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Miro2 tethers the ER to mitochondria to promote
mitochondrial fusion in tobacco leaf epidermal cells

Rhiannon R. White® !, Congping Lin?%, lan Leaves® !, Inés G. Castro® ", Jeremy Metz® ,

Benji C. Bateman® 3, Stanley W. Botchway® 3, Andrew D. Ward® 3, Peter Ashwin® 2 &
1,752

2,4,5

Imogen Sparkes

Mitochondria are highly pleomorphic, undergoing rounds of fission and fusion. Mitochondria
are essential for energy conversion, with fusion favouring higher energy demand. Unlike
fission, the molecular components involved in mitochondrial fusion in plants are unknown.
Here, we show a role for the GTPase Miro2 in mitochondria interaction with the ER and its
impacts on mitochondria fusion and motility. Mutations in AtMiro2's GTPase domain indicate
that the active variant results in larger, fewer mitochondria which are attached more readily
to the ER when compared with the inactive variant. These results are contrary to those in
metazoans where Miro predominantly controls mitochondrial motility, with additional
GTPases affecting fusion. Synthetically controlling mitochondrial fusion rates could funda-
mentally change plant physiology by altering the energy status of the cell. Furthermore,
altering tethering to the ER could have profound effects on subcellular communication
through altering the exchange required for pathogen defence.
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itochondria play essential roles in several metabolic
M pathways including photorespiration, biosynthesis of

coenzymes and vitamins, and are required for cellular
respiration! 3. Mitochondria number is carefully controlled through
changes in fission and fusion rates*°. The molecular components
required for fission have been identified, whereas fusion mutants
have proved more elusive. Pleotropic defects of Arabidopsis mito-
chondrial fission mutants (including slower growth and altered
biomass) highlight a crucial role for the regulation of mitochondrial
morphology in plant development and growth®-8. Mitochondrial
morphology is correlated with variations in energy supply, with
higher availability favouring fission (fragmented) and higher
demand favouring fusion (elongated)®. Therefore, fusion mutants
that cannot generate elongated mitochondria may be unable to
generate enough ATP to support growth resulting in lethality,
which could explain the lack of identified fusion mutants.

Mitochondrial fission in yeast and animals is driven by dynamin
proteins (Dnm1 and Drpl, respectively) and Fisl, which may act
to recruit dynamins to the site of fission®. In higher plants,
DRP3a/b (Drpl/Dnml orthologues) and Fisla/b (Fisl orthologues)
are required, along with an independent PMD1/2 regulated
pathway®®10-14 Tn parallel, the fusion machinery of animals and
yeast is composed of GTPases in the inner (Opal/Mgm1) and outer
(Mfn1,2/Fzol) mitochondrial membranes. However, to date there
are no identified functional orthologues of the fusion machinery in
higher plants?. The Arabidopsis Friendly mutant results in mito-
chondria which, at the ultrastructural level, appear to be tethered to
one another!>. It is unclear whether this represents a block in the
separation of organelles post fission or docking prior to fusion. In
Physcomitrella patens, MELL1 affects mitochondria biogenesis, but it
is unclear if it positively regulates fusion or inhibits fission!®.
Therefore, whilst there appears to be some conservation in the fis-
sion machinery across eukaryotes, the fusion mechanism may be
distinct and have evolved independently in higher plants*.

Furthermore, in yeast and animals, the sites of fission and
possibly fusion may be coordinated at the ER-mitochondrial
interface!”>18. Although a physical interaction between mito-
chondria and the ER has been suggested”, the molecular com-
ponents driving possible interactions in higher plants are
unknown. In Physomitrella patens, overexpression of MELL1 was
suggested to affect mitochondria interaction with the ER based on
close association between the two organelles!®.

In Sacchromyces cerevisae, GTPase Geml1 affects mitochondria
biogenesis through interaction with the ER!®. In metazoans, the
Geml homologues, Mirol and Miro2, predominantly affect
mitochondria motility??. Plants encode 3 isoforms of Miro with
Mirol mutants displaying elongated mitochondria in pollen
tubes?!. This mutant is embryonic lethal and is partially func-
tionally redundant with Miro222. These phenotypes are indicative
of a disruption in mitochondrial biogenesis and provided the
rationale to test whether Miro2 affects mitochondrial biogenesis
possibly through interaction with the ER.

Here, we show that mitochondria are tethered to the ER in leaf
epidermal cells and is regulated by AtMiro2. Constitutively active
Miro2 (GTP locked) increases mitochondria size with decreased
number indicative of changes towards fusion rates. Constitutively
inactive AtMiro2 (GDP locked) decreases mitochondria size with
increased number indicative of a change towards increased fission
rates. The inactive form also decreases interaction of the mito-
chondria with the ER, suggesting that interaction may not be
essential for mitochondrial fission.

Results
Mitochondria are tethered to the ER in leaf epidermal cells. In
a similar manner to many organelles, mitochondria appear

closely associated to the ER (Supplementary Movie 1). Correla-
tions between movement of organelles in a densely populated
cytoplasm may relate to random ‘collisions’ rather than regulated
events between tethered organelles. To test whether mitochondria
are tethered to the ER, we used optical tweezers to trap mito-
chondria and assessed whether subsequent movement dragged
the ER in tobacco leaf epidermal cells. As the ER is a rapidly
remodelling organelle, we performed these experiments in the
presence of an actin depolymerising agent to inhibit overall
organelle movement. We have previously used this principle to
assess interactions between the ER-Golgi and peroxisome-
chloroplast pairs?>?4, Movement of trapped mitochondria
reproducibly resulted in movement of trailing ER. Quantification
indicated that 78 + 5% remained attached with 22 + 5% of trapped
mitochondria detaching from the ER (n=64) (Fig. 1 and Sup-
plementary Movies 2, 3).

Considering ScGem!1 affects mitochondria tethering to the ER,
and HsMiro affects mitochondria motility, we sought to
determine whether AtMiro2 affects either of these processes in
leaf epidermal cells.

AtMiro2 affects mitochondrial dynamics. Miro2 is a large
GTPase with two GTPase domains, two calcium-binding EF
repeat domains and a C-terminal transmembrane domain (Sup-
plementary fig. 1). Amino terminal fusions were generated to
prevent masking the targeting information within the TMD?!,
GFP-full length AtMiro2 (GFP-AtMiro2) colocates to, and
encircles, the inner mitochondrial membrane marker indicative
of AtMiro2 being in the outer mitochondrial membrane marker
(OMM) (Fig. 2b)). Morphological assessment indicated that GFP-
AtMiro2 significantly increases mean mitochondrial area (0.78 +
0.09 um? vs 0.54  0.03 pm?) and circularity (0.83 + 0.02 vs 0.77 %
0.02), whereas the mean number of discrete mitochondria per cell
is significantly decreased (3.4 +0.39 vs 9.96 + 1.61) when com-
pared with cells expressing mitochondrial marker only (Fig. 2c,
Supplementary fig. 2a). In addition, GFP-AtMiro2 significantly
reduces mean mitochondrial speed compared with cells expres-
sing marker alone (0.49+0.03pms~! vs 0.94+0.03 ums~},
Supplementary movie 4 and 5, Fig. 2d, Supplementary fig. 2b). In
comparison, Golgi speed was unaffected by GFP-AtMiro2
expression, indicating that the effect is specific to mitochondria
(0.98 +0.015um s~ ! control (n=1043) compared with 0.99 +
0.02 um s~! GFP-AtMiro2 WT (n=730) expressing cells, (data
taken at 2 days expression from 29-31 cells, p>0.5 students' ¢
test). Taken together these results suggest that Miro2 promotes
mitochondrial fusion and inhibits motility. Furthermore, GFP-
Miro2 can also result in clusters of mitochondria in a similar
manner to overexpression of the mammalian fusion machinery
component mitofusin 22,

We hypothesised that Miro2’s effect on mitochondrial fusion
was controlled by its GTPase domains. We generated mutations
in conserved residues to mimic GTP and GDP-bound forms in
both GTPase domains (Fig. 3) and compared morphological
parameters and motility between mutants and with GFP-Miro2
WT. Rationale for the mutations was based upon previous studies
that have shown point mutations that are sufficient for rendering
the GTPase domains of Miro orthologues either constitutively
active (GTP-‘locked’) or inactive (GDP-‘locked’)26-28, AtMiro2
KKVV (K23V and K434V) relates to GTP bound, whereas
AtMiro2 SSNN (S28N and S439N) refers to GDP-bound form
(Fig. 3).

Expression of the mutants did not affect the subcellular
localisation of AtMiro2 (Fig. 3b, c), but there were observable
differences in mitochondrial morphology and motility. Mito-
chondrial circularity remained unaffected by either AtMiro2
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Fig. 1 Mitochondria are physically attached to the ER. Consecutive TIRF microscopy images showing ER (magenta) either following a or separating b from
a mitochondrion (mito, green) that has been optically trapped and moved using an automated routine; trapping laser power of 40 mW, moved 6 pm at
6 um s~ Scale bar indicates 5 um, time is indicated in seconds (s). Cells were treated with latrunculin b.

mutant when compared with AtMiro2 WT or to one another. In
cells expressing GFP-AtMiro2 SSNN, there was a significant
increase in the average number of mitochondria per cell area
(8.31+1 vs 3.42+0.4) with a significant decrease in mean area
(0.42 +0.02 um? vs 0.78 + 0.09 um?2) compared with cells expres-
sing GFP-AtMiro2 WT (Fig. 3d, Supplementary fig. 3a). These
results are suggestive of increased fission when Miro2 is inactive.
Comparisons between GFP-AtMiro2 KKVV and GFP-AtMiro2
SSNN indicate significant changes in mitochondrial area and
number per cell area, with AtMiro2 KKVV favouring larger fewer
mitochondria (Fig. 3d). Results are suggestive of active Miro2-
promoting mitochondrial fusion. Expression of GFP-AtMiro2
KKVYV resulted in no significant changes in mitochondria area
(0.6 £0.06 pmz) or number (4 * 0.46) when compared with GFP-
AtMiro2 WT (Fig. 3d), suggestive of the wild type form being
predominantly bound to GTP. Interestingly, clusters of mito-
chondria were observed in cells expressing either GFP-AtMiro2
WT or GFP-AtMiro2 KKVV. These results are suggestive that the
GTPase domain of Miro2 when active favours mitochondrial
fusion, with fission dominating when inactive.

In cells expressing either GFP-AtMiro2 SSNN (0.91 +
0.03 um s~ !, Supplementary movie 6) or GFP-AtMiro2 KKVV
(0.7+0.05um s~!, Supplementary movie 7), mitochondria
speed is significantly higher than in cells expressing GFP-
AtMiro2 WT (0.49 +0.03 ums~!, Supplementary movie 5,
Supplementary fig. 3b). In addition, movement in GFP-
AtMiro2 SSNN-expressing cells is significantly faster than in
those expressing GFP-AtMiro2 KKVV. Mitochondrial speed in
GFP-AtMiro2 SSNN-expressing cells is similar to control cells
expressing mitochondrial marker only (0.94+0.03 ums™1,
Supplementary movie 4). These results are indicative of
Miro2 effecting mitochondrial dynamics in a similar manner
to that in metazoans.

AtMiro2 GTPase status affects ER-mitochondrial tethering. To
interrogate the mechanism governing Miro2’s action on mito-
chondrial biogenesis, using optical tweezers, we tested whether

mitochondrial tethering to the ER was affected. There was a
significant increase in the number of mitochondria attached to
the ER in the presence of the AtMiro2 WT (89.06 + 3.66%) and
the KKVV variant of AtMiro2 (85.94 + 3%) compared with SSNN
(72 £ 3%, Fig. 4, Supplementary fig. 4). AtMiro2 WT and KKVV
mitochondria are therefore more tightly or more frequently
connected to the ER in leaf epidermal cells, whereas AtMiro2
SSNN mitochondria are less tightly or less frequently connected
to the ER. This suggests that the GTPase activity of AtMiro2 has a
regulatory role in ER-mitochondria interaction in plant cells,
with attachment favouring mitochondrial fusion.

Discussion

In summary, our results support the model that Miro2 actively
promotes mitochondrial fusion through interaction with the ER
in tobacco epidermal cells. When inactive the cell attempts to
maintain the chondriome volume through increasing fission,
which seems to be independent of physical tethering to the ER.
More recently, it has been suggested that mitochondrial fission
rates may be controlled through mechanical encounters with the
ER which effectively ‘squeeze’ mitochondria through a confined
space as it passes over the ERZ?. Here, the role of the ER in this
process is indirect. We hypothesise therefore that when mito-
chondrial movement is increased in the inactive/GDP-bound
Miro2 mutant, organelles pass over confined zones occupied by
the ER more frequently triggering increased fission of mito-
chondria. Increase in speed in the inactive variant may be due to
effectively ‘releasing’ mitochondria from interaction with the ER
so that the organelles are able to move more ‘freely’ unhindered
through attachment to the large ER network. In metazoans, Miro
interacts with TRAK proteins, kinesin and dyneins to drive
microtubule-dependent motion. However, it now appears that
HsMiro may regulate mitochondria movement through both
microtubule and actin-dependent processes3. Considering that
movement in higher plants is predominantly actin-dependent
leads to the interesting suggestion that Miro2 may, akin to
HsMiro1/2, recruit myosin molecules to regulate movement3!.

COMMUNICATIONS BIOLOGY | (2020)3:161| https://doi.org/10.1038/s42003-020-0872-x | www.nature.com/commsbio 3


www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/542003-020-0872-x

mCherry

(¢]
R N N
oo

Mean relative to mito marker

)

Mito marker Miro2

O O O o -
N B O 00 N

1.2

0.8
0.6
0.4
0.2

Mean mito instantaneous speed pm/s

Mito marker Miro2

Fig. 2 At Miro2 colocates to mitochondria and affects their morphology and dynamics. a-b Spinning disc confocal microscopy images of tobacco leaf
epidermal cells transiently expressing the mitochondrial inner membrane marker alone (a, magenta), or with GFP-AtMiro2 (b, green). Hatched box overlay
indicates the area displayed in zoom below. Scale bar is 5 pm. € Bar chart showing mean and SEM for mitochondria number per cell region (black bar), area
(um?, grey bar) and circularity (white bar) in cells coexpresing GFP-AtMiro2 WT with mitochondria marker, relative to cells expressing mitochondria
marker only. For the mitochondria marker only sample, n =229 from 24 cells. GFP-AtMiro2-expressing cells, n =89 from 26 cells. d Bar chart showing
mean with SEM for average mitochondrial speeds (um s—1). The movement of individual mitochondria was tracked in 24-26 cells with a total of 770
marker only organelle tracks and 120 AtMiro2 organelle tracks. Data for ¢ and d were taken from three independent experiments and analysed using a
t test with Welche's correction, **p < 0.02. Individual data-points for ¢ and d are plotted in Supplementary fig. 2.

Future studies are required to define myosin recruitment to
mitochondria and whether subsequent movement is controlled
through co-regulation of myosin action exerted on the mito-
chondria and uncoupling of the ‘opposing’ force tethering the
organelles to the ER.

Mitochondrial fusion is controlled by outer mitochondrial
membrane (OMM) proteins mitofusin 2 (MFN2) and Fzol in
mammals and yeast, respectively’2-34. Similar to our results
presented for AtMiro2, MFN2’s GTPase domain is critical for
mitochondrial fusion®>, and it regulates ER-mitochondria
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Fig. 3 Mutation of AtMiro2's GTPase domain does not affect mitochondrial targeting but does affect mitochondrial morphology and motility.

a Schematic showing domain organisation of A. thaliana Miro2. The location of the single amino acid mutations introduced into each GTPase domain are
indicated, as is an alignment with the corresponding residues in A. thaliana Miro1, S. cerevisiae Gem1p and H. sapiens Miro1 and Miro2 and the corresponding
orthologous functional GTPase mutations as previously published27.28:30, b-¢ Spinning disc confocal images of tobacco leaf epidermal cells transiently
coexpressing mitochondria inner membrane marker (magenta) with GFP-AtMiro2 SSNN (green, b), or GFP-Miro2 KKVV (green, €). Scale bar, 5 pm. d Bar
chart showing mean and SEM for mitochondria number per cell region (black bar), area (um?, grey bar) and circularity (white bar) in the mutants relative
to AtMiro2 WT mitochondria. e Bar chart showing average mitochondria speeds (um s=1). Analysis for d and e are derived from 24 and 26 cells from three
independent experiments. For the morphological analysis in d, GFP-AtMiro2 n = 89, GFP-AtMiro2 SSNN n = 216, GFP-AtMiro2 KKVV n =104 organelles.
For movement analysis in e, GFP-AtMiro2 n =120, GFP-AtMiro2 SSNN n = 566, GFP-AtMiro2 KKVV n =149 organelle tracks. Data were analysed using a
t test with Welche's correction, **p < 0.01. Individual data-points for d and e are plotted in Supplementary fig. 3.
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Fig. 4 Mitochondrial tethering to the ER is affected by AtMiro2. Bar chart
showing the mean percentage of events: endoplasmic reticulum (ER) was
observed to either follow (black), or detach from (white), an optically
trapped mitochondrion. In cells expressing either mCherry mitochondria
marker, AtMiro2 WT, SSNN, or KKVV with an ER marker, an automated
routine (maintaining a set trapping laser power of 40 mW, a set distance of
6 um and a set speed of 6 ums—1) was used to trap and move 64
independent mitochondria from 9 to 12 biological replicates from three
independent experiments. Cells were treated with latrunculin b. Error bars
are SEM. Data were analysed using a Welche's t-test of weighted means,
**p < 0.01. Individual data-points are plotted in Supplementary fig. 4.

tethering, however the exact role in the latter is controversial3®:17,
Our results are therefore similar to MFN2 and we propose that in
higher plants, AtMiro2 is a functional orthologue of MFN2.

In addition to affecting mitochondrial fusion, we show that
AtMiro2 affects mitochondria motility. Members of the Miro gene
family display different functional characteristics; ER-mitochondria
tethering in yeast (ScGeml) and affecting mitochondria motility
in mammals (HsMirol). Therefore, in higher plants it appears
as though AtMiro2 has evolved both of these functional
characteristics?°.

Isolation of molecular components involved in mitochondrial
fusion have proved elusive. Potentially, considering energy
demand is likely correlated with fusion events, mutants defective
in fusion may be unable to generate enough ATP to sustain
growth resulting in lethality. Interestingly Atmirol knockouts are
embryo lethal with pollen tubes displaying elongated mitochon-
dria. Given the partial functional redundancy between Mirol and
Miro2, both GTPases may act to control mitochondria biogenesis.
Considering the potential issue with isolating viable fusion
mutants using a forward genetics approach, future proteomic
studies of AtMiro2 variants (GTP/GDP locked) may provide
useful insight into the molecular machinery involved in regulat-
ing mitochondria fusion. Potential interactors could include
homologues of interactors involved in the MFN2 dependent
pathway.

Future protein interaction studies will enable us to determine
how Miro2 fits in with the currently identified fission machinery,
and how altering tethering with the ER impacts on molecule
exchange between the two organelles. This is likely to have a large
impact on plant physiology given conserved roles in lipid and
calcium exchange highlighted in yeast and mammals37-38, In a
broader context, mitochondria and ER movement and interaction
may provide important adaptive responses to environmental
stresses including exchange during plant defence39-42.

Methods

Cloning and mutagenesis of AtMiro2 GFP fusions. AtMiro2 cDNA (LIC6 vector
containing the coding sequence for AT3G63150) was purchased from the Arabi-
dopsis Biological Resource Centre. The full AtMiro2 coding sequence was cloned
using Gateway reactions (Invitrogen) into the binary destination vector PB7WGF2
creating an N-terminal GFP fusion. Using this as template, the Quickchange site-

directed mutagenesis kit (Agilent Technologies) was used according to the man-

ufactures’ instructions to sequentially introduce point mutations into both GTP-

binding domains, to create KKVV (K23>V and K434>V) and SSNN (S28>N and
S$439>N) double mutants.

Plant material and sample generation. Nicotiana tabacum (tobacco) plants were
grown and transiently transformed using Agrobacterium infiltration method*3.
Competent, transformed Agrobacteria containing GFP-AtMiro2 (WT, SSNN and
KKVYV) constructs, or fluorescent fusions targeted to inner mitochondrial mito-
chondria membrane (MT-mCherry, MT-GFP) or the ER lumen (ER-mCherry)*4
were infiltrated into leaf tissue at an optical density of 0.05. Leaf samples (~5 mm?)
were taken for immediate analysis from plants following 2 days of expression.

Spinning disc confocal imaging. Spinning disc confocal imaging of mitochondria
(MT_rk or MT_gk), GFP-Miro2 fusions and ER (ER_rk) in live tobacco epidermal
pavement cells was performed using a VisiScope Confocal Cell Explorer under the
control of VisiView software (Visitron Systems, GmbH Germany), composed of an
IX81 motorised inverted microscope (Olympus, Germany), a CSU-X1 Spinning
Disc unit (Yokogawa, Japan), a PlanApo UPlanSApo x 100 (1.4 NA) oil objective
(Olympus, Germany) with a Photometrics CoolSNAP HQ2 camera (Roper Sci-
entific, Germany). To achieve dual fluorescent imaging, GFP was excited with a
Sapphire 488 nm 70 mW laser and mCherry with a Cobolt Jive 561 nm 70 mW
laser. All movies were taken using a temporal resolution of five frames s~1, 100
frames long with a spatial resolution of 0.129 um pixel .

Mitochondria number, morphology and movement quantification. Spinning
disc movies of individual leaf epidermal cells were taken as described above. Within
these movies a fixed region (17.8 um x 13.9 um) was used to normalise the area of
each cell analysed. The mCherry signal of mitochondria was automatically detected
using a graphical user interface developed in-house, coded in Matlab R2014b,
which identifies and tracks mitochondria as objects after Gaussian filtering and
thresholding, using the tracking algorithm developed by Crocker et al.4>. Average
speeds of individual mitochondria were calculated. Single-frame images from these
time lapse movies were used to analyse mitochondria within the same defined
region using an ImageJ macro developed in-house. Mitochondria were positively
identified using the mCherry marker signal and, after Gaussian filtering, thresh-
olding and segmentation, a number of parameters within were calculated: (1) the
number of mitochondria per unit cell area, (2) the surface area of each mito-
chondria and (3) the perimeter of each mitochondria. Values from 2 and 3 were
used in the following equation to calculate the circularity of each mitochondria:

circularity = % The mean and standard error of the mean was calculated

using data collected over three biological replicates for all of the quantification
carried out. Statistical tests were performed as indicated.

Optical trapping setup, data generation and analysis. An Elliot scientific optical
trapping platform was fitted to a Nikon Ti-U inverted microscope adapted for two-
channel TIRF microscopy (TIRF-M). A 1090 nm trapping laser was delivered to
the trapping objective; X100 NA 1.49, oil immersion with both temperature and
cover glass correction ring with a further x2.5 magnifier optics before the EMCCD
cameras. An Omicron laser hub fibre coupled to the manual Nikon TIRF-M unit
delivered excitation wavelengths for GFP (488 nm) and RFP (561 nm). Two
Electron Multiplying Charge-Coupled Devices (EMCCD, iXon, Andor) cameras
connected via a twin-cam (Cairn) unit detected fluorescence emissions. Microscope
stage control, the trapping laser shutter, TIRF angle control and image acquisition
were controlled by a custom software developed using National Instruments
LabVIEW 2012 with the Vision package.

Bead trapping profiles were generated each day and the power at the sample
calibrated to 40 mW. Raw images of the automated trapping routine were recorded
from time 0 of the stage movement, acquired from the synchronised EMCCDs as
16-bit TIFF stacks. The automated trapping routine was programmed as follows:
the trap was turned on after 1 s, the stage was moved (translation) 6 ym at 6 um s~
between 5s and 655, the trap was turned off after 7 s and image capture ended at
18s. (0.1 s frame rate, i.e., 10 frames per seconds). Organelles which remained
trapped and moved the entire 6 um distance were observed to determine whether
they remained attached or detached from the ER. Statistical analysis used weighted
means per sample as the number of trapped organelles per sample varied.

Chemicals and probes. For actin depolymerisation, leaf samples were incubated
for 60 min prior to imaging in 25 M latrunculin b (Merck Millipore) in water made
from a 10 mm DMSO stock.

Statistics and reproducibility. Data were generated from independent experi-
ments, defined as independent infiltrations, with samples taken from several plants.
Samples sizes are as indicated in the figure legends and as follows: mitochondrial
morphological analysis of control (24 cells n = 229), AtMiroWT (26 cells, n = 89),
AtMiro2 SSNN (26 cells, n = 216), AtMiro2 KKVV (26 cells, n = 104) was ana-
lysed using a Welche’s t-test; movement analysis of control (24 cells, n = 770),
AtMiroWT (26 cells, n = 120), AtMiro2 SSNN (26 cells, n = 566), AtMiro2 KKVV

6 COMMUNICATIONS BIOLOGY | (2020)3:161| https://doi.org/10.1038/s42003-020-0872-x | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0872-x

ARTICLE

(26 cells, n = 149) was analysed using a Welche’s t-test; optical trapping data (n =
64) was analysed using Welche’s t-test of weighted means.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All data generated or analysed during this study are included in this published article
(and its supplementary information files). The source data behind the graphs are
available in Supplementary Data 1.

Code availability
Algorithms generated for this study are available at https://github.com/congping/
mito_tracker.

Received: 31 August 2019; Accepted: 25 February 2020;
Published online: 03 April 2020
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