitude of roles for Wnt in both development and in the maintenance of healthy 

life.  All begin with the reception of the Wnt protein at the cell membrane, and the 

earliest known receptors were from the Frizzled family of seven-pass 

transmembrane receptors. For the canonical signalling pathway, Wnt is received 

by the low-density lipoprotein receptors 5 and 6 (Lrp5/6) in vertebrates, and by 

the Drosophila ortholog arrow. Both Lrp5/6, or arrow, are single-span 

transmembrane proteins from the low-density lipoprotein receptor (LDLR) family 

and are absolute requirements for the function of the canonical Wnt pathway; in 

the absence of arrow, Drosophila demonstrate a phenotype similar to wingless, 

and mice mutated in Lrp6 exhibit a compounded phenotype of several Wnt 

deficiencies (He et al., 2004).  

1.2 The canonical Wnt pathway 

On the protein level, the entities within the Wnt signalling network are now well 

elucidated. It is understood that there are distinguishable pathways within the 

network with distinct molecular functions, yet the components within these 

pathways are interrelated (Filipovich et al., 2011). In the endoplasmic reticulum 

of producing cells, Wnt is lipid modified with palmitoleic acids via the O-

acyltransferase porcupine before release into the extracellular matrix (Takada et 

al., 2006), where its dissemination is still the topic of debate. Wnt diffuses poorly, 

and is therefore usually taken up by neighbouring cells where it activates the 

cascade of intracellular interactions which comprise the signalling pathways 

(Wiese et al., 2018). 
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There are three main signalling pathways; the canonical or β-catenin pathway, 

the Ca2+ pathway and the planar cell polarity (PCP) pathway. Briefly, the PCP 

pathway coordinates the polarity of a cell within the epithelium of the Drosophila, 

and in vertebrates such as zebrafish, controls the process of convergent 

extension, that is the extension of the antero-posterior (AP) axis and contraction 

of the medio-lateral axis (MP), and the polarity of lamellipodial protrusions 

involved in cell intercalation (Wang et al., 2006). The Ca2+ pathway culminates in 

target gene expression in a β-catenin-independent manner with non-canonical 

Wnts (Wnt4, -5a and -11) (Kühl et al., 2000). Non-canonical Wnt signalling has 

disparate roles in heart induction, neuronal migration and cochlear hair cell 

morphology, amongst others, but is not as well understood as the canonical 

pathway (Veeman et al., 2003). 

The canonical Wnt pathway outlined in Figure 1 is perhaps the most well-known 

and it culminates in the activation of Wnt target genes within the nucleus. The 

core tenet of the pathway is the prevention of the degradation of intracellular β-

catenin in the Wnt receiver cell. In the absence of canonical Wnt signal reception 

(Wnt1, Wnt3, Wnt3A (or Wnt3 like), Wnt8a, Wnt8b) (Filipovich et al., 2011) at the 

cell membrane, intracellular β-catenin is phosphorylated at serine 45 by casein 

kinase Ia (CKIa), which permits glycogen synthase kinase 3 β (GSK3β) to 

phosphorylate serine and threonine residues 33, 37 and 41. The primary two 

motifs trigger ubiquitination of β-catenin by β-transducin repeats-containing 

proteins (βTrCP) and finally degradation by proteasomes in the cytosol, 

preventing β-catenin from entering the nucleus and interacting with transcription 

factors.  
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When the Wnt ligand is delivered to the cell membrane of the receiver cell, it binds 

to the seven-pass frizzled transmembrane receptor and co-receptor Lrp5/6. This 

binding induces the recruitment of cytosolic proteins such as dishevelled, which 

in turn inhibits the action of the multi-protein β-catenin degradation complex by 

displacement of GSK3β from scaffold protein axin, thus preventing further 

phosphorylation of β-catenin and subsequent creation of the two ubiquitination 

motifs. Therefore, β-catenin goes unrecognised by proteasomes and persists 

within the cytosol, where it translocates to the nucleus and interacts with T-cell 

factor (TCF)/lymphoid enhancing factor (LEF) family transcription factors. This 

interaction leads to the transcription of Wnt target genes such as, but not limited 

to, cell-cycle regulator cyclin D1, oncogene MYC, and peroxisome-proliferator 

activated receptor delta (PPARδ). Target gene transcription is controlled by the 

relationship between β-catenin and histone acetyltransferase CREB-binding 

protein (CBP), B-cell CLL/lymphoma (Bcl9) bound to pygopus and chromatin-

remodelling complex SWItch/sucrose non-fermentable (SWI/SNF) (Huelsken & 

Behrens, 2002).  
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Figure 1: A schema of the ꞵ-catenin pathways triggered by the reception of Wnt 

at the cell membrane, and the genes targeted (Strutt, 2003). 

Regulation of the canonical Wnt pathway is required to maintain a healthy state. 

For example, within the tumours of most breast cancers, the promoter region of 

negative Wnt pathway regulator secreted Frizzled-related protein 1 (sFRP1) is 

hypermethylated, which downregulates sFRP1 transcription. This results in 

dysregulation of the Wnt pathway and increased Wnt transcription, which has 

been suggested to have a role in tumorigenesis; for example in mice, Wnt trans-

activates the transcription of epidermal growth factor receptor (EGFR) which 

activates the extracellular signal-regulated kinase 1/2 pathway (ERK1/2), thus 

reducing control over cellular proliferation (Schlange et al., 2007) and opening 

the door to tumour generation.   

Dysregulation of the canonical Wnt signalling pathway is a characteristic of 

multiple cancer types, a prominent example being colon cancer. The reason for 
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this involvement in tumorigenesis is due to the role of Wnt in the renewal of 

tissues and homeostatic turnover of cells. In the mouse intestine, the layer of 

endodermal cells is entirely renewed every 3-5 days. New cells are produced in 

the intestinal crypt and travel along intestinal villi in a sheet to the tips where the 

growth is balanced by apoptosis. Below the crypt lies stem cells which produce 

the rapidly proliferating progenitor cells housed within the crypt. Dysregulation of 

Wnt signalling results in loss of the stem cell compartment in mice; both in Tcf-4 

neonatal mutants and where dickkopf 1 (Dkk-1) is transgenically expressed. Such 

mice die after birth (Korinek et al., 1998; Reya & Clevers, 2005). In humans, colon 

cancer is typically derived from mutations in APC, resulting in constitutive 

activation of β-catenin and therefore tumorigenesis. Using a Wnt reporter 

construct, it is possible to visualise Wnt pathway activity, which is highest in 

tumour cells. Interestingly, in adenocarcinomas, Wnt signalling was detected at 

its highest levels in cells proximate to stromal myofibroblasts, which the group 

took to infer that environmental factors, namely myofibroblast secreted factors, 

can manipulate Wnt signalling in cancerous cells. Indeed, such secreted factors 

were found to enhance colon stem cell clonogenicity by activating β-catenin-

dependant transcription (Vermeulen et al., 2010).  

Wnt signalling has been found to be crucial for stem cell regulation in multiple 

systems; for example, knockout of β-catenin in the final stage of differentiation of 

human pluripotent stem cells (hPSCs) prevented progression to the 

cardiomyocyte end fate. Later, the specification was regained and a high yield of 

cardiomyocytes produced from the treatment of hPSCs with GSK-3 - a 

component of the β-catenin degradation complex - inhibitors and inducible 

expression of β-catenin short hairpin RNA (shRNA) (Lian et al., 2012).  
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Wnt is essential to life, specifically in relation to homeostatic regulation of cell 

turnover, as evidenced by its role in the progression and initiation of numerous 

cancer types, and in the regulation of stem cell differentiation, for example in the 

mouse intestinal crypt. Wnt signalling is also essential to early life, a statement 

which harks back to its discovery as the homologue of Drosophila segment 

polarity gene wingless (wg). When allowed to aggregate, embryonic stem cells 

derived from the inner cell mass of blastocyst stage embryos form an embryoid 

body in which cells from all three germ layers can be found. Axis formation is 

determined by the formation of the primitive streak, and anteroposterior 

patterning is established, both induced by Wnt ligand or pathway components 

(Galceran et al., 1999). Cellular differentiation in vitro is influenced by 

manipulation of the Wnt signalling pathway (ten Berge et al., 2008).  

1.3 Wnt signalling and its roles in model organisms  

In vivo, Wnt signalling and its influence on axis formation can be traced as far 

back in evolutionary history as diploblastic metazoan Hydra (Hobmayer et al., 

2000) and has been well-studied in Xenopus, where extracellular maternal 

Wnt11, dependant on glycosyltransferase Exostosin-1 (X.EXT1) and Epidermal 

growth factor-Cripto-FRL1-Cryptic (EGF-CFC) protein Crypto-1 (FRL1), activates 

the canonical signalling pathway that initiates axis development (Tao et al., 2005). 

The dorsal-ventral axis is the second axis that is determined in amphibians and 

originates at the point of sperm entry.  The cortical rotation at this point produces 

the Nieuwkoop Centre, a progenitor of the Spemann Organiser. The Nieuwkoop 

Centre is a grouping of dorsal/vegetal blastomeres, which is such a powerful 

organising centre that when it is transplanted elsewhere in the embryo, it induces 

additional axis formation (Zeng et al., 1997). It is thought that the Nieuwkoop 
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Centre is induced by and dependant on components of the Wnt signalling 

pathway (Fagotto et al., 1997). In mammals, injection of Wnt inhibitor axin mRNA 

into mouse embryos disturbs dorsal axis formation by interfering with Wnt 

signalling (Zeng et al., 1997).  

In zebrafish, the organiser is called the shield, and Wnt signalling induces dorsal 

axis formation via accumulation of transcriptional effector β-catenin in the nuclei 

of dorsal margin blastomeres (Schier & Talbot., 2005), beginning at the 128-cell 

stage (Dougan et al., 2003), which is driven by cortical rotation. Dorsal nucleic 

accumulation of the Wnt pathway component, where it can interact with Tcf/Lef 

transcription factors and induce transcription of target genes, and contrasts with 

ventral cells where β-catenin remains largely cytosolic (Schohl & Fagotto., 2002). 

Cortical rotation is integral to axis development in zebrafish, as evidenced by 

Chung and Malacinski (1980) and Scharf and Gerhart (1980), who treated 

Xenopus and zebrafish eggs with microtubule de-polymerising agents which 

disrupted rotational movement and resulted in ventralised embryos. Disruption of 

the cytoskeleton prevented the physical rotation and this manifested as embryos 

absent of axes because cortical rotation results in the translocation of a dorsal 

signal which locally activates Wnt signalling (Pelegri., 2003).  

The importance of Wnt signalling in axis development is underscored by mutants 

such as hectate, where embryos lack accumulation of β-catenin in dorsal nuclei 

which manifests as malformation of anterior dorsal structures and dysregulation 

of Ca2+ release during cleavage (Lyman Gingerich et al., 2005). Healthy Wnt 

signalling and therefore axis development lays the groundwork for all processes 

later in development such as the specification of tissues, for example the 

neuroectoderm and dorsal mesoderm. These tissues are induced by the 
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purported Spemann activity of the organiser, which is consistent between the 

zebrafish shield, the Xenopus dorsal lip of the blastopore and the mouse node 

(Harland & Gerhart., 1997). As such, axis development presents one in a myriad 

of important roles for Wnt signalling in development.  

Paracrine Wnt signalling is paramount throughout the animal kingdom, from early 

origins in Hydra to inducing axis development in Xenopus, mouse and zebrafish 

embryos. Throughout the life of an organism, it is essential for regulating stem 

cells and cell turnover; dysregulation can result in cancer, specifically breast and 

colon cancers. In early development, it sits at the lynchpin of axis formation and 

therefore the organisation of the body plan and tissue distribution within 

organisms. Body patterning is determined by specific gene expression which is 

generated by paracrine Wnt signalling in concentration gradients across 

responsive tissues.  

Despite the body of knowledge accumulated about Wnt and its actions in 

organisms, there remains a crucial knowledge gap when it comes to how Wnt is 

trafficked between cells. How does an extracellular signal assemble into a finely-

tuned concentration gradient across responsive tissues? How does the source 

cell retain control over the dissemination of Wnt proteins that it releases into the 

extracellular matrix?  

1.4 Transport of Wnt proteins  

The reception of the palmitoylated glycoprotein canonical Wnt ligand at the cell 

membrane triggers the cascade of reactions introduced in 1.2. It is widely 

acknowledged that Wnt proteins act as paracrine morphogens, but historically the 

mode of transport of Wnt proteins from the sender cell to the receiver cell has 

been debated. Some prominent hypotheses include exosomal transport (Gross 
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et al., 2012) and chaperone-mediated transport (Kitajewski et al., 1992) to aid 

diffusion by encompassing the posttranslational hydrophobic modifications to the 

Wnt protein. The above methods of transport, however, lack the end-to-end 

control of production and delivery which seems necessary to generate the fine 

balance of Wnt gradient which produces wild type tissue patterning. In 2015, the 

Scholpp lab determined that Wnt proteins were in fact delivered on membranous 

protrusions called cytonemes, previously characterised in Drosophila where they 

delivered signalling proteins such as hedgehog (hh). Stanganello and colleagues 

(2015) in the Scholpp lab were the first to identify Wnt-positive cytonemes, which 

delivered Wnt proteins on the tips of the finger-like protrusions from the sender 

cell to the receiver cell membrane.  

Wnt-positive cytonemes are, like filopodia (membranous protrusions without 

cargo), dependant on small Rho family GTPase Cdc42 for dynamic actin 

assembly. Perturbations of Cdc42 resulted in reduced length of cytonemes, and 

in zebrafish embryos, malformation due to aberrant tissue patterning (Mattes et 

al., 2018). The Scholpp lab investigated the nucleation of cytonemes and found 

that overexpression of the tyrosine kinase receptor Ror2 increased both the 

number and length of cytonemes and therefore acted upstream of Cdc42. 

Further, visualisation of both fluorescently tagged proteins with confocal 

microscopy determined that Ror2 bound in a membrane-associated complex with 

Wnt family member wnt8a, the association of which induces planar cell polarity 

(PCP) signalling – another pathway in the Wnt signalling network - and thereby 

the production of Wnt-positive cytonemes in sender cells (Mattes et al., 2018). In 

contrast to the diffusion- or exosome-based hypotheses proposed prior to the 

discovery of cytonemes, the model of Wnt delivery to target cells presented firstly 
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by Stanganello and colleagues (2015) and developed by Mattes and colleagues 

(2018) presents a method by which a Wnt-producing cell can have tight, long-

range control over the delivery of Wnt glycoproteins to the receiving cell to confer 

the precise gradient of a protein so integral to developmental processes.  

1.5 The wnt8a locus  

wnt8a is a complex locus, demonstrated by Figure 2. It has two open reading 

frames (ORF1, ORF2), two untranslated regions (UTR1, UTR2) and three 

transcription start sites (TSS).  Both ORF1 and ORF2 are transcribed into a 

singular bicistronic transcript, which Lekven and colleagues (2001) demonstrated 

by designing two primers which span both ORFs, using the zebrafish as a model 

organism. A singular transcript is produced, which is later spliced to produce the 

two alternate products. Blocking the translation of ORF1, ORF2 or both splice 

forms of wnt8a using Morpholino inhibition in zebrafish results in fish with 

indistinct neural structures along the whole dorsal line, including the head, 

resulting in a crooked tail. The group also investigated the expression pattern of 

ORF1 and ORF2 using in situ hybridisation. The expression of each ORF differs; 

at 75% epiboly, both ORF1 and ORF2 are expressed in the marginal zone, yet 

only ORF2 is expressed in the axial mesoderm (Lekven et al., 2001).   
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Figure 2: A representation of the wnt8a locus, adapted from Wylie and 
colleagues (2014).  
Transcription start sites (TSS) A, B, and C are labelled with arrows. Exons are 
denoted by boxes; the navy boxes are unexpressed and the light blue boxes are 
expressed exons. The two boxes with the white star are alternate 5’ exons on the 
bicistronic transcript. Start codons for the first and second open reading frames 
are marked below the boxes.  

 

1.6 Role of wnt8a in zebrafish 

Akin to Wnt in other organisms including Hydra, Xenopus and the mouse, 

zebrafish Wnt8a goes on to play a crucial role in axis development (Luz et al., 

2014). In particular, Wnt8a has been found to have a posteriorising effect (Erter 

et al., 2015) along the anteroposterior axis. Axis development in vertebrates is 

dependent on signals from the dorsal organising centre, a signalling hub first 

discovered in Xenopus by Spemann and Mangold in 1924 which dictates axis 

formation. The signals emitted by the organiser are such that, when transplanted 

elsewhere in the Xenopus embryo, a second axis is formed. Orthologues of the 

organiser are found in other animals, such as the avian Henson’s Node (Selleck 

& Stern, 1991), or the teleost embryonic shield. The formation of the Xenopus 

organiser is dependent on maternally encoded β-catenin; reduction in maternal 

β-catenin RNA results in the loss of axial structures and failure to form the dorsal 

organising centre (Zhang et al., 1998). Parallels can be drawn to the zebrafish, 
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where β-catenin also plays a crucial role in axes formation as a transcription 

factor.  

The importance of maternal control over β-catenin nuclear localisation in cells of 

the dorsal yolk syncytial layer is underscored by the maternal effect recessive 

ichabod mutants which fail to form the zebrafish orthologue of the Xenopus dorsal 

organiser, the embryonic shield. Loss of organisation results in embryos which 

mostly lack anterior structures, notochord, and have excessive production of 

ventral tailfin and blood (Kelly et al., 2000). Homozygous headless mutant 

embryos also suffer from an absence of anterior neural structures. In wild type 

embryos, the Wnt pathway inhibitor Transcription factor 3 (Tcf3) limits the reach 

of the Wnt gradient along the anterior-posterior axes, which enables Wnt to inhibit 

anterior fates and promote posterior cell fate on the posterior pole of the axis. The 

headless embryos lack the orthologue of Tcf3, thus removing the anterior border 

to Wnt signalling. Wnt signalling inhibits anterior fates along the entire antero-

posterior axis, resulting in loss of head (Kim et al., 2000).  

In wild type embryos, downstream canonical Wnt pathway transcription factor β-

catenin induces the formation of the embryonic shield and thereby processes 

allowing axes formation (Kelly et al., 2000). The Wnt pathway inhibits anterior 

fates and promotes posterior fates by forming a concentration gradient along the 

antero-posterior axis which facilitates specific gene induction and in turn the fine-

tuned acquisition of cell fate underlying tissue specification. The anterior 

progression of the Wnt signalling gradient facilitated by cytonemes (Stanganello 

et al., 2015), is prevented by a wall of Wnt inhibitors, such as Tcf3 (Kim et al., 

2000). Wnt8 signalling is required for initiation of formation of the neural crest, the 

cells of which migrate through the embryo and form parts of the peripheral 
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nervous system, such as glia. The neural crest is segmented into fore, mid and 

hindbrain primordia, which are later further specialised by local signalling centres 

such as the midbrain-hindbrain boundary (MHB). The MHB defines the boundary 

between orthodenticle homeobox 2 (otx2), which induces forebrain and midbrain, 

and hindbrain gastrulation brain homeobox 1 (gbx1) expression. The position of 

gbx1 expression determines the posterior border of otx2 expression and requires 

wnt8a for induction. Thereby, wnt8a is responsible for the positioning of the MHB 

in zebrafish (Rhinn et al., 2005).  

1.7 Zebrafish as an experimental model  

An advantage of using the zebrafish as an experimental model is that the 

embryos remain clear until 24 hours post fertilisation (hpf) or prim-5 when the 

earliest pigmentation begins to form. Structures such as the eye, ear, boundaries 

of the brain and somites are clearly delineated and visible with a light microscope. 

The staging system set out by Kimmel and colleagues (1995), is well accepted 

and sets out the stages of zebrafish development independent of time since 

fertilisation to account for variables which may cause embryos to develop at 

different rates, such as temperature. Coupling the well-documented and clearly 

visible developmental stages of the zebrafish with the ability to induce 

distinguishable wnt8a-deficient phenotype with Morpholino oligomer-based 

inhibition, the zebrafish provides a promising model for the synthesis and 

application of a genomic engineering toolkit to manipulate the transcription of 

wnt8a and observe changes to the phenotype of embryos until the prim stage. 

Zebrafish are commonly used as models to study organelles, for example, the 

peroxisome (Krysko et al., 2010; Den Broeder et al., 2015).  
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1.8 Peroxisomes in health and disease  

Peroxisomes are dynamic, ubiquitous subcellular organelles with a single 

membrane, and do not contain any DNA (Walker et al., 2018). Historically, 

peroxisomes were attributed a similar role to the lysosome, but the last of the 

major subcellular organelles to be identified have in recent years been recognised 

for their importance in maintaining a healthy state, a journey which has been 

termed a ‘Cinderella Story’ (Schrader & Fahimi, 2008). The functions of 

peroxisomes are multivariate, and are inclusive of but not limited to homeostatic 

control of reactive oxygen species (ROS), very long chain fatty acid (VLCFA) β-

oxidation, and plasmalogen biosynthesis (Schrader et al., 2012). The 

proteinaceous content is post-translationally imported from the cytosol (Baker et 

al., 2016). In addition to proteins, peroxisomes are also reliant on the cytosol for 

environmental cues. The single membrane-bound organelles can increase or 

decrease their number dynamically in response to environmental cues, such as 

the uptake of peroxisome proliferators, a wide array of non-mutagenic chemicals 

including but not limited to herbicides and the adrenal steroid 

dehydroepiandrosterone. These chemicals interact with peroxisomal proliferator-

activated receptors which induce peroxisome proliferation. In fact, excessive 

stimulation of the receptors by the proliferator chemicals coupled with cellular 

proliferation can induce the development of liver tumours in rats and mice (Reddy 

et al., 1983).  

There is a subset of ‘PEX’ genes within the genome which are absolutely required 

for peroxisomes to multiply via membrane building and intake of matrix proteins. 

The 16 PEX genes have multiple functions, the most common of which is in the 

import of proteins into the peroxisomal matrix or membrane for incorporation. 
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Some PEX proteins, such as PEX1, are membrane-bound, and facilitate in the 

transfer of peroxisomal proteins through the single membrane (Geisbrecht et al., 

1998), and others are cytosolic, recruiting proteins recognised as peroxisome 

proteins and guiding them to the peroxisomal membrane for import. A group of 

PEX proteins recognise cytosolic proteins with a peroxisome targeting signal 

(PTS), of which there are two types; 1, recognised by PEX 13 and 14 (Maxwell 

et al., 2003; Shimozawa et al., 2004), and 2, recognised by PEX7 (Braverman et 

al., 1997). One such targeting signal is SKL, or serine lysine leucine, a major 

PTS1 signal present at the –COOH terminus found in approximately half of all 

mammalian peroxisomal proteins (Subramani, 1998). 

 Mutations in PEX genes resulting in loss or impediment of peroxisome function 

or biogenesis are typically causative factors for the spectrum of diseases 

associated with peroxisome dysfunction, termed peroxisome biogenesis 

disorders (Steinberg et al., 2004). Loss of function of peroxisomes leads to a 

build-up of toxic substrates such as VLCFAs, and insufficiency of peroxisome 

products such as plasmalogen, a component of the myelin sheath which 

surrounds axons. These pathologies usually lead to extreme developmental 

defects or death (Camões et al., 2009). Some well-known examples of genetic 

diseases attributed to mis-functioning peroxisomes include Zellweger Syndrome, 

X-linked adrenoleukodystrophy and infantile Refsum’s disease (IRD). Zellweger 

syndrome is the most severe, with patients typically passing away within the first 

year of life, and symptoms include hypotonia, liver and eye problems (Shimozawa 

et al., 1999). 

Similar to Wnts, peroxisomes have gained an association with cancer which was 

discovered in rodents. It has been found that the chronic administration of 
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peroxisome proliferators – any compound which induces the proliferation of 

peroxisomes – induces liver growth and tumour induction in rats (Reddy et al., 

1980). Further, the same result has been found when peroxisome proliferator-

activated receptor alpha (Pparα) is activated in the liver, and it is thought that the 

key to resistance to hepatic carcinogenesis in rats fed a non-genotoxic yet potent 

carcinogen is that these rats are Pparα -/- (Gonzalez et al., 1998). The low levels 

of PPARα in the livers of primates and humans are thought to protect against the 

carcinogenic properties of peroxisome proliferators (Peters et al., 2005), although 

as many drugs fall into this group, there remains discussion around their safety 

(Lai, 2004).  

1.9 Peroxisome dynamics 

Peroxisomes are dynamic organelles which respond to the cellular environment 

by reducing or increasing the number as required. The latter is performed either 

by asymmetrical growth and division from pre-existing peroxisomes or de novo 

biogenesis from the endoplasmic reticulum (ER).   

Signals which induce peroxisome biogenesis include an increase in the cytosolic 

concentration of VLCFAs. This phenomenon was detected early in the history of 

peroxisome research, soon after their discovery in 1965 (Schrader et al., 2012).  

Asymmetrical growth and division from existing peroxisomes is regulated by 

PPARs, members of the steroid hormone nuclear receptor family. There are three 

isoforms of PPAR, α, β/δ and γ, with distinct expression domains. PPARs bind 

cognate ligands such as VLCFA and heterodimerise with retinoid X receptors 

(RXRs). The heterodimer translocates to the nucleus and acts as a transcription 

factor which targets Direct Repeat-1 (DR-1) peroxisome proliferator response 

elements (PPREs). PPREs mediate the transcription of genes required for the 
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growth and division of peroxisomes, and the combination of transcriptionally 

activated genes depends on the isoform of the PPAR – for example, the PPARα 

has been identified as being central to the pathway which is triggered by the 

presence of cytosolic VLCFAs, inducing the production of peroxisomes with high 

levels of matrix β-oxidation enzymes (Ziouzenkova et al., 2002). 

PPAR-induced peroxisomal proliferation is essential for response to cellular cues, 

but their roles extend beyond growth and division of peroxisomes. PPAR 

expression induced by canonical Wnt signalling has an emerging role in neuronal 

differentiation, although the mechanism of action is yet to be confirmed. PPARs 

may be integrated into a number of signalling pathways, including nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFkB) signalling, and they 

interplay with sonic hedgehog (SHH) or olig 1 or 2 (Cimini et al., 2005). Another 

divergent role where PPARs are entwined with Wnt signalling is in the 

maintenance of cardiovascular rhythms; patients with irregular cardiovascular 

rhythms were divided into two groups, with either inactivation of the canonical 

Wnt pathway and increased PPARγ, or activation of the canonical Wnt pathway 

and decreased PPARγ. Both led to a disease state of cardiovascular arrhythmia, 

and are unified by changes in Wnt signalling leading to changes in expression of 

a PPAR (Lecarpentier et al., 2014).  

Growth and division of peroxisomes follows a widely-accepted model of 

membrane tubulation, constriction of the membrane to produce a ‘beads on a 

string’ effect, and fission of the membrane to separate the ‘beads’ into individual 

peroxisomes, which is a morphologically distinct mechanism visualised in Figure 

3. PEX proteins are also integral to the mechanism of growth and division 

described above, particularly PEX11β (Schrader et al., 1998), which promotes 
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the initial tubulation step (Figure 3 b). It facilitates membrane bending by parallel 

orientation of an amphipathic helix and insertion of hydrophobic residues 

between fatty acyl chains (Figure. 3 a). At constriction sites, Pex11β interacts with 

other non-PEX proteins such as the large guanosine triphosphate (GTP)ase 

dynamin-like protein 1 (DLP1) which assembles in a GTP-dependant manner in 

a ring around the membrane and constricts via GTP hydrolysis, and DLP1-

anchoring proteins mitochondrial fission 1 (Fis1) and mitochondrial fission factor 

(Mff), which facilitate the final cleavage of the membrane (Schrader et al., 2012).  

 

Figure 3: The mechanism of growth and division from pre-existing peroxisomes.  
A) The facilitation of membrane bending by Pex11β, initiating membrane 
elongation. B) constriction of the extended membrane by GTPase DLP1 with 
accessory proteins Fis1 and Mff to form the shape of the future peroxisomes 
(Schrader et al., 2012). 

 

Interestingly, the components of the division machinery Fis1 and Mff are also 

shared with mitochondria (Schrader, 2006) across an array of fungi and animals, 

another cross-link in the ‘peroxisome-mitochondria’ connection which also 

includes shared roles in disease prevention and antiviral signalling (Camões et 

al., 2009). Recently, a link between mitochondrial division and Wnt signalling has 
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been proposed by Bernkopf and colleagues (2018), whom suggest that 

mitochondria use Wnt signalling to replenish the pool of mitochondria after a 

period of stress. During mitochondrial stress, membrane-bound 

phosphoglycerate mutase Pgam5 is cleaved by presenilin-associated rhomboid-

like protein (PARL) and released into the cytosol, where it dephosphorylates Axin-

bound phospho-β-catenin. Axin is a component of the β-catenin degradation 

complex and phosphorylates β-catenin such that it can be later recognised by 

ubiquitinases to be marked for degradation by a proteasome (Huelsken & 

Behrens, 2002). By inducing cells to stably express Pgam5, they found that the 

cells had both greater β-catenin levels and more mitochondria. Conversely, 

membrane-bound, uncleaved Pgam5 has been found to inactivate the canonical 

Wnt pathway by dephosphorylating dishevelled, a negative regulator of Wnt 

signalling (Rauchenberger et al., 2017). Overexpression of Wnt family member 

Wnt3A has also been found to positively regulate mitochondrial biogenesis 

through the canonical Wnt pathway (Yoon et al, 2010).  

Mitochondria and peroxisomes share division machinery (Camões et al., 2009; 

Schrader, 2006); future investigation may reveal whether they also share Wnt 

signalling as a positive stimulus for proliferation – Wnt signalling, after all, is linked 

to expression of PPARs (Cimini et al., 2005; Lecarpentier et al., 2014), master 

regulators of peroxisome proliferation.  

1.10 Following PEX and Wnt through developmental trajectories  

Several groups have used large scale single-cell RNA sequencing (scRNA-seq) 

to analyse the transcriptomes of vertebrates throughout embryonic development. 

Farrell and colleagues (2018) have implemented scRNA-seq to analyse the 

transcriptomes of zebrafish embryos from the onset of zygotic transcription until 
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the 6-somite stage, with a final whole transcriptome data set being produced for 

some 38,731 cells. Such a high-volume data set is difficult to handle, specifically 

when coupled with multiple branch sites in the progress from a pluripotent to a 

fully specified cell type, in addition to complexities induced by developmental 

asynchrony. Farrell and colleagues tackled the problem using a computational 

two-pronged approach; a diffusion-based simulation named URD, which mapped 

out a tree of developmental trajectories beginning at pluripotency and concluding 

in one of 25 distinct cell fates, and secondly an approach which focussed on 

modules of co-expressed genes which they connected across developmental 

time. Combined, they revealed cascades of gene expression leading to each of 

the 25 cell fates identified. Insights generated from this data include switching of 

intermediate cell fates at branch points; for example, cell fate switching from 

notochord to prechordal plate at the axial mesoderm branch point.  

Theoretically, this data could be used to identify where wnt8a and pex genes 

appear in the developmental trajectory in zebrafish. Given the role of wnt8a in 

segmentation of the neural crest - more specifically in the induction of gbx1 which 

antagonises oxtx2 and therefore dictates the location of the MHB - it may be 

prudent to focus on trajectories which conclude in neural cell fate. From the 25 

cell fates specified by Farrell and colleagues, such trajectories include the neural 

crest, hindbrain, prechordal plate and notochord. Further, to focus the analysis 

on when Wnt signalling is at its highest, the data could be further narrowed by 

examining gene expression at 60-90% epiboly, because this is when Wnt is highly 

expressed in the marginal zone. Should wnt8a and any pex genes be co-

expressed in the same trajectory at the same developmental stage, it may be a 
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further indication that there is a relationship between Wnt signalling and 

peroxisome biogenesis/dynamics.  

1.11.0 CRISPR/CRISPRi 

To investigate such a relationship between Wnt signalling and peroxisomes, Wnt 

signalling could be reliably repressed using genomic engineering methods. A 

novel method of genomic engineering called clustered regularly interspaced short 

palindromic repeats (CRISPR) has been modified after discovery as part of the 

microbial immune system (Mojica et al., 2000); the mechanism, advantages and 

applications of which will be discussed below. CRISPR and its multiple variants 

have gained traction since their emergence and subsequent development as 

efficient and precise targeted genome editing tools, and their use is well 

established in zebrafish. CRISPR can be used to insert (Jung et al., 2016), knock 

out (Ding et al., 2013), knock down (Gilbert et al., 2013) and enhance the 

transcription of target sequences (Perez-Pinera et al., 2013). Applications of 

CRISPR include correcting defective genes in disease, producing disease 

models and the transfer of advantageous genes in crops and livestock (Sander 

& Joung, 2014).  

The short DNA repeats that constitute the CRISPR system were first recognised 

in 2005 and were hypothesised to be a prokaryotic adaptive immune system to 

target foreign nucleic acids (Mojica et al., 2005). Part of this segment of repetitive 

DNA encodes Cas nucleases, and in isolated Streptococcus thermophilus 

samples resistant to infection by bacteriophages, a large endonuclease now 

termed Cas9 was found to be encoded (Bolotin et al., 2005) which induces 

double-strand breaks (DSBs) in DNA at target sites concluding in protospacer 

adjacent motif (PAM) sites (Deveau et al., 2010). CRISPR Cas9 from the 
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Streptococcus pyogenes type II system is now widely used, although 40% of 

bacteria and 90% of archaea possess the machinery (Larson et al., 2013).  

Double-strand breaks are repaired by two intracellular repair mechanisms; 

homology-directed repair and non-homologous end joining. Homology-directed 

repair is the more precise mechanism but it is much slower than non-homologous 

end joining, which is more prone to error and commonly results in insertions and 

deletions (indels). Indels early in the coding sequence can result in frame-shift 

and non-sense mutations and therefore knockout of the gene of interest. The 

efficiency of the knockout is variable in zebrafish embryos (Hwang et al., 2013) 

but can be increased by reducing the distance between the target site and the 

transcription start codon (Qi et al., 2013). In nature Cas9 endonuclease is guided 

by a trans-activating CRISPR RNA (crRNA) and targeting crRNA (Jinek et al., 

2012), but for genomic engineering, these have been united to form a single 

chimeric guide RNA (gRNA) consisting of a 3’ scaffold region which interacts with 

Cas9 and a 5’ seed sequence directly complementary to the target site 

concluding in the PAM, NGG (Ablain et al., 2015). The synthetic RNA hybridises 

to a 20-nucleotide sequence beginning with a G nucleotide and concluding in the 

PAM (Ding et al., 2013) in a zipper-like fashion. Due to the short size of the gRNA, 

single base pair mismatches can reduce the efficiency of hybridisation, especially 

in the 3’ end of the seed region where the hybridisation commences (Semenova 

et al., 2011).  

In vivo gene editing to target disease-causing mutations is one of the most 

exciting applications of CRISPR genome editing technology, yet the potential 

consequences of unspecific targeting in a live organism are severe. Enhancing 

the specificity of CRISPR has been addressed recently with the development of 
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tissue-specific CRISPR, where systemic Cas9 enzyme production is coupled with 

tissue-specific pol II promoter-driven gRNA synthesis targeted to endogenous 

genes. Xu and colleagues (2016) have recently shown that it is possible to correct 

the mutated gene in Duchenne muscular dystrophy model mice by targeting two 

gRNAs transcribed from muscle-specific promoter MHCK7 to remove the mutant 

exon. I hypothesise that if a stable CRISPR toolkit is established in zebrafish to 

target wnt8a, this could be made tissue specific to areas of high wnt expression 

such as the marginal zone of the developing embryo, which would be 

advantageous in increasing the accuracy of knock out in a method which can be 

limited by mosaicism.   

The specificity of CRISPR is not limited to tissues, but also the transcript itself. 

CRISPR has repeatedly been shown to offer higher levels of target site specificity, 

and low levels of off-target effects, compared to other genome editing methods 

currently in widespread use, such as bacterial artificial chromosomes (BACs) and 

RNA interference (RNAi).  

1.11.1 CRISPR in comparison to other knock-out strategies  

Mammalian disease models to investigate human pathogenesis have been 

produced through the insertion of large, stable BACs based on Escherichia coli 

which carry fragments of DNA ranging in size from 150-300 kb. An advantage of 

this system is that the large DNA insert can include enhancers and other 

regulatory elements which can reduce undesired effects such as unexpected 

splicing because of mistargeted insertion into the genome. The stability of such 

a fragment, coupled with the control rendered by the inclusion of regulatory 

elements means that it is a widely-used mechanism to produce mammalian 

models of disease and BACS transgenic mouse models are well-established. 
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However, the size of the fragment also creates an insertion efficiency problem in 

addition to an inability to finely tune the insertion site – thus requiring the 

regulatory elements to mediate the possible effects of insertion in an unintended 

area of the genome. This has hampered the development of transgenic rat 

models. In comparison, the precision of the CRISPR method is clearly 

advantageous and Jung and colleagues (2016) used CRISPR to induce a precise 

double-stranded break to facilitate insertion of a 4.5 kb BAC using homology-

directed repair.  

Morpholino oligomer antisense technology has been routinely used to interfere 

with mRNA translation or splicing. Injection of zebrafish embryos with Morpholino 

oligomers targeted to splicing regions of fibroblast growth factor 8 (fgf8) yielded 

two aberrantly spliced mRNAs, variant 1 missing exon 3 and variant 2 with a 

premature stop codon (Draper et al., 2001), which inhibited the ability of the 

zebrafish to translate wild type fgf8 transcripts. Morpholino oligomers bind to 

mRNA due to the affinity of the six-ring heterocycle backbone and non-ionic 

phosphorodiamidate linkages to ribonucleic acids, the structure of which 

distinguishes them from other nucleic acid oligonucleotides (Summerton & 

Weller, 1997). In addition to the affinity for RNA that is given by the modification, 

Morpholino oligomers also have a high level of stability in vivo and are less likely 

to bind to off-target macromolecules (Summerton, 2007). The sequence of 

nucleic acids, designed to be complementary to the target region of mRNA, are 

linked to the morpholine ring backbone. 

 Yet despite the ease of use of Morpholino oligomers proffered by their stability 

and strong repressive capability, and the modifications to the oligomer of the 

morpholine rings which make them less likely to bind to off-target molecules, 
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there is still a high degree of off-target hybridisation. The resultant off-target 

phenotypes can be difficult to distinguish from the on-target phenotype, and 

therefore reduce confidence in the results (Schulte-Merker & Stainier, 2014).  

Additionally, due to manipulation of translation as opposed to transcription, PCR 

methodology cannot be used to screen for target mutations, unlike when using 

CRISPR and transcription activator-like nucleases (TALENS) (Ding et al., 2013), 

which would aid in the separation of target and off-target effects. Off-target effects 

and host toxicity are also a problem that beleaguers RNA interference or RNAi, 

limiting its development in multiple organisms (Qi et al., 2013).  

CRISPR is not only more specific, but also more efficient than other techniques, 

such as TALENs. TALENs function by pair-wise binding around a target site on 

the genome, where both strands are broken by a Fokl nuclease domain dimer. 

Construction of TALENs is difficult because cloning is limited by numerous repeat 

sequences, which are complex and time-consuming to build (Hegazy & Youns, 

2016). This contrasts to constructing CRISPR toolkits, which can be done by 

cloning Cas9 once and designing chimeric gRNAs, which are the only portion of 

the system that changes. Ding and colleagues (2013) directly compared the 

efficacy of TALENs and CRISPR in inducing double strand breaks in human 

pluripotent stem cells (hPSCs) by co-electroporating equal amounts of either 

plasmid into hPSCs. Electroporated hPSCs were then sorted by fluorescence 

activated cell sorting (FACS) and then after 24-48 hours, screened for mutation 

at the target site using PCR. Ding found that while the efficiency of TALENs was 

0-34%, CRISPR far exceeded this at 51-79% efficiency. The same was seen in 

knock-in, and it was hypothesised that this could be partially attributed to greater 

expression and toleration of Cas9 than TALENs in hPSCs (Ding et al., 2013).  
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A summary of the attributes of Morpholino oligomers, BACs, TALENs, CRISPR 

and CRISPRi is provided in Table 1.  

 

Name:  Morpholino 
Oligomer 

TALENs BACs CRISPR CRISPRi 

Interacts 
with:  

mRNA DNA DNA DNA DNA 

Mechanism: Blocks 
translation 

DSB 
induction, 
blocks 
transcripti
on 

Fragment 
carried on 
artificial 
chromoso
me and 
inserted 

DSB induction, 
blocks 
transcription 

Physical 
block to 
RNA 
polymerase, 
blocks 
transcription 

Pros: In vivo 
stability, 
strongly 
repressive  

Can use 
PCR to 
check 
DSB 
position 

Stable, 
can carry 
high vol. 
of info.   

Specific, can 
use PCR to 
check DSB 
position 

Produces a 
graded 
phenotype, 
reversible  

Cons:  Volume of 
off-target 
effects  

Design is 
highly time 
consuming 

Difficulty 
finding 
insertion 
sites for 
large 
fragment  

Potential for 
mosaicism in 
tissues/whole 
organisms 

Cannot use 
PCR as a 
check-point 

 

Table 1: A comparison of Morpholino oligomers, TALENs, BACs, CRISPR and 

CRISPRi for manipulating gene transcription.  

 

1.11.2 CRISPRi - a flexible method of knocking down genes  

In contrast to the aforementioned TALENs, Morpholino oligomers, RNAi and 

BACs, a variant of the CRISPR system, CRISPR interference or CRISPRi, is also 

highly specific with low off-target effects. CRISPRi is distinct from CRISPR in that 

the Cas9 enzyme is rendered catalytically inactive and is termed deactivated 
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Cas9 (dCas9) by mutations in the two endonuclease domains; RuvC-like, which 

cleaves the non-complementary strand and HNH, which cleaves the 

complementary strand (Jinek et al., 2012). Rather than cleaving DNA, dCas9 sits 

on the strands and forms a steric block to RNA polymerase, blocking either the 

initiation or elongation of transcription, depending on the location of the target site 

that the gRNA is engineered to hybridise to. The closer the target site is to the 

transcription start site, the greater the efficiency of the repression. Additionally, 

the non-template strand has been found to yield the highest levels of 

transcriptional repression and targeting the untranslated promoter region also 

resulted in effective repression. The high targeting specificity made possible by 

CRISPRi is made tunable by the introduction of nucleotide mismatches in the 5’ 

seed region of the gRNA (Qi et al., 2013). 

Aside from high targeting specificity, there are multiple advantages to using 

CRISPRi to manipulate transcription, including; the ability to target multiple 

genes, the malleability of inducible and reversible transcriptional repression and 

variation in capability offered by fusion of effector molecules.  

Multiple dCas9-gRNA pairings can be used to target numerous genes 

simultaneously, or to target different parts of the same gene to enhance 

repression efficiency (Larson et al., 2013). Recently the problem of limited vector 

capacity for multiple gRNAs has been investigated by producing multiple gRNAs 

from a single transcript. CRISPR-associated Csy4 endoribonuclease can be used 

to cleave the transcript where gRNAs are fused with a Csy4 cleavage site (Nissim 

et al., 2014), which is advantageous when applying multi-target CRISPRi 

constructs to cell culture by transfection.  
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The induction of transcriptional repression by CRISPRi is reversible and 

inducible. Qi and colleagues (2013) used dCas9 and a gRNA targeting 

fluorescent signal protein - monomeric red fluorescent protein (mRFP) - with an 

aTc-inducible promoter in an E. coli cell culture. After addition of the inducer, they 

used time course monitoring to measure the reduction in fluorescence mediated 

by the action of CRISPRi and found that the fluorescent signal started to decrease 

10 minutes after the addition of the inducer, because of transcriptional repression 

from induced dCas9. Once the inducer was washed away and after a 50-minute 

delay, the fluorescent signal then began to increase again and it took 300 minutes 

for single cell fluorescence to equal the positive control. This experiment 

demonstrated that dCas9-mediated transcriptional repression is simultaneously 

inducible and reversible. To establish the degree of specificity of transcriptional 

repression, whole-transcriptome shotgun sequencing, or RNA-seq, was 

performed on cells transformed with dCas9 and gRNA targeted to mRFP or other 

loci, and compared to cells transformed with dCas9 alone. Regardless of the 

locus targeted the only genes with significantly reduced transcription within the 

whole transcriptome were the gRNA-targeted genes (Qi et al., 2013). This 

specificity sets CRISPRi apart from other methods such as Morpholino oligomer-

mediated inhibition and RNAi, the development of which suffers from off-target 

effects and toxicity which is hard to trace.  

CRISPRi can be further tuned by the addition of effector molecules which can 

either offer enhanced transcriptional repression or conversely transcriptional 

activation. Fusion of dCas9 with C-terminal VP64 transactivation domain and 

pairing this with gRNAs targeted to the promoter region of a target gene has been 
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shown by RT-qPCR to increase transcriptional activation (Perez-Pinera et al., 

2013).  

dCas9 can also be fused with effectors that enhance its repressive capacity. 

HEK293 reporter cells with randomly integrated SV40 promoter-driven green 

fluorescent protein (GFP) were co-transfected with either GFP dCas9 or dCas9 

fused to KRAB, the Krüppel-associated box domain of Kox1, both targeted to 

GFP. Gilbert and colleagues (2013) found that dCas9-KRAB offered 5 times the 

repressive capacity compared to dCas9 alone, measured by reduction in GFP 

fluorescent signal. GFP signal was strongly knocked down for 3 days and 

silenced for 6 days after transfection, although this can be extended to two weeks 

by transducing cells stably producing dCas9 with a lentivirus expressing gRNA 

targeted to GFP. The nucleolytic inactivity of dCas9 was confirmed by sequencing 

the GFP locus, which retained a wild type sequence without indels. Similar to 

other studies examining the specificity of CRISPR and its variants, the 

transcriptome of GFP+ HEK293 cells transfected with dCas9 and gRNA targeting 

GFP was interrogated using RNA-seq and GFP was the only gene to be 

significantly down-regulated. Importantly for this project, they also established 

that CRISPRi could silence endogenous genes, so it can be expected that 

CRISPRi will be able to repress the transcription of zebrafish wnt8a in an efficient, 

specific and stable manner – which, further, could be made tissue-specific, thus 

generating mutant zebrafish with wnt8a knockout or knockdown at the margin. 

Subject to successful construction and application of the CRISPR and CRISPRi 

toolkits, the mutated embryos will be used to observe whether manipulation of 

wnt8a transcription affects peroxisome dynamics. 
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1.12 Summary of aims and objectives  

The aim of this investigation is to interrogate the relationship between Wnt 

signalling and peroxisome dynamics in the zebrafish. To do this, a multi-faceted 

approach will be applied. Initially, a CRISPR toolkit will be developed to 

manipulate wnt8a expression. Once established, this genomic engineering will 

be used in conjunction with methods to visualise peroxisomes in live embryos, to 

observe any changes in peroxisome dynamics. Peroxisome dynamics may 

include their subcellular location, morphology and number. Wnt is a family of 

proteins, and for this investigation, wnt8a is selected as the target for 

CRISPR/CRISPRi. wnt8a is known to be highly expressed in the zebrafish 

embryo in the marginal zone during epiboly, where it is a key structural regulator 

of nervous tissue (Seiliez et al., 2006).  

I hypothesise that there may be a relationship between Wnt signalling and 

peroxisome dynamics for multiple reasons. Firstly, both Wnt signalling and 

peroxisome number are high during embryonic development. Additionally, there 

is a relationship between PPARs, the master regulators of peroxisome 

biogenesis, and Wnt, in a variety of systems (Huelsken & Behrens, 2002; Cimini 

et al., 2005; Lecarpentier et al., 2014). Interestingly, a link has also been 

established recently between Wnt signalling and mitochondrial biogenesis 

(Bernkopf et al., 2018), with which peroxisomes share components of the division 

machinery (Schrader, 2006).  

2.0 Materials and Methods 

2.1 Cas9 and dCas9 retransformation and transcription  

Cas9 and dCas9 endonucleases were provided as DNA plasmids (PME-dCas9, 

P3TSnls-zdCas9-nls, and pCS2-Cas9). Plasmids were retransformed in 5-alpha 
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competent E. coli cells (NEB). Single colonies were selected and incubated in an 

overnight culture at 37 ˚C. The amplified plasmids were then isolated from the 

bacteria by mini prep (Qiagen). 5 mL of the overnight culture was spun in a 

centrifuge at 7000 RPM at 4 ˚C. The supernatant was discarded and the pellet 

resuspended in 200 µL buffer P1. 400 µL buffer P2 was added and the tubes 

inverted before incubating at room temperature for 5 minutes. This was then spun 

at 13,000 RPM for 5 minutes at 4 ˚C. The supernatant was transferred to a new 

tube and 1 mL of isopropanol added before incubating at room temperature for 

20 minutes. The supernatant was spun at 13,000 RPM for 10 minutes at room 

temperature and the resultant pellet washed with 500 µL 70% ethanol before a 

final 5-minute spin at 13,000 RPM. The pellet was air-dried and re-suspended in 

20 µL H₂O before being stored at -4 °C. The DNA concentration was measured 

using a Nanodrop (Thermo Scientific). 5 µg of each plasmid was linearized by 

overnight digest with restriction enzymes (NamH1, Xba, Not1) followed by heat 

inactivation.  

Cas9 and dCas9 mRNAs were transcribed from linear template DNA using the 

Sp6 (pCS2-Cas9), T3 (P3TSnls-zdCas9-nls) or T7 (PME-dCas9) RNA 

transcription kits (Invitrogen, Thermofisher). 4 µL of the template was added to 

10 µL 2x NTP/CAP, 2 µL 10x reaction buffer, 2 µL enzyme mix and 2 µL nuclease-

free water to a total of 20 µL, mixed thoroughly and incubated at 37 ̊ C for 2 hours, 

after which 1 µL TURBO DNase was added and incubated for a further 15 

minutes at 37 ˚C. The reaction was stopped by adding 30 µL nuclease-free water 

and 30 µL lithium chloride precipitation solution and chilled overnight at -20 ˚C. 

RNA was then pelleted by centrifugation at maximum speed at 4 ˚C for 15 

minutes. The RNA pellet was washed with 1 mL 70% ethanol, which was then 
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removed and the pellet allowed to dry before re-suspending in 20 µL nuclease-

free water. A nanodrop (Thermo Scientific) was used to measure the final RNA 

concentration before storage at -20 ˚C. Efficacy of the amplified Cas9 and dCas9 

RNA was tested by coupling with gRNA targeting tyrosinase (5’ 

CCCCAGAAGTCCTCCAGTCC 3’), an enzyme required for the conversion of 

tyrosine to melanin for pigment generation during zebrafish embryogenesis 

(Camp & Lardelli, 2001).Expression of tyrosinase is, therefore, a convenient 

marker to investigate the functionality of Cas9 and dCas9 by measuring pigment 

loss.  

2.2 Zebrafish maintenance, husbandry and spawning 

All zebrafish work has been carried out in accordance with Home Office 

regulations. Wild type WIK zebrafish (Zfish (WIK), Stock, UoE 26.11.14 GP 

(PIL:30/6867), 1 (PPL:30/2868)) used are maintained in aerated 28°C ± 1°C 

water in a flow-through system using mains tap water filtered by reverse osmosis 

(Environmental Water Systems (UK) Ltd). Water is reconstituted with Analar-

grade mineral salts to standardise synthetic freshwater (final concentrations to 

give a conductivity of 300 mS: 117 mg/L CaCl22H2O, 25.0 mg/L NaHCO3, 50 mg/L 

MgSO47H20, 2.3 mg/L KCl, 1.25 mg/L Tropic Marine Sea Salt). Fish are housed 

in a room dedicated to zebrafish maintenance in the custom-built Aquatic 

Resources Centre (ARC) at the University of Exeter. Fish are fed to satiation 

thrice daily with Artemia nauplii (ZM Premium Grade Artemia, ZM, Hampshire, 

United Kingdom) and Gemma Micro (300 µm) pelleted food (Trouw France S.A.). 

The photoperiod program is consistent throughout the lifetime of the fish and 

consistent through every spawning event: 12 hours light, 12 hours dark with a 30 

minute transition period. The zebrafish were sexed by ARC staff and housed in a 
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2:1 female-male ratio in spawning chambers overnight. At the start of the daily 

light cycle, the dividers between male and females were removed. Spawning and 

fertilisation commenced for half an hour before fish were replaced into the mixed 

population and the embryos collected. Embryos were injected from the one to 

four cell stages (Kimmel et al, 1995) using the Eppendorf FemtoJet 4x with glass 

microinjection needles. Glass capillaries with filament (1 mm/0.75 mm OD/ID) 

were prepared on a Flaming/Brown Microcapillary Puller P-97 from Sutter 

Instrument. 

 Embryos were maintained in E3 media in a 28 °C incubator until 28 hours post 

fertilisation (hpf). Embryos were removed from the chorion using pronase and 

fixed in 4% paraformaldehyde (PFA), henceforth remaining at -4 °C. Images were 

taken using the Olympus DP71 and analysed using ImageJ software (Schneider 

et al., 2012). Images were converted to 8-bit and an unsharp mask was added 

(radius 2). A pigmentation threshold was set which was applied to all images, and 

the area between the MHB and the first somite was selected for particle analysis.  

2.3 Sequencing the wnt8a locus 

The efficacy of retransformed Cas9 and dCas9 endonucleases thus ascertained, 

I designed chimeric gRNA to target the gene of interest, wnt8a. Both open reading 

frames of wnt8a were sequenced, including both untranslated regions. Primers 

(wnt8a1 forward 5’ GGTCTTTTCACAGCGAATTG 3’, reverse 5’ 

ATGTAGTCTGGTTTTGACCG 3’. wnt8a2 forward 5’ 

TGGCATCCTTTGAAGTTCTG 3’, reverse 5’ CCAAACGTCCAGCTTCATT 3’) 

were designed to span the UTR – exon 3 of both ORFs and the sequences were 

amplified using polymerase chain reaction (PCR) in the Eppendorf Mastercycler 

Nexus Gradient GSX1 Thermal Cycler (Hamburg, Germany) with genomic DNA 
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(gDNA) template (5 minutes at 95 °C to denature the DNA, then 30 cycles of 95 

°C for 30 seconds, 50 °C for 30 seconds, 72 °C for 45 seconds, followed by 10 

minutes at 72 °C). PCR product was run on 1.5% agar gel electrophoresis at 

110V and positive bands selected for insertion into TOPO-TA vector. 2 µL PCR 

product was combined with 1 µL salt solution, 2 µL water and 1 µL TOPO vector, 

mixed gently and incubated for 30 minutes at room temperature before pipetting 

2 µl into 5-alpha competent E. coli cells (NEB) and plating. Plates (one 

kanamycin, one ampicillin) were treated with X-Gal reporter before incubating at 

37 °C overnight. White colonies were selected from each plate for overnight 

culture in LB medium at 37 °C. Amplified TOPO plasmids with the PCR product 

insert were purified by MIDIprep using the Qiagen protocol. Purified vectors with 

wnt8a1 or wnt8a2 inserts were sequenced by Eurofins Scientific.  

2.4 gRNA design 

Sequenced wnt8a1, wnt8a2 from experimental fish in the ARC facility were 

compared to sequences available in online databases (NCBI) and were an exact 

match at all sites where gRNAs would be designed. CRISPR target sites were 

identified and ranked by off-target quality in the wnt8a gene locus using CCTOP, 

the CRISPR/Cas9 online target site predictor from the Centre for Organismal 

Studies, Heidelberg (Stemmer et al., 2015). Target sites with low off-target 

specificity were identified in both untranslated regions, and exons one and three 

of both open reading frames. 20 (+3) base pair Invitrogen TrueGuide Synthetic 

guide RNAs (Thermo Fisher Scientific, Synthego, USA) were then designed to 

be complementary to these target sites as demonstrated in Figure 4, terminating 

in the PAM site (NGG). Sequences are provided in Table 2. The custom synthetic 

two-piece gRNAs were diluted to 100 µM stocks, and the RNA concentration 
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measured using a Nanodrop (Thermofisher). 5 µL stock was incubated with 2 µL 

tracrRNA, 5 µL annealing buffer and 13 µL of water at 95 ˚C for five minutes, 

decreasing to 50 ̊ C at a rate of 0.1 ̊ C/s and remaining there for ten minutes, after 

which decreasing to 4 ˚C at a rate of 1 ˚C/s.  

 

 

 

Target site 5’-3’ (PAM) Position on 

locus 

Strand 

TTGCCAGATTTTTGCGTCGTTGG ORF1 Exon 1 Template 

AGTGCAAGCATCAGTTCGCATGG ORF 1 Exon 3 Template 

AGGGAGGATCGAGCAATCACTGG UTR1 site A Non-template 

GCAAAGCACAAACACTGAGATGG UTR1 site B Template 

GGCCTTTCTATTCCCTATTTGGG ORF2 Exon 1 Non-template 

TATGCAAATAGTGTGCGGGTTGG ORF2 Exon 3 Non-template 

AAAGGCAATGTACTGATTCGAGG UTR2 Site A Template 

TTCCTCCAAAGGGGGTCAGAAGG UTR2 Site B Template 

TTGCCTTTGTCTTATCACTTTGG UTR2 Site C Non-template 

 

Table 2: gRNA target sites in wnt8a. PAM sequence is underlined and bolded.  
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Figure 4: Representation of wnt8a1 and wnt8a2.  
Royal blue blocks denote exon 1 and 3, where gRNAs designed to pair with Cas9 
endonuclease were targeted, denoted by the light pink sections below 
(SnapGene® software (from GSL Biotech; available at snapgene.com)).  

 

Cas9 RNA and custom gRNAs were tested by in vitro digestion to investigate 

whether the components would successfully cleave the substrate DNA in vitro, 

using ORF1 of wnt8a, amplified previously in TOPO vectors which were digested 

using restriction enzyme BSA1 (NEB) and CutSmart buffer (NEB) at 37 ˚C for 2 

hours followed by a 20 minute heat inactivation at 80 ˚C. 300 nM gRNA was 

incubated with Cas9 RNA and Cas9 nuclease buffer at 37 ˚C for 10 minutes 

before adding 2.5 µM of either substrate and incubating for 1 hour. The mixture 

was then loaded onto a 1.5% agarose gel and ran at 110 V.   

2.5 Phenotypic Analyses  

Once successful cleavage of target DNA was established in vitro, injection mixes 

were prepared using 50 ng/µL gRNA, 300 ng/µL Cas9/dCas9 enzyme, 0.5 µL 

each of phenol red (for marking embryos as injected during injection) and mini 

emerald (as a fluorescent marker for injection so that embryos could later be 

sorted), and nuclease-free water to a total of 5 µL. Injections were performed 

using glass microinjection needles pulled as previously (2.2). Care was taken to 

ensure a consistent droplet size. Embryos were then kept in 1x E3 medium in a 

28 ˚C incubator until 28 hpf, where they were fixed in 4% paraformaldehyde 
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(PFA). Images of the embryos were taken using the Olympus DP71. Embryos in 

each sample were counted and categorised into three phenotypic classifications; 

wild type, mild and severe. The three classifications were described as the 

following: mild embryos showed some disruption to the nervous tissue; loss of 

clear MHB, misshapen eye, and perturbation of nervous tissue along the dorsal 

axis resulting in crooked tails. Severe embryos showed disrupted nervous tissue 

with loss of nearly all or all structure, no visible MHB, misshapen eye and tails 

crooked to a greater degree. The number of embryos in each phenotypic group 

was counted and averaged between injection dates and standard error was 

calculated. Statistical significance was calculated using a Chi-squared test.  

Phenotypes generated from CRISPR/CRISPRi targeting of wnt8a were 

compared to Morpholino oligomer targeting of the same gene (Table 3). Injection 

mixes consisting of 0.5 µL phenol red, 0.5 µL mini emerald, 0.5 µL of Morpholino 

oligomer targeting ORF1, or ORF2, or a combination of both, diluted to 1:10, plus 

nuclease-free water to total 5 µL were prepared. Embryos were injected as 

previously (2.2), categorised and analysed in the same manner as above to 

provide a comparison.  

Morpholino oligomer 5’-3’ Position on 

locus 

ACGCAAAAATCTGGCAAGGTTCAT ORF1 

GCCCAACGGAAGAAGTAAGCCATTAA ORF 2 

 

Table 3: Morpholino oligomer target sites on open reading frames 1 and 2 of 

wnt8a.  
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2.6 In situ hybridisation  

Embryos were collected as previously (2.2) and injected with the same 

combination of Cas9/dCas9 RNA and gRNA as were used to examine the 

phenotypes generated (2.5). After maintenance in E3 media in a 28 ˚C incubator, 

embryos were fixed overnight in 4% PFA at ~80% epiboly. Fixed embryos were 

dechorionated using forceps in PBST and incubated in 100% methanol. The next 

day, the dechorionated embryos were washed in PBST and re-fixed in 4% PFA. 

Fixed, dechorionated embryos were incubated at 69 ˚C with hybridisation buffer 

(Hyb+) for 30 minutes before transferral to a solution of probe diluted 1:20 in Hyb+ 

overnight.  

Probes were transcribed from plasmid stocks (zWnt8a ORF1, zWnt8a ORF2, 

digested by Cla1/BamH1) using the T7 MegaShort transcription kit (Invitrogen, 

Thermo Scientific). Both probes were transcribed with 10x digoxigenin (DIG) 

antigen for 1-2 hours at 37 ˚C before stopping the reaction with EDTA.  

The next day, the embryos were washed with Hyb-, SSCT and MABT before 

blocking for the remainder of the day with 2% Roche blocking buffer. Embryos 

were then transferred into a solution of pre-absorbed anti-DIG antibodies (Roche 

Diagnostics) diluted 1:4000 in 2% Roche blocking buffer at room temperature 

overnight. Embryos were then washed in MABT and immersed in staining 

solution NCIP-BCP (Roche Diagnostics) diluted 1:200 in freshly made NTMT. 

Staining was left to develop overnight, and once this was achieved, embryos were 

stored at 4 ˚C in 70% glycerol.  

2.7 RT-qPCR 

To quantify changes in gene expression, embryos were collected (2.2) and 

injected with the same constructs used to observe changes to phenotype (2.5) 
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and RNA expression pattern (2.6). Additionally, some embryos were injected with 

200 ng/µL wnt8a1 RNA to establish the specificity of the primers designed to 

amplify either ORF1 or ORF2 of wnt8a. Further controls were implemented by 

injection of 300 ng/µL dCas9 or Cas9 RNA without gRNA.  

Injected embryos were maintained at 28 ˚C in an incubator until 75% epiboly. 

Each sample (50-100 embryos) were homogenised with 250 µL Trizol (Invitrogen, 

Thermo Scientific) until fully dissolved. 250 µL ice-cold 100% ethanol was added 

to each sample and after vortexing, transferred to a Direct-zol RNA MiniPrep 

column (Zymo Research) which was centrifuged (Sorvall ST 8R Centrifuge, 

Thermo Scientific) at 4 ˚C for 1 minute at 13,000 RPM. 80 µL DNAse solution, 

consisting of 5 µL DNAse and 75 µL DNAse buffer was added before further 

centrifugation under the same parameters. 400 µL of pre-washing buffer was 

added twice, alternating with centrifugation as before, and finally, 700 µL washing 

buffer was added. The supernatant was discarded and the columns centrifuged 

dry. When dry, 25 µL of nuclease-free water was added for final centrifugation 

and the end concentration of extracted RNA was established by a Nanodrop 

(Thermo Scientific). RNA was stored at -80 ˚C.  

Extracted RNA was reverse transcribed to produce cDNA. An initial mix of 1 µg 

RNA, 1 µL random hexamer primer (Promega) and nuclease water to total 11 µL 

was incubated for 5 minutes at 70 ˚C. Initially, the samples were doubled to 

include samples without M-MLV RTase (RT-) (Promega) to ensure that no 

amplification occurred autonomously. RT+ samples were incubated for 1 hour in 

a 37 ˚C water bath with 4 µL m-MLV RTase 5x buffer, 1 µL m-MLV Rtase, 2 µL 

10 mM dNTP mix, 0.5 µL RNAsin (Promega) and 1.6 µL 25 mM MgCl₂  
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(Fermentas) followed with a 10 minute heat inactivation at 70 ˚C. The final 20 µL 

of cDNA was diluted to 1:100 for qPCR. 

All primers were diluted to 1:100 for qPCR. Primers included: housekeeping gene 

β-actin 1, Wnt targets axin 2a and lef1, and two primers for each open reading 

frame of Wnt8a – wnt8a1A, wnt8a1B, wnt8a2A, wnt8a2B. The forward and 

reverse sequences of the primers are in Table 4. Per well, 4 µL of forward and 

reverse primer were added to 5 µL SYBR® Green Real-Time PCR Master Mix 

(Promega) and 1 µL cDNA. Each sample was pipetted in triplicate into a 364 well 

plate (Thermofisher Scientific) and ran in the Quant Studio 6 Flex Real-Time PCR 

System (Thermofisher Scientific).   

Target 

Gene 

Forward (5’-3’) Reverse (5’-3’) 

β-actin 1 CCTTCCTTCCTGGGTATGG GGTCCTTACGGATGTCCAC 

Axin 2 CAATGGACGAAAGGAAAGATCC AGAAGTACGTGACTACCGTC 

Lef 1 CAGACATTCCCAATTTCTATCC TGTGATGTGAGAACCAACC 

Wnt8a 1A CGGAAAAATGGGTGGTCGTG GTCGTGACCATTTTCCAGCG 

Wnt8a 1B GAGAGACCGCCTTTGTGCAT CACGACCACCCATTTTTCCG 

Wnt8a 2A ATTCGTGGATGCGCTTGAGA TTTACAGCCAAACGTCCAGC 

Wnt8a 2B ACAATTCGTGGATGCGCTTG TCGCTTTTACAGCCAAACGTC 

 

Table 4: Primer sequences against target genes indicated in the left column.  
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2.8 Cell culture and peroxisome visualisation  

Primary gastric adenocarcinoma cells (AGS) were maintained at 37 ˚C in RPMI 

1640 supplemented with 10% fetal bovine serum, 1% L-glutamine and 1% 

penicillin/streptomycin. Zebrafish PAC2 fibroblasts derived from zebrafish 

embryos at 24 hours were maintained at 28 ˚C in an incubator without additional 

CO₂ supply in Leibowitz-15 media, supplemented with the same components as 

RPMI. Both media and supplementary components sourced from Life 

Technologies, Gibco.  

To visualise possible peroxisomes in cell culture, cells were transfected using 

FuGENE transfection reagent (Promega) and 1 µg of SKL-GFP DNA. 

Transfected cells were imaged after 24 hours on the Leica SP8 Hyvolution II 

confocal microscope (Leica Microsystems, Germany) at 63x magnification. 

IMARIS x64 9.0.0 imaging software (Bitplane, Switzerland) was used to count the 

number of SKL-positive spherical structures per cell. A threshold was set in the 

‘spots’ function to capture all ‘peroxisomes’ whilst eliminating the capture of 

background fluorescence. The diameter of the spots was 1-1.5 µm, applied to all 

images. Single cells were selected for each count to eliminate the errors 

stemming from averaging a group of cells.  

After establishing this baseline of an approximate number of peroxisome-like 

structures in untreated cells, cells were treated with either Wnt inhibitor 4-

(1,3,3a,4,7,7a-Hexahydro-1,3-dioxo-4,7-methano-2H-isoindol-2-yl)-N-8-

quinolinyl-Benzamide (IWR1, 25 µM) or activator 6-bromoindirubin-3’-oxime 

(BIO, 2.5 µM) or as a control, dimethyl sulfoxide (DMSO) (equalling the largest 

volume of effector that was applied) to establish whether a change in count of 
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‘peroxisomes’ occurred. Concentrations were selected after several experiments 

using IWR1 and BIO on both AGS and PAC2 cell cultures at concentrations 

ranging from 10-50 µM IWR1 and 1-5 µM BIO. The highest concentration which 

did not induce excessive cell death was selected for each effector. IWR1 binds 

to Axin and promotes the stabilisation of the β-catenin destruction complex, thus 

enhancing the degradation of β-catenin and blocking the canonical Wnt signalling 

pathway (Chen et al., 2009). Conversely, BIO inhibits GSK-3, a component of the 

β-catenin degradation complex, thereby reducing β-catenin degradation such 

that cytosolic β-catenin levels increase and the canonical Wnt signalling pathway 

is maintained (Tseng et al., 2006). Peroxisome-like structures were counted 

using the same ‘dots’ function per cell. A student’s t-Test, two sample assuming 

unequal variances, was used to establish statistical significance.  

2.9 Visualising peroxisomes in live embryos  

Embryos were collected and injected under the same conditions as previously 

(2.2). SKL-GFP DNA at 50 ng/µL was injected with 50 ng/µL memb-mCherry. 

Embryos were maintained at 28 ˚C in E3 medium until 50% epiboly when they 

were dechorionated using forceps and mounted in melted 1.5% agarose. The 

well was flooded with E3 media and images were taken on the Leica SP8 

Hyvolution II confocal microscope (Leica Microsystems, Germany) at a 63x 

magnification. Images were converted to Easy-3-D.tif files using IMARIS x64 

9.0.0 (Bitplane, Switzerland) and analysis was completed in ImageJ. An unsharp 

mask filter was first applied (radius - 2.0 pixels, mask weight – 0.6) to sharpen 

the images. This also sharpened any background into distinct, minute dots, which 

were eliminated by using the de-speckle noise function. A colour threshold was 

applied to capture the green areas (the peroxisome-like structures) and remained 
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consistent for all images analysed. A cell was then selected, the area calculated 

and the area of green puncta within that cell calculated. This allowed both the 

total area of peroxisome-like structures to be calculated, and the different sizes 

of the cells within which peroxisomes were analysed were taken into 

consideration by calculating the percentage of each cell area which was filled by 

the peroxisome-like structures. Standard error and statistical significance were 

calculated using a Student’s t-Test, two sample assuming unequal variances.  

Concurrently, observations were made of the morphology of the peroxisome-like 

structures and their subcellular locations within the cells at x63 magnification; this 

included whether the peroxisome-like structures were aggregated or appeared to 

be presented as separate puncta. Particular note was taken to see if the 

structures were in formations which resembled the classical asymmetrical 

membrane extension and fission model of peroxisome biogenesis because it is a 

morphologically distinct and recognisable process.  

As well as the total area of the cell occupied by the peroxisome-like structures, 

the distribution of sizes of the individual structures were analysed by producing 

weighted histograms. Bins were initially set wide to establish where the highest 

frequency sat in each sample then was reduced to 0.000050, 0.000100, 

0.000500, 0.001000, 0.005000, 0.010000 and 0.050000 µm. The frequency of 

measurements which fell into each bin was established and then compared to the 

total number of measurements for each sample to produce weighted histograms. 

The weighted frequencies were compared between samples using a student’s T-

test assuming unequal variances.  

Once a baseline number, subcellular distribution and morphology of peroxisome-

like structures within cells in the zebrafish embryos was established, zebrafish 
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embryos were injected as previously (2.2) with mixes all incorporating SKL-GFP 

(50 ng/µL) and membrane mCherry (50ng/µL). Mixes were designed either to 

knock out (Cas9 + gRNA), knock down (dCas9 + gRNA), or increase (wnt8a 

RNA) canonical Wnt signalling. Additionally, embryos were injected with 

Morpholino targeted to wnt8a RNA to provide a comparison for CRISPR-

mediated silencing. Injection of wnt8a RNA artificially increased canonical Wnt 

signalling and acted as a positive control. Full details of the injections are found 

in Table 5.  

 

 

Injection Peroxisome 
Marker 
(50 ng/µL) 

Membrane 
Marker (50 
ng/µL) 

Wnt8a 
Targeting 
System 

Position 
targeted on 
the wnt8a 
locus 

Control SKL-GFP Memb-

mCherry 

- - 

CRISPR  SKL-GFP Memb-

mCherry 

Cas9 + gRNA ORF1 + ORF2 

CRISPRi SKL-GFP Memb-

mCherry 

dCas9 + gRNA UTR1 + UTR2 

Morpholino 

oligomer 

SKL-GFP Memb-

mCherry 

Oligomer  Wnt8a RNA 

Overexpression SKL-GFP Memb-

mCherry 

Wnt8a RNA  - 
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Table 5: Composition of injection mixes injected into zebrafish embryos.  

3.0 Results  

3.1 Testing dCas9 and Cas9 RNA with tyrosinase gRNA  

In order to test the efficacy of the CRISPR system and specifically Cas9 and 

dCas9 RNA in vivo, the endonucleases were paired with gRNA targeting the 

tyrosinase gene, which is involved in the generation of pigmentation during 

embryogenesis. By 28 hpf, embryos injected with tyrosinase gRNA and Cas9 or 

dCas9 RNA exhibited significantly less (P<0.0005) pigmented area (Figure 6) 

between the MHB and the 1st somite (Figure 5) compared to wild type (WT) 

embryos, which were uninjected. This inferred that Cas9 and dCas9 

retransformed and transcribed from plasmids were functioning to either cleave or 

block the transcription of dsDNA in partnership with gRNA. There is a significant 

difference between the amount of pigmented area in CRISPR and CRISPRi 

embryos (Figure 6), which aligns with the role of Cas9 in knocking out the target 

gene and therefore providing a greater level of transcriptional repression than 

dCas9 does in knocking down the target gene; their effects are significant in 

themselves when compared to the wild type embryos but also when compared to 

each other. Visually, the difference in the phenotypes induced by Cas9 or dCas9 

are apparent in Figure 5, where, focussing on the eye, there are white spots 

where cells are entirely missing pigmentation. Here, Cas9 has knocked out the 

tyrosinase gene. This reflects the mosaic pattern typical of using Cas9; in some 

cells, there is knock out of the target gene, but in others, tyrosinase is translated 

without inhibition and the cells are pigmented as a wild type because the cell is 

absent of active Cas9, gRNA, or both. In the bottom image, again focussing on 

the eye for comparison, there is some black, grey and white. This colour gradient 
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directly relates to the level of tyrosinase knockdown induced in the cells and 

visually demonstrates how dCas9 can be used to generate a gradient of 

responses.  

 

Figure 5: Zebrafish embryos with CRISPR and CRISPRi targeting tyrosinase.  
Images taken of embryos all fixed at 28 hpf. Box represents the area selected for 
analysis using ImageJ, although the freehand selection tool was used to omit the 
yolk. The top picture (WT) shows the pigmentation exhibited by a wild type 
embryo. The central picture shows the pigmentation exhibited by an embryo that 
was injected at the 2-8 cell stage by Cas9 RNA and tyrosinase gRNA. The bottom 
picture shows pigmentation exhibited by an embryo injected with dCas9 RNA and 
tyrosinase gRNA. Scale bar 500 µm.  
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Figure 6: Quantification of pigmented area between the MHB and 1st somite of 
wild type control embryos. 
 Embryos injected with Cas9 RNA and tyrosinase gRNA and embryos injected 
with dCas9 RNA and tyrosinase gRNA. Error bars show standard error, 
significance calculated using analysis of variance (ANOVA) (*P<0.05, 
***P<0.0005).  

 

3.2 In vitro digestion using wnt8a gRNAs 

gRNA targeting wnt8a1 and Cas9 RNA cleaved wnt8a1 DNA in vitro, 

demonstrated by gel electrophoresis of the reaction products. Figure 7 shows in 

the leftmost lane the DNA ladder, followed by the uncut TOPO plasmid with 

wnt8a1 insertion. This band corresponds with the top bands in the remaining 4 

lanes, showing that some of the plasmid remained uncut and that the efficiency 

of the Cas9 enzyme is not 100%. Visualised by the intensity of the band, there is 

some discrepancy between the cutting efficiency of the gRNA-Cas9 couplings; 

for example, Cas9 coupled with UTR1B (targeted to the untranslated region of 

wnt8a ORF1, site B) shows a thinner and less intense band than Cas9 coupled 
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with UTR1A. The two bands below the uncut plasmid in each of the four rightmost 

lanes corresponds to plasmid cleaved by Cas9 enzyme.  

This method does not test whether dCas9 RNA is effective when combined with 

the wnt8a gRNA, but the dCas9 RNA was already tested with tyrosinase gRNA 

in vivo. gRNA targeting wnt8a2 was not tested because of the difficulties in 

capturing the correct sequence for integration into the TOPO vector. Due to the 

design process for ORF2 being an exact replica of that for ORF1, and the 

resultant ORF1 gRNAs successfully guiding Cas9 to the target DNA in vitro, both 

sets of gRNAs were taken forth to the next step of testing the coupling in vivo.  

     

Figure 7: In vitro digestion of zebrafish wnt8a1 DNA after CRISPR. 
1: DNA ladder, 2: TOPO-wnt8a1 plasmid, 3: UTR1A gRNA + Cas9, 4: UTR1B 
gRNA + Cas9, 5: ORF1,1 gRNA + Cas9, 6: ORF 1,3 gRNA + Cas9. TOPO-
wnt8a1 plasmid is present in all wells, cut by gRNA targeted to wnt8a1 and Cas9 
RNA.  

 

3.3 Phenotypic analysis of injected embryos  

The combination of Cas9 RNA and gRNA targeting wnt8a cleaved zebrafish 

genomic DNA in vitro. To test the coupling in vivo, zebrafish embryos were 

injected with Cas9/dCas9 RNA and gRNA targeted to either ORF1 or ORF2 of 
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wnt8a1 or wnt8a2 to visualise the phenotypes induced in vivo by 28 hpf, when 

neural structure is clearly delineated (Kimmel et al., 1995).  

Embryos injected with Cas9 (Figure 8 B) or dCas9 (Figure 8 C) controls, in the 

absence of a gRNA, appeared phenotypically similar or equivalent to un-injected 

wild type controls (Figure 8 A), which indicated that injection of the construct did 

not significantly change the phenotype nor the expression of wnt8a. Embryos 

were not injected with gRNA only, so comparison is not available with this type of 

control, although should in future studies.   

Generally, embryos injected with Cas9 and gRNAs targeting either ORF1 or 

ORF2 of wnt8a showed a stronger phenotype than those injected with dCas9 

RNA and gRNAs targeted to the UTRs of wnt8a. Regardless of the endonuclease 

injected, targeting either UTR2 or ORF2 produced stronger phenotypes than 

those targeting UTR1 or ORF1, in congruence with other studies that used 

Morpholino oligomers to target the ORFs individually and found that a stronger 

phenotype was generated when targeting ORF2 (Lekven et al., 2001).  

After examination of all samples, I found that the phenotypes could be grouped 

into three categories to aid quantification. Category 1 contained embryos which 

retained a wild type appearance, reflecting image Figure 8 A, with a straight tail, 

clearly visible neural structure including the MHB at 28 hpf. Category 2 contained 

embryos with a ‘mild’ phenotype; those reflecting Figure 8 E, with some loss of 

distinction in neural tissue, less distinct MHB, and a curved tail. Category 3 

contained embryos with a ‘severe’ phenotype, reflecting Figure 8 D, F, G; loss of 

distinct neural tissue, which was particularly evident in the head and manifested 

in loss of visible MHB but was visible down the dorsal line, culminating in crooked 

tails. Many embryos exhibited what appeared to be developmental delay 
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compared to wild types from control groups and to the staging set out by Kimmel 

and colleagues (1995). Embryos which showed a significant developmental delay 

– being fixed at the 26-somite stage or before – were disregarded because lack 

of visible MHB, curved tail and aberrant head shape could be attributed to slow 

development, and I could not say with confidence that such phenotypes were due 

to injection with endonuclease and gRNA targeted to wnt8a.  

Importantly, the observed phenotypes in the mild and severe categories reflected 

those seen in Morpholino oligomer-based inhibition of translation of wnt8a1 and 

wnt8a2, with the mild and severe categories somewhat reflecting the phenotypes 

observed when targeting ORF1 or ORF2 (Lekven et al., 2001). The number of 

embryos within an injected sample that adhered to each category was quantified, 

and compared to embryos injected with the endonuclease alone as controls 

(Figure 9). The un-injected wild type samples had small numbers of embryos 

which fell into the mild or severe categories, reflecting intrinsic variation/mutation 

rates. There were slightly more mild/severe embryos in the control injections with 

endonuclease RNA without gRNAs, which could represent mild side effects of the 

injection itself coupled with the intrinsic variation seen in wild types. Compared to 

the endonuclease controls, embryos injected with CRISPR or CRISPRi targeting 

wnt8a were significantly (P<0.0005) phenotypically distinct. There was a 

significantly greater induction of the mild or severe phenotypes in embryos 

injected with CRISPR or CRISPRi constructs than there was in embryos injected 

with the endonuclease alone.  

Collected data has been compared to images of embryos targeted with 

Morpholino oligomers against wnt8a (Lekven et al., 2001), but to ensure that the 

comparison could be made against embryos injected using the same method as 
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in the present study, embryos were injected with Morpholino oligomers diluted to 

1:10 targeting either wnt8a ORF1, ORF2 or both. Control samples were 

uninjected; no control Morpholino oligomer was used in this experiment. The 

resultant phenotypes at 28 hpf resembled those generated by Lekven and 

colleagues and were perhaps even stronger (Figure 10 A). Additionally, the 

phenotypes generated were similar to those generated by injection of 

CRISPR/CRISPRi targeting wnt8a. Grouping of these embryos into the same 

categories (wild type, mild and severe) as the CRISPR/CRISPRi embryos 

showed that there was a significant induction of mild/severe phenotypes 

compared to un-injected WT embryos.  

 

 

Figure 8: Representation of phenotypes generated by injection.  
A Wild type, no injection. B Injection with Cas9 RNA, no gRNA. C Injection with 
dCas9 RNA, no gRNA. D Injection with Cas9 RNA and gRNA targeted to exons 
(E) 1 and 3 of ORF1. E Injection with dCas9 RNA and gRNA targeted to two sites 
in UTR1. F Injection with Cas9 RNA and gRNA targeted to exons 1 and 3 of 
ORF2, and an example of one of the embryos categorised as ‘severe’ for further 
analysis. G Injection of dCas9 RNA and gRNA targeted to three sites in UTR2. 
All embryos imaged at 28 hpf, fixed in 4% PFA. Scale bar represents 500 µm.  
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Figure 9: Quantification of embryos grouped into 3 categories; WT, mild and 
severe.  
Embryos injected with gRNA + Cas9 or dCas9 RNA were compared to their 
respective controls (CO, endonuclease RNA without gRNA) using Chi-squared 
(***P<0.0005).  
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Figure 10: Phenotypes of zebrafish embryos injected with Morpholino oligomer 
targeted to wnt8a. 
A Embryos injected with Morpholinos targeting either ORF1 (MO 1) or ORF2 
(MO2) of wnt8a, or both (MO 1+2). B Qualification of embryos injected with 
Morpholino oligomers (MO1, MO2, MO 1+2, as before) against Wnt8a into wild 
type (WT), mild or severe categories. All embryos at 28 hpf. Statistical analysis 
calculated using Chi squared (***P<0.0005). Scale bar represents 300 µM.  

 

3.4 Visualising the expression patterns of wnt8a1 and wnt8a2 at 70-80% 

epiboly 

The phenotypic changes in embryos injected with gRNA and Cas9 RNA targeted 

to wnt8a1 or wnt8a2, which appeared similar to Morpholino oligomer-targeted 

knock down of the same gene, inferred that the constructs may be successfully 

changing the expression of wnt8a. To visualise changes to expression, in situ 

hybridisation was performed on injected embryos with antisense RNA probes 

against either wnt8a ORF1 (Figure 11) or ORF2 (Figure 12). All injected embryos 

exhibited patterns of wnt8a RNA expression which differed from the wild type un-

injected controls, which show a strong band of wnt8a signalling around the 

marginal zone during 70-80% epiboly, with a gap for the dorsal organiser. Injected 
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embryos displayed a number of changes to wild type patterning; faded staining, 

mosaic staining where in the wild type it is one strong band, and changes to the 

width and formation of the organiser. Examples of these can be seen in Figures 

11 and 12.  

Interestingly, in many cases, the change to the patterning appeared to be 

asymmetrical (Figure 11 C, D, E, F, Figure 12 C). wnt8a2 expression is markedly 

different to wnt8a1 wild type expression, with a second band forming closer to 

the animal pole. Congruent with previous research that suggests that perturbation 

of the expression of wnt8a2 has more severe effects than reducing the 

expression of wnt8a1 (Lekven et al., 2001), visually it appears that injection of 

the constructs targeting wnt8a2 produce a phenotype more distant from the wild 

type, that is, the effect is more severe, than injecting constructs targeting wnt8a1. 

For example, the loss of the second band of staining in Figure 11 images C-F, 

and the greatly expanded width of the gap in staining where the dorsal organiser 

is situated (Figure 12 E, F). The difference in patterning may be attributed to the 

complex structure of the locus, as suggested by Lekven and colleagues (2001) 

and demonstrated in Figure 2. Coupled with the changes to phenotype observed 

in later stage embryos, the changes in staining pattern of both wnt8a1 and wnt8a2 

in early stage embryos infers that the injection of the CRISPR/CRISPRi 

constructs may be changing the expression of the target gene.  
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Figure 11: In situ hybridisation of zebrafish embryos at 70-80% epiboly using a 
probe against wnt8a1.  
The top row of images are all orientated dorsal side up; the organiser is indicated 
by the yellow asterisk. The bottom row of images are all orientated with the 
vegetal pole facing upwards. Again the organiser is indicated by the yellow 
asterisk. wnt8a1 RNA expression is indicated by the deep purple staining. The 
orange arrows indicate where the expression pattern particularly deviates from 
wild type (WT) patterning (left). UTR1 label denotes that the target site for dCas9 
was the untranslated region prior to the first open reading frame of wnt8a and 
ORF2 denotes the target site for Cas9 as the second open reading frame of 
wnt8a. Scale bar: 200 µM.  
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Figure 12: In situ hybridisation of zebrafish embryos at 70-80% epiboly using a 
probe against wnt8a2.  
The top row of images are all orientated dorsal side up; the organiser is indicated 
by the yellow asterisk. The bottom row of images are all orientated with the 
vegetal pole facing upwards. Again the organiser is indicated by the yellow 
asterisk. wnt8a2 RNA expression is indicated by the deep purple staining. The 
orange arrows indicate where the expression pattern particularly deviates from 
wild type (WT) patterning (left). Scale bar: 200 µM.  

 

3.5 Quantifying wnt8a1 and wnt8a2 expression at 70-90% epiboly   

To quantify changes in expression of wnt8a which appear to occur from analysis 

of resultant phenotypes and RNA expression patterns, embryos were injected 

with CRISPR/CRISPRi constructs and total RNA was extracted when embryos 

were at 70-90% epiboly. Extracted RNA was then reverse transcribed and 

quantified by RT-qPCR. Normalised to wild type controls, wnt8a expression was 

significantly downregulated in almost all injected samples. For almost all samples, 
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both ORF1 and ORF2 were downregulated, despite only one ORF or UTR being 

targeted in each injection (Figure 13).  

To ensure that the primers used to amplify each ORF were specific rather than 

cross-reactive, a wnt8a1 overexpression experiment was performed which 

showed that only the primer for wnt8a1 responded significantly to the 

overexpression (Figure 14). Thus, it appears that there is in fact a complex 

relationship between the two ORFs such that when one is targeted, the other is 

also downregulated. The effect of targeting wnt8a on Wnt target genes is less 

clear, with some fluctuations shown with large standard error (Figure 15), 

although the absence of a clear-cut relationship between down-regulated 

expression of wnt8a and its downstream signalling components may be expected 

due to the nature of the web of interrelated pathways and that wnt8a is just one 

of a set of canonical Wnt ligands.  

Phenotypically, the injection of dCas9 or Cas9 endonuclease RNA without a 

gRNA did not appear to have a significant effect (Figure 8). This has been 

quantified by RT-qPCR (Figure 16), where surprisingly, all injected samples 

showed an increase in the quantity of RNA assayed, which I hypothesise to be 

an artefact of injection in mechanical disruption of the cell at the 2-4 cell stage. 

However, this would be an interesting pattern to investigate further. If an increase 

in transcription post injection is consistent, it lends more weight to the 

downregulation of the target genes induced by injection of the CRISPR and 

CRISPRi constructs.  
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Figure 13: Expression of wnt8a after targeting with CRISPR or CRISPRi. 
Expression of wnt8a ORF1 and ORF2, after injection with dCas9 and gRNA 
targeting UTR1 or UTR2, or Cas9 and gRNA targeting ORF1 or ORF2. Error bars 
represent standard error, and asterisks indicate statistical significance. *P<0.05, 
**P<0.005, ***P<0.0005. Labels along the x axis denote two primers used for 
each open reading frame (A and B of Wnt8a1 and Wnt8a2).  

 

 

Figure 14: Primer detection of wnt8a overexpression.  
Overexpression of wnt8a1 was detected by both primers for the first open reading 
frame of wnt8a (W8a1A, W8a1B), with the greatest level of detection by the first 
primer, W8a1A. wnt8a1 overexpression led to a small increase in Wnt target gene 
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axin2, but no difference was found in lef1. There was also a small increase in 
detection by W8a2A, which targets the second open reading frame of wnt8a.  

 

 

Figure 15: Expression of downstream Wnt target genes after targeting wnt8a 
with CRISPR or CRISPRi.  
Signal variation demonstrated through error bars. lef1 was significantly 
downregulated when targeting the first open reading frame (ORF1) of wnt8a 
using CRISPR. Error bars represent standard error, and asterisks indicate 
statistical significance (*P<0.05).  
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Figure 16: Impact of injection of endonuclease RNA without gRNA.  
Expression of downstream Wnt target genes and both ORF1 and ORF2 of wnt8a 
in embryos injected with either dCas9 or Cas9 RNA without gRNA to guide the 
endonuclease.  

 

3.6 Peroxisomes visualised in human AGS cells  

Whilst preparing and testing the CRISPR/CRISPRi toolkit, a way to visualise 

peroxisomes, firstly in cell-culture, and secondly in vivo in zebrafish embryos was 

developed. Human AGS cells, chosen for their high levels of Wnt, and zebrafish 

PAC2 fibroblasts, chosen to act as a primer for moving on later to the study of 

peroxisomes within zebrafish embryos, were transfected with SKL-GFP, a 

peroxisomal targeting signal fused to the fluorescent marker. The marker is an 

endogenous targeting signal type 1 (PTS1) utilised to guide translated 

peroxisomal matrix proteins from the cytosol to the peroxisome import receptors 

situated on the single membrane of the organelle (Wolins & Donaldson, 1997). 

Therefore, it is proposed that the fluorescent signals detected by confocal 

microscopy were peroxisomes, or peroxisome-associated structures. Imaging of 

both PAC2 and AGS cells yielded images with high numbers of peroxisome-like 

structures, which was somewhat surprising given that cancerous cells are known 

to have low levels of oxidation activity – through the enhanced production of ROS, 

they are under consistent oxidative stress and this has indeed been manipulated 

to aid in their destruction (Hileman et al., 2004) - yet high levels of ether lipids, 

major products of peroxisomes, have been detected in some cancer types (Lodhi 

& Semenkovich, 2014).  

AGS cells were determined to be more amenable to imaging due to higher rates 

of proliferation than PAC2 cells and a higher number of SKL-positive structures 

per cell, represented in the images as green dots (Figure 17 A), and so AGS cells 
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were used for quantitative analysis. Once a baseline was established, the cells 

were treated with Wnt effectors; the inhibitor IWR1 and activator BIO, shown in 

Figure 17 B. After treatment, the number of peroxisome-like structures was 

quantified and both treatments caused the number of peroxisome-like structures 

to increase significantly per cell (Figure 18), with no significant difference between 

the two treatments, although a significant challenge was posed by the varied size 

and shapes of the cells in each sample. Reviewing all the cells in each image, 

there is no consistent change in the distribution of peroxisomes throughout the 

AGS cells, solely the number, although this upregulation does appear to make 

the peroxisomes seem clumped together. This could be verified by higher 

resolution imagery.  

 



 
 
  Lauren Porter 620007286 

72 

Figure 17 A: Human AGS cell (top) and zebrafish PAC2 cell (bottom) in culture 
transfected with SKL-GFP (green) and membrane-associated mCherry (red).  
Scale bar 15 µm. Image taken using the Leica SP8 Hyvolution II (Leica 
Microsystems, Germany).  

 

 

 

 

 

Figure 17 B: Human AGS cells transfected with SKL-GFP (green) and 
membrane-associated mCherry (red) and treated with BIO (2.5 µM, top) and 
IWR1 (25 µM, bottom) 
Scale bar 15 µm. Image taken using the Leica SP8 Hyvolution II (Leica 
Microsystems, Germany).  
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Figure 18: Quantification of the average number of peroxisomes per cell in 
human AGS cell culture.  
Cells treated with either 25 µm IWR1 or 2.5 µm BIO. Control sample was treated 
with DMSO. Error bars represent standard error. Statistical significance 
calculated using a Student’s t-Test (***P<0.0005, **P<0.005).  

 

3.7 Peroxisomes visualised in vivo in zebrafish embryos  

After successfully visualising peroxisome-like structures in vitro using SKL-GFP, 

peroxisomes were visualised in the more complex system of the living zebrafish 

embryo. SKL-GFP DNA was incorporated into injection mixes and injected in one-

two cell stage embryos. Peroxisome-like structures represented as green dots 

similar to those seen in cell culture were visualised in large numbers in each cell 

(Figure 19). The peroxisome-like structures appeared to be distributed evenly 

throughout the cell as distinct puncta, with some small aggregations possibly 

attributable to peroxisomes in a proliferative state. The structures have a high 

density within each cell, the only part of the cell not emitting the GFP signal being 

the gap for the nucleus. The cell membranes are shown in red.  

** 

*** 
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Figure 19: Peroxisome-like structures (green) in the live zebrafish embryo.  
Images taken using the Leica SP8 Hyvolution II confocal microscope (Leica 
Microsystems) at 63x magnification.  

 

3.8 Peroxisomes in embryos injected with CRISPR/CRISPRi constructs  

Injection with CRISPR/CRISPRi constructs targeted to wnt8a has induced 

quantifiable changes to both the phenotype (Figure 8) and transcriptome (Figure 

16) of zebrafish embryos. To visualise the effect of changes in wnt8a expression 

on peroxisome dynamics, zebrafish embryos were injected with a combination of 

SKL-GFP DNA with CRISPR/CRISPRi constructs, Morpholino oligomer or wnt8a 

RNA (full details in Table 5).   

In embryos injected with SKL-GFP only, the peroxisome-like structures detected 

have an even, dense distribution throughout the cell, itself delineated in red by 

membrane-bound mCherry. The structures appear mostly as individual 

round/spherical puncta, with some small exceptions where there is a 

clump/cluster of green fluorescent signal (Figure 20, row 1). In comparison, 

peroxisome-like structures in embryos injected with Morpholino oligomer targeted 

to both ORF1 and ORF2 of wnt8a have a distinctly different appearance (Figure 

20, row 2). The prevalence of large spots of GFP signal is visibly greater, with 
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nearly every cell containing multiple large conglomerated green signals. The 

appearance of these clusters is not spherical, and therefore does not appear to 

resemble a single peroxisome of increased size. The clusters are oval, or tubular, 

and resemble more closely the ‘beads on a string’ phenotype of peroxisome 

proliferation. When quantified using image analysis (Figure 21), the proportion of 

the cell in which a green signal is found is less than controls; the peroxisome-like 

structures fill less of the cytosol in cells with Morpholino oligomer targeted to 

wnt8a than in control cells. The ability of Morpholino oligomers to knock out Wnt 

signalling has been previously established (Lekven et al., 2001) and has been 

verified in this study by phenotypic analysis (Figure 8) and RTqPCR (Figure 16), 

and so it may be that the high level of knockdown of wnt8a in the embryonic cells 

is inducing phenotypic changes, more specifically clumping, in the peroxisomes 

of zebrafish embryos.  

The phenotypic changes of the peroxisome-like structures in embryos injected 

with wnt8a Morpholino oligomers are the most visually apparent, when compared 

to the controls. This may be because Morpholino oligomers have a very strong 

ability to knock out their targets, with the caveat of a greater possibility of side 

effects than other methods (Schulte-Merker & Stainier, 2014). When observing 

morphological changes in embryos at 28 hpf that were injected with Morpholino 

oligomers targeted to wnt8a at the 2-4 cell stage, the phenotypes were 

consistently strong, with pronounced changes to the morphology of the nervous 

tissue ranging from the head to the tail along the dorsal axis. CRISPR Cas9 

knockout of genes can induce high level mutagenesis of the target gene; for 

example, Cas9 systems have been developed in monocot and dicot plants with 

an 85.4% mutation rate (Ma et al., 2015), a 60-100% deletion efficacy in 
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Streptomyces (Huang et al., 2015) and a 75-99% mutagenesis rate in zebrafish 

(Jao et a., 2013).   

Following the example of Jao and colleagues (2013), for example with the 

transcription of Cas9 with nuclear localisation signals (nls) to enhance efficiency, 

despite the investigation at hand being in the primary stages of optimisation, we 

can expect a reasonable capacity of mutagenicity. The positioning of the embryo 

injected with CRISPR construct was suboptimal, with the upper two thirds of this 

image appearing to show the yolk syncytial layer (YSL), and the lower one third 

of the image showing cells from portions of the embryo equivalent to the cells 

seen in the other images. However, cells of embryos injected with CRISPR Cas9 

and gRNAs directed to both ORF1 and ORF2 of wnt8a also appear to have more 

clustering than control cells (Figure 20, row 4), although the increase is less than 

in the samples injected with Morpholino oligomers targeted to wnt8a. When 

quantified using image analysis, cells in the lower third of the image were used 

for analysis only because these are more directly comparable to cells in the other 

images. There was a significantly lower amount of GFP fluorescence in these 

cells compared to the controls (Figure 21, P<0.0005).  

In contrast, cells in embryos injected with wnt8a RNA as positive controls had 

significantly higher proportions of GFP fluorescence per cell (P<0.005). 

Phenotypically, there appears to be both a denser coverage of small puncta 

throughout the cells and contemporaneously clusters of signal which are larger 

than those seen in the control, Morpholino oligomer or CRISPR Cas9 samples.  

In combination with the greatest level of knockout of wnt8a using Morpholino 

oligomer-mediated inhibition of translation, CRISPR Cas9-mediated knockout of 

wnt8a, the negative control with SKL-GFP and memb-mCherry injection only, and 
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the positive control using wnt8a RNA overexpression, a spectrum has been 

created. It is a dual spectrum; a spectrum of wnt8a expression, which is mirrored 

by a spectrum of changes to the shape/size and number of peroxisome-like 

structures/GFP fluorescence within the cells. There are tangible changes to the 

dynamics of peroxisome-like structures in vivo in zebrafish embryos under 

varying levels of manipulation of the expression of wnt8a.  

The sizes of the peroxisome-like structures in each sample were bucketed into 

size bands or bins, from which the frequency in each bin could be calculated and 

compared to the total in each sample. A student’s T-test, assuming unequal 

variances was calculated. None of the differences between the samples were 

statistically significant, but upon examination of the data a pattern can be seen, 

which may become more pronounced and significant by repeating the 

experiments with a larger sample size. The largest difference in the distribution 

of sizes of the peroxisome-like structures is between the sample which was 

injected with wnt8a RNA (Figure 22 C) and all other samples (Figure 22 A, B, D). 

Here, there is a noticeably larger frequency of peroxisome-like structures which 

fall into the smallest bin size, and much less that fit into the larger bins, than either 

the control (Figure 22 A) or the wnt8a Morpholino oligomer (Figure 22 B) or 

CRISPR samples (Figure 22 D). When considering the distribution patterns of the 

Morpholino oligomer and CRISPR samples, compared to the control there 

appears to be a greater frequency of peroxisome-like structures falling into bins 

0.0005 and 0.001. The difference is small but noticeable. With future repeats, a 

greater difference may be established between the distribution of sizes of 

peroxisome-like structures within the control, Morpholino oligomer and CRISPR 



 
 
  Lauren Porter 620007286 

78 

samples, and confirm the shift in wnt8a overexpression sample to a much greater 

frequency of small (bin 0.00005) peroxisome-like structures.  
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Figure 20: Peroxisomes (green) in zebrafish embryos with varying levels of 
wnt8a expression.  
Construct injected is in white at the top left of each image. Scale bar represents 
15 µm. Cell membranes are shown in red.  
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Figure 21: The proportion of peroxisome-like structures per cell in control, 
Morpholino, wnt8a RNA overexpression and Cas9 + wnt8a gRNA embryos.  
Error bars represent standard error. Significance calculated by student’s t-Test, 
two sample assuming unequal variance (**P<0.005, ***P<0.0005).  
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Figure 22 A: The distribution of sizes of peroxisome-like structures within live 
uninjected zebrafish embryos (control sample).  
As visualised through confocal microscopy and analysed using ImageJ.  

 

 

Figure 22 B: The distribution of sizes of peroxisome-like structures within live 
zebrafish embryos injected with Morpholino against wnt8a ORF1 and ORF2.  
As visualised through confocal microscopy and analysed using ImageJ. 
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Figure 22 C: The distribution of sizes of peroxisome-like structures within live 
zebrafish embryos injected with wnt8a RNA.  
As visualised through confocal microscopy and analysed using ImageJ. 

 

Figure 22 D: The distribution of sizes of peroxisome-like structures within live 
zebrafish embryos injected with CRISPR Cas9 and gRNA targeted to wnt8a 
ORF1 and ORF2. 
As visualised through confocal microscopy and analysed using ImageJ. 
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4.0 Discussion 

In this investigation I have demonstrated that it is possible to use CRISPR and 

CRISPR interference (CRISPRi) to reliably knock out and knock down the 

signalling of wnt8a in zebrafish. I demonstrate this by observing morphological 

changes to the wild type phenotype in embryos at 28 hpf on whole-organism in 

tissues impacted by wnt8a signalling; perturbations in wnt8a RNA patterning in 

embryos at 70-90% epiboly; and concurrent lowered expression levels of wnt8a, 

as determined by RTqPCR. Further, these genetically modified embryos can be 

used to observe peroxisome dynamics in vivo, and I observed that in embryos in 

which wnt8a had been knocked down, either by CRISPR/CRISPRi or by using 

Morpholino oligomers targeted to wnt8a, peroxisomes were more often found in 

large clusters as opposed to distinct puncta. This supports the hypothesis that 

wnt8a, in zebrafish at least, has an impact on the dynamics of peroxisomes.  

4.1 Overview of the Wnt-peroxisome relationship  

Wnt is a family of morphogens which form gradients across responsive tissues to 

induce cellular responses. These cellular responses are induced via a network of 

downstream proteins which form multiple interrelated signalling pathways. Of 

these, the canonical Wnt signalling pathway is perhaps the most well-studied and 

widely-known. The canonical pathway begins with the reception of a subset of 

Wnt ligands – the canonical Wnt proteins - at the cell membrane.   

There are various schemes suggested to model the transport of Wnt proteins 

from the source cell to the receiving cell, the most recent of which is directional 

delivery on the tips of Ror2-mediated cytonemes. If we consider that Wnt proteins 

arrive at source cells via diffusion only, the question remains of how the complex 



 
 
  Lauren Porter 620007286 

84 

gradients of Wnt signalling are produced without fine-tuned control of delivery by 

the source cell (Stanganello et al., 2015; Mattes et al., 2018).  

After reception of the canonical Wnt protein at the receiver cell membrane, a 

cascade of intracellular reactions is triggered which disables the β-catenin 

degradation complex, such that β-catenin persists in the cytosol. The pathway 

culminates in the translocation of stabilised cytosolic β-catenin into the nucleus. 

In the nucleus, β-catenin interacts with TCF/LEF transcription factors and 

facilitates the expression of multivariate target genes. The functions of these 

target genes are central to both the maintenance and commencement of life, and 

range from cell cycle maintenance (cyclin) to peroxisome proliferator-activated 

receptors (PPAR) (Huelsken & Behrens, 2000).  

Dysregulation of the Wnt signalling network post-development has been 

implicated in several cancer types, most famously in breast cancer (Tsukamoto 

et al., 1988) and intestinal tumours (Korinek et al., 1998), underscoring its 

importance in influencing the cell cycle. Recently, Wnt has also been implicated 

in the cycling of organelles; Wnt signalling can increase or decrease 

mitochondrial biogenesis, depending on its subcellular localisation 

(Rauchenberger et al., 2017; Bernkopf et al., 2018), although the full implications 

of this are not yet known.   

4.1.1 Wnt signalling and organelles  

Last year (2018) Bernkopf and colleagues established that intrinsically-activated 

Wnt signalling can promote mitochondrial proliferation. Mitochondrial proliferation 

under the influence of Wnt signalling is mediated by the location of 

phosphoglycerate mutase Pgam5 which in normal, steady state conditions is 
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localised to the mitochondrial membrane, although debate remains as to whether 

this is the inner or outer membrane, or both (Chen et al., 2014).  

Whilst localised to the membrane, Pgam5 is instrumental in downregulating 

canonical Wnt signalling in the anterior portion of the embryo, which allows head 

formation to take place, because Wnt signalling induces posteriorisation. Pgam5 

represses posteriorisation signals by promoting dephosphorylation of the 

dishevelled (Dvl) protein. In the dephosphorylated form, Dvl is part of the ꞵ-

catenin-degradation complex. Through dephosphorylation of Dvl, Pgam5 

promotes the instability of ꞵ-catenin in the cytosol that leads to its ubiquitination 

and targeting by proteosomes, preventing translocation to the nucleus and 

transcription of target genes, preventing the completion of the canonical Wnt 

signalling pathway and silencing the signal for posteriorisation of the embryo 

(Rauchenberger et al., 2017).  

In contrast, when mitochondrial membrane potential is lost, mitophagy is induced 

and Pgam5 has an important role in this process. Pgam5 is cleaved by presenilin-

associated rhomboid-like protein (PARL), an intramembrane protease. Bernkopf 

and colleagues (2018) postulate that Pgam5 is a master regulator of 

mitochondrial abundance post-damage. Cleaved Pgam5 regulates mitochondrial 

abundance in two ways; by inducing mitophagy of damaged mitochondria, and 

by inducing biogenesis of novel mitochondria by activating canonical Wnt 

signalling. 

When Pgam5 is localised to the mitochondrial membrane, it promotes the 

dephosphorylation of Dvl and therefore contributes to the destruction of ꞵ-catenin 

and blocking of the canonical Wnt signalling pathway. In contrast, through 

proteomics and immunoprecipitation, Bernkopf and colleagues found that the 
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cleaved form of Pgam5 generated by mitochondrial stress binds to amino acids 

210-295 of axin, another key component of the ꞵ-catenin destruction complex 

which scaffolds the other constituents. Binding axin means that it is unable to 

function as a scaffold protein and therefore inactivates the destruction complex. 

This prevents the phosphorylation and ubiquitination of ꞵ-catenin such that it 

stabilises in the cytoplasm and can translocate to the nucleus to induce the 

transcription of target genes. This process is an example of cell-intrinsic activation 

of the Wnt signalling pathway without a requirement for an external ligand. The 

findings of Bernkopf and colleagues (2018) indicate that stimulation of 

mitochondrial biogenesis by Wnt signalling is a mechanism to replenish the 

cellular mitochondrial count, and are corroborated by other studies in C2C12 

myocytes where Wnt signalling leads to enhanced mitochondrial biogenesis 

(Yoon et al., 2010; Undi et al., 2017).  

Wnt signalling has a role in the proliferation of other cellular compartments such 

as late endosomes via the stabilisation of micropthalmia-associated transcription 

factor (MITF), the master melanocyte regulator involved in most melanomas. 

Stabilisation of MITF promotes the generation of late endosomes, which 

concentrate components of the canonical Wnt pathway such as axin 1, phospho-

LRP6, GSK3 and phospho-ꞵ-catenin and amplifies Wnt signalling, thereby 

creating a strong feedback loop (Ploper et al., 2015). 

The ability of Wnt to stimulate the proliferation of cellular compartments is 

illustrated by these two examples. Interestingly, mitochondria and peroxisomes 

have both functional and proliferative similarities. For example, they share the 

burden of fatty acid oxidation, with mitochondria oxidising short, medium and long 

chain fatty acids, and peroxisomes oxidising very long chain fatty acids. 
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Mitochondria and peroxisomes also share roles in disease prevention and 

antiviral signalling (Camões et al., 2009). Further, and perhaps of relevance to 

the relationship between Wnt and the organelles in question, mitochondria and 

peroxisomes share components of the division machinery, namely Fis1 and Mff 

(Schrader, 2006), strengthening the partnership between these two sister 

organelles. I propose that another factor which mitochondria and peroxisomes 

share is a positive signal for proliferation in the form of Wnt signalling.  

4.2 Peroxisomes and peroxisomal diseases  

The successful targeting and knock out/down of wnt8a is a means to observe the 

dynamics of peroxisomes under reduced Wnt signalling. The ‘little sister’ of the 

mitochondria, peroxisomes parallel Wnt signalling in that they are integral to both 

developing and maintaining life; defects in any of the PEX genes essential to their 

biogenesis result in a spectrum of peroxisomal biogenesis disorders which are 

highly debilitating and often neonatal-lethal. This is because of the roles of 

peroxisomes in producing plasmalogens for effective conduction of nervous 

impulses, ROS homeostasis and the β-oxidation of very long chain fatty acids, 

amongst others (Schrader et al., 2012). Though their remit is narrower than Wnt 

signalling, peroxisomes are nevertheless crucial to both the development and 

maintenance of life, which is clearly demonstrated by the spectrum of diseases 

related to peroxisomal function such as the spectrum of Zellweger Syndrome, or 

cerebro-hepato-renal syndrome (Goldfischer et al., 1973), X-Linked 

Adrenoleukodystrophy, Infantile Refsum’s Disease, and others.  

Zellweger Syndrome manifests on a macro level as the deficiency of plasmalogen 

(Heymans et al., 1983), and at a cellular level as the presence of peroxisomal 

‘ghosts’; empty peroxisomes devoid of matrix proteins, which leads to the 
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hypothesis that the lethal syndrome is due to a defect of matrix protein import 

(Santos et al., 1988). Studies have shown that the absence of functional 

peroxisomes has heterogeneous and multifaceted effects on mitochondrial 

morphology, ultrastructure, and respiratory chain complexes (Baumgart et al., 

2001). Tissues of infants affected by this hereditary disease can have less than 

10% of normal levels of phosphatidylethanolamine plasmalogen, a component of 

phosphatidyl cell membranes and heart and muscle tissue (Heymans et al., 

1983).  

In addition to defective protein import, other hereditary diseases of peroxisomes 

such as X-linked adrenoleukodystrophy arise from their subverted biochemical 

capacities. Defects in β-oxidative capacity, which is the process that breaks down 

very long chain fatty acids (VLCFAs) result in accumulation of intracellular 

VLCFAs, the root cause of which is a mutation in the ABCD1 gene. In contrast to 

Zellweger Syndrome, where lethality occurs early in life, the symptoms of X-linked 

adrenoleukodystrophy, namely progressive paraparesis and other neurological 

implications, can have rapid onset in children, adolescents or adults (Moser, 

Mahmood & Raymond, 2007). Zellweger Syndrome and X-linked 

adrenoleukodystrophy are just two examples in a spectrum of diseases whose 

root cause is defective peroxisomes. I selected both because they contrast in 

their cause; at the root, either by total lack of biochemical capacity as empty 

shells, or by reduced biochemical function due to a mutation in a key gene. This 

difference also manifests further along the causative chain as differential 

symptoms and time of onset. Like Wnts, peroxisomes have multiple roles to play, 

and dysfunction can lead to varying and ultimately lethal diseases.  
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4.3 The function of peroxisome proliferator activated receptors - PPARs 

Peroxisomes are acknowledged to be adaptive organelles, and the plasticity of 

peroxisomes is no better exemplified than by examining their genesis. 

Peroxisomes are exceedingly sensitive and dynamic organelles which change 

their characteristics in response to demands from the cellular environment. For 

example, peroxisomes are sensitive to the concentration of VLCFAs in the cell 

and proliferate in response to increased concentrations of this ligand (Hostetler 

et al., 2006). This malleability allows peroxisomes to maximise their functions 

during the changing cellular environment.  

The biogenesis of peroxisomes is governed by peroxisome proliferator activated 

receptors (PPARs), which have 3 isoforms – α, β, γ – with varying tissue 

distribution (Ibabe et al., 2002). The receptors are targets of the Wnt canonical 

signalling pathway (Huelsken & Behrens, 2002). PPARα is found in mammals in 

tissues which catabolise fatty acids, PPARβ is expressed in a ubiquitous manner 

and PPARγ can be found in adipose tissue and the immune system. The 

distribution of the isoforms of PPAR in zebrafish was assessed using antibodies 

against the 3 isoforms. The analysis indicated that all three isoforms were 

present. PPARα was found in liver parenchymal cells, proximal tubes of the 

kidney, pancreas and enterocytes; PPARβ had a much more widespread 

distribution and was found in the same tissues as PPARα with multiple additions, 

such as lymphocytes and both male and female gonads. PPARγ signal was found 

in the liver and gonads but the signal was weak (Ibabe et al., 2002).  

The roles of PPARs during development include lipid homeostasis (Kersten et 

al., 2000) and cellular differentiation, for example epidermal cell differentiation 

(Rivier et al., 1998). PPARs bind environmental ligands – so-called peroxisome 
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proliferators – and increase the rate of proliferation of peroxisomes. Proliferation 

is required of all organelles in developing and growing tissues; thus the process 

of peroxisome proliferation is integral to the health of developing embryos, in 

maintaining processes such as the production of plasmalogens for the developing 

nervous system (Peters et al., 2000) and perhaps in the zebrafish, for 

metabolising the fatty yolk. The yolk is a reserve of energy to fuel the consumptive 

morphological changes and growth required in early development. To unlock this 

energy source, the fats must be broken down. Mitochondria break down the short, 

medium and long-chain fatty acids which constitute the majority taken in via our 

diet, whilst peroxisomes oxidise VLCFAs (Reddy & Hashimoto, 2001). This stage 

of zebrafish development is termed lecithotrophic, that is, the utilisation of 

maternally deposited yolk in oviparous organisms. Developing zebrafish embryos 

contrast from Xenopus embryos in that they undergo discoidal meroblastic 

cleavage which results in the yolk being separate to the embryo, as opposed to 

the distribution of yolk granules throughout the cells of the embryo. The yolk is 

separated from the embryo by the yolk syncytial layer (YSL), which contains an 

abundance of nuclei and produces many genes required for fat and protein 

breakdown and utilisation (Miyares et al., 2014). It would be interesting to 

investigate whether this is inclusive of any of the three isoforms of peroxisome 

proliferator activated receptors (PPARs); indeed, acyl-CoA oxidase 1 (acox1), the 

first and rate limiting step in the PPAR pathway (Vluggens et al., 2010), is 

expressed in the YSL alongside other members of the pathway including 

apoliporotein A1 (apoa1) and microsomal triglyceride transfer protein (mtp) 

(Raldúa et al., 2008).  
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Not only does the yolk fuel the morphological changes required for the 

development of zebrafish through the embryonic and lecithotropic stages, it also 

directs some of the early processes by emitting signals for the development of 

the mesoderm, to which Wnt, particularly wnt11, is an early responder and goes 

on with no tail (ntl) to induce development of the zebrafish mesoderm; although 

these genes are not found within the YSL but rather are exogenous responders 

to emitted signals (Makita et al., 1998).  

Both Wnt signalling and peroxisome dynamics are integral to healthy 

development and life, and both are upregulated in early developmental stages. 

Additionally, the master regulators of peroxisome proliferation, the PPARs, are 

targets of the canonical Wnt signalling pathway. It is hypothesised that there is a 

relationship between Wnt signalling and peroxisome dynamics, perhaps similar 

to the relationship between Wnt signalling and mitochondrial biogenesis 

described in 2018 by Bernkopf and colleagues, where Wnt signalling promotes 

proliferation. To interrogate this hypothesised relationship, Wnt signalling was 

manipulated in zebrafish embryos by targeting with Morpholino oligomers and 

CRISPR. The dynamics of peroxisomes, inclusive of their subcellular localisation, 

number and morphology were observed under conditions of normal, reduced and 

enhanced Wnt signalling.  

4.4 Wnt8a and its role in zebrafish 

Investigating the relationship between Wnt signalling and peroxisome dynamics 

first required choosing a Wnt protein and a model organism. Canonical Wnt family 

member wnt8a is maternally-derived and essential for axis formation in zebrafish. 

In a study by Lu, Thisse and Thisse (2011), Wnt8a was found to be the only 

maternally-derived Wnt protein to accumulate at the vegetal pole, clearly 
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demonstrated by whole-mount in situ hybridisation of zebrafish embryos at the 2-

cell stage using antisense RNA probes for various Wnt proteins. Only the embryo 

injected with a probe for wnt8a showed staining at the vegetal pole, despite the 

staining being performed for all Wnt probes used for 24 hours which was 

purportedly 10x longer than usual, to capture even very low levels of mRNA.  In 

fact, ablation of the vegetal part of the yolk cell within the first 20 minutes post 

fertilisation resulted in complete radialisation of the developing embryo due to 

loss of the maternal axial determinants. Embryos treated with nocodazole – an 

agent which interferes with microtubule polymerisation -  resulting in a spectrum 

of phenotypes ranging from missing notochord and head or complete 

radialisation, were able to be rescued by injection of 25 pg of wnt8a mRNA into 

a single blastomere at the 64-cell stage. Overexpression of wnt8a resulted in 

chordin activation, another indication of the relationship between wnt8a and the 

developing dorsal neural tissue in zebrafish embryos.  

The role of Wnt8a in axis development in vertebrates is corroborated by multiple 

investigations (Baker et al., 2010; Christian & Moon, 1993; Erter et al., 2001; 

Hoppler et al., 1996; Lekven et al., 2001; Ramel & Lekven, 2004; Martin & 

Kimelman, 2008, etc). One mechanism for axis establishment involves wnt8a 

assuming the role of a regulator, alongside Bone morphogenetic protein (BMP), 

of common target genes such as transcriptional repressors Vent, Vox and Ved 

(Ramel & Lekven, 2004) which repress dorsal genes (Imai et al., 2001, Shimizu 

et al., 2002).  

Counterintuitively, loss of BMP does not produce the same phenotype as loss of 

Wnt8a, in that there is no expansion of the organiser (Ramel & Lekven, 2004) 

and therefore head region, nor loss of anteroposterior patterning in the 
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gastrulating embryo (Barth et al., 1999), which led to the assumption that BMP 

regulates these transcriptional repressors in a different way to Wnt8a. However, 

a commonality between the phenotypes of Wnt8a and BMP mutants is the loss 

of posterior and ventral tissue (Ramel et al., 2005).  

The integrity of zebrafish body axis determination hinges on the efficacy of 

maternally-derived Wnt8a. Loss or repression of wnt8a produces recognisable 

phenotypes which have been thoroughly documented and reproduced at various 

stages of embryonic development, through RNA probes and microscopy. Thus, 

wnt8a is an ideal candidate for knock out and knock down via CRISPR or 

CRISPRi respectively because it will produce clear and recognisable phenotypes 

replicated throughout the literature.   

Zebrafish embryos were selected as models in this investigation due to the clear 

understanding of the function of wnt8a elucidated above, in addition to the more 

widely applicable advantages as experimental models. Such advantages include 

a well-established staging system and optical clarity during development with 

clearly delineated brain boundaries, eye and ear, with the onset of pigmentation 

delayed until 24 hpf (Kimmel et al., 1995), making them particularly amenable to 

physiological observation using light microscopy. In the zebrafish, canonical Wnt 

family member wnt8a is integral to the development of the anteroposterior axis, 

and previous studies using Morpholino oligomer inhibition of wnt8a translation 

demonstrated that reduced Wnt8a protein yielded phenotypes with twisted tails, 

developmental delay and changes to the neural tissue along the whole of the 

dorsal side of the embryo (Lekven et al., 2001). This phenotype has been well 

documented and reproduced and can be seen as an initial marker to signify the 

efficacy of Morpholino oligomer- and CRISPR-mediated repression of zebrafish 
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wnt8a. Targeting a gene using Morpholino oligomers to inhibit translation is 

widely-accepted as an efficacious method, however, it is also associated with 

numerous side effects, such as off-target effects. The precision of modern tools 

such as CRISPR have circumvented some of these issues, including a large 

reduction in off-target effects.  

4.5.0 Phenotypic changes in zebrafish embryos injected with CRISPR/CRISPRi 

constructs  

Since CRISPR became available as a tool for the targeted modification of the 

sequences of genes, it has been successfully implemented to modify the 

genomes of multiple organisms. The system consists of a Cas9 endonuclease 

and a synthetic chimeric guide RNA targeted to a region of the gene of interest. 

Due to the short sequence of the gRNA, the targeting is inherently specific and 

lacks some of the lesser attributes of other methods used to modify gene 

expression, such as the high penetration of off-target effects associated with the 

use of Morpholino oligomers.  

In CRISPR interference (CRISPRi), the Cas9 enzyme is rendered catalytically 

inactive, or dead, by mutations in the two endonuclease domains, and as such is 

termed dCas9. Effector molecules can be used in conjunction with dCas9 which 

can activate (VP64) or enhance the repression (KRAB) of the target gene 

(Boettcher & McManus, 2015). Future continuation of this study could implement 

the effectors to modify the action of dCas9-mediated knockdown of wnt8a; for 

example, one could compare the phenotypes, RNA patterning and RNA quantity 

in embryos injected with gRNA targeted to tyrosinase and either dCas9, dCas9-

KRAB or dCas9-VP64 as a read-out for differences in efficiencies before moving 

to use the deactivated endonuclease and effectors with gRNA targeted to wnt8a.  
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4.5.1 Targeting tyrosinase with CRISPR and CRISPRi  

To test the efficacy of dCas9 and Cas9 RNA transcribed during this investigation, 

the endonuclease RNAs were paired with gRNAs targeted the tyrosinase gene 

essential for the development of pigmentation. At 28 hpf, the eye and the dorsal 

line of the zebrafish are darkly pigmented, as demonstrated by the wild type 

embryo in Figure 5. Upon targeting tyrosinase with CRISPR, the area of the 

embryo which is pigmented is significantly reduced (Figure 6) as shown by the 

absence of pigmentation in the areas in which it occurs in the wild type (Figure 5) 

- the pigmentation was knocked out by targeting tyrosinase with CRISPR Cas9. 

The efficacy of the knockout was not 100%, which demonstrates the mosaicism 

typified by using CRISPR.  

In contrast, when tyrosinase was targeted by CRISPRi, there was again 

significantly less pigmentation than in the wild type (Figure 6), but this in many 

places was shown by a mix of transparent tissue and tissue in shades of grey 

(Figure 5), which demonstrates where the transcription of tyrosinase has been 

reduced rather than prevented. Thus, this experiment clearly demonstrated that 

both of the endonucleases were functioning as expected when referring to 

published literature and highlighted the efficacy of zebrafish as experimental 

models due to the ease of observation through light microscopy.  

4.5.2 Designing gRNA to target wnt8a with CRISPR and CRISPRi  

To develop a stable method to manipulate the expression of wnt8a in the 

zebrafish, gRNAs were designed as synthetic 2-piece RNAs to target 20 

nucleotide regions in the untranslated regions of both open reading frames, 

proximate to the ATG, and in exons 1 and 3 of each open reading frame, exon 2 

being too short in both cases to likely generate enough possibilities for targeting. 



 
 
  Lauren Porter 620007286 

96 

Cas9 and dCas9 endonucleases were amplified from pCS2+ plasmids. 

Combined, the Cas9 endonuclease RNA and gRNA targeted to exon 1 and/or 3 

of ORF1 or 2 cut wnt8a in vitro (Figure 7) with sufficient but incomplete efficiency 

indicated by the triple band pattern seen in all wells with the full complement of 

constituents, the triple bands indicating, in height order, the uncut template, and 

the two pieces of cut fragmented template DNA. The presence of three bands of 

DNA of differing sizes was taken to indicate that the combination of gRNA and 

Cas9 was appropriate for trialling in vivo in zebrafish embryos.  

4.5.3 Measures taken for controls  

A limitation of experimentation in vivo is the multitude of confounding factors 

which can influence the outcome. To mitigate these, several controls were put in 

place. Embryos which appeared to be less developed than the prim-6 stage were 

discarded, because any deviations from the phenotype set out by the staging 

system could be due to developmental delay rather than the impact of 

downregulated wnt8a signalling in the embryo.  

Secondly, to control for any effects on the morphology of the embryos inflicted by 

Cas9 or dCas9 endonucleases, injections were performed with the two 

components in isolation at equal concentrations to those injected with gRNAs, 

replacing the gRNA component with nuclease-free water. In this case, it is 

expected that the endonucleases would not knock out or knock down wnt8a 

because they were injected in absence of the guiding RNA which directs them to 

the gene of interest. 

Injection with the endonuclease only did not produce embryos that varied 

significantly (Figure 8 B, C) from the wild type (Figure 8 A) at 28 hpf. Image B has 

a slight kink to the tail, but not to a degree dissimilar to the intrinsic variation of 
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the wild types seen at this point in development, with reference to both the high 

volume of images captured of wild type zebrafish in this investigation and to 

images captured by other groups and published in the literature. Around 100 

embryos were included in each injection batch (for example, 100 wild type 

embryos, 100 Cas9 control embryos were injected) and the images chosen for 

the figure represent the phenotype of the largest proportion of embryos within 

that batch.  

Thirdly, bias was removed from the selection process for imagery by grouping the 

fixed embryos into categories based on the phenotypes first, and then counting 

the number of individuals within each group and selecting an embryo which 

represented the common phenotype of the group, be it ‘wild type’, ‘mild’ or 

‘severe’.  

4.5.4 Implementation of CRISPR and CRISPRi to target wnt8a and phenotypic 

observations 

The morphological changes of the zebrafish embryo during development are 

well-documented and consistent, forming the basis of the staging series 

established by Kimmel and colleagues (1995) which has since been globally 

adopted for zebrafish studies. A staging system is more advantageous than using 

time after fertilisation, during which time variables such as temperature can affect 

how quickly the embryo develops. At 28 hpf, the wild type zebrafish is between 

stages prim-6 and prim-16. The somites have developed, the tail is straight or 

almost straight, and the eye, ear and MHB are all clearly visible through simple 

light microscopy. The nervous tissue has an organised appearance, with the brain 

divided clearly into forebrain/midbrain and hindbrain by the MHB (Kimmel et al., 

1995). 
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In contrast, zebrafish embryos injected with Cas9 or dCas9 RNA and gRNAs 

targeted to wnt8a did not retain the phenotype described by Kimmel and 

colleagues (1995) at 28 hpf. Zebrafish embryos were injected at the 1-4 cell stage 

with Cas9 or dCas9 RNA and a gRNA targeted to wnt8a, as previously described. 

Embryos were maintained in E3 medium at 28 °C until 60-90% epiboly for in situ 

hybridisation and until 28 hpf for morphological study.  

The aberrant phenotypes generated included embryos with disorganisation of 

nervous tissue from the head along the dorsal line, including partial or entire loss 

of the MHB. The dorsal nervous tissue lost clear structural distinction which 

continued along the whole dorsal side of the embryo, resulting in highly crooked 

tails and trunks. Additionally, the aforementioned phenotypes also carried 

changes to eye and head shape (Figure 8 D-G). These phenotypes clearly 

differed from wild type embryos, and represent an effective knock out and knock 

down of wnt8a.  The observed phenotypes distinctly resembled the phenotypes 

exhibited in the study by Lekven and colleagues (2001) using Morpholino 

oligomers targeted to wnt8a. Further mirroring Lekven and colleagues’ findings, 

targeting the second open reading frame generated more severe phenotypes 

than targeting the first open reading frame of wnt8a. Consistent with expectations, 

targeting wnt8a with CRISPR yielded more severely defective phenotypes than 

targeting wnt8a with CRISPRi.  

Knocking out or knocking down of posteriorisation factor wnt8a clearly affects the 

development of wild type morphology. On a protein level, part of the mechanism 

of posterior development involves a positive autoregulatory loop between 

zebrafish T box transcription factor no tail (ntl, also known as Brachyury, Bra, in 

the mouse) and wnt8a to maintain mesodermal progenitors which allow the 
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development of posterior somites (Martin & Kimelman, 2008). Loss of auto-

regulation, which allows such maintenance and expansion, has been proposed 

to underlie the dorsalization of wnt8a knockout embryos such as those 

demonstrated by Lekven and colleagues (2001). An alternative hypothesis given 

by Baker, Ramel and Lekven (2010) is that mesodermal dorsalization results in 

a lower number of ventrolateral or mesoderm progenitors being specified, and 

that this is the root cause of the dorsalization rather than maintenance/expansion 

being the primary cause.  

4.5.5 Comparison between targeting the first and second open reading frames of 

wnt8a 

Targeting ORF2 with either Cas9 or dCas9 resulted in phenotypes with more 

severe defects than targeting ORF1. The most severe phenotype presented is 

Figure 8 F where there is severe truncation of the posterior end of the embryo, 

similar to the no tail (ntl) zebrafish mutant (Schulte-Merker et al., 1994), 

enlargement of the forebrain and loss of visible MHB. Pigmentation is lost in 

Figure 8 D-G. Canonical Wnt activity produced by wnt8a is required after 

organiser formation is induced by ligand-independent β-catenin signalling to 

antagonise the action of β-catenin and to ensure ventralisation and 

posteriorisation of tissue. Hence, zebrafish wnt8a mutants or Xenopus double 

negative mutants show loss of ventral and posterior tissue alongside enlarged 

organiser (Hoppler et al., 1996; Lekven et al., 2001).  

Due to the organiser releasing the proteins required for head formation, the 

phenotypes seen in these embryos also include enlarged heads (De Robertis et 

al., 2000). Conversely, whilst an enlarged dorsal organiser is demonstrated in 

Figure 12, only a modest increase to the most anterior portion of the head is 
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visible in embryos at 28 hpf when targeting wnt8a2 in Figure 8 F and G, which 

could perhaps be attributed to insufficient deletion of cells in this portion of the 

head or true expansion. In both Figures 12 and 8, the phenotypes are visible only 

when targeting wnt8a2 rather than wnt8a1, the former of which has been 

demonstrated to be the open reading frame with the greatest impact seen on 

phenotypes when knocked out both in this investigation and in literature (Lekven 

et al., 2001). Lack of significant increase to head size in the face of increased 

size of the dorsal organiser is indeed puzzling, and could be addressed by 

performing further iterations of the experiment to see whether this trend is 

consistent. If so, it would be interesting to gain a better understanding of the 

impact of wnt8a downregulation in this experiment on the downstream 

components of the canonical Wnt pathway and understand whether these could 

have an impact on head formation, and, more specifically, their interaction with 

the aforementioned components released from the organiser to induce head 

formation.  

The same truncated phenotype as seen in Lekven (2001) and Hoppler’s (1996) 

studies is found in embryos injected with Cas9 and gRNAs targeted to ORF1 of 

wnt8a, but to a lesser degree; reflecting the same pattern seen when targeting 

ORF1 with a Morpholino oligomer as opposed to ORF2 (Figure 10) and mirroring 

results found in the literature. When comparing embryos where ORF1 or UTR1 

is targeted to embryos where ORF2 or UTR2 is targeted, a more enhanced 

defective phenotype was seen when targeting ORF2 or UTR2, which is consistent 

with both Morpholino oligomer-targeting experiments completed in this study and 

by Lekven and colleagues (2001), when they injected zebrafish embryos with 

Morpholino oligomers targeted to wnt8a and performed morphological analysis 
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at 24 hpf. Lekven and colleagues (2001) found milder defects presented in 

embryos injected with Morpholino oligomers targeted to ORF1 of wnt8a and 

heightened defects in embryos injected with Morpholino oligomers targeted to 

ORF2, including poor differentiation in the brain and a crooked notochord. 

Injection of Morpholino oligomers targeted to both ORF1 and ORF2 

simultaneously presented the most severe phenotype (Lekven et al., 2001). 

These findings correspond to those presented here in Figure 10, with the mildest 

defective phenotype induced by injection with Morpholino oligomer targeted to 

ORF1, a stronger defective phenotype presented by embryos injected with ORF2 

and the most severe defective phenotype in embryos injected with Morpholino 

oligomers targeted to both open reading frames. This pattern infers, as suggested 

by Lekven and colleagues (2001), that one ORF may be able to compensate for 

the loss of the other, a response which is disabled by blocking of both ORFs.  

4.5.6 Comparison between targeting wnt8a with CRISPR or CRISPRi  

In congruence with expectations for the efficacy of transcriptional downregulation 

by dCas9, embryos injected with gRNA - targeted to either untranslated region - 

and dCas9 RNA presented less severely defective phenotypes (Figure 8 E, G) 

than those injected with Cas9 RNA and gRNAs targeted to either open reading 

frame. While in Figure 8 E there is still some anterior extension of the forebrain, 

there is more distinction of form of the eye and the MHB is still visible, compared 

to image D, where the MHB is invisible and the tail is truncated. The same pattern 

can be observed in images G and F. This milder phenotype reflects the mode of 

action of dCas9 as a repressor of transcription as opposed to the action of Cas9, 

where the double stranded break, common mis-repair by non-homologous end 

joining and associated termination of transcription prevent the gene from being 
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transcribed from the point of the break. The action of dCas9 as a steric block to 

RNA polymerase may over time dissociate and allow the full gene to be once 

more transcribed. This highlights an advantage of CRISPRi in that effector 

molecules can be used to achieve an on/off switch for the deactivated 

endonuclease such that induced phenotypes are reversible and the DNA is not 

irreversibly damaged, as it is when a double stranded break is induced by Cas9 

(Qi et al., 2013).  

The phenotypic changes observed subsequent to the injection of Cas9 or dCas9 

with gRNA targeted to wnt8a are distinct to the phenotypes of either wild type 

zebrafish at the same stage or control embryos injected with the endonuclease 

only. The phenotypes are comparable with other investigations which also 

repress wnt8a signalling. These physiological phenotypes induced by 

manipulating the signalling of wnt8a can be corroborated by examining the 

expression patterns of wnt8a and downstream pathway components in embryos 

fixed earlier in development.  

4.6 Changes in expression pattern of wnt8a at epiboly  

Changes in levels or localisation of gene expression can be visualised by 

targeting fixed tissues with antisense RNA probes which are labelled with a 

marker, in this case digoxigenin, and complementary to the gene of interest using 

in situ hybridisation. A positive signal is detected using antibody staining targeted 

to the marker, digoxigenin (Thisse & Thisse, 2008). Antisense RNA probes 

against zebrafish wnt8a1 and wnt8a2 were transcribed from plasmids. To check 

that the probes would be effective against the wnt8a transcribed in the zebrafish 

used in this experiment, both open reading frames of wnt8a were amplified by 

PCR and sequenced by Eurofins from a wild type zebrafish. The first open 
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reading frame was successfully sequenced, and it had 100% congruence with 

the sequence data available in online databases within the introns of wnt8a1. 

Thus, it was considered likely that the same results would be seen for wnt8a2 

and therefore the pre-designed probes against wnt8a1 and wnt8a2 would be 

effective.  

After in situ hybridisation was complete, wild type embryos at 70-90% epiboly 

showed a strong band of wnt8a1 at the margin, with a gap for the organiser, this 

being directly comparable to established patterns of wild type wnt8a signalling. 

Embryos injected with wnt8a-targeted CRISPR or CRISPRi constructs exhibited 

RNA staining patterns incomparable with wild type embryos. Phenotypes 

observed include mosaicism and expansion of the dorsal organiser. 

It could be argued that this loss of staining could be attributed to the embryo being 

fixed at a later stage; at 90-95% epiboly, wnt8 is laterally downregulated and as 

such in situ mounts show a highly faded pattern (Kelly et al., 2000). However, the 

embryos in Figures 11 and 12 were fixed earlier in epiboly – 70-80% - which is 

demonstrated by the positioning of the margin at the midline of the embryo and 

the strong signal of wnt8a in the wild type embryos, which were fixed 

contemporaneous to the injected samples.  

The mosaic loss of wnt8a in certain cells adheres well to the principle of mosaic 

expression of CRISPR constructs in injected embryos; not all cells will express 

the construct, and therefore not all cells will have lost or downregulated wnt8a 

transcription, and it follows that staining, resulting in some deep purple stained 

cells, some lilac and some with only very light background staining, are seen 

throughout the literature and within this study. Mosaicism here is comparable to 

the mosaic pigmentation seen previously (Figure 5) when tyrosinase was 
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targeted by CRISPR Cas9 and CRISPRi dCas9, demonstrating consistency 

between the effects of the two methodologies.  

Interestingly, wnt8a1 and wnt8a2 appear to have overlapping but distinct 

expression patterns in wild type zebrafish embryos, which one could consider to 

visually represent the two open reading frames’ overlapping but distinct roles. In 

several studies, wnt8a1 or wnt8a2 loss has been shown to produce distinct 

phenotypes, with loss of wnt8a2 inducing more severe defects (Lekven et al., 

2001), a pattern which has been reliably reproduced throughout this investigation 

when observing the phenotypes of injected embryos at 28 hpf (Figure 8). The 

wnt8a2 expression pattern shows a band of signal around the margin, 

comparable to wnt8a1, with an additional band position towards the animal pole. 

This secondary band was lost in embryos injected with CRISPR and CRISPRi 

constructs targeted at wnt8a2 (Figure 12). Topically and temporally differential 

expression of the two open reading frames is described elsewhere; in medaka, 

Mwafi and colleagues (2014) found that wnt8a2 transcripts disappear from 

marginal cells by as early as 40% epiboly, which were taken to imply functional 

differences in Wnt signalling between the evolutionarily distant teleosts.   

Other noticeable deviations from the wild type phenotype is a curious asymmetry 

in the images. This is particularly evident in embryos which were injected with 

CRISPR and CRISPRi constructs targeted to wnt8a1. Mosaicism and low levels 

of signalling – demonstrated by lower intensity, i.e. lighter purple, staining – is 

particularly apparent on the right side of the images. This is representative of a 

great number of the embryos staining during this experiment. The orange arrows 

in Figures 11 and 12 mark areas which are particularly affected by mosaic 

staining and therefore changes to RNA staining pattern. For example, in Figure 
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11 C, there is a mosaicism to the right of the dorsal organiser, marked with an 

asterisk. In Figure 11 F, the right side of the organiser is much depleted, 

compared to both the wild type and the left side of the organiser in the same 

image. This pattern is shown from the animal pole in images D and F, and reflects 

the same patterning.  

Congruent with the more extreme phenotypes seen in embryos at 28 hpf both in 

this investigation and others, such as that by Lekven and colleagues in 2001, 

embryos at 70-80% epiboly targeted with CRISPR and CRISPRi constructs 

targeted to wnt8a2 show a much stronger aberrant patterning phenotype than 

those where wnt8a1 is targeted. A lesser degree of mosaicism was observed 

around the whole margin, however the secondary band of signalling, towards the 

animal pole, was greatly reduced or not visible. In addition, the width of the gap 

in marginal wnt8a signalling around the dorsal organiser noticeably increased 

while the entirety of the band adopted a misshapen appearance when compared 

to wnt8a patterning in wild type embryos. For example, in Figure 12 C, the right 

side of the margin is higher than the left, and in E there is a distinct curling to the 

ends of the band of Wnt signalling as they progress towards the dorsal organiser, 

which indicates possibly a misshapen embryo. One hypothesis to explain the 

changes in the shape of the band of wnt8a signalling is disturbance caused by 

the needle during injection. However, care was taken to inject as early as possible 

in the development of the embryo, at the 2-4 cell stage, to minimise the 

disturbance caused by needle insertion into the cells. Expansion of the dorsal 

organiser and concomitant increase of anteriorising signals causing increased 

head size in the developed embryo is a recognised hallmark of Wnt signalling 
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being knocked out. The organiser is induced by Wnt signalling, but also requires 

Wnt to prevent its excessive expansion (Ramel & Lekven, 2004).   

In addition to distinct differences in patterning between the two open reading 

frames in both control and CRISPR Cas9 and CRISPRi dCas9 embryos, the 

application of either CRISPR Cas9 or CRISPRi dCas9 to knock wnt8a out or 

down resulted in embryos with consistently different expression patterns. For 

wnt8a2, this manifested as a generally higher level of signalling intensity being 

maintained in embryos injected with dCas9 and gRNA targeted to wnt8a2 UTR2, 

which demonstrates the mode of action of dCas9 as a method to repress rather 

than prevent the transcription of the target gene in cells.  

The phenotypic differences between embryos where wnt8a was knocked out by 

CRISPR Cas9, or knocked down by CRISPRi dCas9, are pronounced, which 

corroborates the phenotypic differences seen in embryos at 28 hpf that have been 

injected with CRISPR/CRISPRi.  

4.7 Quantifying changes in expression levels of wnt8a downstream genes  

In situ hybridisation using anti-sense probes for wnt8a1 and wnt8a2 revealed wild 

type embryos with wnt8a patterning which matched examples established in the 

literature. Embryos that had been injected with CRISPR and CRISPRi constructs 

targeted to one of the two open reading frames consistently deviated from the 

wild type phenotype, for example by showing staining mosaicism and fading in 

the strong band of wnt8a signalling displayed in wild type embryos.  

For embryos where wnt8a1 was knocked out or knocked down, the most 

noticeable phenotypic incongruence was mosaicism in the band of wnt8a1 

signalling at the marginal zone, where in wild types this was a strong and solid 

band. In embryos injected with CRISPR and CRISPRi constructs targeted to 
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wnt8a2, there was a degree of mosaicism, but more notably a disappearance of 

the second band of wnt8a2 signalling which was apparent above the marginal 

region in the wild type embryos – and in embryos from other studies such as 

those by Mwafi and colleagues (2014) – in addition to a widening of the dorsal 

organiser.  

 A correlation between differences in RNA patterning and differences in the 

quantity of RNA transcribed can be established by RTqPCR. RNA was extracted 

from zebrafish embryos and the quantity of wnt8a RNA expressed by wild type 

embryos was established and compared to embryos injected with CRISPR Cas9 

and CRISPRi dCas9 targeted to wnt8a. Additionally, the expression levels of 

downstream Wnt pathway components such as axin and lef1 were measured to 

establish whether changes in wnt8a transcription had impacted on the 

transcription of the pathway constituents.  

The results demonstrated that both open reading frames of wnt8a were 

significantly downregulated in embryos injected with CRISPR Cas9 or CRISPRi 

dCas9 targeted to wnt8a, compared to wild type embryos. This corroborates the 

results of morphological analysis and RNA patterning analysis and infers that the 

CRISPR Cas9 and CRISPRi dCas9 constructs targeted to wnt8a successfully 

downregulate the transcription of the target gene.  

Curiously, despite targeting only one of the open reading frames in a sample, 

both open reading frames were downregulated. Lekven and colleagues (2001) 

suggest cross-talk between wnt8a1 and wnt8a2 in zebrafish. Such cross-talk may 

go some way to explain the unexpected pattern described above. To eliminate 

the possibility of primer binding infidelity, wnt8a1 levels were artificially elevated 

by injection with wnt8a1 RNA. The results showed a large upregulation of wnt8a1, 
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and a slight but much smaller uplift from wnt8a2, which inferred that the individual 

primers were not binding with both open reading frames and producing identical 

results. Interestingly, two primers were used for each open reading frame, and 

only one (wnt8a1A) underwent a large uplift, although why this occurred was not 

established. Overexpression of wnt8a1 established primer fidelity, yet also raised 

the question that if only detection of wnt8a1 is upregulated artificially by injection 

of wnt8a1 RNA, then why if wnt8a1 transcription is downregulated by injection 

with CRISPR/CRISPRi constructs, is wnt8a2 downregulated in tandem? It is 

widely acknowledged that the wnt8a locus is complex, with two open reading 

frames, two untranslated regions and three transcription start sites (Lekven et al., 

2001), and my results do not deviate from this observation.   

The consistency of downregulation of transcription of wnt8a contrasts to the 

results collected when quantifying the impact of wnt8a knockout and knockdown 

on Wnt downstream genes axin2 and lef1. When wnt8a1 RNA was injected in the 

overexpression experiment, there was no significant effect in the level of axin2 

and lef1 RNA levels. This is somewhat surprising given the huge increase in 

wnt8a1 RNA detected by wnt8a1A primer, and given that Axin2 and Lef1 are 

downstream components of the canonical Wnt pathway. A possibility may be that 

the samples were taken at a time point which was too early to see downstream 

effects, but this is doubtful because the cells were injected at the 2-cell stage, 

and harvested at 70-90% epiboly, which are distanced by around 9 hours of 

development within a 28°C incubator. If even a large increase in cellular wnt8a1 

levels did not have a significant effect on the translation of axin2 or lef1, it is no 

surprise that a more nuanced decrease in the level of wnt8a1 or wnt8a2 

transcribed did not produce significant changes in the transcription of the 



 
 
  Lauren Porter 620007286 

109 

downstream pathway components. The decrease in wnt8a1 and wnt8a2 cellular 

RNA levels is here described as more nuanced and a less precipitous decrease 

than the increase in wnt8a1 RNA mediated by injection because the wnt8a1 RNA 

injected was zebrafish RNA which then must undergo one step, translation, to 

form protein and participate in the network of Wnt pathways. In contrast, the 

method of action of CRISPR or CRISPRi constructs is multistep, and the uptake 

in cells is often mosaic; the constructs are injected as RNA and must be 

transcribed to form the Cas9/dCas9 proteins, which must then translocate to the 

nucleus, hybridise with the corresponding gene and induce a double stranded 

break or impair transcription. For the former, this must then be repaired incorrectly 

and produce a stop codon to prevent transcription. The multi-step process, 

coupled with the mosaic nature of uptake of CRISPR and CRISPRi constructs, 

lends itself to a process which both is temporally lengthy in comparison to simple 

injection of wnt8a1 RNA and contemporaneously produces reduction in target 

DNA transcription in only some cells, and in the case of dCas9, only some of the 

transcript is prevented from transcription, hence the muted repression as 

opposed to knockout phenotypes associated with the catalytically active form of 

the enzyme. Thus, if no distinguishable effect is to be found in the amount of RNA 

of the downstream genes in the wnt8a1 overexpression experiment, then it is 

concordant that in the CRISPR/CRISPRi samples, effects on downstream 

signalling components of the canonical Wnt pathway remain insignificant.  

The results of the two experiments are therefore in agreement with each other, 

but are still unexpected.  Axin2 is an established read-out for activity of the 

canonical Wnt pathway, for example in studying pathway activity in the 

developing zebrafish caudal fin (Wehner et al., 2014), and in studying Wnt-
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mediated control of scale formation in zebrafish (Aman, Fulbright & Parichy, 

2018) Transcription of axin2 is induced by canonical Wnt signalling via Tcf/LEF 

sites and acts as a negative regulator of the pathway, forming part of the 

degradosome which targets β-catenin for degradation within the cytoplasm. In 

mice, Axin is expressed constitutively, whereas Axin2 is temporally limited to 

embryogenesis and organogenesis, underscoring the importance of controlling 

Wnt signalling during these formative processes. Jho & colleagues (2002) found 

that Axin2 could be reliably and quickly induced by Wnt signalling, which is in 

contrast to the results of the overexpression experiment performed in this 

investigation. However, when wnt8a1 ORF1 was targeted by Cas9, there was a 

significant decrease in the transcription of lef1, and a general pattern of decrease 

in axin2 transcription, although this was too varied to be statistically significant. 

The results for both axin2 and lef1 were much more varied than for the wnt8a1 

and wnt8a2 transcripts themselves. On the one hand, this could be considered 

intuitive as the proteins are distanced within the pathways and there are many 

confounding variables which could affect the translation of downstream proteins. 

At the same time, the interrelation of Wnt8a proteins and their downstream 

components is well-established and quickly reproducible in experiments such as 

those performed by Jho and colleagues (2002). lef1 is a direct target of canonical 

Wnt signalling, an HMG box family member which acts as a positive transcription 

factor dependant on β-catenin, binding alongside Tcf and Lef binding sites which 

are found in upstream regulatory sequences. In the absence of β-catenin, Tcf is 

a transcriptional repressor, but upon binding of β-catenin, the repression 

mechanism is disabled, although how this is achieved remains unknown (Dorsky 

et al., 2002).  
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Concurrent with the aberrant phenotypes documented in injected embryos at 28 

hpf – including perturbations to the neural structure from the forebrain all the way 

along the dorsal axis, manifesting as nonspecific tissue, changes to head shape 

and developmental delay – and mosaicism in wnt8a expression demonstrated by 

aberrant staining patterns in in situ hybridisation samples at 70-80% epiboly, 

there is a consistent and highly statistically significant downregulation of wnt8a1 

and wnt8a2 in samples injected with Cas9/dCas9 and gRNA targeted to either 

open reading frame. The consistency of the results, with all but one example 

falling within the 5% confidence levels, coupled with phenotypic and pattern data, 

infers that wnt8a1 and wnt8a2 were successfully downregulated in zebrafish 

embryos in this experiment via injection of Cas9 or dCas9 coupled with gRNA 

targeted to either the first or second open reading frame or untranslated region 

of wnt8a. Therefore, CRISPR and CRISPRi embryos could be used to study 

peroxisome dynamics compared to dynamics within wild type embryos.  

4.8 Peroxisomes in human cell culture  

Peroxisomes were studied both in human cell culture, where high rates of 

proliferation and adherence to the surface of the dish created samples highly 

amenable to rapid imaging and repeated experiment, and additionally in live 

zebrafish embryos, where the time investment to produce images is significantly 

greater. The purpose of beginning the studies with cell culture was to visualise 

peroxisomes and any changes generated by addition of Wnt-inhibiting or Wnt-

activating chemicals in a simple isolated environment whilst developing my 

CRISPR toolkit. The distribution of the Wnt-inhibitor/activator chemical is more 

easily controlled over the surface of a plate than by application to embryo 

medium; the requirement of the former is adsorption across the flat surface of a 
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cell, as opposed to penetrance of a ball of many cells. Additionally, embryos are 

undergoing innate developmental processes mediated by many intermediary 

factors and chain reactions such as axes and tissue specification which may 

interfere with the effects of chemicals applied.  

Human gastric adenocarcinoma (AGS) cells were chosen for imaging because 

they have higher rates of proliferation and greater cell sizes than zebrafish 

fibroblast (PAC2) cells, which were considered as an alternative. Both cell types 

are known to contain peroxisomes, a well-conserved organelle throughout 

evolution. Wnt signalling is known to be high in AGS cells, and I hypothesised 

that they would be a good candidate for manipulation of the pathway. Unbridled 

Wnt signalling in cancerous cells was first directly linked to colorectal cancer, 

where mutations in the adenomatous polyposis coli (APC) gene was found to be 

the underlying cause of hereditary colon cancer syndrome. APC was found to 

interact with β-catenin, and mutations in APC led to overactive β-catenin 

signalling (Zhan, Rindtorff & Boutros, 2017). High levels of Wnt signalling are 

established in AGS cells, and correlate with tumour progression and genesis in 

patients with gastric cancer, perhaps through maintenance of Cancer Stem Cells 

(CSCs). In particular, Wnt1 has been found to be overexpressed, alongside 

CD44, in mouse gastric cancer cells (Mao et al., 2014). 

AGS cells were transfected with SKL-GFP. SKL is a type 1 peroxisomal targeting 

signal (PTS1), one of two such chaperones which guide proteins to receptors on 

the single peroxisomal membrane for import, a mechanism required to prevent 

the occurrence of peroxisomal ‘ghosts’, shell-like peroxisomes which do not 

contain any matrix proteins, because peroxisomes lack endogenous DNA, or 

transcriptional or translational machinery. SKL was fused to GFP, and therefore 
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marks peroxisomes, or peroxisome-like structures, in green. Here we use 

‘peroxisome-like structures’ because the identity of the organelle was not 

confirmed via any method such as immunohistochemistry. However, SKL is used 

to illuminate peroxisomes throughout the literature, such as the work of 

Waterham and colleagues (2007), where pEGFP-SKL was used to examine the 

morphology and orientation of peroxisomes in control and patient fibroblasts. The 

analysis yielded images which showed mitochondria as long tangled chains and 

peroxisomes that were fewer in number, oft arranged in rows and of varying size 

within patient fibroblasts, as compared to controls. This was due to a defect in 

GTPase DLRP, and showed that the methodology was sufficient to gain an 

impression of changes in peroxisome morphology and dynamics.    

In this investigation, numerous peroxisome-like structures were exposed by SKL-

GFP transfection in AGS and PAC2 cells, with size, number and morphology 

comparable to examples seen in literature, such as control samples in Waterham 

and colleagues’ investigation in 2007.  

A baseline number of peroxisomes per cell in similarly-sized cells was 

established. Following the setting of this wild type threshold, cells were divided 

into three groups which received either DMSO (volume equal to the largest 

volume applied to dilute either BIO or IWR1 to the required concentration in the 

test groups), which formed the control group, or Wnt activator BIO or Wnt inhibitor 

IWR1 for the test groups. The concentration chosen for measurement was the 

highest that could be withstood by the cells without inducing unacceptable side 

effects such as high mortality rates and serious malformation. However, in both 

experimental samples, peroxisome number increased. I hypothesise that the 

increase in number of the structures may have been an artefact of transfection, 
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and in fact that the high level of Wnt signalling in the cancer cells was so 

pronounced that the effectors could not reach the threshold required to 

upregulate or downregulate signalling without causing unacceptable side effects 

such as excessive cellular mortality or malformation. Therefore, AGS cells were 

actually disadvantageous to use for Wnt manipulation, contrary to my initial 

hypothesis. Nevertheless, future studies may consider implementing a more 

finely delineated scale of BIO and IWR1 in order to assess more accurately 

whether there are any changes in peroxisome dynamics, or alternatively persist 

using a non-cancerous cell line such as a fibroblast.   

A secondary hypothesis can be postulated when examining the images 

presented in Figure 17 A. In the upper image, there is a large number of 

peroxisomes, whilst the lower image appears to have many less, despite both 

being untreated control cells. The upper image is a human AGS cell, and the 

lower a zebrafish PAC2 cell. On the one hand, this could represent intrinsic 

variation in peroxisome number between the two cell lines; on the other, it could 

be introduced by ineffective transfection, or differences in the orientation of the 

two cells when the images where taken. Therefore, a second reason that the lack 

of difference in the number of peroxisomes – apart from that in both cases, the 

number of peroxisomes in treated cells is greater than in untreated – could be 

that the intrinsic variation in peroxisome number, or differences in the efficacy of 

transfection, or orientation during imaging, led to too great a variation in 

peroxisome number to discern a pattern. It may be that it is more likely a 

combination of the first and second hypotheses. These same hypotheses apply 

to Figure 17 B, where you can see that the differing cell sizes, which intrinsically 

contain differing numbers of peroxisomes, and over-exposure present a difficulty 
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in determining whether peroxisome number in treated cells changed vs. 

untreated cells.   

Therefore, it would be most effective to not only implement a more finely 

delineated scale of Wnt activator/inhibitor application, but also to test methods to 

induce more regularity in the number of peroxisomes revealed in control cells. 

For example, this may take the form of greater control over environmental 

conditions that the cells reside in, due to the plasticity of peroxisomes in response 

to the cellular environment.  

4.9 Peroxisomes in vivo in zebrafish embryos with varying levels of wnt8a 

expression 

In contrast with using Wnt-inhibiting and Wnt-activating chemicals in AGS cells in 

vitro, where we saw no significant difference in the number or morphology of 

peroxisomes in the various treatment groups, there was a distinct effect on 

peroxisomes in live zebrafish embryos where Wnt signalling was manipulated by 

microinjection of inhibiting/activating factors. Zebrafish embryos were injected 

with SKL-GFP and either Morpholino oligomer against wnt8a1 and wnt8a2, wnt8a 

RNA or Cas9 directed to wnt8a. Therefore a spectrum of wnt8a repression – 

overexpression was synthesised. Targeting a gene with Morpholino oligomers is 

known to induce a strong knockout affect, which was consistent with 

morphological changes observed in 28 hpf embryos in this investigation, and 

Cas9 has strong repressive capabilities (Huang et al., 2015; Jao et al., 2013) but 

can be limited by mosaicism of uptake in cells. The control samples should retain 

normal levels of wnt8a for the developmental stage, and the embryos injected 

with wnt8a RNA should experience wnt8a overexpression. Control samples were 

injected only with SKL-GFP.  
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Similarly to my work in AGS cells, a baseline of peroxisome number and 

morphology was established by studying images of embryos injected with SKL-

GFP only at epiboly. All non-control images of embryos were compared to this 

baseline. In addition to visual study of the images, the proportion of the cell that 

was fluorescing was analysed using ImageJ software. Both measures are 

presented because an increase in the proportion of the cell that was fluorescing 

could be due to an increase in the size of individual or clumped-together 

peroxisomes, or due to a greater number of individual puncta or clumps of 

peroxisomes of unchanged size. Conversely, a decrease in the proportion of the 

cell that is fluorescing could be due to clumping of peroxisomes without an 

increase in their number or due to a lesser number of individual puncta. Visual 

analysis of the images was therefore required to ensure that false assumptions 

were not made as a result of numerical data.  

In embryos injected with SKL-GFP coupled with Morpholino oligomers targeting 

both open reading frames of wnt8a (wnt8a1, wnt8a2), there is severe clumping 

of the green signal, visible in Figure 20. The peroxisome-like structures have 

transitioned from the majority of singular puncta in control cells, with a low 

incidence of clumped signal, to the majority of the cell being occupied with 

clumped signal and a lower incidence of singular, distinct puncta, taken from the 

specificity of the marker SKL in its role as a targeting protein for peroxisomal 

proteins synthesised in the cytosol (Subramani, 1998), to be peroxisomes.  

I hypothesise that these clumped structures may reflect a defect within the 

process of division of these organelles. Growth and division of peroxisomes, as 

discussed earlier within this thesis, occurs either de novo or from asymmetrical 

division of pre-existing peroxisomes, the latter of which forming the majority of 
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replenishment after cell division or a dynamic increase in response to cellular 

needs (Schrader et al., 2012).  

Growth and division of peroxisomes is a morphologically distinct process, 

commencing with extension of the peroxisomal membrane, constriction of the 

tubule into small ‘beads’, and scission of the membrane to produce several 

smaller peroxisomes which have asymmetrically budded off the originator 

(Grabenbauer et al., 2000). A defect in peroxisome division produces a 

recognised ‘beads on a string’ phenotype where the final scission event, 

mediated by GTPase DLP1, does not occur. The extension and associated 

membrane bending does however, and the result is an asymmetric extension 

bent into spheres along the length of it with the resultant phenotype of a string of 

beads, which is commonly used as a marker for peroxisomal diseases of 

proliferation (Schrader et al., 1996). If these structures fluoresce, it is reasonable 

to infer that at the relatively low resolutions offered by confocal microscopy, the 

resultant images would look like clumps of fluorescent signal. As this clump-like 

phenomenon is already recognised, it is not unreasonable to hypothesise that a 

similar effect may be taking place in the images in Figure 20. Further investigation 

must be performed to understand whether high level wnt8a repression does 

impact upon peroxisomal growth and division.  

Wnt signalling is already associated with organelle proliferation; Wnt signalling 

can stimulate the proliferation of the ‘sister organelle’ of peroxisomes, 

mitochondria after reception of mitochondrial stress and concomitant loss of 

mitochondrial membrane potential, triggering mitophagy of damaged 

mitochondria and replenishment of the cellular quotient via Wnt signalling 

(Bernkopf et al., 2018).  
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In embryos injected with SKL-GFP and wnt8a RNA in an overexpression 

treatment, the phenotype displayed is quite different. While there are also some 

areas of clumped signal, these appear to be larger than examples in the wnt8a 

Morpholino and wnt8a Cas9 samples. There is also a greater presence of small 

puncta in each cell. As a result, these cells had a significantly greater (P<0.005) 

proportion of cell that was fluorescent than the control cells. This infers that wnt8a 

may be a positive regulator of peroxisomal abundance; PPARβ is after all a target 

of the canonical Wnt pathway (Huelsken & Behrens, 2002). In this case, the 

clumping coupled with the greater volume of small puncta within the lumen of the 

cell could be due to enhanced multiplicative activity.  

If there were greater numbers or larger clumps of fluorescent signal with an 

absence of high number of small puncta, one could surmise that a similar 

hypothesis to the one proposed for the Morpholino oligomer samples could be 

adopted; that overexpression of wnt8a interferes with replicative machinery and 

terminates the process in its intermediary stages. However, the large clumps of 

signal coupled with a high volume of small puncta could be taken to infer the 

opposite; that wnt8a overexpression increases the asymmetric growth and 

division of peroxisomes. In this scenario, the incidence of clumped areas of signal 

are replicating peroxisomes caught in an intermediary stage at the time of 

imaging, rather than replicating peroxisomes in stasis at an intermediary stage 

due to a defect in replication.  

Embryos injected with SKL-GFP and Cas9 RNA targeted to wnt8a appear 

differently to controls (Figure 20) and fit into the pattern displayed by the spectrum 

of Wnt pathway signalling developed here by microinjection of various factors. 

Single puncta within the lumen of the cell appear to be less numerous, and some 
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areas of conglomerated fluorescent signal can be observed, both in the bottom 

third of the image. The clumps of signal are not as numerous as comparable cells 

in the images of the embryos injected with Morpholino oligomers directed to 

wnt8a open reading frames 1 and 2, but the appearance of the cells is more 

consistent within the sample, excepting the cells in the top two thirds of the image, 

which are consistent within themselves but look to be clearly a contrasting cell 

type, and I propose that they are part of the yolk syncytial layer. They do not look 

to have taken up Cas9, demonstrating the mosaicism which can sometimes limit 

this technique. Only cells in the bottom third of the image were used for 

calculating the proportion of each cell that is fluorescing, to make the images 

more comparable to the remaining samples. In this case, injection of Cas9 RNA 

guided by gRNA targeted to wnt8a1 and wnt8a2 resulted in cells with significantly 

lower proportion of fluorescence per cell (P<0.0005, Figure 21). This result infers 

that there may be a relationship between wnt8a signalling and peroxisome 

dynamics, particularly their replication.  

4.10 Future Studies  

The establishment of a relationship between wnt8a signalling and peroxisome 

dynamics has opened a new series of questions. Is this relationship consistent 

between peroxisome dynamics and other Wnt proteins - both canonical and non-

canonical? One of the benefits of using the CRISPR/CRISPRi system is that to 

answer this question, only the gRNA must be redesigned. Multiple constructs can 

be injected contemporaneously within a single collection of eggs which further 

enhances the efficiency of using CRISPR/CRISPRi systems, and allows direct 

comparison of the effects of targeting the different Wnts throughout the 

establishment of the targeting systems. 
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Secondly, is the relationship between Wnt signalling and peroxisome dynamics 

exclusive to the zebrafish, or is the same seen in other model organisms, or cell 

lines? Examples may include Xenopus, Drosophila and murine disease models. 

An advantage of the CRISPR system is that it can be modified to be tissue-

specific - for example by using a tissue specific promoter (Xu et al., 2016) - and 

thus the specificity of the relationship between Wnt signalling and peroxisome 

dynamics can be examined in terms of species and tissue type.  

Zebrafish have a 70% similarity to the human genome (Howe et al., 2013), but it 

would be interesting to see if the same relationship observed in this investigation 

is conserved in humans. In this investigation, manipulating Wnt signalling in AGS 

cells by application of Wnt inhibitors and activators was not effective, possibly 

due to being unable to surpass the threshold of chemical required to impact upon 

the endemically high Wnt levels of cancerous cells (Mao et al., 2014). Alternative 

cell lines could be used to investigate whether Wnt signalling impacts upon 

peroxisome dynamics in humans and further whether this is limited to particular 

cell types. Cell type specificity could be related to the distribution of the isoforms 

of PPARs - the master regulators of peroxisome proliferation - in different tissues, 

however this hypothesis assumes that the proliferative dynamics of peroxisomes 

observed in this investigation are dependent on PPARs, and that the isoforms 

may be acted upon unequally by Wnts. Investigation could include culturing 

multiple cell lines and transfecting with CRISPR/CRISPRi constructs targeting 

multiple Wnts with custom gRNAs. Initial indications of the efficacy of knockdown 

could be given using the TOP-flash reporter (Molenaar et al., 1996). The impact 

of the knockdown/knockout could be investigated by transfecting SKL-GFP and 

visualising the dynamics via confocal microscopy.  
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It would also be interesting to establish which components of the Wnt pathway 

are depended upon to induce peroxisome proliferation; is it β-catenin, or is the 

proliferative signal reliant on the Wnt receptor? Is Wnt reception at the membrane 

required, or is intrinsic activation of the pathway sufficient? The tractable CRISPR 

system could be used to sequentially knockout components of the signalling 

pathway and observe the effects on peroxisome dynamics, complemented with 

rescue experiments.  

The above experiments assume that the relationship between Wnt signalling on 

peroxisome dynamics is dependent on the physical characteristics of a protein, 

tissue type or species. The question remains whether the relationship is 

temporally limited; is it true throughout the lifespan of the organism, or limited? 

During development the zebrafish embryo expresses high levels of Wnt 

signalling, demonstrated by the strong band of wnt8a RNA observed at the 

margin during epiboly (Figure 11). To assess whether the observed relationship 

between Wnt signalling and peroxisome dynamics is continued into adulthood, 

lines of transgenic zebrafish could be produced, each deficient of a Wnt protein, 

for example Wnt8a. A possible limitation to this method is that embryos showing 

a strong Wnt8a-deficient phenotype may not reach breeding maturity; embryos 

in this investigation were terminated post 28 hpf and thus longevity was not 

required, so this remains an open question.  

Prior to investigating the above questions, it would be prudent to test the efficacy 

of CRISPR Cas9 directed to wnt8a in zebrafish by sequencing the locus of 

injected embryos for insertions and deletions induced by inaccurate repair of 

DSBs by the rapid yet inaccurate repair method of non-homologous end joining. 

Additionally, successful sequencing of the second open reading frame of wnt8a 
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in the zebrafish line used in this investigation would lend greater confidence to 

the fidelity of the primers used to target the same for RTqPCR. Unfortunately 

sequencing data is not informative of the action of dCas9, but visual report via 

experiments such as targeting tyrosinase does engender confidence in the action 

of the endonuclease. The aforementioned advantages of CRISPRi dCas9 include 

the use of effector molecules, in the form of enhanced repressive activity 

(dCas9KRAB) and activating activity (dCas9VP64), and it would be interesting to 

implement these forms of interference in targeting Wnts. The positive control of 

Wnt8a overexpression by injection of wnt8a RNA would form an interesting 

comparison to activation of transcription of the endogenous wnt8a gene by 

dCas9VP64.  

Clearly the investigation performed here can be expanded and with a greater time 

resource, can be replicated. Deeper study of the morphology of peroxisomes 

under conditions of varying Wnt signalling may be illuminating because 

morphology seems to be a revealing metric of this organelle. For example, the 

‘beads on a string’ morphology seen in some peroxisomal disorders is archetypal 

of a defect in asymmetrical growth and division. To gain a more granular view of 

the peroxisome ‘clumps’ that were visualised through confocal microscopy in this 

investigation, techniques such as scanning electron microscopy (SEM) or 

correlative light-electron microscopy (CLEM) could be utilised. CLEM has been 

successfully employed to identify a novel interaction of peroxisomes, 

melanosomes and phagosomes in the retinal pigment epithelium of retinal tissue, 

and additionally Burgoyne and colleagues (2018) found that using cryostat 

sections greatly improved the ability to identify subcellular compartments.  
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Alternatively, there are benefits to using transmission electron microscopy (TEM), 

in that it combines the ability of confocal microscopy to scan a large area before 

focussing in on an area of interest, with high resolution. Here SKL was used to 

illuminate peroxisomes within the cell using GFP, whereas a study by Cajaraville 

and colleagues (2003) used antibodies for SKL coupled with the protein A gold 

technique and TEM which produced much clearer images than the use of DAB 

staining of peroxisomes using catalase, another method used within the 

literature. All of the above - SEM, CLEM, TEM - should generate a higher-

resolution image than confocal microscopy was able to and therefore facilitate 

counting of peroxisomes without the noise caused by fluorescence which was a 

limitation of using SKL tagged with GFP.  

An indirect method of measuring peroxisome abundance could be by measuring 

biochemical activity; that is, by measuring the activity of an enzyme endemic to 

peroxisomes and indicative of their activity. However, this should be addressed 

with caution because it would assume that varied levels of wnt8a signalling affect 

the morphology and number of peroxisomes but not their biochemical activity. An 

example would be to measure acyl-CoA oxidase which is part of the ꞵ-oxidation 

pathway activated by peroxisome proliferation. The activity of the enzyme could 

be compared to a positive control in the form of embryos exposed to a known 

peroxisome proliferator of which there are numerous examples of both 

endogenous and exogenous candidates, many of the latter of which include 

pollutants and cause peroxisomal proliferation in aquatic animals the matter of 

which is of concern within the research community (Cajaraville et al., 2003). 

A similar method could be used to assess mitochondrial number, using an 

endemic mitochondrial enzyme. Bernkopf and colleagues (2018) highlighted the 
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relationship between mitochondrial proliferation and Wnt signalling, which has 

been discussed previously in this text. It would be interesting to use a similar 

method as followed in this investigation, with the improvements suggested above, 

to observe whether the manipulation of wnt8a expression specifically induces 

changes in mitochondrial morphology and number. Further, to deduce whether 

the morphological and proliferative changes mirror the pattern displayed by 

peroxisomes, or whether mitochondria respond in a different way to wnt8a 

manipulation.  

Thus far, focus has been directed solely on the impact of manipulating wnt8a 

expression on peroxisomes. If indeed the relationship between wnt8a expression 

and peroxisome dynamics holds true during further investigation, perhaps using 

some of the ideas listed above, it would be useful to understand how much, if 

any, impact the change in peroxisome number and morphology has on the 

phenotypes demonstrated in both imaging 28 hpf embryo morphology and in situ 

hybridisation experiments; that is, how much of the wnt8a-deficient phenotype is 

due to the changes in peroxisome dynamics observed in this investigation? 

One hypothesis is that the lower number of peroxisomes and the clumped nature 

of their appearance observed in wnt8a-deficient embryos is due to a defect in 

their proliferation. Therefore, a simple test could be performed to understand 

whether peroxisome number contributes to the morphologies observed in situ 

hybridisation and imaging of 28 hpf embryos. Components of the peroxisome 

proliferative machinery could be targeted using CRISPR; for example, to isolate 

the impact on peroxisomes, pex11β could be targeted. To manipulate the 

proliferation of both peroxisomes and mitochondria, one of their shared 

components of the division machinery could be targeted such as fis1 or mff. Once 
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knockouts have been established, a cohort of injected embryos could be raised 

until 70-80% epiboly and fixed for in situ hybridisation, using the same probes for 

wnt8a1 and wnt8a2, to determine whether any of the hallmarks of wnt8a 

deficiency observed, such as asymmetry of the signalling band around the 

margin, or widening of the dorsal organiser, are seen. These changes may bely 

changes to morphology which may be observed in a second cohort of embryos 

raised to 28 hpf and fixed for morphological analysis through imaging.  

5.0 Conclusion 

Paracrine or cell-cell signalling locally controls the behaviour of a group of cells 

by reducing heterogeneity in the transcription of genetic content. This is important 

so that the cells can coordinate and acquire a collective cell fate (Handly et al., 

2015). An important example of a paracrine signal is Wnt, which forms a 

concentration gradient throughout responsive tissues and determines tissue and 

axes patterning (Nusse & Clevers, 2017) which underscores the importance of 

Wnt signalling during development.  

Paracrine Wnt signalling operates via a collection of pathways, the most 

renowned of which is the canonical signalling pathway. The reception of the 

canonical Wnt ligand at the receiver cell membrane triggers a cascade of 

intracellular reactions which lead to the preservation of β-catenin, which 

translocates to the nucleus and mediates the expression of multivariate target 

genes. These target genes include PPARs (Huelsken & Behrens, 2002), the 

master regulators of peroxisome proliferation (Ziouzenkova et al., 2002), and 

cyclin (Huelsken & Behrens, 2002). Wnt signalling is therefore important for 

managing the proliferation of cells, and its repertoire has been expanded recently 
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to managing the cellular abundance of mitochondria (Bernkopf et al., 2018), the 

‘sister organelle’ to the peroxisome.  

Peroxisomes are single membrane bound organelles with multiple biochemical 

functions such as the breakdown of VLCFAs. Peroxisomes are also key 

components during development and life; the organelle produces plasmalogens, 

which facilitate nervous conduction, and perturbation of any of the PEX proteins 

which manage the function and biogenesis of the organelles results in a spectrum 

of severe diseases (Schrader et al., 2012). 

The relationship between Wnt signalling and peroxisome dynamics is 

undetermined. To investigate this relationship, I knocked out and knocked down 

the canonical Wnt family member wnt8a in zebrafish embryos using the genomic 

engineering tools CRISPR and CRISPRi. In Wnt8a-deficient embryos I observed 

the morphology and number of peroxisomes and found them to be more 

aggregated and less numerate than in control samples. In embryos with wnt8a 

overexpression, I found peroxisomes to be more numerate and appear more 

often as distinct and singular puncta.  

Based on the results from this investigation, I hypothesise that in addition to other 

roles including axes determination of tissue specification, Wnt signalling has a 

novel and stimulating relationship with peroxisome proliferation. 

Future studies may wish to use other model organisms such as Xenopus and 

murine models, human non-cancerous cell lines such as fibroblasts, and tissue-

specific promoters to understand whether the relationship between Wnt signalling 

and peroxisome dynamics is consistent in different species and tissue types. 

Further, a line Wnt-deficient transgenic zebrafish could be produced to 

investigate the relationship between Wnt signalling and peroxisomes throughout 
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key life stages of the zebrafish to better understand whether the relationship 

observed in this investigation is dependent on a physical variable such as the 

species, tissue or pathway component, or whether the time at which the 

relationship is tested is key to understanding the novel relationship between Wnt 

signalling and peroxisome dynamics. 
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