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Abstract  

In obesity, adipose tissue (AT) must remodel to accommodate adipocyte 

expansion. This remodelling is achieved through degradation and synthesis of 

extracellular matrix (ECM) components. Obese AT fibrosis, where excess fibrous 

ECM proteins accumulate, is thought to limit lipid storage capacity, leading to AT 

dysfunction and pathogenic ectopic lipid deposition. Dysfunctional AT is strongly 

associated with insulin resistance and characterised by low-level inflammation 

and increased macrophage infiltration. AT macrophages are classified as pro-

inflammatory M1, or anti-inflammatory M2 (including M2a and M2c subtypes). M2 

macrophage-secreted factors, as well as high levels of insulin, may induce AT 

fibrosis development thus increasing AT dysfunction. This study aimed to 

understand the role of polarised macrophage phenotypes and hyperinsulinaemia 

on the development of AT fibrosis.  

 

THP-1 monocytes were differentiated and resulting macrophage phenotypes 

analysed by protein secretion and macrophage marker mRNA quantification. 

Macrophages were co-cultured with human omental AT explants (age: 

49.5±7.83, BMI: 27.98±6.12) with vehicle-only, 1nM, 10nM or 100nM insulin for 

48h before AT expression of fibrosis-associated genes was measured using qRT-

PCR. 

 

Macrophage characterisation suggested M (IFNγ+LPS) macrophages possessed 

a mixed M1/M2 phenotype, M (IL-4) macrophages were broadly M2-like, while M 

(IL-10) macrophages were considered not functionally differentiated. Co-culture 
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with M (IFNγ+LPS) macrophages significantly upregulated FN1 (3.6±3.07 mean 

fold increase ±SD), and M (IL-4) macrophages upregulated molecular mediators 

of fibrosis LOX and SPARC (1.98±1.2 and 1.61±0.74) in AT. Under 

hyperinsulinaemic conditions (1nM or 10nM insulin) with M (IFNγ+LPS) 

macrophages, AT COL4A1, COL5A3, TGFB1 and FN1 were downregulated 

(0.78±0.13, 0.956±0.53, 1.00±0.34, 2.32±1.3 respectively) compared to the 

vehicle control. 

 

Results suggest that mixed M1/M2 phenotype and M2-like macrophages may 

contribute to AT fibrosis, and hyperinsulinaemic conditions may moderate this 

effect. However, poor experimental design and inadequate optimisation 

prevented scientifically sound conclusions being drawn from this study. Further 

comprehensive work is required to determine the role of macrophages and 

hyperinsulinaemia in AT fibrosis. 
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Chapter 1: Introduction 

 

The following chapter briefly introduces the structure and primary metabolic 

functions of adipose tissue, and will establish the main mechanisms and 

consequences of its dysfunction in the context of obesity. The pathophysiological 

importance of adipose tissue inflammation, fibrosis and insulin resistance will also 

be discussed. 

 

  Adipose tissue 

Adipose tissue is a loose connective tissue where the body stores energy in the 

form of lipids. The main parenchymal cell of adipose tissue is the adipocyte, 

where lipids are stored as triglycerides and various important metabolic 

processes take place, as detailed in this chapter. The other cells of the tissue are 

referred to as the stromal vascular fraction (SVF), and include endothelial cells, 

fibroblast-like pre-adipocytes and immune cells such as macrophages1. These 

cells are surrounded by extracellular matrix (ECM), principally composed of a 

fibrous network of collagens and fibronectin2.  

 

In mammals, both brown and white adipose tissue is present. Brown adipose 

tissue (BAT) is predominantly found in newborn babies, with decreased 

prevalence in adults3. Its main function is thermogenesis, as brown adipocytes 

produce heat by oxidising free fatty acids at their mitochondria, whereas 

adipocytes of white adipose tissue (WAT) release free fatty acids (FFAs) into the 

bloodstream for oxidation by other organs3. BAT contains very high numbers of 
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mitochondria and is densely vascularised, giving its characteristic ‘brown’ 

appearance4.  

 

Until relatively recently, WAT (hereby referred to as AT) was considered solely a 

fat storage organ, providing additional insulation and cushioning internal organs4. 

It is now known to be a highly active endocrine organ essential for maintenance 

of metabolic homeostasis5, with AT dysfunction heavily implicated in the 

development of type 2 diabetes mellitus (T2DM)5. AT is distributed throughout 

the body in distinct regional depots, either subcutaneously (under the skin) or 

viscerally (surrounding internal organs)6. Subcutaneous and visceral AT differ in 

their observable morphology, i.e. cell size and tissue structure, and are thought 

to have subtle differences in biological function7. Visceral adipose tissue (VAT) is 

categorised as omental, mesenteric, retroperitoneal, gonadal or pericardial 

dependent on its deposition6. 

 

 AT extracellular matrix  

The extracellular matrix (ECM) provides a physical scaffold for cell adhesion and 

migration and is essential for tissue homeostasis8. Its composition determines the 

elasticity and tensile strength of a tissue, and therefore reflects tissue-specific 

requirements9. Additionally, the ECM directs cell differentiation and organisation 

during tissue development through the interaction of ECM components with cell-

surface receptors, stimulating specific cell-signalling pathways responsible for 

regulating gene expression9.  
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ECM components are categorised into two groups of macromolecules: 

proteoglycans and fibrous proteins. Proteoglycans are composed of short 

carbohydrate chains (glycosaminoglycans) bound to a protein ‘backbone’, e.g.  

aggrecan and perlecan10,11. The fibrous proteins of the ECM are collagen, 

fibronectin, elastin and laminin9. Of these, collagens are the most abundant9. 

Collagens are triple helical proteins composed of three polypeptide α-chains, 

bound by hydrogen bonds, and are categorised into one of 28 types according to 

their arrangement, localisation, and function9. Fibril-forming collagens, such as 

types I, II, III and V, are initially synthesised by fibroblast-like cells in the form of 

soluble procollagen and after much post-translational processing provide tensile 

strength to the tissue12. Network-forming collagens, such as collagen IV, are 

prominent in the basement membrane of AT and surround adipocytes13,14. 

Collagen VI helices associate into tetramers, before assembling into microfibrils 

as pericellular ‘beaded-filaments’15, which reportedly play a role in the regulation 

of adipogenesis and adipocyte size16. The pathophysiological roles of ECM 

collagens are further discussed in section 1.2.5. 

 

 Fat storage function of AT 

 

Insulin action and glucose homeostasis 

The effects of insulin are twofold: the anabolic hormone is responsible for 

controlling metabolism at low concentrations, and promoting growth when at 

higher concentrations for a period of hours or days17. Insulin is secreted by 

glucose-sensitive β-cells within the islets of the pancreas, in response to 

increased glucose metabolism after a carbohydrate meal18. It functions as a 
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major regulator of circulating glucose concentration, and facilitates the uptake of 

glucose from the blood into muscle, liver and adipocytes, providing energy17.  

 

Insulin-sensitive cells present a glycoprotein transmembrane cell surface 

receptor with four subunits: two α-subunits and two β-subunits, joined together 

by disulphide bonds17,19. The α-subunits protrude from the cell surface and 

provide a binding site for insulin, whereas β-subunits span the lipid membrane 

and expose a tyrosine kinase domain on the cytoplasmic side17,19. While dormant, 

the α-subunits act to inhibit the tyrosine kinase activity of the β-subunits, but 

binding of insulin molecules to the α-subunits derepresses this kinase activity (as 

shown in Figure 1). This allows for β-subunit phosphorylation which induces a 

conformational change within the insulin receptor, increasing kinase activity 

further19. 

 

Insulin receptor activation can induce signalling via both the phosphatidyl inositol 

3-kinase (PI3K) pathway20 and the mitogen-activated protein kinase (MAPK) 

pathway21,22. The MAPK pathway, which involves activation of Ras, Raf, MEK 

and ERK, is thought to directly influence preadipocyte growth and 

differentiation23–25 and regulate gene expression in the nucleus22. PI3K pathway 

activation, via insulin receptor subunit (IRS) and protein kinase B (AKT) 

activation, is reported to play a role in regulation of glucose uptake via GLUT4 

translocation (Figure 1), the cellular differentiation of human preadipocytes into 

mature adipocytes26, cytokine production, and insulin-mediated inhibition of 

lipolysis27,28. 
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Insulin signalling is tightly controlled by a plethora of molecular mechanisms. 

Suppressor of cytokine signalling (SOCS) proteins, for example, negatively 

regulate insulin signalling29–32. SOCS-3 is upregulated by insulin and TNF-α, and 

competitively inhibits Stat5B-mediated binding and activation of the insulin 

receptor29. SOCS-3 also prevents interactions between IRS-1/2 and the insulin 

receptor30. SOCS-1 and SOCS-3 induce ubiquitin-mediated degradation of IRS-

1/231, and SOCS-1 and SOCS-6 reduce IRS-1 tyrosine phosphorylation by 

inhibiting insulin receptor kinase activity32. Protein tyrosine phosphatase 1B 

(PTP1B) is a ubiquitous cytoplasmic phosphatase which dephosphorylates 

tyrosine residues of the insulin receptor, inhibiting downstream PI3K activity33, 

and as such is implicated in the development of insulin resistance.  

 

Insulin receptor internalisation and cycling is a well-established regulatory 

mechanism of insulin-signalling34,35. Upon ligand binding and insulin receptor 

autophosphorylation, the complex is endocytosed via clathrin and caveolae-

mediated pathways36 and trafficked to acidic lysosomes where insulin dissociates 

and is degraded, and the insulin receptor is recycled to the cell surface37. 
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Figure 1: Insulin action in adipocytes and muscle cells. Adapted from Saltiel et al (2001)19 
and Godsland (2010)307. Insulin secreted from the pancreas stimulates its receptor to 
facilitate the uptake of glucose into fat or muscle cells. The tyrosine kinase domain of 
the β subunit of the insulin receptor is autophosphorylated by insulin binding to the α 
subunit. A conformational change catalyses activation of MAPK and PI3K pathways, 
resulting in the trafficking and exocytosis of the GLUT4 transporter and subsequent 
facilitated diffusion of glucose molecules into the cell. Insulin signalling is negatively 
regulated by TNF-α signalling, SOCS family molecules and PTP1B. Dashed arrows 
indicate a multi-step process. 
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The primary glucose transporter present in muscle and adipocytes is GLUT4. 

Under conditions of low insulin, the GLUT4 transporter is sequestered within 

intracellular vesicles, and is transported to the plasma membrane of the cell 

through a currently undefined mechanism, thought to involve the actin 

cytoskeleton19. Vesicles dock before undergoing exocytosis, exposing the 

transporter on the surface of the cell (Figure 1). Once the GLUT4 transporter is 

in place, glucose can enter the cell from the bloodstream via facilitated diffusion19. 

When the insulin signal is removed, the GLUT4 transporter is conserved and 

endocytosed back into the cytoplasm for future re-use38. 

 

 

Figure 2: Triglyceride composition 

Triglyceride molecules are synthesised from a single glucose-derived glycerol 

molecule, via glycerol-3-phosphate. Through a condensation reaction, three fatty 

acid molecules bind to the glycerol ‘backbone’ to form a single triglyceride 

molecule. 
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Lipogenesis and triglyceride synthesis 

A key function of AT is the ‘buffering’ of lipid, which enables excess energy to be 

stored in the form of triglycerides during periods of calorie surplus, before being 

released for oxidation in an energy deficit39. During de novo lipogenesis (Figure 

3) fatty acids are synthesised from glucose, obtained from dietary carbohydrates, 

via acetyl-CoA40. The process of glycolysis converts glucose into pyruvate (via 

glyceraldehyde-3-phosphate) which, after taking part in the tricarboxylic acid 

cycle (TCA) at the cell mitochondria, is converted into fatty acids40. One of the 

key enzymes involved in this process is fatty acid synthase (FAS)41. Three fatty 

acid molecules are required to build a single triglyceride molecule, in combination 

with glycerol-3-phosphate, which provides the backbone42. Glucose within the 

cell is converted to glycerol, and then glycerol-3-phosphate. After synthesis 

(mechanism detailed in Figure 2), triglycerides are deposited into the lipid droplet 

organelle within the adipocyte43,44.  

 

The process of lipogenesis has been shown to be positively regulated by insulin45, 

which alongside facilitating the uptake of glucose, has been implicated in the 

regulation of genes controlling lipogenesis46, primarily the expression of lipogenic 

enzymes FAS and acetyl CoA carboxylase47.  
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Glucose enters the cell via the GLUT4 transmembrane transporter where it is 

converted to glyceraldehyde-3-phosphate (G-3-P). Via a multistep process, G-3-

P is converted to pyruvate, which partakes in the TCA cycle at mitochondria, 

producing acetyl co-enzyme A (ACoA). Through acetyl-CoA carboxylase, ACoA 

is carboxylated to give malonyl-CoA, from which fatty acids are created – a 

reaction facilitated by FAS. Triglyceride molecules are synthesised from glycerol-

3-phosphate and fatty acids, then transported into the lipid droplet. Dietary lipids 

in the form of triglycerides and fatty acids are also able to contribute relatively 

directly to the lipid droplet43. 

 

Fatty acid uptake 

Dietary lipids, including essential fatty acids, also enter adipocytes through cell 

surface transporters such as CD3648. Fatty acids alone are insoluble, therefore 

are either bound to albumin while in the circulation as an FFA, enabling their 

transport to peripheral tissues, or complexed with glycerol as a triglyceride48 

(Figure 2). FFAs may be saturated, in the case of palmitate, or unsaturated, such 

 

Figure 3: Lipogenesis and triglyceride synthesis. Adapted from Junjie et al (2014).  
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as oleate. Fatty acids, hydrolysed from the triglycerides in lipoprotein particles, 

are the predominant molecule through which the body stores energy in 

adipocytes49. 

 

Lipolysis 

The uptake of fatty acids into tissues can also be regulated by the lipolysis 

pathway, via enzymatic cell surface protein lipoprotein lipase (LPL), which is 

expressed by adipocytes and muscle cells48. LPL is essential for AT function and 

is considered a tissue-specific ‘gatekeeper’, directing calories to the appropriate 

tissues50.  The activity of LPL in AT is largely regulated by insulin, as exposure to 

insulin during adipocyte differentiation positively correlates with LPL mRNA 

transcription48. Glucose increases LPL synthesis and can stimulate LPL activity, 

as it facilitates its glycosylation, a process necessary for LPL secretion and 

function48. 

 

The metabolic process of lipolysis (Figure 4) is the liberation of FFAs and glycerol 

for utilisation as an energy substrate by organs in response to a caloric deficit. In 

AT, triglycerides stored in the lipid droplet of adipocytes undergo hydrolysis to 

mobilise FFAs, which are transported to peripheral tissues51. This process 

requires enzyme lipases, which include adipose triglyceride lipase (ATGL), 

hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL), and is 

regulated by catecholamines during periods of fasting51. 

 

Lipid deposition in AT is regulated by insulin. During periods of feeding, insulin 

concentrations increase and inhibit lipolysis through cAMP-dependent and 
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independent mechanisms51,52. Independent of cAMP, activated protein 

phosphatase-1 removes the phosphorylation of HSL, thereby rendering it inactive 

and unable to cleave a fatty acid chain from diacylglycerol53. In the case of cAMP-

dependent activation, the insulin receptor is autophosphorylated upon binding, 

prompting further phosphorylation of insulin receptor subunits (IRS) and 

signalling via the PI3K-Akt pathway52. After a series of phosphorylation events, 

phosphodiesterase 3B degrades cAMP, preventing any further activation of 

protein kinase A (PKA) and reducing lipolysis through decreased stimulation of 

HSL and perilipin52,54.  

 

Increased basal lipolysis is evident in obesity, and is thought to be intimately 

associated with reduced insulin sensitivity, as decreased insulin signalling leads 

to reduced inhibition of lipolysis55. Increased expression of leptin, a key hormone 

regulating energy balance, has been implicated in the rise of basal lipolysis56. In 

obesity, circulating leptin secreted by adipocytes is increased, however leptin 

signalling is believed to be reduced57. The endocrine role of leptin is further 

discussed in section 1.1.3. 

 

It has been long established that the rate of lipolysis in AT is dependent on the 

location of its deposition58. AT depots in the upper body are more lipolytically 

active than lower body depots, and visceral fat is more metabolically important 

for managing fatty acid flux58. In particular, abdominal (upper body) adiposity is 

associated with metabolic complications, where lower body adiposity is 

associated with increased risk of cardiovascular events59.  The disruption of fatty 

acid flux leads to hyperlipidaemia, and toxicity associated with high circulating 

FFAs58.  
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Lipolysis is regulated through a series of extracellular signalling molecules which, 

through various pathways, either stimulate lipolysis in the event of calorie deficit, 

or inhibit lipolysis during feeding52. 

 

 

 

Figure 4: Lipolysis. Adapted from Duncan et al (2007). 
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 Endocrine function of AT 

Alongside being a fat storage organ, AT has important endocrine functions. 

Adipokines are signalling molecules secreted by adipocytes, able to act in 

autocrine/paracrine and endocrine manners60. Endocrine signalling enables AT 

to communicate with other organs of the body, such as the brain and liver, in 

order to maintain metabolic homeostasis and regulate energy balance, i.e. calorie 

uptake and energy expenditure1. There is some controversy over the use of the 

term ‘adipokine’, as some authors define all adipocyte-secreted factors as 

adipokines, whereas others use the term to refer to cytokines secreted 

exclusively by AT. In this study, ‘adipokine’ will be used to refer to all adipocyte-

secreted cytokines.  

 

Leptin is a primary adipokine involved in the endocrine action of AT. Also known 

as the ‘satiety hormone’ because of its role in regulating calorie intake through 

suppressing appetite and facilitating weight loss, leptin is encoded by the OB 

gene61. Circulating levels of leptin positively correlate with adiposity62. Leptin-

stimulated activation of leptin receptors (encoded by OBR) in the hypothalamus 

initiates signalling cascades leading to reduced appetite and food intake63. 

Disrupted leptin signalling is thought to contribute to the development of obesity61.  

 

Adiponectin, encoded by the ADIPOQ gene and expressed exclusively by 

differentiated adipocytes, is an important AT hormone with endocrine function 

and is highly concentrated in the bloodstream1. Decreased levels of circulating 

adiponectin have been associated with obesity64, and there is evidence that 

adiponectin is important in the control of lipid and glucose metabolism in insulin-



28 
 

sensitive tissues65. In addition, reduced adiponectin plasma levels have been 

associated with insulin resistance, and are purported to directly influence whole-

body insulin sensitivity66,67. Further to this, fasting hyperinsulinaemia (high 

circulating levels of insulin) has been shown to be associated with low adiponectin 

plasma concentrations68. 

 

Cells of AT secrete various pro-inflammatory cytokines, with the ability to act in 

an endocrine manner69. These include tumour necrosis factor-α (TNF-α)70, 

interleukin-6 (IL-6)71, and monocyte chemoattractant protein (MCP-1)72. TNF-α is 

expressed by adipocytes, as well as cells of the SVF, and increased TNF-α 

plasma concentrations have been correlated with obesity and insulin 

resistance1,73. TNF-α exerts pro-inflammatory effects on cells of the liver, and 

negatively regulates expression of genes involved in fatty acid oxidation, as well 

as glucose uptake and metabolism74. Insulin signalling is also directly impaired, 

as TNF-α-induced signalling results in the degradation of hepatic insulin 

receptors75–77. Indirectly, TNF-α also increases serum fatty acid levels, resulting 

in insulin resistance1,78,79. 

 

Similarly, IL-6 and its receptor are expressed by adipocytes80. As well as playing 

a potential role in controlling body fat mass81, circulating IL-6 levels are positively 

correlated with obesity and insulin resistance, and may be used as a predictor of 

cardiovascular disease and T2DM82. 
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 Paracrine/autocrine action of AT  

Adipokines control the tissue microenvironment, expansion and inflammatory 

signalling in AT. Inflammation in dysfunctional AT is discussed in more detail in 

section 1.2. In addition to its roles in endocrine signalling, leptin is known to have 

paracrine and autocrine effects on AT. Leptin stimulates basal lipolysis and 

prevents lipid uptake in adipocytes, thus reducing adiposity in a paracrine 

manner83. It may also influence fat mass and weight loss through this appetite-

independent mechanism, involving activation of Janus kinase (JAK)/signal 

transducer and activator of transcription 1 (STAT) pathways and nuclear 

translocation of STAT184. Leptin release is correlated with adiposity, therefore 

obesity may persist as a result of adipocytes becoming resistant to leptin 

signalling85. Leptin also has a pro-inflammatory function in AT, as it upregulates 

expression of TNF-α in monocytes86 and induces the production of reactive 

oxygen species87.  

 

MCP-1, secreted by adipocytes88, regulates inflammatory responses by 

controlling the local infiltration of macrophages, and along with its receptor is 

significantly upregulated in obese AT89. TNF-α, secreted by various cell types in 

AT, is thought to contribute towards the development of insulin resistance90 by 

inducing  the release of FFAs from adipocytes91 Several other classical pro-

inflammatory cytokines are also secreted by cells of AT, including IL-1β and 

interferon-γ (IFN-γ), and influence the function of the tissue91.  

 

Adiponectin, expressed by adipocytes, acts in an autocrine and paracrine manner 

to modulate inflammation in AT, by promoting differentiation of AT macrophages 
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into an anti-inflammatory phenotype92. Adiponectin has been found to inhibit the 

production of IFN-γ in natural killer cells, thereby exerting an anti-inflammatory 

effect on the tissue microenvironment93.  

 

Another adipokine with paracrine/autocrine effects is IL-10, secreted by anti-

inflammatory macrophages in AT94. IL-10 exerts its anti-inflammatory effect via 

JAK1 and TYK2-mediated recruitment of transcription factor STAT3, which 

modulates transcription by binding immune response genes95. In addition, anti-

inflammatory macrophages are capable of secreting transforming growth factor-

β (TGF-β), which regulates the differentiation of adipocytes and modulates the 

deposition of matrix proteins96. There are numerous other adipokines and 

cytokines secreted by cells of adipose tissue, which together with the factors 

described, contribute to AT homeostasis.  

 

 AT expansion 

AT is required to expand during times of caloric excess and may do so through 

hypertrophy or hyperplasia97. Hypertrophy refers to cell growth, where the 

diameter of the cell increases as additional lipids are stored in the lipid droplet 

organelle. Hyperplasia within AT is the differentiation of new adipocytes resulting 

in increased AT mass98. This process is referred to as adipogenesis, where tissue 

resident fibroblast-like preadipocytes differentiate into mature adipocytes capable 

of storing lipid99. In times of nutritional deficiency, mature adipocytes and 

preadipocytes within the tissue release anti-adipogenic factors such as IL-6 and 

TNF which inhibit adipogenesis, likely via the Wnt/β-catenin pathway98,100. During 

periods of overnutrition, where energy intake exceeds energy expenditure, 
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adipocytes induce preadipocytes to differentiate by secreting pro-adipogenic 

factors, including transcriptional regulators enhancer binding protein α, β and δ 

(C/EBP) and peroxisome-proliferator activated receptor-γ (PPAR-γ), alongside 

inhibitors of anti-adipogenic signals98.  

 

 ECM remodelling  

To accommodate changes in the lipid storage requirements, and the newly 

hypertrophic or hyperplastic AT morphology, the ECM surrounding adipocytes is 

required to remodel101. This happens through shifts in the balance between the 

production and secretion of ECM components, and their degradation. 

Degradation of ECM components is primarily facilitated by a group of proteolytic 

enzymes known as the matrix metalloproteinases (MMPs)101. The action of these 

MMPs is inhibited by a family of molecules known as tissue inhibitor of 

metalloproteinases (TIMPs)102. 
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 Adipose tissue dysfunction 

The term ‘AT dysfunction’ has been coined in recent years to describe the 

metabolic state whereby the delicate balance of metabolic processes is 

disrupted. AT dysfunction is linked with obesity, and is characterised by 

inflammation, impaired lipid metabolism, and altered adipokine secretion103. Long 

term effects of AT dysfunction include the development of AT fibrosis, insulin 

resistance and hyperinsulinaemia, and the deposition of lipid at ectopic sites, e.g. 

muscle and liver103. 

 

 Obesity 

Recent trend analysis of worldwide adult body mass index (BMI) has predicted 

that within the next ten years the prevalence of obesity will reach 18% in men and 

21% in women104. As of 2010, 26% of adult men and women in the UK were 

obese105. This obesity ‘epidemic’ has been largely attributed to a widespread 

change in lifestyle over the past several decades: physical activity levels, and 

therefore energy expenditure, have decreased while caloric intake has increased 

with the abundance of calorie-dense foods106. 

 

Obesity is implicated in the development of a host of co-morbidities, including 

colorectal, prostate and breast cancers, sleep apnoea, osteoarthritis, 

hypertension, coronary heart disease, and atherosclerosis107–111. These 

conditions increase the risk of events like stroke and myocardial infarction112. In 

England alone, the cost of obesity and obesity-related disease was estimated at 

£27 billion in 2015113. Obese individuals also carry increased risk of developing 

T2DM - in 2012 direct costs of T2DM totalled £8.8 billion, while indirect costs 
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reached £13 billion114. In light of this, it is becoming increasingly pertinent that 

conditions leading to the development of T2DM are fully understood.  

 

 Obese AT expansion 

In the event of chronic positive energy balance adipokine signalling can become 

dysregulated, resulting in reduced adipogenesis and decreased capacity for 

healthy AT expansion, as frequently observed in obesity and insulin 

resistance115,116. This impaired adipogenesis has been attributed to the effects of 

upregulated Wnt signalling, which inhibits expression of PPARγ and C/EBPα, a 

key inducer of adipogenesis and lipid storage and a leptin regulator 

respectively98.  

 

In the event of reduced adipogenesis, adipocytes become more hypertrophic until 

eventually their lipid storage capacity is exceeded98. Additional ‘spill-over’ lipid is 

stored in ectopic sites, in lipid droplets of the functional cells of the liver and 

pancreas, and skeletal muscle98. Some studies suggest that larger hypertrophic 

adipocytes are fragile and undergo necrotic cell death117, whereas others give 

evidence that apoptosis takes place118. These dying cells prompt an inflammatory 

response and infiltration of immune cells, making obesity a disease defined by 

chronic low-level inflammation119. 

 

 AT hypoxia 

As adipocytes expand through hypertrophy, they often reach the diffusional limit 

of oxygen (100-200µm120). Healthy expansion of AT requires increased 

angiogenesis to keep tissue adequately supplied with oxygen, however the rapid 



34 
 

expansion of AT during obesity results in local hypoxia when angiogenesis cannot 

keep pace121. The angiogenic response to hypoxia is controlled by hypoxia 

inducible factor 1 (HIF1), a heterodimeric protein consisting of α and a β subunits. 

HIF1α is regulated by oxygen levels: under normoxic conditions it is hydroxylated 

at two proline residues and tagged for degradation121. When the local 

microenvironment is hypoxic, hydroxylation drops allowing the accumulation of 

HIF1α. HIF1α is then translocated into the nucleus, where, alongside 

constitutively-expressed HIF1β, it acts as a transcription factor for angiogenesis-

inducing target genes such as vascular endothelial growth factor (VEGFA)121. 

 

Hypoxia is an important inducer of adipocyte death as it induces upregulation of 

pro-inflammatory TNF-α and impaired insulin signalling, and activates 

inflammatory signalling pathways which induce necrotic cell death122,123, 

triggering an influx of macrophages into the tissue124. Adipocytes may also die by 

apoptosis, the ‘programmed cell death’118. Apoptotic cell death differs from 

necrotic cell death in that it involves an intracellular proteolytic cascade which 

prevents release of cell contents into the environment, which would otherwise 

trigger an inflammatory, tissue damaging response125. 

 

 AT inflammation 

Necrotic adipocyte death results in the release of the lipid contents from the cell, 

eliciting a pro-inflammatory response from the surrounding cells126–129. The 

purpose of inflammation is to protect tissues within an organism from stimuli-

mediated harm, initiate healing and restore homeostasis130. AT Inflammation is 

characterised by immune cell influx, increased production of inflammatory 
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cytokines and activation of inflammatory signalling pathways119. Increased 

adipocyte hypertrophy during AT expansion is correlated with increased 

adipocyte secretion of pro-inflammatory cytokines, such as interleukin-6 (IL-6), 

IFN-γ and TNF-α130.  

 

Various types of immune cells accumulate in obese AT, including lymphocytes, 

mast cells, neutrophils and macrophages130,131. Studies in mice have shown that 

in the lean state, macrophages make up <10% of the total number of cells in AT, 

whereas in the extremely obese state they may constitute upwards of 50%131, 

suggesting they play an important role in perpetuating inflammation in obese AT. 

 

AT macrophages (ATMs) 

It generally accepted that AT resident macrophages derive from blood 

monocytes, which infiltrate into the tissue via adhesion to capillary endothelial 

cells and diapedesis, before differentiating into macrophages131. Adipokines 

secreted by mature adipocytes, particularly leptin, facilitate the infiltration and 

accumulation of macrophages within AT86,132. This recruitment of blood 

monocytes is increased in obesity133. 

 

Obese adipocytes secrete increased levels of MCP-1, also known as chemokine 

(C-C motif) ligand 2 (CCL2)134. MCP-1 is a chemokine that stimulates the 

recruitment and migration of monocytes into AT, leading to accumulation of 

macrophages in the tissue. MCP-1 is secreted in response to pro-inflammatory 

cytokine signalling, and therefore is upregulated in obese AT135. Studies show 

that MCP-1 knockout in a murine model significantly decreases macrophage 
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infiltration within AT, and that MCP-1 upregulation is associated with increased 

macrophage numbers and insulin resistance89,132. 

 

Monocytic phagocytes (macrophages) are highly plastic cells able to adapt to 

signals within their microenvironment in response to damaged cells, tissue, 

cytokines, and can polarise their phenotype to provide the appropriate 

functionality136,137. As a result, they are broadly categorised into M1 and M2 

phenotypes94. It has been proposed that this functional polarisation may 

contribute to the maintenance of homeostasis within obese AT130.  

 

M1 macrophages 

M1 macrophages (Figure 6) are pro-inflammatory, and ‘classically activated’ by 

IFN-γ138, bacterial endotoxin lipopolysaccharide (LPS)139–141 and TNF-α130. They 

contribute to type I inflammation, and remove intracellular pathogens94.  IFN-γ is 

the predominant stimulus for M1 activation and is primarily secreted by Th1 cells, 

although natural killer cells and macrophages are also able to produce IFN-γ142. 

IFN-γ interacts with the IFN-γ receptor, which is composed of IFNGR-1 and 

IFNGR-2 chains, before STAT1 and other regulatory factors are activated via 

JAK1/2143. These transcription factors modulate the expression of many cell 

surface markers and adhesion molecules, including essential pro-inflammatory 

cytokine receptors such as IL-6R and CSF2RB142.  

 

M1 macrophages recognise pathogen-associated molecular patterns of bacterial 

products, such as LPS, through pattern recognition receptors on the cell surface, 

forming part of the innate immune response142. In AT, macrophages displaying 
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M1 characteristics are responsible for ‘mopping up’ dead adipocytes, by forming 

crown-like structures surrounding dying adipocytes (Figure 5), allowing the lipid 

droplet to be ‘scavenged’ in order to avoid the lipotoxic effects of free lipid122.  

 

 

Figure 5: Crown-like structure in obese adipose tissue. Adapted from Ouchi et al 

201187. 

 

M2 macrophages 

M2 macrophages (Figure 6) are considered to have an ‘anti-inflammatory’ 

phenotype and in AT make up the majority of the non-CLS interstitial 

macrophages144. They act to attenuate inflammation and promote tissue 
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repair145, or ‘wound-healing’, by promoting the production of ECM 

components94,144,146 from cells of the SVF147,148. M2 macrophages upregulate 

production of anti-inflammatory cytokines, such as IL-10, and downregulate 

production of pro-inflammatory cytokines including IL-187. Although macrophages 

are not regularly characterised beyond M1 and M2 subtypes, M2 macrophages 

can be further classified based on the specific physiological stimuli which trigger 

their polarisation into M2a, M2b and M2c subtypes: IL-4149 and IL-13150, toll-like 

receptor (TLR) ligands151, and IL-10 respectively (Figure 6)142,152.  

 

IL-4 is secreted in an autocrine manner by macrophages, as well as by other 

immune cells such as basophils, eosinophils and Th2 cells142. The transcriptomic 

signature induced by IL-4 in macrophages is believed to lead to decreased 

phagocytosis and increased macrophage fusion142. IL-4 signalling is facilitated by 

a cell surface receptor complex involving IL4Rα1, which via JAK1/3 activation 

leads to phosphorylation and nuclear translocation of transcription factor STAT6. 

IL-13 also signals via a similar mechanism, through binding with the IL13Rα1 (or 

the controversial IL13R α2) chain142. 

 

IL-4 and IL-13-stimulated M2a macrophages are known as ‘alternatively 

activated’ and are thought to be involved in type II inflammatory responses142,153. 

They secrete IL-10 and present mannose and scavenger receptors on the cell 

surface142,149. M2b macrophages, whose differentiation is stimulated by immune 

complexes and TLR or IL-1 receptor ligands, secrete TNFα, IL-1 and IL-6, as well 

as high levels of IL-1094. They are believed to play a role in the activation of Th2 

cells, and are important for immunoregulation142. M2c macrophages are 

stimulated by IL-10, which binds to a dimeric receptor consisting of IL10R1 and 
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IL10R2 and resulting in receptor autophosphorylation. STAT3 is activated by 

phosphorylation, dimerises and translocates into the nucleus where acts as a 

transcription factor to inhibit the expression of pro-inflammatory cytokines142.  

 

M2c macrophages express signalling lymphocytic activation molecule (SLAM), 

also known as CD150, and mannose receptor (CD206), as well as secreting IL-

10 and TGFβ, and are reported to contribute to matrix deposition and tissue 

remodelling142. M2c macrophages in particular are thought to play an important 

role in wound healing due to their expression of high levels of TGF-β94, which 

contributes to increased ECM production via Smad2/3 signalling pathways144. 

Figure 6: Functional properties of classically and alternatively activated 

macrophages. Adapted from Martinez and Gordon (2014)142. 

The origin of M2 macrophages in AT remains unclear: they may derive from newly 

infiltrated monocytes or may transdifferentiate from M1 macrophages already in 



40 
 

the tissue. One theory proposes that monocytes are recruited in ‘waves’ at 

different stages of the inflammatory response, and are therefore exposed to a 

different milieu of inflammatory signals, which determines their polarisation into 

M1 or M2 macrophages154. An alternative hypothesis suggests that, given the 

right environmental signals, M1 macrophages transdifferentiate into anti-

inflammatory M2 macrophages154. 

 

ATMs in obesity 

There are contradictory studies regarding the phenotype of macrophages in 

obese AT. Lumeng et al (2007) reported that in mice fed a high fat diet, the 

accumulating ATMs appear to be of M1 phenotype155. ATMs of lean mice 

expressed markers of M2 macrophages such as arginine (Arg1) and mannose 

receptor 2 (Mrc2) more strongly than macrophages in obese mice. They conclude 

that high expression of IL-10 from M2-polarised macrophages protects 

adipocytes from TNF-α-mediated downregulation of insulin receptor and GLUT4 

expression, and insulin resistance. As such, Lumeng et al propose a model of 

‘phenotypic switching’, whereby tissue resident M2 macrophages undergo 

transformation towards a more pro-inflammatory, M1-like phenotype during 

positive energy balance155. Upregulation of M1 macrophage markers has been 

shown to positively correlate with markers of insulin resistance87, therefore it has 

been suggested that the M1 phenotype is able to promote insulin resistance in 

obesity, while M2 macrophages may protect against its development156. 

 

In contrast, it has been reported that human ATMs mainly appear to be of an M2-

like phenotype, but are able to secrete high levels of pro-inflammatory cytokines, 
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such as TNF-α and IL-1β, after stimulation with IFNγ or LPS157.  In agreement 

with this mixed inflammatory phenotype, human ATMs are capable of expressing 

both CD206 and CD11c, M2 and M1 macrophage cell surface markers 

respectively158. Fjeldborg et al (2014) also reported elevated numbers of M2 

macrophages in obese human subjects, qualified by high expression of M2 

macrophage markers CD163 and CD206 and increased secretion of IL-10. In 

comparison, ATMs from lean subjects expressed significantly lower levels of M2 

markers, suggesting that obesity induces macrophages take on an M2-like 

phenotype159.  

 

In summary, this evidence suggests an important role for polarised macrophages 

in the development of dysfunctional obese AT.  

 

 AT fibrosis 

In obesity, AT expansion via tissue hyperplasia or adipocyte hypertrophy requires 

the surrounding matrix to adapt through the deposition and degradation of ECM 

proteins.97 AT fibrosis is defined as the excessive accumulation of insoluble ECM 

collagens, which increases tissue rigidity, potentially limiting healthy tissue 

expansion and therefore lipid storage capacity144. It is implicated in the 

development of AT dysfunction, associated with insulin resistance, T2DM, and 

non-alcoholic fatty liver disease160. ECM collagens have differing functional and 

structural classifications according to their type, and are be described as fibril-

forming, network-forming, or beaded-filament-forming12.  
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Fibril-forming collagens in AT fibrosis 

Fibril-forming collagens are one of the main fibrous components of the ECM and 

are essential for providing structural support in tissue9. Collagens I, III and V are 

fibril forming, and undergo much post-translational processing to assemble their 

triple helical structure9.  

 

Collagen I precursor α-chains are synthesised in the rough endoplasmic 

reticulum lumen, where they undergo various processing modifications before 

disulphide bonds form between the N- and C-terminal sequences, enabling the 

assembly of the triple helix12. COL1A1 encodes the pro-alpha1 (1) chain of the 

collagen triple helix, which associates with the pro-alpha (2) chain, encoded by 

COL1A2.  Two α1 subunits are bound to a single α2 subunit to establish a 

heterotrimeric type I collagen monomer161. After further processing at the Golgi 

complex, N- and C- terminal pro-peptides are cleaved and the triple helices are 

exocytosed to the extracellular space where, through lysyl oxidase (LOX)-

mediated covalent bonding, they polymerise to form fibrils162. These fibrils then 

assemble into collagen fibres, as observed in AT162.  

 

As a fibril-forming collagen, type III collagen undergoes the same process of 

assembly, differing only in the composition of its triple helix: it is homotrimeric, 

and is therefore composed of three identical α1 chains, encoded by COL3A1163. 

Collagen I and collagen III are co-expressed in fibrous bundles, in areas of 

fibrosis in human omental AT, and are therefore postulated to contribute to the 

pathophysiological development of AT fibrosis148. It is also believed that 

fibroblast-like preadipocytes, rather than adipocytes, are the predominant cell 
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type responsible for the development of obesity-associated AT fibrosis164. 

Macrophage-secreted pro-inflammatory factors have also been implicated in the 

increased expression of collagen I/III in differentiated preadipocytes165.  

 

Collagen V also forms fibrils in the ECM, and is reportedly required for the 

formation of collagen I fibrils in embryonic tissues166. Spencer et al (2011) report 

a relationship between collagen V and insulin sensitivity, where increased 

expression of COL5A1 mRNA significantly correlated with reduced insulin 

sensitivity in subcutaneous AT (SCAT)167, indicating a relationship between AT 

dysfunction and increased deposition of fibre-forming ECM collagens.  

 

Network-forming collagen IV 

Type IV collagen is a network-forming collagen,  expressed during adipogenesis 

and essential for the formation of the basement membrane, which surrounds 

adipocytes12,13. The basement membrane gives structural support to cells, and 

provides a site for integrin signalling and cell adhesion to take place, as well as 

being important for the maintenance of tissue function in AT12,168.  Collagen IV-

α1 and collagen IV-α2 are the predominant proteins which constitute the collagen 

IV trimer in AT, as collagen IV-α3-6 are expressed at relatively low levels13. 

Overexpression of collagen IV has been implicated in the development of 

pericellular fibrosis, as in obese SCAT, collagen IV surrounding adipocytes has 

been shown to be increased, along with having a more disorganised pattern of 

deposition15. COL4A1 expression has also been positively correlated with 

markers of insulin resistance15.  
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Beaded-filament-forming collagen VI 

Type VI collagen assembles into ‘beaded-filaments’, and plays an essential role 

in providing ECM stability12. It is expressed in a wide range of tissue types, as 

well as in AT. Within the endoplasmic reticulum of the cell, α1, α2 and α3 chain 

subunits (encoded by COL6A1, COL6A2, COL6A3 respectively) assemble into 

triple helical monomers, which align in opposing directions and undergo 

disulphide bonding to give dimers, before subsequent disulphide bonding creates 

tetramers which, after modification at the Golgi apparatus, are secreted into the 

extracellular space16. Here, tetramers associate into beaded microfilaments 

through non-covalent bonds, giving a ‘beads on a string’ appearance16.  

 

Collagen VI has been extensively studied as a key ECM component implicated 

in the development of pericellular fibrosis, and its overexpression is hypothesised 

to limit adipocyte hypertrophy, exacerbating the pathogenic effects of AT 

dysfunction144,169,170. However, the picture is not clear cut as there is still some 

debate over the nature of the involvement of collagen VI in AT fibrosis147. 

 

There is evidence to suggest that collagen VI is significantly enriched in AT 

depots compared with other tissues169. Metabolic stress and impaired glucose 

tolerance was associated with increased murine col6a3, suggesting collagen VI 

may restrict expansion and contribute to adipocyte dysfunction169. Importantly, 

murine collagen VI knock-out models showed uninhibited adipocyte expansion 

and reduced inflammation169. Subsequently, a distinct correlation between 

expression of COL6A3 in abdominal SCAT and BMI was shown, suggesting 
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increased deposition of collagen VI may be associated with the pathogenesis of 

obesity in humans, as well as mice170. 

 

Following these important observations, Spencer et al (2010) assessed the 

influence of insulin sensitivity on induction of human SCAT fibrosis. They noted 

a significant correlation between increased expression of COL6A1 and reduced 

sensitivity to insulin, an indication of insulin resistance144. This was supported by 

a significant inverse correlation between overall fibrosis within human abdominal 

SCAT sections and insulin sensitivity144, indicating a role for insulin in the 

regulation of ECM protein synthesis.  

 

In contrast to studies linking collagen VI increase with obesity, McCulloch et al 

(2015) reported no change in human SCAT COL6A3 mRNA expression after 

weight gain, and describe a significant increase in subjects after weight loss147. 

They describe a negative association between COL6A3 and leptin mRNA 

expression in SCAT, and demonstrate decreased COL6A3 expression in SCAT 

explants after leptin treatment. They propose leptin may regulate COL6A3 

expression by binding leptin receptors on the adipocyte surface and activating 

undefined paracrine signalling cascades, and suggest that metabolic 

improvements observed as a result of Col6 knockout in ob/ob mice may be 

restricted to the murine model only, as the ob/ob model induces obesity through 

disruption of leptin signalling pathways147. This suggests conclusions made using 

murine models may not translate to human obesity. More research is required to 

accurately determine whether collagen VI does indeed play an important role in 

human obesity-associated AT fibrosis. 
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Non-collagenous structural proteins 

Elastin, encoded by the ELN gene, is essential for tissue recoil, elasticity, and 

healthy AT expansion. It is secreted as its precursor tropoelastin before 

assembling into fibres through lysyl oxidase-facilitated cross-linking9. Elastin 

deficiency in mice has been linked to impaired glucose metabolism, suggesting it 

may be involved in the development of insulin resistance171. It was shown to be 

significantly reduced in obese subjects when compared to lean, and is suggested 

to be negatively associated with inflammation167.  Loss of elastin content in obese 

AT suggests that fibrosis development not only involves excessive deposition of 

collagens, but also degradation of elastin, limiting the remodelling and lipid 

storage capacity of the tissue167. The factors regulating elastin deposition are 

relatively poorly understood, but fibres are thought to be degraded by members 

of the metalloproteinase family, known as metalloelastases, although more work 

is needed to further elucidate the key molecules involved172, as well as the role 

of inflammation in controlling elastin content in obese AT. 

 

Fibronectin is an important fibrous protein, involved in the organisation of the 

developing ECM, and is encoded by the FN1 gene9. It provides integrin-binding 

sites, and is essential for directing cell organisation, migration and differentiation, 

and is therefore important in ECM remodelling9. Fibronectin also binds to collagen 

fibres, contributing to the stabilisation of the ECM173. Its increased expression is 

thought to correlate with measures of metabolic dysregulation in obesity174.  

 

 

 



47 
 

Molecular regulators of fibrosis 

Secreted protein acidic and rich in cysteine (SPARC), also known as osteonectin, 

is a collagen-binding matricellular protein which helps stabilise the basement 

membrane175, and therefore may play an important role in the development of 

pericellular fibrosis176. SPARC has been shown to be overexpressed in obese 

adipocytes, and this overexpression may be induced by increased TGF-β 

signalling15, suggesting that TGF-β secreting macrophages may contribute to 

fibrosis through SPARC-mediated thickening of the basement membrane. 

Increased SPARC expression may be upregulated in vivo in response to 

hyperinsulinaemia, and as such, linked with insulin resistance177. 

 

TGF-β signalling is believed to play a vital role in inducing the development of AT 

fibrosis144 by regulating the balance between synthesis of matrix components and 

their degradation via MMPs, and its expression by adipocytes may be induced by 

mechanical stress169. Members of the TGF-β family are cell signalling molecules 

responsible for directing the development and behaviour of cells, activating Smad 

protein pathways and plasminogen activator inhibitor-1 (PAI-1), a protein which 

inhibits plasmin-mediated ECM degradation178. TGF-β isoforms (1 and 3) have 

been shown to induce upregulation of PAI-1, connective tissue growth factor 

(CTGF) and TGFβ1 genes in adipocytes15, potentially leading to a positive-

feedback loop wherein TGF-β-secreting wound-healing macrophages94 act as an 

initiator, and activated adipocytes provide a macrophage-independent source of 

pro-fibrotic signalling15. 
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Lysyl oxidase, encoded by the LOX gene, is an enzyme responsible for the 

covalent cross-linking of collagen and elastin fibres at their lysine residues, 

establishing the deposition of insoluble matrix components and stabilising the 

ECM179. There is evidence to suggest that LOX mRNA is significantly increased 

in adipocytes from obese AT180, and that this can be induced by TGF-β1 

signalling, therefore contributing to ECM stabilisation in fibrosis15. In addition, 

LOX has been implicated in the development of HIF1α-mediated fibrosis121. 

 

Hypoxia and fibrosis 

There are two main pathways through which hypoxia is thought to cause fibrosis. 

The first is hypoxia-induced necrotic cell death and infiltration of macrophages 

which may exert wound-healing, pro-fibrotic characteristics181. Alternatively, AT 

hypoxia induces upregulation of HIF1α182,183, and reportedly directly mediates the 

expression of murine Col1a1, Col3a1, Col6a1 and Eln121. Its upregulation is 

thought to play an important role in AT fibrosis through activation of a pro-fibrotic 

transcriptional programme121,181.    

 

 Insulin resistance and fibrosis 

Insulin plays an important role in influencing the development of AT, as it 

regulates the deposition of ECM proteins by enhancing post-transcriptional 

processing and secretion of ECM collagens184. Therefore, increased levels of 

insulin may be implicated in AT fibrosis.  

 

The term ‘insulin resistance’ refers to the metabolic state in which cells of the 

body become unresponsive to insulin signalling, and if left untreated, can 
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progress into T2DM19. Reduced insulin sensitivity, or insulin resistance, results in 

disruption of the normal postprandial response mechanism (described in section 

1.1.2), where blood glucose is not effectively utilised by AT, the liver and skeletal 

muscle - the major insulin response organs. When insulin sensitivity is low, 

glucose tolerance is usually maintained by a compensatory increase of insulin 

secretion by pancreatic β-cells185. One consequence of this is chronically high 

concentrations of circulating insulin, known as hyperinsulinaemia186.  

 

Hyperinsulinaemia is associated with AT dysfunction, and strongly predicts 

metabolic disease187. There are conflicting reports regarding the effect of insulin 

on AT, as there is evidence to suggest it exerts a pro-inflammatory effect in obese 

AT via upregulation of MCP-1 in adipocytes188, however has also been shown to 

exert a potent anti-inflammatory effect by inhibiting the pro-inflammatory nuclear 

factor κ B (NFκB)189. Boutens et al (2015) postulate that insulin resistance in 

monocytes may influence their functional and inflammatory properties, and 

suggest the need for studies investigating the effects of insulin signalling patterns 

on macrophage phenotype190.  

 

 Insulin resistance and T2DM 

Insulin resistance can lead to the development of T2DM. T2DM is characterised 

by metabolic disturbances including obesity, dyslipidaemia (abnormal levels of 

circulating lipid)181, decreased insulin secretion, reduced insulin sensitivity in 

peripheral tissues and increased hepatic gluconeogenesis (synthesis of glucose 

by the liver)191. In obesity-related T2DM, the secretory ability of pancreatic β-cells 

is impaired and glucose remains at a high concentration in the circulation for an 
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extended period of time (hyperglycaemia)192. For T2DM classification, β-cells fail 

to rapidly release insulin in response to stimulation by circulating glucose, and 

there is up to 50% apoptosis-related depletion of cells193.  The remaining cells 

are not able to maximise their insulin secretion capacity, and once fasting 

hyperglycaemia has developed, cells have lost up to 75% of their function193. This 

decline is progressive: it is ongoing and associated with declining glycaemic 

control193. Hyperglycaemia is thought to perpetuate insulin insensitivity and have 

toxic, oxidative stress-related effects on β-cells194. 

 

Insulin resistance alone is insufficient to cause the development of T2DM. The 

individual must have a genetic predisposition, and be unable to secrete sufficient 

quantities of insulin to meet metabolic demand195. Additionally, reduced insulin 

sensitivity prevents insulin-induced inhibition of lipolysis (Figure 4) leading to 

hyperlipidaemia192. It is believed that consistently high plasma FFAs are 

implicated in perpetuating further insulin resistance and β-cell dysfunction192. 

 

Chronically poor glycaemic control as a result of β-cell dysfunction leads to 

glucose toxicity and increased risk of cardiovascular events, diabetic neuropathy, 

nephropathy and retinopathy194. T2DM patients may be treated with insulin 

replacement therapy in order to improve glycaemic control and thus avoid these 

pathologies196. A side effect of this treatment is chronic hyperinsulinaemia197, 

which as previously discussed, may be implicated in the development of AT 

fibrosis.  
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 Inflammation and insulin resistance  

A direct link between inflammation and insulin resistance has long since been 

established198, as obesity is associated with infiltration and activation of pro-

inflammatory macrophages199. Pro-inflammatory cytokine TNF-α, secreted by 

pro-inflammatory ATMs, is capable of inducing insulin resistance in adipocytes in 

obesity by promoting increased serine/threonine phosphorylation of IRS-1 and 

inhibiting signal transduction by preventing IRS-1 acting as a substrate for the 

kinase activity of the insulin receptor200. Its upregulation in obese mice resulted 

in significantly decreased insulin-facilitated uptake of glucose from serum into 

tissues90.  

 

Some macrophage-secreted pro-inflammatory factors can block the action of 

insulin, and may be important modulators of insulin sensitivity72. Macrophage 

secretory products have been shown to downregulate the expression of IRS-1 

and GLUT4 in adipocytes, as well inhibit translocation of GLUT4 to the cell 

surface201. This effect was reversed by the neutralisation of TNF-α by anti-TNF-

α antibodies, indicating the importance of pro-inflammatory TNF-α in sustained 

insulin resistance201.
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 Aims and objectives 

The development of fibrosis is thought to be caused by a dysregulated response 

to adipocyte death, where inflammatory signalling triggers an influx of 

macrophages. These macrophages undergo polarisation and are considered the 

‘master regulators’ of AT fibrosis. This study hypothesised that M2c 

macrophages, via anabolic TGF-β signalling, are the key cellular drivers of 

pathogenic AT fibrosis, and that hyperinsulinaemia, a hallmark of insulin 

resistance, enhances the development of macrophage-mediated AT fibrosis 

(represented in Figure 7). 

 

 

Figure 7: Schematic representation of hypothesised events leading to adipose 

tissue fibrosis. Adipocyte hypertrophy results in local hypoxia, cell death, 

inflammation and macrophage influx. Macrophage polarisation regulates the 

deposition of ECM components. When ECM deposition becomes dysregulated, 

AT develops fibrosis and loses plasticity, leading to ectopic lipid deposition. This 

effect may be compounded by increased levels of insulin.  
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This study aimed to build on the current understanding of how obese AT 

inflammation may lead to fibrosis, by investigating the effects of macrophages 

and insulin on AT fibrosis – specifically helping to clarify the role of M2a and M2c 

macrophage subtypes. It also aimed to provide novel insight into a possible pro-

fibrotic effect of hyperinsulinaemia on the development of macrophage-mediated 

AT fibrosis.  

 

Therefore, the objectives of this study were to confirm the pro-fibrotic effects of 

M2 macrophages (M2a and M2c subtypes) on human AT, to assess how insulin 

may modulate the effect of M1, M2a and M2c macrophages on the expression of 

genes associated with fibrosis in AT, and to determine the efficacy of in vitro 

macrophage differentiation protocols, enabling informed conclusions to be drawn 

about the importance of macrophage phenotype in the development of AT 

fibrosis. 

 

By further unravelling the factors involved in the development of pathogenic 

fibrosis in AT, it may be possible in the future to identify cellular or molecular 

treatment targets with a view to improving AT dysfunction in obesity.  
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Chapter 2: Methods 

 

The specific procedures and methodology used in order to fulfil the objectives of 

this study are detailed in this chapter. Briefly, THP-1 monocytes were cultured 

and differentiated, aiming to represent M1, M2a and M2c macrophages. Omental 

AT samples were obtained from consenting participants, before being processed 

and co-cultured with macrophages in the presence of insulin at various 

concentrations.  

 

 THP-1 cell culture 

The THP-1 (Tohoku Hospital Paediatrics-1) cell line is an immortalised 

proliferating cell line of human leukaemia monocytes, established in 1980 and 

derived from the blood of a young male patient with acute monocytic leukaemia. 

THP-1 cells, characterised by their specific human leukocyte antigen type, can 

proliferate on a scale suitable for use in an in vitro study, and have a homogenous 

genetic background, meaning potential for phenotypic variation is limited. It is 

also possible to effectively differentiate and polarise THP-1 cells under controlled 

culture conditions144, providing a significant advantage over primary monocytes 

or monocyte-derived macrophages in terms of practicality and reproducibility of 

results.  

 

RPMI 1640 (Roswell Park Memorial Institute) media, used to culture THP-1 cells, 

was developed as a suitable medium for the culture of human leukaemic cells, 

and contains high concentrations of vitamins (e.g. vitamin B12) to support cell 

growth. RPMI 1640 does not contain growth factors, proteins or lipids so must be 
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supplemented with foetal bovine serum (FBS). During the manufacture of FBS, 

erythrocytes, fibrinogen and platelets are removed from calf whole blood to 

prevent clotting, leaving all other proteins essential for cell culture202.  

 

The culture medium was supplemented with 1% penicillin and streptomycin 

(Sigma, St. Louis, MO, USA) antibiotics to prevent bacterial infection. The two 

were used in combination to protect against gram-positive and gram-negative 

bacteria, as penicillin disrupts the bacterial cell wall, and streptomycin inhibits 

protein synthesis in the target bacterial cell by binding and sequestering the 30S 

ribosomal subunit202.  

 

For this study, THP-1 cells were removed from storage in liquid nitrogen and 

swiftly defrosted by hand. The cell suspension was briefly mixed via vortex and 

pulse-spun in the centrifuge to ensure all cells were collected. Cells were 

immediately transferred into 10ml of fresh THP-1 culture medium – RPMI 1640 

(11mM D-glucose) supplemented with 10% foetal bovine serum (FBS), 1% 

penicillin streptomycin (P/S) solution (100U/ml penicillin, 100µg/ml streptomycin) 

and 2mM L-glutamine. The cell suspension was centrifuged at 300 x g for 5 

minutes to obtain a cell pellet, then resuspended in 20ml of medium at a 

concentration of 3x105 cells/ml and added to a 75cm2 cell culture flask. Cells were 

maintained in 5% CO2, with 100% humidity at 37°C. An additional 20ml of fresh 

culture medium was added four days later, and cells were split for sub-culture 

upon reaching a concentration of 1x106 cells/ml. Concentration was determined 

by dispensing 1µl of diluted cell suspension (1:50) into a cell counting slide and 

reading using a Bio-Rad TC20™ automated cell counter. 
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 Subject participation 

 Subject recruitment 

Ethical approval for the study was granted by the Ethics Committee and Tissue 

Bank ECRF Steering Committee. Suitable participants, scheduled to undergo 

surgical procedures, were identified by clinicians during their routine care. 

Patients were required to be over the age of 18 and able to provide informed 

consent. Exclusion criteria prevented the participation of subjects who had 

undergone bariatric surgery, were actively undergoing steroid treatment or had 

used steroids in the preceding three months, or had a chronic inflammatory 

condition requiring use of anti-inflammatory medication. AT samples were held 

as part of the Royal Devon and Exeter Tissue Bank (TB) for use in this study. 

Basic patient characteristics are detailed in Table 1. 

 Patient Age Sex Weight (kg) BMI 

 1 70 F 68.95 28 

 2 48 F 89 28.4 

 3 49 F 103 36.1 

 4 55 F 90.2 34.4 

 5 42 F 71 29.9 

 6 42 F 51.4 19.8 

 7 64 F 55 20.2 

 8 64 F 84.2 35.5 

 9 46 F 103.1 35.2 

 10 33 F 62.2 21.3 

Mean  51.3  77.81 29.72 

Median  48.5  77.6 29.9 

SD  11.73  18.8 6.32 

 

Table 1: Patient characteristics. AT was obtained from ten female patients. Age, 

weight and BMI information was collected.  
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 Sample and data collection 

Fresh omental AT (OMAT) samples were collected during routine 

obstetric/gynaecological surgery from consenting female patients where tissue 

was removed for pathological analysis and considered surplus to requirements, 

or where the patient had given consent for a small additional piece of tissue to be 

taken, and clinicians agreed the process presented no additional medical burden. 

During the assessment of patient suitability, some basic information was 

gathered including current and previous weight measurements, blood pressure 

and medication, and current body mass index (BMI) figures. All tissue samples 

were assigned a unique TB code to preserve patient anonymity and submerged 

in room temperature Hank’s balanced salt solution (HBSS) immediately after 

harvest. 

 

 Cell culture 

 THP-1 differentiation 

THP-1 cells were observed under the microscope to assess confluency and the 

accumulation of cell debris – indicative of apoptosis. Cells were then spun at 300 

x g for 5 minutes and pellet resuspended in a known quantity of fresh culture 

medium (10ml per 75cm2 flask) before being transferred into a single 50ml tube. 

The cell suspension was diluted accordingly (1:50) then quantified using the Bio-

Rad TC20™ Automated Cell Counter. The read-out was used to calculate the 

volume of suspension needed to give 4x106 cells per well in each condition. As 

8ml of cell suspension was necessary per condition, four tubes containing this 

volume were centrifuged and resuspended in media for their corresponding 

conditions, an overview of which can be found in Table 2. For M1 differentiation, 
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the THP-1 cell pellet was resuspended in 30ml RPMI 1640 supplemented with 

2mM L-glutamine, 20ng/ml LPS and 20ng/ml IFN-γ.  

 

For M2 differentiation, two cell pellets were resuspended in RPMI 1640 

supplemented with 2mM L-glutamine and 5nM PMA and incubated at 37°C for 5 

minutes. PMA was used in the differentiation process to induce cell cycle arrest 

and halt proliferation through upregulation of p21, which in turn inhibits cyclin-

dependent kinase 2 (CDK2) and prevents cells transitioning from G1 to S phase 

of the cell cycle203.  

 

After incubation, tubes were immediately centrifuged at 300 x g for 5 minutes. 

One pellet was resuspended in 30ml RPMI 1640 supplemented with 2mM L-

glutamine, 1% P/S and 20ng/ml IL-4 in order to induce differentiation into the M2a 

macrophage subtype, while the second pellet was resuspended in 30ml RPMI 

1640 supplemented with 2mM L-glutamine, 1% P/S and 20ng/ml IL-10 to facilitate 

differentiation into the M2c macrophage subtype. In the case of the 

undifferentiated THP-1 control, cells were resuspended in 30ml RPMI 1640 

supplemented with 2mM L-glutamine 1% P/S. 2ml of each suspension was 

dispensed into the corresponding wells before plates in were incubated at 37°C 

for 48 hours. 
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THP-1 

M (IFNγ 
+LPS) 

M (IL-4) M (IL-10) 

RPMI 1640 ✓ ✓ ✓ ✓ 

2mM L-Glutamine ✓ ✓ ✓ ✓ 

1% P/S ✓  ✓ ✓ 

20ng/ml LPS + 
20ng/ml IFNγ 

 ✓   

5nM PMA   ✓ ✓ 

20ng/ml IL-4   ✓  

20ng/ml IL-10    ✓ 

 

Table 2: Composition of media for macrophage differentiation. 

 

 THP-1/AT co-culture 

AT samples were stored in HBSS and upon receipt from surgery kept at room 

temperature for the duration of processing (up to four hours). For each 

macrophage condition, a small piece of tissue (approximately 3g) was removed 

from the bulk of the sample before forceps and surgical scissors were used to 

remove any prominent vasculature and areas of stiffness or scarring. The tissue 

was then ‘minced’ using scissors into pieces measuring approximately 500µm3 

to achieve a ‘soup-like’ consistency. An explant of 250mg (±20mg) was prepared 

for each duplicate well and spread evenly across the membrane of a Millicell 

hanging cell culture insert (Fisher Scientific MCHT06H48). If some tissue was 

surplus, several small pieces (~3-5g) were removed and stored at -80°C. During 

co-culture set-up, explants were prevented from drying by a small volume (2ml) 

of RPMI 1640 2mM L-glutamine, 1% P/S. Once prepared, the macrophages in 

culture were removed from incubation and their differentiation medium gently 
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aspirated, leaving adherent differentiated macrophages behind. The inserts were 

dispatched into wells with 2.5ml RPMI 1640 2mM glutamine 1% P/S and either a 

vehicle control, 1, 10, or 100nM insulin. Figure 8 shows the full experimental set-

up. Plates were incubated at 37°C, 5% CO2 for 48 hours. This procedure was 

repeated for all macrophage phenotypes, along with a negative control condition 

without macrophages. Within each experiment, co-culture conditions were 

performed in duplicate. Ten independent experiments were carried out, each 

using AT from a single independent donor.  
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Figure 8: Representation of co-culture setup, denoting the presence of AT, 

insulin concentration and macrophage differentiation. Each cell represents a 

numbered well in a six-well polystyrene cell culture plate. 4x106 THP-1 cells were 

plated per well before differentiation was induced. Co-cultures were performed in 

duplicate. Ten independent experiments were performed, using explants from a 

single tissue donor in each.  

 

After the co-culture incubation period, AT explants were collected and stored in 

1ml TRI Reagent® Solution in preparation for RNA isolation. All media was 

removed from the culture wells and dispensed into 1.5ml tubes. TRI Reagent® 

Solution (500µl) was added to the wells and a cell scraper was used to collect 

differentiated, adherent macrophages from the plastic surface of the wells for 

storage in a 1.5ml tube. All tubes were preserved at -80°C. This protocol was 
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repeated for each new tissue sample (ten in total) over the course of several 

months. 

 

 Expression profiling 

 RNA extraction and purity 

AT samples stored at -80°C in TRI Reagent® solution were defrosted by hand 

and homogenised in the Retsch® MM400 homogeniser at room temperature. A 

single sterile RNAse-free stainless steel bead was added to each tube before 

homogenising at 30Hz for approximately 10 minutes, or until the sample 

appeared fully homogenised. Samples were then centrifuged at 12000 x g for 10 

minutes at 4°C and the pink TRI Reagent® phase isolated from the lipid layer and 

debris pellet. Per 1ml of TRI Reagent®, 200µl of chloroform was added. Samples 

were shaken vigorously for 15 seconds, then incubated at room temperature for 

2-3 minutes. Tubes were spun a second time at 12000 x g at 4°C for 15 minutes 

to give a clear, aqueous layer containing RNA, an interphase of genomic DNA 

and denatured proteins, and an organic phenol-chloroform phase containing 

some DNA and proteins, at the bottom of the tube. The clear aqueous RNA layer 

was carefully isolated and 500µl of ice-cold isopropanol added. Following 

thorough agitation and a 10 minute incubation at room temperature, the samples 

were spun at 12000 x g at 4°C for 10 minutes, allowing the RNA to precipitate 

into a visible pellet. Pellets were twice washed with 1ml of ice-cold ethanol before 

being resuspended in RNase-free water and immediately stored on ice. The 

volume of water used was judged by eye based on the observed size of the pellet, 

but was typically 12-40µl.  
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RNA concentrations and purity were subsequently assayed using the Thermo 

Scientific NanoDrop™ 8000 spectrophotometer. In addition to obtaining a 

measure of nucleic acid concentration within the sample, sample purity was 

determined using the 260/280nm and 260/230nm absorbance ratios. All 

nucleotides (i.e. RNA, ssDNA and dsDNA) absorb light at the 260nm wavelength. 

Contaminants such as protein and phenol (likely from TRIzol® Reagent) absorb 

light at 280nm, therefore the 260/280 measurement indicates the relative purity 

of the sample - a reading in the region of 2.0 is considered ‘pure’. A secondary 

indicator of purity is the 260/230 ratio, which should be 2.0-2.2 when RNA is pure. 

A lower figure suggests contamination by carbohydrates and phenol, which also 

absorb UV light at 230nm. 

 

Following the extraction of RNA from all experimental samples, additional genetic 

material was extracted from three untreated pieces of AT, frozen at the point of 

receipt during the co-culture set up (section 2.3.2), for use as a calibrator in each 

qPCR plate, as described in section 2.5. RNA was also extracted from 

macrophages cultured alone in wells 1 and 2 for each subtype, without AT or 

insulin treatment, to establish the success of the differentiation protocol. Samples 

were assayed and diluted as above.  

 

 Sample selection 

Due to resource constraints, AT from six of the initial ten independent 

experiments was selected for reverse transcription (RT). The selected samples 

had the highest RNA concentration and A260/280 and A260/230 wavelength ratios 

closest to the optimum. See appendix 2 for full details. These participants were 
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patients 2, 4, 5, 6, 7, and 9 (age: 49.5 ± 7.83, BMI: 27.98 ± 6.12 and weight: 76.62 

± 19.03kg, as detailed in Table 1). 

 

 Reverse transcription 

RT was performed on RNA samples from six participants and calibrator samples 

(detailed above) to give complimentary DNA (cDNA), using a reaction mix which 

included random primers, RT enzymes, MgCl2, dNTPs and DNA polymerase. 

Invitrogen™ SuperScript™ VILO™ cDNA Synthesis Kit (10499763, Fisher 

Scientific) was used in accordance with the published product information sheet, 

using the following volumes of VILO™ Reaction Mix (at 5X concentration), 

SuperScript™ Enzyme Mix (at 10X concentration), RNA and nuclease-free water 

for a 10µl reaction mix, as shown in Table 3. 

 

Reagent Volume 

5X VILO™ Reaction Mix 2 µl 

10X SuperScript™ Enzyme Mix 1 µl 

RNA X µl 

Nuclease-free water up to 10µl 

 

The volumes of RNA and nuclease-free water were dependent on the 

concentration of the RNA samples (available in appendix 2), and together made 

up 7µl of the total reaction volume, giving a final RNA concentration of 30ng/µl in 

each well.  

 

Table 3: Reverse transcription reaction mix. 
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RNA was reverse transcribed in 96-well polypropylene plates, with a total of 

300ng of material in each reaction, using the DNA Engine® DYAD™ Peltier 

Thermal Cycler according to the protocol shown in Figure 9. 

 

 

  

The resulting cDNA was diluted using Invitrogen™ Ambion™ nuclease-free water 

(not DEPC treated) (10185104 Fisher Scientific) to 5ng/µl before storage at -

20°C.  

 

 qRT-PCR 

Quantitative polymerase chain reaction (qPCR), also referred to as real-time 

polymerase chain reaction, is a method by which the exponential amplification of 

cDNA is monitored and recorded in real time, allowing the relative expression 

levels of specific genes of interest (GOIs) to be determined based on the quantity 

of cDNA in a sample204. qPCR was performed on the Applied Biosystems™ 

QuantStudio™ 12K Flex system, using the QuantStudio™ 12K Flex Software 

v1.2.2, with the run method set to comparative Ct (ΔΔCt) in a 5µl reaction volume. 

Figure 9: Reverse transcription thermocycler programme 
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cDNA from three participants, and three calibrator samples, were plated along 

with a no-template control (NTC), onto each 384-well plate. 

 

The reaction mix was prepared in 96-well plates using the volumes described in 

Table 4, before being mixed well, centrifuged, and carefully dispensed in triplicate 

into MicroAmp® Optical 384-Well Reaction Plates, then centrifuged again to 

ensure the liquid fully covered the bottom of each well. 

 

Component Per well (96w plate) Per well (384w plate) 

2X TaqMan® Universal 
PCR Master Mix 

7.75µl 2.5µl 

TaqMan® assay 0.78µl 0.25µl 

cDNA 1.55µl 0.5µl 

Nuclease-free water 5.43µl 1.75µl 

  

 

cDNA was denatured as the reaction mix (containing cDNA, master mix, 

TaqMan® assay and nuclease-free water) was heated to 95°C. The TaqMan® 

Universal PCR Master Mix (Thermo Fisher Scientific: 404437) includes AmpliTaq 

Gold® DNA Polymerase, Uracil-DNA Glycosylase (UNG), dNTPs, primers and 

optimised buffer components. The temperature was reduced to 60°C during the 

annealing step, where the sequence-specific TaqMan® probes hybridise to the 

target DNA sequence between two primers, and elongation takes place. 

TaqMan® probes rely on fluorescence resonance energy transfer (FRET) to emit 

a signal, with a reporter fluorophore attached to the 5’ end and a ‘quencher’ at 

Table 4: Composition of qPCR reaction mix 
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the 3’ end. While in close proximity, energy from the reporter is received by the 

quencher, thereby preventing the emission of a detectable signal. When Taq 

polymerase catalyses DNA extension in the elongation phase, the 5’-3’ 

exonuclease activity of the polymerase cleaves the reporter dye from the probe, 

releasing it from the suppressive effect of the quencher, allowing the fluorescent 

signal to be emitted, and the initial quantity of cDNA to be detected and 

quantified204. Denaturation and annealing phases were repeated for 40 cycles, 

before a threshold cycle (Ct) value, a measure of relative concentration of the 

target sequence, was ascertained.  
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Figure 10: qPCR amplification of cDNA with FRET signalling. TaqMan probes 
bind to the denatured (single-stranded) cDNA template in a sequence-specific 
manner. Elongation, facilitated by Taq Polymerase, occurs between two primers 
and its 5’-3’ exonuclease activity cleaves the reporter (R) from the quencher (Q), 
allowing a fluorescent signal to be emitted205. 



69 
 

In accordance with the Applied Biosystems® TaqMan® Universal PCR Master 

Mix User Guide206, the following thermocycler programme (shown in Table 5) was 

used: 

Parameter 

UNG 
incubation 

Polymerase 
activation 

PCR (40 cycles) 

Hold Hold Denature Anneal/extend 

Temperature 50°C 95°C 95°C 60°C 

Time (mm:ss) 02:00 10:00 00:15 01:00 

 

 

qPCR output data is presented as relative fluorescence against a cycle number, 

allowing the amplification to be visualised over the course of the cycles. If 

exponential amplification is observed in an early cycle, the starting material is 

more abundant than if it was observed in a later cycle. The resulting amplification 

graph shows a baseline level of fluorescence which is regarded as background 

signal. Upon completion of all 40 cycles, the QuantStudio 12K Flex software 

determines a threshold, defining the point at which the signal becomes 

statistically significant and can be credited to DNA amplification. The point at 

which the signal curve crosses this threshold is known as the threshold cycle (Ct), 

and was used to quantify the cDNA of the gene of interest relative to a 

housekeeping gene204. The obtained Ct value is inversely related to the quantity 

of cDNA in the reaction mix, as a larger quantity of cDNA will reach the ‘threshold’ 

at an earlier cycle. 

Table 5: qPCR run method 
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 Enzyme-linked immunosorbent assay (ELISA) 

Multiple sandwich ELISA kits (Table 6) were used to characterise differentiated 

macrophages based on their secretory products. Individual protocols varied 

slightly, but broadly assays were performed as follows: high binding capacity flat 

bottom polystyrene 96-well ELISA microplate wells were coated with capture 

antibody solution directed toward the protein of interest (human IL-1α, IL-6, IL-

10, TNF-α, TGF-β1 or oxidised low-density lipoprotein receptor-1 (OLR-1), kits 

as detailed in Table 6), sealed and incubated at 4°C overnight (as shown in Figure 

11). Wells were washed 3 times with 200 µl phosphate-buffered saline (PBS) 

0.05% Tween-20 wash buffer, allowing approximately one minute for soaking 

between washes. An ELISA plate washer was not available, so all washing and 

aspiration steps were performed using a P200 8-channel pipette. Wells were 

blocked with 200 µl sample diluent solution for one hour at room temperature with 

shaking, then aspirated and washed once with wash buffer. Serial dilution of 

standards was carried out in duplicate in accordance with each individual kit 

protocol, and cell culture supernatant samples were added to wells (undiluted in 

assays measuring IL-6, IL-10, TNF-α, with dilution factor of 2 in IL-1 and OLR-1 

assays, and with dilution factor 1.4 for TGF-β) in triplicate. Duplicate blank wells 

were filled with 100 µl sample diluent. Plates were incubated at room temperature 

for two hours with shaking, antigen sample aspirated, and washed 3 times with 

200 µl wash buffer with soaking. 100 µl of biotin-conjugated detection antibody 

(diluted according to kit protocol) was added to each well and plates incubated 

for one hour at room temperature with shaking. Wells were aspirated and washed 

three times before 100 µl horseradish peroxidase (HRP) enzyme-conjugated 

streptavidin solution was added, then incubated with shaking at room 

temperature for 30 minutes. Wells were aspirated and washed five times, and 
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100 µl tetramethylbenzidine (TMB) substrate solution added. After 15 minutes 

incubation at room temperature (with shaking), 50 µl of stop solution (1M H3PO4) 

was added to inactivate HRP and halt colour development. Plates were measured 

at 450nm with corresponding reference wavelength (570nm for IL-6, IL-10, TGF-

β1 and TNF-α, 550nm for OLR-1 and 620nm for IL-1α assays) using a 

PHERAstar FS microplate reader.  

 

Target Sensitivity 
Standard 

curve range 
Dilution 
factor 

Detection 
wavelength 

Source 

IL-1α 1.6 pg/ml 1.6-100 pg/ml 2 450 nm 
Invitrogen 
BMS243-2 

IL-6 2 pg/ml 2-200 pg/ml None 450 nm 
Invitrogen 88-

7066 

IL-10 2 pg/ml 2-300 pg/ml None 450 nm 
Invitrogen 88-

7106 

TNF-α 4 pg/ml 4-500 pg/ml None 450 nm 
Invitrogen 88-

7346 

TGF-β1 8 pg/ml 8-1000 pg/ml 1.4 450 nm 
Invitrogen 88-

8350 

OLR-1 2 pg/ml 2-500 pg/ml 2 450 nm 
ThermoScientific 

EHOLR1 

 

Table 6: Parameters of commercial ELISA kits 
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Figure 11: Biotin-streptavidin sandwich ELISA. Briefly, the sample antigen binds a 

capture antibody on surface of microplate wells. A biotin-conjugated detection antibody 

also binds the antigen, allowing HRP-conjugated streptavidin to bind. When TMB 

substrate is added, HRP catalyses the formation of a measurable coloured product.  
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 Expression analysis 

 qRT-PCR plate calibrators 

More than one 384-well plate was required per gene for AT-derived cDNA when 

analysing gene expression. It was therefore necessary to account for any 

variation between individual plates, i.e. a ‘plate effect’. RNA extracted from three 

untreated AT samples was used to give three plate calibrators, and plated in 

triplicate as per the experimental samples. The mean and standard deviation 

(SD) for each set of calibrator triplicates was calculated. Where the SD was ≥0.5 

and a single data-point was considered responsible, the outlying value was 

removed. If the triplicate data-points were spread and a specific outlier could not 

be identified, no values were removed. These triplicate means were then 

averaged to give an overall ‘calibrator mean’ for each plate, allowing for the 

correction of inter-plate variation using the first plate (‘plate A’) as reference. 

Calibrator means for subsequent plates were divided by the calibrator mean of 

plate A to give a factorial by which all the Ct values for the given plate were 

divided.  

 

 Quality control 

Microsoft Excel 2013 was used to evaluate the quality and consistency of the raw 

data. Before any analysis was performed, some data points were removed where 

AT samples had been eliminated at an earlier stage of processing, e.g. RNA 

pellet lost during extraction, or RNA concentration was too low to perform RT, 

and a final concentration of 30ng/µl was not possible within the volume limitations 

described in Table 3. The standard deviation of corrected Ct values within each 

triplicate was calculated, and where this exceeded 0.5, triplicates were reviewed. 



74 
 

As before, any single data point deemed responsible for a high standard 

deviation, was considered an outlier and removed from further calculations. The 

‘no-template control’ (NTC) wells were expected to give an ‘undetermined’ 

reading as they contained no genetic material to be amplified. For all 

experimental genes, no signal was detected in these wells. 

 

 Housekeeping gene selection 

Housekeeping genes encode proteins required in all cells for basic function and 

metabolism, therefore they are constitutively active in tissues throughout the 

body. Such reference genes are used to give meaning to the level of expression 

of a GOI within a cell as they allow for data to be normalised, and expressed in 

relative terms, i.e. as a fold increase or decrease207. Examples of commonly used 

housekeeping genes include polyubiquitin C (UBC), 18S, glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), peptidyl-prolyl cis-trans isomerase A 

(PPIA) and TATA-box binding protein (TBP). 

 

Polyubiquitin C is an essential source of ubiquitin – a protein which plays an 

important role in targeting other proteins for degradation208. 18S ribosomal RNA 

is highly conserved and expressed across many different tissues as it contributes 

to the small ribosomal subunit, making it essential for protein synthesis and 

eukaryotic cell function209. GAPDH is frequently used as a reference gene 

because it encodes the essential GAPDH enzyme for glycolysis, allowing cells to 

utilise glucose as an energy source. PPIA is a zinc-dependent DNA binding 

protein210 which contributes to the isomerisation of peptide bonds and protein 

folding in macrophages211. TBP is a subunit of a transcription factor active in the 
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synthesis of RNA polymerase I, II and III. This means that TBP is required before 

any transcription can take place212, and so must be active in all active eukaryotic 

cells.  

 

 Housekeeping gene validation 

Housekeeping genes 18S, PPIA, TBP and UBC were used as appropriate 

internal controls for AT-derived cDNA213–215, and were used to normalise for 

inconsistencies in quantity of RNA that was reverse transcribed, providing an 

endogenous reference value in order to determine relative gene expression. Ct 

value means (corrected for plate variation as detailed in 2.5.1) were initially 

plotted to give an indication of stability, and appeared relatively consistent across 

the different experimental conditions. It was essential to also mathematically 

validate the suitability of the housekeeping genes. This validation of housekeeper 

stability was performed using the comparative 2-ΔΔCt method216,217 (detailed 

below) to identify any significant changes in expression.  

 

 Comparative 2-ΔΔCt method 

The comparative ΔΔCt method217 was used to quantify changes in gene 

expression relative to the untreated control condition, with results presented as 

‘relative expression’ (arbitrary units) or as a ‘fold change’. The calculations rely 

on the exponential nature of amplification by PCR and the assumed 100% 

efficiency of TaqMan® probes. The housekeeper geomean was subtracted from 

each Ct mean (calculated from triplicate values) to give the ΔCt. A separate 

calibrator value for each gene was calculated as the mean of the untreated 

control samples, i.e. no insulin, no macrophages, across all participants. The 
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ΔΔCt was obtained by subtracting the ΔCtcalibrator from the ΔCtsample. To obtain the 

fold-change, 2(-ΔΔCt) was calculated. The mean of the 2(-ΔΔCt) values for the two 

culture wells (see Figure 8 for co-culture layout) was then plotted with the 

standard deviation.  

 

 ELISA analysis 

The concentration of macrophage-secreted proteins was determined by 

constructing a standard curve of known concentrations plotted against their 

respective absorbance (OD). Where instructed, measurements obtained at the 

reference wavelength (ODref) were subtracted from values at the detection 

wavelength (ODdetection) to give Absorbance (ΔODref) for each standard, for which 

the mean and coefficient of variation (%CV) of technical duplicates was 

calculated. Where CV exceeded 20%, data points were carefully considered, and 

removed from the standard curve if necessary. It was acknowledged that removal 

of data points from the upper and lower bounds of the standard curve impacted 

the assay detection range. All standard curves contained a minimum of six data 

points and had an r2 value between 1 and 0.9956.  

 

The quality of experimental sample data was similarly assessed using Microsoft 

Excel 2016. Absorbance(ΔODref) was obtained, and %CV of technical triplicates 

calculated. In the majority of assays, some %CV values exceeded 20. This was 

determined to be largely caused by single outliers, rather than a wide spread of 

data points. Subsequently, the median was calculated, and interpolated into the 

equation of the standard curve to calculate the analyte concentration. For assays 

where samples were diluted, the concentration was multiplied by the dilution 
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factor. In some samples the calculated concentration fell below the assay 

detection range, and the analyte was determined to be ‘not detected’. Although it 

was not possible to determine complete absence of the target protein, these 

values were corrected to ‘0’ for the purposes of data analysis and graphical 

presentation. 

 

Protein levels were represented relative to the undifferentiated control cells within 

each independent experiment, in order to show the effect of differentiation on 

cytokine secretion. Data points were plotted with mean and standard deviation.  

 

 Statistical analysis 

‘Column statistics’ testing was performed using GraphPad Prism 5 software to 

determine if data was normally distributed, and therefore the type of statistical 

test required. All data failed D’Agostino and Pearson omnibus and Shapiro-Wilk 

normality testing due to small sample size, with only some passing the 

Kolmogorov-Smirnov test. With at least two out of three normality tests failed, 

Gaussian distribution was not assumed, and non-parametric tests were selected 

for all statistical analyses.  

 

 One-way ANOVA (Friedman non-parametric test) 

One-way non-parametric ANOVA (Friedman test) is a statistical technique used 

to determine whether there is a statistically significant difference between the 

means of three or more independent groups. The ANOVA alone is not able to 

determine where the difference occurs, so a post-hoc test is necessary. Dunn’s 

multiple comparison test was used to specify which means are different from each 
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other. This test is used when data does not conform to a traditional Gaussian 

distribution.  

 

 Repeated measures two-way ANOVA 

The non-parametric repeated measures (mixed model) ANOVA (two-way), with 

Bonferroni multiple comparisons post-hoc test, was used to detect the differences 

in means within a group. The effect of insulin concentration was assessed by 

comparing 1nM, 10nM and 100nM concentrations to the 0nM control within each 

macrophage subtype group. Two-way ANOVA also allows for all the data to be 

presented at once, giving a broader understanding of the effect of the different 

experimental conditions in the context of each other.  

 

 Kruskal Wallis test 

A Kruskal Wallis non-parametric test was utilised to analyse data obtained by 

ELISA as normality tests were not passed. Where a significant difference was 

found between the four means, Dunn’s multiple comparisons post-hoc test was 

used to pinpoint where means differed significantly from the control 

(undifferentiated THP-1 condition).  
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Chapter 3: Quantification of macrophage differentiation 

 

 Introduction 

In order to accurately interpret results from the macrophage-AT co-culture 

experiment, it was necessary to validate the differentiation of THP-1 monocytes 

into M1, M2a and M2c macrophage subtypes.  

 

THP-1 monocytes were differentiated in culture (detailed in 2.3.1) into M (IFNγ + 

LPS), M (IL-4) and M (IL-10) macrophages over 48h to reflect M1, M2a and M2c 

phenotypes respectively. qRT-PCR (detailed in 2.4.4) was used to measure 

expression of phenotypic cell surface markers: CD86, a marker of M1 

macrophages94, CD206, a general marker of M2 phenotype macrophages94,218, 

as well as CD15094,167 and CD163, both reputed markers of M2c macrophages. 

Supernatant levels of IL-1α, IL-6, IL-10, OLR-1, TGF- β and TNF-α were 

measured by ELISA to indicate functional differentiation. Data were analysed 

using one-way ANOVA (Friedman’s test or Kruskal Wallis test) with Dunn’s 

multiple comparisons test.  

 

Results were expected to show M (IFNγ + LPS) cells upregulate CD86 

expression, with little to no change in CD206, CD150 and CD163 expression218, 

and secrete increased IL-1α, OLR-1, IL-6 and TNF-α, thereby suggesting an M1-

like phenotype. M (IL-4) cells were expected to upregulate CD206 and secrete 

IL-10, while M (IL-10) cells were predicted to upregulate CD206, CD150 and 

CD163 while secreting IL-10, and TGF-β, suggesting differentiation into M2a- and 

M2c-like phenotypes respectively. 
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 Optimisation 

The protocol for macrophage differentiation was based on work by Spencer et al 

(2010)144. Optimisation of this protocol was completed by Dr E Pastel over the 

course of three independent experiments, between which small changes were 

made. Full details and data from the optimisation process can be found in 

Appendix 1.  

 

After the final differentiation optimisation experiment, cells were analysed by 

qRT-PCR to quantify expression of CD68 (pan-macrophage marker), CD86 (M1 

marker), CD206 (M2 marker) and CD150 (M2c marker). All differentiated cells 

expressed higher levels of CD68 than did undifferentiated THP-1 monocytes, 

therefore were considered macrophage-like. Cells treated with IFNγ + LPS were 

seen to upregulate CD86, so were believed to be ‘M1-like’. Cells treated with 

PMA + IL-4 or IL-10 expressed higher levels of CD206 than did cells treated with 

IFNγ + LPS, therefore were considered M2-like. None of the differentiated cells 

increased expression of the M2c marker CD150. 

 

Statistical analysis could not be performed on these data as each cell culture 

experiment was carried out only once, with technical duplicates. A full discussion 

of the limitations of this optimisation can be found in chapter 6. Although 

seemingly inconclusive, Dr Pastel considered the optimisation of macrophage 

differentiation protocols to be complete based on these results (further detailed 

in Appendix 1). 
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 Results 

Briefly, macrophages differentiated using IFNγ + LPS, IL-4 and IL-10 were 

analysed by qRT-PCR for expression of phenotypic cell surface markers CD86 

(M1 marker), CD206 (M2 marker), CD150 (M2c marker) and CD163 (M2c 

marker). Post-differentiation cell culture medium was collected and analysed by 

ELISA to quantify secretion of proteins indicative of macrophage functional 

polarisation, IL-1α, IL-6, IL-10, OLR-1, TNF-α, and TGF-β.  
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Figure 12: Relative mRNA expression of macrophage markers in differentiated 

THP-1 cells. Markers of macrophage differentiation, A) CD86, B) CD206, C) 

CD150, and D) CD163, in all three differentiated macrophage conditions were 

compared to undifferentiated THP-1 cells using one-way ANOVA (Friedman’s 

test) with Dunn’s multiple comparison post-hoc test (* = p≤0.05, ** = p≤0.01, *** 

= p≤0.001). Data normalised to undifferentiated THP-1 monocytes.  Valued 

represented as mean fold change ±SD, n=6 independent experiments. 
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 CD86 expression 

CD86 is expressed on the surface of antigen-presenting cells: it is a co-

stimulatory molecule essential for the activation of T-cells in the innate immune 

response, and a marker of the M1 macrophage phenotype. qRT-PCR was 

performed on THP-1 differentiated monocytes maintained in culture without AT 

for a further 48 hours after differentiation. These cells were used as a negative 

control in the AT-macrophage co-culture experiment. This was followed by 

statistical analysis by one-way ANOVA with Dunn’s multiple comparison post-hoc 

test, where cells induced to differentiate into M (IFN-γ + LPS), M (IL-4) and M (IL-

10) phenotypes were compared with THP-1 cells, the undifferentiated control. 

Table 7: Numerical presentation of quantification of macrophage differentiation. 

Relative mRNA expression of macrophage cell surface markers was measured in 

differentiated macrophages. Protein secretion of cytokines indicative of 

macrophage functional phenotype was measured by ELISA. Data presented as a 

mean fold change relative to undifferentiated THP-1 monocytes.  
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CD86 was shown to be differentially expressed in M (IFN-γ + LPS) cells (Figure 

12A) with highly significant mean fold increase of 46.903±68.07 (p≤ 0.001) 

compared to undifferentiated cells. Although not as highly expressed, there was 

a significant mean fold increase of 11.77±8.13 of CD86 in M (IL-4) cells (p≤ 0.05, 

Figure 12A). M (IL-10) did not significantly upregulate CD86 (Figure 12A), and 

fold increase was 1.583±0.49. In comparison to the treated cells, expression of 

CD86 in undifferentiated THP-1 cells was extremely low. 

 

 CD206 expression 

The mannose receptor CD206 (MRC1), thought to play an important role in the 

resolution of inflammation and reduction of pro-inflammatory cytokine release219, 

is expressed on the surface of M2 macrophages. Expression of CD206 in M (IFN-

γ + LPS), M (IL-4) and M (IL-10) cells was compared with the untreated THP-1 

control (Figure 12B). CD206 was significantly upregulated in M (IL-4) (p≤0.01) 

and M (IL-10) (p≤0.05) cells with mean fold changes of 8.167±8.28 and 

4.157±2.31 respectively, suggesting effective differentiation towards an M2 

phenotype. Although not statistically significant, M (IFN-γ + LPS) cells also 

exhibited a fold change of 4.29±3.04, suggesting their differentiation may have 

induced some ‘M2-like’ characteristics.  

 

 CD150 expression 

CD150 is a cell surface protein expressed by M2c macrophages220. It is thought 

to play an important role in the production of IL-4 from T cells221, thereby 

contributing to the resolution of inflammation within AT. Mean fold changes were 

as follows: M (IFN-γ + LPS) = 0.869±0.22, M (IL-4) = 1.05±0.28, M (IL-10) = 
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0.935±0.11. None of the differentiation conditions induced significantly increased 

expression of CD150 (Figure 12C) compared to undifferentiated THP-1 cells. This 

result is supported by data from the pilot experiment (see Appendix 1), where no 

differentiation stimuli upregulated CD150 expression, and in fact PMA + IL-4 and 

PMA + IL-10 treatments showed a trend for CD150 downregulation (Figure 19D). 

These results suggest that untested changes made to the differentiation protocol 

during optimisation did not increase CD150 expression. 

 

 CD163 expression 

CD163 encodes a scavenger receptor, able to recognise low-density lipoproteins, 

and is reportedly differentially expressed by M2c macrophages differentiated with 

IL-10146. CD163 expression in the three differentiation conditions was compared 

to undifferentiated THP-1 cells. Upregulation of CD163 by M (IL-4) and M (IL-10) 

macrophage populations (mean fold changes 5.253±3.99 and 4.482±1.88 

respectively) was not significant. Unexpectedly, M (IFNγ + LPS) cells strongly 

upregulated CD163 (p≤0.001) (Figure 12D) with a mean fold change of 

76.944±39.96. 

 

The TaqMan assay used to detect CD163 expression was obtained after the 

initial differentiation optimisation experiments and the pilot study, therefore it had 

not previously been possible to determine if expression of CD163 was high in 

cells treated with IFNγ + LPS immediately after the 48h differentiation period, or 

whether expression was induced due to the proceeding 48 hours in culture 

medium. To answer this question, additional qRT-PCR was performed on cells 

from the second optimisation experiment (detailed in section 7.1.1) to quantify the 
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expression of CD163 both immediately after differentiation and after the 

additional 48h in culture. In this experiment, several changes had been 

implemented, including increasing THP-1 cell seeding density from 1x106 to 

2x106 cells per well, and increasing the differentiation period from 24h to 48h. 

 

 CD163 expression: second optimisation test 

 

Figure 13: Relative expression of CD163 in cells from second optimisation test. 

Expression of M2c marker CD163 was measured in undifferentiated THP-1 

monocytes, M (IFNγ + LPS), M (IL-4) and M (IL-10) macrophages and analysed 

using one-way ANOVA followed by Dunn’s multiple comparisons post-hoc test. 

Error bars show mean ±SD, n=2 technical replicates.  

 

CD163 (Figure 13) expression was increased in M (IFNγ + LPS) cells from the 

second differentiation optimisation test (detailed in 7.1.1) when compared to the 
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undifferentiated control. Mean fold changes were 18.589±4.37, 2.137±1.95 and 

7.844±6.35 in M (IFNγ + LPS), M (IL-4) and M (IL-10) populations respectively. 

Significance could not be calculated as results were based on a single 

experiment, with technical replicates of two. Although CD163 expression was 

more than four times higher after an additional 48h in culture medium (Figure 

12D), this result demonstrates that high expression of CD163 was likely as a 

direct result of exposure to differentiation stimuli, and cannot be attributed to 

trans-differentiation154 of M (IFNγ + LPS) macrophages towards an M2c-like 

phenotype after the removal of differentiation stimuli. As cell surface marker 

analysis does not accurately define macrophage function, further techniques 

were employed to investigate cell differentiation.  
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 Secretory profile analysis  

 

Figure 14: Relative protein secretion from differentiated macrophages. Protein 

secreted by M (IFNγ + LPS), M (IL-4), M (IL-10) and undifferentiated THP-1 cells 

were analysed by ELISA. Results were normalised and compared to 
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undifferentiated THP-1 monocytes using Kruskal Wallis with Dunn’s multiple 

comparison test, * = p<0.05, ** = p<0.01, *** = p<0.001. Data represented as 

mean relative protein levels compared to THP-1 ±SD, n=6 independent 

experiments, except IL-10 where n=3. 

 

 IL-1α secretion 

IL-1 is a cytokine with pro-inflammatory activity, and is secreted by M1 

macrophages94. Cell culture supernatants from differentiated macrophages 

cultured in the absence of OMAT were analysed by ELISA to assess their 

secretory profile, giving a more accurate indication of their functional 

characteristics. IL-1α secretion (Figure 14A) was significantly increased (p>0.05) 

in cells, suggesting macrophages may possess a pro-inflammatory functional 

phenotype. IL-1α secretion was not increased by differentiation with IL-4 and IL-

10, indicating that a pro-inflammatory phenotype was not induced in these cells. 

Mean fold changes ±SD are detailed in Table 7. 

 

 IL-6 secretion 

M1, but not M2a or M2c macrophages, are characterised by IL-6 secretion94. 

Secreted levels of IL-6 (Figure 14B) were significantly (p<0.001) increased by 

differentiation using IFNγ + LPS, suggesting polarisation of M (IFNγ + LPS) cells 

to an M1-like phenotype. This upregulation was not observed in M (IL-4) or M (IL-

10) macrophages, suggesting these cells do not possess a pro-inflammatory M1-

like phenotype.  
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 TNF-α secretion 

M1 macrophages are a major source of secreted pro-inflammatory TNF-α94,222. 

Secreted TNF-α levels were not significantly increased by any of the 

differentiation conditions (Figure 14C), however on average cells treated with 

IFNγ + LPS secreted higher levels of the cytokine than M (IL-4) or M (IL-10) 

macrophages.  

 

 OLR-1 secretion 

Oxidised low-density lipoprotein receptor 1 (OLR-1), also known as LOX-1, is a 

type II membrane glycoprotein receptor for oxidised low-density lipoprotein (Ox-

LDL). OLR-1 is reportedly upregulated by THP-1 macrophages in response to 

LPS, TNFα and TGF-β stimuli223–225. The receptor is secreted in soluble form226, 

and therefore was predicted to be differentially elevated in cell culture 

supernatant from M (IFNγ + LPS) macrophages. ELISA analysis (Figure 14D) 

showed OLR-1 secretion was not significantly modulated by differentiation into M 

(IFNγ + LPS), M (IL-4) or M (IL-10) macrophage phenotypes.  

 

 IL-10 secretion 

Secretion of anti-inflammatory IL-10 (Figure 14E) is indicative of M2a and M2c 

macrophage phenotypes94. IL-10 secretion was not significantly increased by M 

(IL-10) or M (IL-4) macrophages, however the mean protein level was higher in 

these conditions than M (IFNγ + LPS).  
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 TGF-β secretion 

Production and secretion of pro-fibrotic TGF-β is characteristic of M2c 

macrophages94, and therefore secretion was expected to be highest in M (IL-10) 

cells. Secreted TGF-β levels were not significantly upregulated by any means of 

macrophage differentiation, however did appear to be increased to some degree 

in M (IFNγ + LPS) and M (IL-10) cell culture.  
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 Discussion 

After differentiation and quantification of marker expression at the RNA level, M 

(IFNγ + LPS) macrophages were expected to strongly upregulate CD86, with little 

upregulation of M2 markers CD206, CD150 and CD163 compared to the 

undifferentiated THP-1 control. M (IL-4) macrophages were expected to show low 

CD86, CD150 and CD163 expression, in addition to distinct upregulation of the 

pan-M2 marker CD206. M (IL-10) macrophages were predicted to exhibit low 

CD86 expression, with upregulated CD206, CD150 and CD163.  

 

This was supported by the findings that M (IFNγ + LPS) cells significantly 

upregulated CD86 and secreted high levels of IL-1α and IL-6, and M (IL-4) and 

M (IL-10) macrophages upregulated CD206. However, high expression of CD163 

and elevated secretion of TGF-β from M (IFNγ + LPS) macrophages, and a lack 

of differential expression of CD150 in differentiated subpopulations was not the 

anticipated result, although not altogether surprising based on initial optimisation 

data (appendix 1). These data establish that further work is needed to fully 

elucidate the complex cocktail of cytokines and specific cell culture conditions 

required for effective in vitro macrophage polarisation.  

 

 THP-1 monocytes retain a relatively ‘undifferentiated’ 

phenotype 

As anticipated, undifferentiated THP-1 monocytes showed comparatively low 

mRNA expression of CD86, CD206 and CD163 markers after 96 hours in culture 

medium. Low expression of CD163 in undifferentiated THP-1 monocytes was in 

line with the findings of Ritter et al (1999), who report that unstimulated THP-1 
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monocytes do not express CD163 at a significant level227. Secretion of IL-1α, 

TNF-α and IL-6 also remained comparatively low, corroborating previous work by 

Genin et al228 and suggesting cells maintained an undifferentiated monocyte 

phenotype. 

 

 IFNγ + LPS induces a mixed macrophage phenotype 

In line with expectations, treatment of THP-1 monocytes with IFNγ and LPS 

resulted in an approximate mean 8-fold significant (p<0.001) upregulation of 

CD86 compared to the undifferentiated control, suggesting differentiation into an 

M1-like phenotype94. This is corroborated by the findings of Mia et al (2014), who 

demonstrate stimulation of monocytes with IFNγ + LPS is highly effective for the 

induction of cell surface CD86 expression229. Secretion of IL-1α and IL-6 was also 

differentially and significantly increased by M (IFNγ + LPS) as expected230,231, 

suggesting cells were behaving in a functionally pro-inflammatory manner. Pro-

inflammatory TNF-α secretion was expected to be significantly increased by M 

(IFNγ + LPS) cells. While there was a mean six-fold increase, large variability of 

data across independent experiments meant this was not statically significant. It 

must be noted that poor reproducibility and large standard deviations for all the 

data presented in this chapter limits the definitive characterisation of these cells. 

Possible reasons for this are explored in depth in Chapter 6.   

 

M (IFNγ + LPS) macrophages did not significantly upregulate CD206 when 

compared to the untreated control, likely due to high variability in the data, 

however there was almost a three-fold mean increase, suggesting some M2-like 

characteristics. This differs from the findings of Mia et al (2014), whose treatment 
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of human peripheral blood mononuclear cells (PBMCs) with IFNγ and LPS did 

not increase cell surface CD206 expression, as detected by fluorescence-

activated cell sorting (FACS)229. In addition to using a different cell type, the 

differentiation period in their study was only 24h229, and therefore may not have 

been sufficient to see increased protein expression on the cell surface. In our 

study however, 48h of exposure to IFNγ and LPS did result in upregulation of 

CD206 mRNA, although it is not possible to determine if the protein level was 

also increased.  

 

Expression of the M2c marker CD150 was, as expected, not upregulated in THP-

1 monocytes in response to IFNγ + LPS stimulation. Surprisingly, expression of 

M2c marker CD163 was increased suggesting a more M2c-like phenotype, which 

is supported by a non-significant 5.5-fold increase in TGF-β secretion (also 

demonstrated by Redzic et al (2013)232. These data are in sharp contrast to Ritter 

et al (1999), who report that IFNγ-induced stimulation of macrophages, derived 

from freshly isolated human PBMCs, suppressed CD163 transcription and cell 

surface expression, and that LPS-treated monocytes exhibited significantly 

downregulated expression of CD163 at the mRNA and protein level227. There are 

some small but important differences in the methodology used by Ritter et al, 

which may, at least partly, explain this difference: when cells were cultured in the 

absence of serum, an LPS concentration of 1µg/ml was required to stimulate 

significant downregulation of CD163227. In contrast, our study used only 10ng/ml 

LPS in a serum free culture medium. Ritter et al also claim that IFNγ suppressed 

the transcription of CD163 mRNA when supplied at 10ng/ml, however our data 

do not support this, as when IFNγ was provided at 20ng/ml, CD163 was still 

increased. No information is provided by Ritter et al regarding the duration of 
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exposure to differentiation stimuli. Crucially, monocytes used by Ritter et al were 

freshly isolated from human volunteers, meaning they may respond differently to 

in vitro exposure to differentiation stimuli than the immortalised, leukaemia-

derived THP-1 cell line. Further to this, they report that THP-1 monocytes, 

differentiated into macrophages using only PMA, did not express CD163 at 

significant levels.  

 

It was speculated in section 3.3.4, during the additional 48h in culture medium 

after the differentiation period, in the absence of AT-derived signals or 

differentiation stimuli, M (IFNγ + LPS) cells may have undergone some 

transdifferentiation towards a more M2c-like phenotype, thereby resulting in the 

upregulation of CD163. If this were the case, it is possible that at the point of the 

co-culture setup, M (IFNγ + LPS) cells may have possessed a more traditionally 

M1-like phenotype, with limited expression of ‘M2’ markers. To address this, 

qPCR was performed on macrophages collected immediately after the second 

differentiation optimisation experiment (see appendix 1), performed by Dr Pastel, 

in order to measure CD163 expression. The transdifferentiation theory was 

consequently disproved, as results revealed a similar pattern of CD163 

expression immediately after 48 hour exposure to differentiation stimuli. This 

suggests that M (IFNγ+ LPS) cells possessed a mixed M1/M2 phenotype 

immediately after differentiation and at the beginning of the co-culture period. 

 

Chanput et al (2013) treated THP-1 monocytes with 20ng/ml IFNγ and 1µg/ml 

LPS, and reported increased markers of an M2 phenotype, including IL10 mRNA 

and secreted protein, in M1 macrophages225. In our study M (IFNγ + LPS) 

macrophages appeared M1-like with regards to CD86 expression but secreted 
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relatively similar levels of IL-10 to M (IL-4) and M (IL-10) macrophages, and 

slightly enhanced levels of TGF-β. Although neither were significantly increased 

compared to the control, this may suggest that M (IFNγ + LPS) macrophages 

possess some M2-like characteristics. Chanput et al also propose OLR-1 as a 

‘new M1 gene’, however in our analysis its secretion was not significantly 

upregulated in response to differentiation stimuli. This may be because they 

measured OLR-1 mRNA 6h, which may not correspond with an accumulation of 

secreted protein at the 48h timepoint225. 

 

Genin et al (2015) reported an upregulation of secreted M2 marker chemokine 

(C-C motif) ligand 18 (CCL18) after differentiation using 10ng/ml LPS and 

20ng/ml IFNγ. This effect was not observed when LPS was used at a lower 

concentration of 10pg/ml, therefore they conclude that high concentrations of 

LPS induce unspecific expression of M2 markers in pro-inflammatory M1 

macrophages. Neither paper specifically reports a change in CD163 expression 

in THP-1 cells after treatment with IFNγ and LPS, but taken together their data 

suggest that using a lower concentration of LPS in the THP-1 differentiation 

protocol may induce a more definitive M1 macrophage phenotype, without 

upregulation of M2 markers. 

 

Polarised macrophages resist categorisation into discrete groups, as M1 and M2 

represent extremes of macrophage activation, where most cells fall somewhere 

between the two phenotypes. Spencer et al (2010) report a mixed M1/M2 

phenotype in around 60% of in vivo non-CLS ATMs in lean human subjects, 

which stained positive for CD86 and CD206 via immunofluorescence144. Zeyda 

et al (2007) also show that despite characterising AT macrophages as M2-like 
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according to their expression of cell surface markers, cells were still capable of 

producing pro-inflammatory cytokines157. Considering this, the apparent mixed 

M1/M2 phenotype of M (IFNγ + LPS) cells may represent the observed mixed 

phenotypes of AT macrophages in vivo. 

 

 M (IL-4) macrophages significantly upregulate CD206 

M (IL-4) macrophages significantly upregulated expression of CD86 compared 

with the undifferentiated control, although the expression of CD86 was 3.5-fold 

higher for cells treated with IFNγ + LPS. M (IL-4) macrophages upregulated M2 

marker CD206 significantly and the most strongly of all the treated cells 

(consistent with previous studies146,231), with expression 2.7-fold higher than M 

(IFNγ + LPS) cells and 8-fold higher than THP-1 monocytes, therefore suggesting 

the expected differentiation to an M2 phenotype. CD150 (M2c marker) 

expression was, as anticipated, not upregulated in M (IL-4) macrophages.  

 

CD163 expression, however, was non-significantly upregulated in M (IL-4) 

macrophages, contrary to the findings of Porcheray et al (2005) who determine 

that IL-4 strongly reduces CD163 on the surface of macrophages218. This 

discrepancy may be attributed to methodological differences: their study utilises 

primary human monocytes derived from PBMCs, cultured with macrophage-

colony stimulating factor (M-CSF) and granulocyte macrophage-colony 

stimulating factor (GM-CSF) to maintain a ‘neutral’ environment with respect to 

CD206 and CD163 expression. Mature macrophages were stimulated with a 

selection of pro- and anti-inflammatory molecules over four days, at 10ng/ml218. 

Although more convenient for use in in vitro studies, THP-1 monocytes may not 
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respond precisely the same way to pro- and anti-inflammatory stimuli as 

endogenous monocytes. Obtaining and isolating PBMCs from human subjects is 

a laborious, time-intensive process, but cells are likely to more accurately 

represent the behaviour of ATMs in vivo. No in vitro biological model is perfect, 

but in the absence of monetary or practical limitations, the ‘gold standard’ 

experiment would involve the use of patient-matched PBMCs and OMAT, 

preferably from a cohort of healthy-BMI individuals.  

 

The differentiation protocol used by Porcheray et al (2005) may also recreate the 

in vivo differentiation process more accurately as cells were first slowly matured 

into macrophages, before being exposed to polarising pro- and anti-inflammatory 

molecules over a longer period of time218. Flow cytometric analysis, as opposed 

to qRT-PCR, quantified cell surface CD206 and CD163. Due to the transient 

nature of mRNA transcripts and the opportunity for post-transcriptional 

modifications, quantification methods detecting cell surface protein levels may 

provide a more definitive picture of macrophage phenotype.  

 

ELISA analysis from differentiated macrophages showed secretion of pro-

inflammatory cytokines IL-1α, IL-6 and TNF-α from M (IL-4) macrophages was 

not significantly increased, consistent with the findings of Lolmede et al (2009)231, 

suggesting cells were not of a functionally pro-inflammatory phenotype. M (IL-4) 

macrophages as expected did not significantly increase TGF-β secretion94, but 

also did not increase  IL-10 secretion94. This outcome is not traditionally expected, 

but has been shown in previous studies228,231. A limited consensus on how to 

identify M2a macrophages means that their characterisation is often defined 

relative to M1 or M2c polarised macrophages231. Analysis of M (IL-4) 
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macrophages showed they appeared to somewhat conform with the expected 

functional phenotype for M2a-like cells, but their phenotype cannot be precisely 

defined. As such, these cells will be considered ‘broadly M2-like’. Quantification 

of secreted VEGF or membrane bound CD36 may have aided the accurate 

classification of an M2a phenotype231.  

 

 M (IL-10) macrophages do not possess a distinct M2c 

phenotype 

As predicted, THP-1 monocytes, treated with PMA + IL-10 to induce 

differentiation to an M2c-like phenotype, did not significantly upregulate M1 

marker CD86. Equally, secretion of IL-1α and IL-6 was not increased, suggesting 

cells did not possess a pro-inflammatory phenotype. Although slightly elevated, 

TNF-α and OLR-1 secretion was not significantly different from THP-1 

monocytes.  mRNA of the reputed M2c specific marker CD150144 was also not 

upregulated, and expression of M2c-specific CD163 was modestly upregulated, 

but still lower than expression induced in the M (IFNγ + LPS) and M (IL-4) 

populations, in direct contrast to previous reports146,218,231.  

 

Porcheray et al (2005) demonstrated that in human macrophages (PBMC-

derived) IL-10 strongly upregulated cell surface presentation of CD163, but 

CD206 was unchanged. They report CD163 and CD206 are induced in a mutually 

exclusive fashion after stimulation with anti-inflammatory molecules218, implying 

they represent distinct macrophage populations. This suggests CD206 may be 

more specific to M2a macrophages, and not the pan-M2 marker as 

described94,144,233,234. Our results support this in part, as although there was 
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significant upregulation of CD206 by M (IL-10) cells, there was approximately 

1.8–fold higher expression of CD206 from M (IL-4) macrophages. This implies 

that studies exploring the link between AT fibrosis and AT macrophages may 

inadvertently fail to identify the primary fibrosis-inducing M2c macrophages when 

using only CD206 as a pan-M2 marker. Spencer et al (2010) oppose this claimed 

mutually exclusive expression, and state that in vivo CD150-positive ATMs were 

all also CD206-positive144. 

 

A strong and significantly increased secretion of TGF-β and IL-10 was 

expected94,144,231, but was not shown by M (IL-10) macrophages. Overall, 

phenotypic analysis suggests limited differentiation into a functional M2c 

phenotype. 

 

 Summary 

In conclusion, the differentiation protocol used in this study produced some of the 

expected outcomes: M (IFNγ + LPS) cells strongly upregulated M1 marker CD86 

and secreted inflammatory cytokines, M (IL-4) and M (IL-10) cells significantly 

upregulated CD206 and CD163 markers and did not increase inflammatory 

cytokine secretion. Unexpected strong upregulation of CD163 and some TGF-β 

secretion from M (IFNγ + LPS) macrophages suggests these cells possess a 

distinctly mixed phenotype. No significant, strongly increased secretion of TGF-β 

or IL-10 from M (IL-10) macrophages suggests an overtly M2c-like phenotype 

was not induced. Proposed changes to the differentiation protocol are explored 

in chapter 6. 
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The THP-1 differentiation protocol, adapted from published methodology144, was 

thought to be adequately optimised by Dr Pastel (see appendix 1) before starting 

these experiments, however phenotypic analysis clearly demonstrates this was 

not the case, and highlights the critical importance of robust protocol optimisation 

and validation before beginning key experiments.  
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Chapter 4: The influence of macrophages on adipose 

tissue fibrosis 

 

 Introduction 

Fibrosis is increasingly recognised as an important factor in the development of 

AT dysfunction, as it has been hypothesised to limit adipocyte expansion, 

resulting in the pathogenic deposition of dietary lipids at ectopic sites. AT 

macrophage numbers are greatly increased in obesity, likely in response to 

higher rates of adipocyte death133. The development of fibrosis in AT is strongly 

associated with the macrophage infiltration, and is thought to be influenced by 

their pro-inflammatory (M1) or anti-inflammatory/’wound-healing’ (M2) 

phenotype. M2 macrophages can be further classified to encompass M2a and 

M2c phenotypes, with M2a macrophages important in the removal of parasites, 

and M2c macrophages thought to play a major role in ECM deposition and 

remodelling94. 

 

Using an in vitro model of AT inflammation, this study aimed to confirm that M2 

macrophages, and M2c in particular, are the primary cellular mediators of fibrosis, 

and potently induce upregulation of genes associated with fibrosis (encoding 

structural ECM components collagens I, III, IV, V, VI, fibronectin and elastin, and 

regulators of matrix deposition TGF-β, lysyl oxidase and SPARC) in AT.  

 

After initial optimisation of methods (see appendix 1), THP-1 monocytes were 

treated with LPS + IFN-γ, PMA + IL-4, or PMA + IL-10 for 48 hours to induce 

differentiation. Polarised macrophages are referred to as M (IFNγ+LPS), M (IL-4) 
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and M (IL-10), to acknowledge that phenotypic analysis suggested these cells 

could not be discretely classified as M1, M2a or M2c-like respectively.  

 

These macrophages, along with an undifferentiated control and an AT-only 

condition, were co-cultured with patient-derived OMAT explants for 48 hours, 

before qRT-PCR was performed on OMAT samples. TaqMan probes were used 

for a selection of genes encoding structural ECM proteins (COL1A1, COL3A1, 

COL4A1, COL5A3, COL6A3, TGFβ1, FN1 and ELN), and molecular mediators 

(SPARC and LOX) shown to be implicated in the development of AT fibrosis. 

Friedman’s one-way ANOVA with Dunn’s multiple comparisons test was used for 

statistical analysis. 
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 Results 
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Figure 15: Relative expression of genes associated with fibrosis in AT after culture alone 

(ØM), or with M (IFNγ+LPS), M (IL-4), M (IL-10) or THP-1 cells. THP-1 monocytes were 

treated with LPS + IFNγ, PMA + IL-4 and PMA + IL-10 to induce differentiation into M 

(IFNγ+LPS), M (IL-4) and M (IL-10) macrophages respectively over the course of 48 

hours, before co-culture with OMAT explants for a further 48 hours. Expression of genes 

associated with fibrosis was measured in OMAT explants using qRT-PCR relative to the 

geomean of housekeeping genes PPIA, UBC and TBP. Results were normalised and 

compared to the ØM (no macrophage) AT control condition (left column) using 

Friedman’s ANOVA followed by Dunn’s multiple comparisons test. Data presented as 

mean fold change ±SD, n=6 independent experiments. (* = p<0.05, ** = p<0.01) 
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Table 8: Relative expression of genes associated with fibrosis in AT after culture alone 

(ØM), or with M (IFNγ+LPS), M (IL-4), M (IL-10) and THP-1 cells. Numerical 

representation of data presented in Figure 15, with mean fold change ±SD and 

significance. 



107 
 

 M (IFNγ + LPS) macrophages 

The effect of co-culture with differentiated macrophages on the transcription of 

genes associated with fibrosis is presented in Figure 15 and detailed in Table 8.  

Co-culture with IFNγ + LPS-treated THP-1 monocytes for 48 hours significantly 

(p≤0.01) upregulated expression of FN1 3.6-fold (Figure 15G) in OMAT, when 

compared with the control condition without macrophages (ØM). Expression of 

COL1A1, COL3A1, COL4A1 COL5A3, COL6A3, TGFβ1, ELN, LOX and SPARC 

was not significantly influenced by co-culture with M (IFN-γ + LPS) macrophages.  

 

 M (IL-4) macrophages 

PMA + IL-4 treated THP-1 cells induced significant (p<0.05) upregulation of LOX 

1.98-fold, (Figure 15I) and SPARC (p<0.01) 1.61-fold (Figure 15J) in OMAT when 

compared with the negative control condition (ØM). Expression of COL1A1, 

COL3A1, COL4A1, COL5A3, COL6A3, TGFβ1, FN1, and ELN did not appear to 

be upregulated after co-culture with M (IL-4) macrophages.  

 

 M (IL-10) macrophages 

THP-1 monocytes treated with PMA + IL-10 did not significantly alter expression 

of any of the genes analysed when compared to the negative control (Figure 15). 

In some assays, e.g. COL4A1, COL6A3, TGFβ1, FN1, LOX and SPARC, gene 

expression closely matches the observed ‘baseline’ expression level of OMAT 

alone in the no-macrophage (ØM) condition, suggesting co-culture with M (IL-10) 

macrophages may have little influence on the expression of fibrosis-associated 

genes in OMAT.   
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 THP-1 monocytes 

Undifferentiated THP-1 monocytes significantly upregulated the expression of 

COL1A1 (p<0.05) 1.49-fold, and TGFβ1 (p<0.05) 1.51-fold (Figure 15A and F) in 

OMAT after co-culture for 48 hours when compared with the negative control. 

Expression of COL3A1, COL4A1, COL5A3 COL6A3, FN1, ELN, LOX and 

SPARC was not significantly modulated by co-culture with undifferentiated THP-

1 cells.  
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 Discussion 

M (IL-10) macrophages, initially expected to possess an M2c-like phenotype, 

were hypothesised to be the key cellular inducers of fibrosis development in AT, 

and as such were expected to upregulate genes associated with fibrosis more 

potently than M (IFNγ + LPS), M (IL4) or THP-1 cells. The key finding of this 

experiment was that M (IL-10) cells did not induce significant upregulation of any 

genes encoding molecular regulators or structural components of ECM in human 

OMAT, however given that quantification of macrophage differentiation (Chapter 

3) revealed that these cells did not appear M2c-like, this result was not 

unexpected.  

 

M (IFNγ + LPS) macrophages upregulated pro-fibrotic gene expression in OMAT 

more strongly than expected for a pro-inflammatory cell type, however 

macrophage differentiation quantification revealed these cells potentially 

possessed a mixed M1/M2 phenotype. Consequently, a slight pro-fibrotic effect 

of these cells on AT was not entirely unexpected.  

 

M (IL-4) macrophages demonstrated upregulation of only SPARC and LOX, 

important molecular mediators of fibrosis, results supported by the broadly M2-

like phenotype that was demonstrated in Chapter 3. Unexpectedly, given they do 

not appear to possess an M1 or M2-like phenotype, co-culture with 

undifferentiated THP-1 monocytes also upregulated the expression of genes with 

structural and regulatory functions.  
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 Co-culture with M (IL-10) macrophages did not upregulate 

expression of pro-fibrotic genes in OMAT 

M2c macrophages secrete TGF-β94,235, which, upon activation by molecules such 

as matrix metalloproteins and thrombopondin-1 (TSP-1)236, induces a signal 

transduction pathway involving the phosphorylation of Smad proteins (including 

Smad2 and Smad3) resulting in their translocation and accumulation in the 

nucleus to act as regulatory transcription factors for genes – some of which are 

involved in promoting fibrosis in AT94,237. In light of this, M (IL-10) macrophages 

were hypothesised to induce a fibrotic transcriptional programme in OMAT and 

upregulate genes associated with the development of fibrosis, particularly 

fibronectin and collagen I, as evidenced by Ignotz and Massagué (1986)238. 

Neither were upregulated as a result of co-culture with M (IL-10) macrophages, 

likely because these cells did not demonstrate an M2c-like phenotype as the 

initial THP-1 differentiation step was not effective. 

 

When considering the expression profiles of OMAT cultured with differentially 

treated macrophages, it becomes clear that the M (IL-10) macrophage condition 

consistently results in lower expression of genes associated with fibrosis than the 

M (IFNγ + LPS), M (IL-4) or THP-1 conditions, opposing evidence presented in 

the literature. If M (IL-10) cells had remained largely undifferentiated, similar 

levels of gene expression in OMAT co-cultured with M (IL-10) and THP-1 cells 

would be expected. For many genes (e.g. COL1A1, TGFβ1, FN1, LOX and 

SPARC) however, expression was slightly higher with THP-1 co-culture. Indeed, 

expression levels more closely matched that of the control condition without 

macrophages, suggesting that the M (IL-10) cells were potentially apoptotic. In 



111 
 

order to determine if this was the case, various indicators of cell death could have 

been measured, had the experimental design allowed. 

 

Within the limitations of the experimental methods used in this study, ELISA 

analysis could be employed to quantify release of cytochrome c into the culture 

supernatant, although it would not be possible to determine whether cytochrome 

c was secreted by the OMAT explant or the differentiated macrophages. Levels 

of apoptosis could have been gauged by performing further qRT-PCR to detect 

changes in the mRNA level of members of the Bcl-2 family, which regulate 

apoptosis. Upregulation of pro-apoptotic genes, such as BAX, BAK and various 

caspases, and downregulation of anti-apoptotic members such as BCL-2 and 

BCL-XL239, would suggest increased cellular apoptosis.  

 

Apoptosis relies on many post-translational modifications and protein-protein 

interactions, therefore a gene expression assay is unlikely to reliably quantify 

apoptosis in a cell population. In future studies measuring the respective protein 

levels of these genes by western blot could prove a more informative technique. 

Alternatively, experimental methods of future studies should be adapted to allow 

accurate quantification of apoptosis at the single cell level, for example via 

Annexin V-enabled cell surface phosphatidylserine quantification by flow 

cytometry239.  
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 Co-culture with THP-1 monocytes influences AT expression of 

fibril-forming collagen I and TGFB1 

Undifferentiated THP-1 monocytes appeared to upregulate some genes 

associated with fibrosis in OMAT. After co-culture, these cells induced 

significantly increased expression of COL1A1 and TGFβ1 in OMAT compared to 

the control, and a non-significant increase in FN1 and LOX. This suggests that 

these THP-1 monocytes possess a pro-fibrotic phenotype. ATM phenotype is 

strongly influenced by the surrounding microenvironment, which is altered in 

obesity. Therefore, where production and accumulation of pro-fibrotic cytokines 

such as IL-10 is already high in co-cultured AT explants, this may influence THP-

1 cells, pushing them towards an M2-like or M2c-like functional phenotype94,240, 

potentially able to secrete TGF-β. In future, it would be informative to observe the 

influence of AT on macrophage phenotype, comparing differentiation markers 

and secretory factors before and after co-culture. 

 

TGF-β reportedly induces human AT progenitor cells to take on a myofibrobast-

like phenotype with capacity for pro-collagen secretion241, thereby contributing to 

the development of fibrosis in AT. In this study, TGFβ1 expression in OMAT was 

not changed by co-culture with M (IFN-γ + LPS), M (IL-4) or M (IL-10) cells. There 

was however a significant (p<0.05) TGFβ1 upregulation in OMAT co-cultured with 

THP-1 monocytes. This does not measure subsequent secretion and activation 

of the TGF-β1 protein, therefore no conclusions can be drawn beyond the gene 

expression level. As the hypothesised mechanism of induced AT fibrosis is 

dependent on macrophage-secreted TGF-β signalling, quantification of AT 

TGFB1 does not give appropriate information to make inferences about potential 
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levels of macrophage-induced TGF-β signalling in cells. For this, downstream 

targets of TGF-β (such as PAI-1) should have been quantified. 

 

Spencer et al (2010) detected upregulation of PAI-1 mRNA as a measure of TGF-

β signalling in adipocytes. PAI-1 is a downstream marker and is transcribed as a 

result of TGF-β signal propagation via the TGF-β receptor tyrosine kinase, and 

so quantifies the functional activity of TGF-β, as opposed to merely its 

transcriptional expression144. Their results show that conditioned medium from 

IL-4 treated THP-1 monocytes induced the highest expression of PAI-1 mRNA in 

adipocytes. This study is not consistent with our findings, as only THP-1 

monocytes upregulated TGF-β1 when compared with the negative control. There 

is no indication that Spencer et al carried out validation of the functional 

phenotype of their differentiated macrophages, therefore it is difficult to draw 

conclusions about the mechanisms through which these macrophages may be 

acting on adipocytes.  

 

THP-1 monocyte populations induced OMAT explants to significantly upregulate 

COL1A1 mRNA (p < 0.05), supported by a previous study by Gagnon et al (2012), 

in which human abdominal subcutaneous preadipocytes treated with THP-1 

macrophage conditioned media upregulated expression of collagen I/III, identified 

using immunocytochemistry165. This study relied on detecting fluorescence from 

a collagen I/III antibody, and therefore did not allow either collagen to be 

accurately quantified.  
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Collagen type I is fibril-forming and provides structural integrity to AT. Type III 

collagen is known to co-localise with type I collagen in humans12, leading to 

speculation that the two may be co-expressed. With this in mind, it is logical to 

expect their expression profiles after macrophage co-culture to appear similar. 

To a certain extent, this is true: fold change in OMAT after treatment with M (IL-

4), M (IL-10) and THP-1 populations was very similar, with M (IFNγ + LPS) co-

culture the only condition to induce higher expression of COL3A1 than COL1A1. 

 

Finlin et al (2012) showed a similar profile of expression in adipocytes 

differentiated from adult-derived human adipose stem cells, after macrophage co-

culture. They also demonstrated type I collagen mRNA levels in adipocytes were 

not significantly changed by co-culture with M1, M2a or M2c macrophages when 

compared with adipocytes cultured alone, and suggest collagen I regulation by 

macrophage-derived signals may be more complex than initially thought146.  

Divoux et al (2010) establish that the SVF is the major source of COL1A1 in AT148, 

demonstrating why a study using only adipocytes may be of limited use. For this 

reason, whole OMAT explants were used in this study.  

 

 M (IFNγ + LPS) macrophages upregulate FN1 in AT 

Fibronectin is a glycoprotein abundant in the ECM, important for binding 

collagens and regulating cell growth, differentiation and migration. It is a target 

gene of TGF-β236, and therefore thought to contribute to tissue stiffness when 

overexpressed in obesity.  
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It was originally hypothesised that FN1 expression would be upregulated in AT 

after co-culture with M (IL-4) and M (IL-10) macrophages, however FN1 mRNA 

expression was only significantly (p<0.01) increased after co-culture with M (IFNγ 

+ LPS) macrophages. Given these cells were demonstrated to have a mixed 

M1/M2 phenotype, this may be the result of some degree of pro-fibrotic signalling. 

 

Gagnon et al (2012) demonstrated that factors secreted by monocyte-derived 

macrophages increased the secretion of fibronectin protein from human 

subcutaneous preadipocytes165, however their study did not differentiate 

macrophages into different subtypes. The results of our study support this 

increased production of fibronectin, suggesting that transcription and translation 

may be rapidly induced in response to inflammatory macrophage-secreted stimuli 

within a 48h period. 

 

Despite concluding that M (IFNγ + LPS) macrophages likely possessed a mixed 

M1/M2 phenotype and therefore may be to some extent functionally pro-fibrotic, 

these cells did not induce significant upregulation of any other genes analysed. 

These results are challenging to place in the context of the current literature, as 

most relevant in vitro studies focus on the fibrotic effects of discretely defined 

macrophages subtypes. However, evidence of a ~60% prevalence of mixed 

M1/M2 phenotype of macrophages in lean human AT, with a shift towards an M2 

phenotype and association with fibrosis in obese AT144,  suggests that these 

mixed phenotype macrophages may not play a major role in the development of 

AT fibrosis.  
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Despite evidence that LOX expression in AT is upregulated in response to an 

inflammatory stimulus242, M (IFNγ + LPS) macrophages, which secreted pro-

inflammatory IL-1 and IL-6, did not effect its expression in AT. The macrophage 

phenotyping data is based on differentiated macrophages cultured alone, 

therefore it may be that factors secreted by AT during the co-culture influenced 

the functional phenotype of M (IFNγ + LPS) macrophages. 

 

As M (IFNγ + LPS) macrophages had demonstrated a mixed M1/M2 phenotype 

with some degree of increased TGF-β secretion, and preadipocytes are thought 

to be the predominant collagen-secreting cells in AT, it was hypothesised that 

their co-culture with whole OMAT explants may induce upregulation of COL4A1, 

thereby contributing to AT dysfunction in obesity. Type IV collagen is network-

forming, and supports the formation of basement membranes (BM) within AT12, 

providing a site for integrin signalling15. Basement membrane ‘thickening’ is the 

result of collagen IV overexpression and deposition into the space between AT 

cells in obesity, and although not abundant in areas of fibrosis, is associated with 

AT dysfunction15 potentially through the constriction of adipocyte expansion, 

limiting lipid storage (as detailed in Chapter 1). The results showed that co-culture 

of AT with macrophages of all phenotypes did not induce upregulation of 

COL4A1. 

 

This mirrors the findings of Reggio and colleagues (2016) in studies using SCAT, 

where the effect of pro-fibrotic TGF-β isoforms on the expression of type IV 

collagen in AT was explored. They determined that pro-fibrotic TGF-β isoforms 

were only capable of inducing COL4A1 expression in endothelial cells, and did 

not upregulate COL4A1 in adipocytes15. In contrast, Spencer et al (2011) 
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reported that collagen IV was expressed by both AT and adipocytes in culture, 

although the origin of these adipocytes is not described167. 

 

It is important to note that although COL4A1, along with COL4A2, is the most 

common collagen IV α-chain, collagen IV can possess chains α1-α6 and can exist 

in three heterotrimeric forms: α1α1α2, α3α4α5, and α5α5α6243. As such, it may 

be that co-culture with TGF-β secreting macrophages upregulates a collagen IV 

gene other than COL4A1, and contributes to BM ‘thickening’ and AT dysfunction 

through production of the α3α4α5 or α5α5α6 collagen IV heterotrimers243, an 

effect not represented by these data. This may be unlikely, as during 

adipogenesis at least, α3-6 chains are thought to be expressed at only low 

levels13. 

 

COL5A3 was hypothesised to be upregulated in response to exposure to 

macrophages displaying characteristics of M2c macrophages, which to some 

extent applies to M (IFNγ + LPS) macrophages. Type V collagen is fibril-forming, 

and is known to co-distribute with collagen I12. Its upregulation is thought to 

contribute to AT dysfunction by inhibiting angiogenesis, the importance of which 

is discussed in Chapter 1167. Spencer et al (2011) established collagen V as a 

key contributor to AT fibrosis, with significantly higher expression in obese 

subjects, as opposed to lean167. COL5A3 expression was unchanged by co-

culture with differentiated or undifferentiated macrophages. This contrasts with 

the findings of Spencer et al (2011). After co-culture of M1, M2a and M2c 

macrophages (obtained using very similar differentiation methods) with 

adipocytes, their quantification of collagen V mRNA showed significant 

upregulation in adipocytes exposed to M2a (p < 0.001) and M2c (p < 0.05) 
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macrophages, but no significant change after co-culture with M1 

macrophages167. As with many other co-culture studies, their experimental model 

is not representative of AT in vivo, and does not account for the effect of 

macrophages on gene expression in cells of the SVF (including the fibroblast-like 

preadipocytes). The adipocytes used were also differentiated in vitro from human 

stem cells, as opposed to being isolated as mature primary cells, which may 

influence the cell characteristics. By using whole AT explants, our study may 

better represent levels of COL5A3 mRNA in vivo. However, it is important to note 

that Spencer et al’s co-culture duration was 72h, as opposed to the 48h in this 

study, therefore it is feasible to speculate that if given an additional 24h in culture, 

M (IL-4) and M (IL-10) macrophages may have upregulated COL5A3 in AT. 

 

Based on the findings of Spencer and colleagues (2010)144, it was postulated that 

collagen VI mRNA may be upregulated in response to co-culture with M2-like 

cells, therefore based on the data validating macrophage differentiation, may be 

influenced by M (IL-4) and possibly M (IFNγ + LPS) macrophages. Type VI 

collagen has been implicated in mice as a key ECM component responsible for 

adipocyte dysfunction, as it is thought to physically prevent the hypertrophic 

expansion of individual adipocytes in obesity, and therefore limit lipid 

storage169,170. Our study showed limited upregulation of collagen VI mRNA. This 

discrepancy may be explained by differences in transcript quantification: Spencer 

et al used a primer sequence specific for COL6A1, whereas in this study the 

TaqMan assay was specific to COL6A3. Type VI collagen α-chains are known to 

be expressed in different proportions during different phases of wound healing, 

which may account for this difference244, and shows just one limitation of relying 

on RNA analysis. Another important methodological difference is the duration of 
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the co-culture. Spencer et al co-cultured adipocytes with macrophages over the 

course of 72 hours, in contrast to the 48 hours in this study. It is possible that this 

period was not long enough to induce a transcriptional programme resulting in 

significant COL6A3 upregulation, as perhaps macrophages induce this effect 

indirectly. 

 

Again, it is important to note that Spencer et al used only adipocytes for their co-

culture, obtained through in vitro differentiation of human adipocyte stem cells, 

and therefore unlikely to display precisely the same characteristics and 

expression profile as adipocytes differentiated in vivo. The OMAT explant model 

used in this study should represent a more sophisticated method of mimicking 

the in vivo microenvironment, as importantly it includes the SVF of the tissue, 

including resident fibroblast-like preadipocytes which are responsible for the 

majority of ECM component expression, including COL6A3, in AT147,164. As a 

result, the experimental model used in this study is more likely to present a 

realistic picture of how collagen VI expression is influenced by macrophage 

phenotype. 

 

Pasarica et al (2009) suggest a link between COL6A3 and inflammation in 

obesity, as they observed a concomitant increase in COL6A3 and macrophage 

content in human abdominal SCAT170. They postulate that high COL6A3 

expression contributes towards increased inflammation in obese AT170. The 

results of our study suggest that the inverse of this relationship is not correct, as 

increased inflammation (i.e. high numbers of macrophages) does not induce 

increased COL6A3 expression in AT, suggesting a more complex regulatory 

relationship. As an M2c-like macrophage with high expression of pro-fibrotic TGF-
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β and IL-10 was not achieved, it is not possible to conclude whether these data 

support the theory proposed by McCulloch et al (2015)147, that COL6A3 may not 

play an essential role in the development of fibrosis in human obesity as 

previously suggested. 

 

As a critical component of the AT ECM, elastin helps maintain tissue elasticity 

and is essential for effective remodelling. Encoded by the ELN gene, elastin 

protein levels have been shown to be reduced in obesity, and morphological 

changes in elastin fibrils have also been reported167. The resulting tissue 

stiffening may contribute towards AT dysfunction by limiting adipocyte 

expandability. Based on evidence from Spencer et al (2011) that elastin 

expression was predictably downregulated in adipocytes after co-culture with M2 

macrophages167, it was hypothesised that M (IL-4) macrophages, considered 

broadly M2-like, would induce downregulation of ELN1 expression in AT. Results 

of the co-culture experiment did not reflect this, as macrophages of any 

phenotype did not induce any change in ELN expression from OMAT explants. 

This may be because no differentiated cells appeared to possess a strongly pro-

fibrotic phenotype. Spencer et al’s use of adipocytes differentiated in vitro from 

human adipose stem cells, rather than an explant model, may cause them to 

overstate the effect of macrophage phenotype on AT fibrosis. Our study shows 

that in the context of whole AT, the downregulation of ELN within an adipocyte-

only population may not be relevant to this ex vivo model. Spencer et al observed 

this downregulation after 72h of co-culture, therefore 48h may not have been 

enough time to induce detectable ELN downregulation. 
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 M (IL-4) macrophages upregulated expression of LOX and 

SPARC in AT 

Expression of LOX and SPARC in OMAT was confirmed and shown to be 

significantly upregulated (p<0.05 and <0.01 respectively) in explants after co-

culture with M (IL-4) macrophages, suggesting the broadly M2-like characteristics 

and secretory profile of these cells may enhance the capacity of AT to deposit 

collagen245, inhibit adipogenesis promoting adipocyte hypertrophy246, and form 

cross-links within and between collagen and elastin fibres247. 

 

Lysyl oxidase is required for remodelling of AT in obesity, is predominantly 

expressed by cells of AT SVF, and is associated with AT inflammation and 

development of fibrosis242. As such, its expression was expected to be increased 

by co-culture with M2-like macrophages. It is an enzyme which acts to catalyse 

covalent cross-linking within fibril-forming collagen and elastin fibrils, providing 

essential stability to insoluble fibres in the ECM, and tensile strength9,248. In 

addition to its expression in VAT242, LOX mRNA is significantly upregulated in the 

SCAT of obese subjects180 and as a result of hypoxia121, suggesting it may also 

play a role in AT dysfunction. It has not yet been fully established how 

inflammation, and more specifically macrophage phenotype, may influence the 

expression of LOX in AT.  

 

As the purpose of LOX is to facilitate the cross-linking of collagen and elastin 

fibres in AT, it was expected that LOX could present a similar profile of expression 

as COL1A1, COL3A1 and COL5A3, which encode the fibril-forming collagens. 

This is not the case, and it may be that LOX upregulation occurs at a different 
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stage during the development of fibrosis, for example in direct response to, or in 

anticipation of, collagen upregulation. Adipocyte-macrophage co-culture 

experiments performed by Spencer et al (2010) demonstrated upregulation of 

pro-fibrotic genes in RNA analysed at a 48 hour timepoint144, and as such 

provided the basis of the methodology used in this study. The potential limitations 

of choosing this 48 timepoint for RNA analysis are discussed further in Chapter 

6. 

 

SPARC is a matricellular protein predominantly secreted by adipocytes in AT249. 

It is believed to be involved in the regulation of AT expansion, specifically in cell-

matrix interactions during AT hyperplasia and adipogenesis250 and the formation 

of collagen fibrils, as it is tightly associated with collagen I expression and the 

tensile strength of the tissue245. Kos et al (2009) demonstrated that SPARC 

expression is increased with obesity in humans177, while its role as a mediator of 

the development of tissue fibrosis has also been established251. 

 

Despite the importance of SPARC in the development of fibrosis and the clear 

link between fibrosis and inflammation, there has been little investigation into how 

pro-inflammatory and anti-inflammatory macrophages may modulate the 

expression of SPARC in AT. This study showed significant (p<0.01) upregulation 

of SPARC mRNA in OMAT explants co-cultured with M (IL-4) macrophages. 

SPARC expression is reportedly intricately linked with TGF-β activity252. It is well 

established that SPARC is regulated by TGF-β252,253. Secretory profile analysis 

of M (IL-4) macrophages revealed TGF-β secretion was as expected not induced 

by differentiation stimuli, however it is possible that co-culture with OMAT may 

have induced a phenotypic change whereby TGF-β is expressed and thus exerts 
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a pro-fibrotic effect on AT. To determine this, it would be necessary to measure 

the upregulation of downstream markers of activate TGF- β signalling such as 

Smad2/3 and PAI-1 in AT. 

 

Wrana et al (1991) showed that human fibroblast cells stimulated with TGF-β 

demonstrate increased SPARC accumulation, but in contrast to our findings, 

observed no change in SPARC transcript levels, therefore determining that TGF-

β controls SPARC production through post-transcriptional modifications in the 

nucleus252. This suggests that analysis of SPARC expression at the RNA level 

may not be appropriate in order to make conclusions about TGF-β-mediated 

effects of macrophages on SPARC in AT fibrosis. Alternatively, it is possible that 

SPARC may be upregulated by M (IL-4) macrophage by an as yet undefined 

novel TGF-β-independent signalling pathway.  

 

The experimental model utilised by Wrana et al does however differ 

considerably252, and their observations were made in human fibroblast cells. As 

Kos et al (2009) reported that the majority of SPARC expression derives from 

adipocytes, rather than the fibroblast-like preadipocyte cells177, these findings 

may have limited relevance to the question of macrophage-induced fibrosis in 

obese AT.  

 

 Limitations 

It is important to recognise the experimental limitations when interpreting these 

data. The analysed macrophages were differentiated and cultured in the absence 

of OMAT, and therefore cannot provide insight into the potential influence of 
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OMAT explants on the macrophage phenotype during co-culture. In vivo, 

macrophage phenotype depends on microenvironmental cues, which likely vary 

greatly between subjects depending on levels of AT inflammation. AT possesses 

inherent morphological heterogeneity, with some areas more heavily fibrotic than 

others, and pockets of pro-inflammatory macrophages arranged into ‘crown-like 

structures’144. As a result, there are likely to be local microenvironmental 

differences between explants originating from the same piece of tissue, making 

consistency between experimental duplicates challenging, although this may be 

overcome by the ‘homogenising’ effect when AT explants were processed during 

co-culture setup. Although macrophages are known to be capable of 

transdifferentiation in response to environmental signals154, this phenomenon is 

unlikely to have influenced the outcome of this experiment as macrophages were 

seeded at a supraphysiological concentration of 4x106 cells/well, and in theory 

relatively insensitive to small microenvironmental changes - though this potential 

effect cannot be discounted. Experimental limitations are comprehensively 

discussed in Chapter 6.  

 

To better understand how OMAT explants directly influence macrophage 

phenotype, it would be informative to measure the expression of phenotypic and 

functional markers in macrophages collected after co-culture, and compare to 

cells cultured without AT. Unfortunately, secreted products from co-cultured 

macrophages cannot be measured in isolation as it is not possible to determine 

the origin of protein in the common medium. 
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 Summary 

The results discussed in this chapter provide some evidence to support a 

potentially important role for mixed M1/M2 macrophages in the development of 

AT fibrosis, but are inconclusive with relation to the proposed hypothesis that M2c 

macrophages are the most potent inducers of pro-fibrotic gene upregulation in 

AT. Upregulation of molecular mediators of fibrosis by M (IL-4) macrophages 

supports a role for macrophages displaying M2-like characteristics in the 

development of AT fibrosis.  
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Chapter 5: The influence of insulin on macrophage-

mediated AT fibrosis 

 

 Introduction 

Insulin resistance, associated with T2DM, results in chronic hyperinsulinaemia as 

cells become unresponsive to insulin. Insulin is an important regulator of ECM 

development, and reportedly controls the post-transcriptional processing and 

secretion of collagen184. It was hypothesised that hyperinsulinaemia with AT 

macrophages may contribute to the development of fibrosis, thus furthering the 

pathogenesis of AT dysfunction.   

 

To explore this, an in vitro model of hyperinsulinaemia in AT was used. Given 

that M (IL-4) macrophages were shown to be broadly M2-like, and that M (IFNγ 

+ LPS) macrophages possessed a mixed functional M1/M2 phenotype, their co-

culture with OMAT and insulin was expected to upregulate expression of pro-

fibrotic genes in OMAT in a concentration-dependent manner, more strongly than 

co-culture without insulin.  

 

Briefly, OMAT explants were co-cultured with differentiated THP-1 macrophages, 

of M (IFNγ + LPS), M (IL-4) and M (IL-10) phenotypes, in the presence of insulin 

(1nM, 10nM, 100nM) for 48 hours. An undifferentiated THP-1 population, a no-

macrophage condition (ØM) and a no-insulin vehicle condition were used as 

controls.  Gene expression (COL1A1, COL3A1, COL4A1, COL5A3, COL6A3, 

TGFβ1, FN1, ELN, SPARC and LOX) was measured using qRT-PCR. Statistical 

analysis was performed using two-way ANOVA followed by Bonferroni post hoc 

test.  
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 Results 
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Figure 16: Effect of insulin on AT gene expression after co-culture with 

macrophages. OMAT explants were cultured alone (ØM), with M (IFNγ + LPS), 

M (IL-4), M (IL-10) or THP-1 cells. Repeated measures two-way ANOVA followed 

by Bonferroni multiple comparisons post-hoc test was used to show how insulin 

concentration changed pro-fibrotic gene expression in AT (* = p<0.05, ** = 

p<0.01), in each macrophage co-culture compared with the vehicle only 

condition. Values were normalised to the vehicle insulin negative control (ØM, 

first column). Error bars denote mean fold change ±SD. n=6 independent 

experiments. 
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 ØM (no macrophages) 

Culture of OMAT explants with insulin in the absence of macrophages did not 

reveal any significant concentration-dependent changes in expression of genes 

associated with fibrosis. In ELN (Figure 16H) and SPARC (Figure 16J) however, 

there was a small, non-significant trend increase from 1nM to 100nM insulin, 

Table 9: Effect of insulin on expression of genes associated with fibrosis in OMAT after co-

culture with differentiated macrophages. Data displayed in Figure 16 is given here in numerical 

form categorised by macrophage subtype. Values were normalised to the no macrophage 

vehicle insulin negative control (ØM). Mean fold change given ±SD, with significance. n=6 

independent experiments. 
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when compared with the vehicle only condition. Comprehensive details of mean 

fold changes ±SD can be found in Table 9.  

 

 M (IFNγ + LPS) macrophages 

When cultured with 10nM insulin, M (IFNγ + LPS) macrophage co-culture 

significantly downregulated COL4A1 (p≤0.01, Figure 16C), COL5A3 (p≤0.05, 

Figure 16D), TGFβ1 (p≤0.05, Figure 16F) and FN1 (p≤0.01, Figure 16G) in 

OMAT, when compared with the vehicle only condition. In the case of COL4A1, 

the 1nM insulin condition also showed significant downregulation (p<0.05, Figure 

16C). This general trend was reflected in expression of COL1A1 (Figure 16A), 

COL3A1 (Figure 16B), ELN (Figure 16H), LOX (Figure 16I) and SPARC (Figure 

16J), despite not achieving significance.   

 

 M (IL-4) macrophages 

When treated with 1nM, 10nM or 100nM insulin, there was no insulin-mediated 

M (IL-4) effect on the expression of any of the pro-fibrotic genes analysed, when 

compared to the vehicle control.  

 

 M (IL-10) 

Upon co-culture with insulin and M (IL-10) macrophages, there was no 

significantly modulation of pro-fibrotic gene expression in OMAT. Although M (IL-

10) macrophages and insulin may appear to influence expression of some pro-

fibrotic genes, the pattern of expression is very similar to that of the ØM (no 

macrophage) condition, suggesting any observed effect is likely a result of insulin 

acting directly on AT explants, rather than a combined macrophage-insulin effect.  
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 THP-1 monocytes 

Co-culture of OMAT explants with undifferentiated THP-1 monocytes, treated 

with 10nM insulin, resulted in significantly (p<0.05) decreased ELN expression in 

OMAT (Figure 16H), when compared with the vehicle control. Despite changes 

at 1nM and 100nM concentrations not proving significant, these results suggest 

there may be a concentration-dependent downregulation of ELN. A similar 

tendency is found in the expression of TGFβ1 (Figure 16F). To some extent, a 

similar pattern of a downward trend in expression, relative to insulin 

concentration, can also be seen in COL1A1 (Figure 16A), COL3A1 (Figure 16B) 

and COL6A3 (Figure 16E).  There appeared to be no distinguishable effect of 

insulin concentration with THP-1 cells on COL4A1 (Figure 16C), COL5A3 (Figure 

16D), FN1 (Figure 16G), LOX (Figure 16I) and SPARC (Figure 16J) expression.  
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  Discussion 

In contrast to expectations, there was no observable upregulation of pro-fibrotic 

genes with insulin treatment, which suggests that insulin does not contribute 

towards pathogenic macrophage-mediated fibrosis in obesity. Instead, insulin 

appears to moderate the slight pro-fibrotic effects of M (IFNγ + LPS) 

macrophages and THP-1 monocytes. As previously discussed, M (IL-10) cells, 

treated with PMA + IL-10 did not appear to be functionally M2c-like, and may be 

apoptotic. Consequently, their combined effect with insulin, which largely appears 

similar to the no macrophage condition, will not be discussed further in the 

following sections.  

 

 Insulin alone does not modulate expression of genes 

associated with fibrosis in OMAT explants 

Based on the reported anti-inflammatory effects of insulin189, and its propensity 

to increase pro-fibrotic SPARC in AT177, insulin was hypothesised to upregulate 

genes associated with fibrosis in OMAT. There was no significant concentration-

dependent change in expression of pro-fibrotic genes in OMAT explants treated 

with insulin (at 1nM, 10nM and 100nM) and cultured for 48 hours in the absence 

of macrophages (ØM condition), when compared to the vehicle control.  

 

These unexpected results may be explained by the methods chosen to analyse 

changes in the development of fibrosis in this study. It may be that insulin-

mediated effects on fibrosis development occur at the level of protein expression, 

secretion or processing, and therefore changes will not be detected in the 

transcription levels of structural components (such as collagens) or molecular 
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mediators (i.e. LOX and SPARC). This is supported by the findings of Wang et al 

(2006), who used an in vitro model of mouse-derived 3T3-L1 adipocytes treated 

with insulin, and determined that insulin does not alter expression of ECM 

components (e.g. Col5a3 and Col6a3) at the mRNA level. Insulin does however 

modulate the transcription of enzymes associated with the processing of ECM 

component proteins, such as procollagen C-endopeptidase enhancer protein 

(Pcolce), which through post-transcriptional processing, help stabilise structural 

proteins within the ECM184. As RNA was extracted from AT explants, it would be 

possible in future to perform further qRT-PCR to quantify how insulin 

concentration modulates expression of human ECM protein-processing enzymes 

and tissue inhibitor of metalloproteinases (e.g. TIMP1 and TIMP4), to more 

effectively elucidate how insulin contributes to ECM remodelling in obesity184. In 

future studies, it would also be pertinent to measure changes in insoluble collagen 

fibre deposition or biomechanical properties254, as a means of robustly 

quantifying fibrosis.  

 

Contrary to expectations177, there was no significant insulin-dependent 

modulation of SPARC expression in OMAT explants. This could be a feature of 

the timepoint at which expression was analysed after co-culture, as Kos et al 

(2009) report a significant increase in SPARC protein, measured by western255 

blot, when human OMAT was treated with 1nM (p<0.05) and 100nM (p<0.01) 

insulin for 24h in vitro, in comparison to the untreated control177. Their study 

reveals that SPARC protein levels are measurably elevated at the 24h timepoint, 

suggesting RNA levels of SPARC are likely to be detectably increased around or 

before this timepoint. At the 48 hr timepoint, it is possible that sustained exposure 

to high levels of newly secreted SPARC protein may have activated protective 
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autocrine positive feedback cell signalling mechanisms via the SPARC receptor, 

whereby transcription of SPARC RNA is downregulated in response256. This 

highlights the critical need for careful consideration of previously obtained data, 

thorough literature review and complete optimisation of in vitro protocols when 

refining methodology, particularly in studies using precious human samples. 

Further limitations stemming from inadequate optimisation of this study are 

discussed in Chapter 6.  

 

 Insulin may modulate the pro-fibrotic effect of M (IFNγ + LPS) 

macrophages 

The role of insulin in the development of fibrosis is currently unclear. A report of 

its anti-inflammatory effects on mononuclear cells189 led to the hypothesis that 

insulin treatment may upregulate genes associated with fibrosis in AT by 

modulating the function or phenotype of the macrophages. 

 

As discussed previously, co-culture of OMAT explants with M (IFNγ + LPS) 

macrophages resulted in increased expression of FN1, supporting the evidence 

that these cells to some extent functionally pro-fibrotic. The addition of 1nM or 

10nM insulin to the co-culture results in significantly decreased expression of 

COL4A1, COL5A3, TGFβ1 and FN1 in OMAT, when compared with the vehicle 

control. Although not significant, this observable tendency also persists in the 

expression of COL1A1, COL3A1, ELN, LOX and SPARC. This may be because 

insulin does exert a pro-inflammatory effect on macrophages, causing them to 

downregulate any anti-inflammatory, pro-fibrotic transcriptional programme. This 

is in keeping with the findings of Tada Iida et al (2001), who conclude that insulin 
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is capable of upregulating TNF-α expression in macrophages257. Consequently, 

downregulation of pro-fibrotic genes in OMAT by insulin and M (IFNγ + LPS) 

macrophages may be explained by the pro-inflammatory effect of insulin, pushing 

macrophages closer towards a full M1 phenotype, thereby reducing any wound-

healing pro-fibrotic influence on OMAT. To confirm this, it would be necessary to 

examine the effect of insulin alone on macrophage phenotype. Unfortunately, a 

macrophage-insulin condition was not included in this study. The significant 

limitations of this are further discussed in Chapter 6.  

 

Pedersen et al (2015) clearly demonstrate a positive correlation between 

hyperinsulinaemia and AT inflammation in mice, where pro-inflammatory 

cytokines were upregulated with increased insulin and downregulated with 

decreased insulin, concluding that hyperinsulinaemia directly drives AT 

inflammation in obese mice188. This suggests that in vivo the pro-inflammatory 

effect of hyperinsulinaemia may result in increased numbers of infiltrating blood 

monocyte-derived M1 macrophages, secreting pro-inflammatory cytokines such 

as TNFα and IL-194 which may induce existing macrophages to take on a pro-

inflammatory phenotype157. This may lead to decreased pro-fibrotic signalling and 

therefore decreased pro-fibrotic gene expression.  

 

 The anti-fibrotic effect of insulin and M (IFNγ + LPS) 

macrophages is not concentration-dependent 

In contrast to expectations of a linear correlation between insulin concentration 

and degree of pro-fibrotic gene expression, insulin-mediated downregulation of 

pro-fibrotic genes did not follow a linear concentration-dependent trend. In many 
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of the genes analysed (e.g. COL4A1, COL5A3, TGFB1 and FN1), the expression 

after co-culture with M (IFNγ + LPS) macrophages across all four insulin 

conditions resembles a ‘U-shaped’ curve, with higher pro-fibrotic gene expression 

at 100nM insulin, as shown in Figure 16. This effect may be attributed to 

mechanisms regulating insulin signalling.  

 

A typical physiological fasting plasma insulin level in a healthy adult under 

normoglycaemic conditions is 20-140 pmol/l258, whereas fasting insulin levels in 

hyperinsulinaemic individuals tend to be upwards of 100pmol/l259. Extreme 

hyperinsulinaemia (represented by 1nM or 10nM conditions260,261) is symptomatic 

of severe insulin resistance in very poorly controlled type 2 diabetes, which is in 

turn associated with AT fibrosis and dysfunction160.  

 

Adipocytes negatively regulate insulin signalling by internalising insulin receptors 

in a ‘monoexponential’ concentration-dependent and time-dependent manner in 

response to insulin, meaning that the percentage of insulin receptors internalised 

increases with both the concentration and time of exposure262. Maximal insulin 

receptor loss is achieved at 100ng/ml insulin262 (~17nM), therefore it is 

reasonable to assume cells would have very high levels of insulin receptor 

internalisation after 48 hours of culture with 10nM or 100nM insulin. As such, 

treatment with insulin at lower concentrations and for a shorter length of time 

should have been explored. Negative regulation of insulin signalling could provide 

an explanation for the observed ‘U-shaped’ response to insulin concentration, as 

insulin may exert an anti-fibrotic effect at 1nM and 10nM concentrations while 

signalling is active, but receptor internalisation or inhibition of downstream signal 

transduction, as discussed in 1.1.2, prevents this at 100nM.  
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During the optimisation and design stage of this ex vivo cell culture experiment, 

no consideration was given to the concept that treatment with high concentrations 

of insulin does not guarantee high levels of insulin signalling in AT. A molecular 

readout for insulin signalling (such as insulin receptor tyrosine phosphorylation 

by western blot32, GLUT4 surface expression by flow cytometry263 or RNA 

analysis of PTPN1 expression33) should have been included to understand how 

insulin signalling is regulated at various concentrations, and to aid optimisation. 

This would provide greater understanding of how insulin modulates the 

development of fibrosis, whether that be as a direct or indirect result of traditional 

insulin signalling pathways. 

 

An alternative explanation may be the activation of insulin-like growth factor (IGF) 

receptors. Matsui-Hirai et al (2011) reported a similar U-shaped effect of 

supraphysiological levels of insulin (such as 100nM) when measuring its effects 

on endothelial senescence in vitro, although they concluded that this effect only 

occurred in the presence of high glucose concentrations264. They speculate that 

at supraphysiologically high concentrations, insulin activates IGF receptors265, 

which are also expressed on the surface of adipocytes as their signalling is 

important for differentiation and lipid accumulation266. Increased IGF receptor 

mediated PI3K and MAPK signalling267 may have influenced pro-fibrotic gene 

expression. This is reflected by the increased expression of some pro-fibrotic 

genes in AT when co-cultured with M (IFNγ + LPS) macrophages and 100nM 

insulin, compared with the downregulation observed at the 1nM and 10nM 

concentrations. In future it would be informative to expand on the insulin 

concentrations used, e.g. 0.5nM 1nM, 3nM, 7nM and 10nM, to determine if the 
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resulting expression level follows this U-shaped curve. It is important to recognise 

that the vehicle condition is not entirely physiologically accurate, as insulin is 

required to facilitate the uptake of glucose in adipocytes, and therefore its 

absence may potentially disrupt normal cell function. 

 

Macrophages express insulin receptors268, but also express GLUT1 and GLUT3 

transporters enabling glucose uptake through insulin-independent facilitated 

diffusion269. This suggests that insulin signalling may be in part required for 

regulatory functions other than glucose utilisation. It is known that insulin 

stimulates the IR/IRS2/PI3K/AKT signalling cascade in macrophages, but the 

effect on the MAPK pathway, which is known to regulate gene expression, is not 

yet clarified270.  In an in vitro study using bovine monocyte derived macrophages, 

Eger et al (2016) found that macrophages, after differentiation into M1 and M2 

subsets, did not appear to express GLUT4 receptors, and therefore the addition 

of insulin to their culture medium did not increase their glucose uptake271. 

Interestingly, they also discovered that M2 (CD163+) macrophages consumed 

glucose more readily from their culture medium than M1 (CD11b+) and M0 cells. 

Although Eger et al do not further characterise their M2 macrophages into M2a 

and M2c subpopulations, this raises the possibility that the M (IL-10) cells in this 

study were not provided with sufficient glucose in their culture medium, hence 

their postulated apoptosis (see section 4.3.1).   

 

Insensitivity of macrophages to insulin could potentially alter their functional 

phenotype, and therefore modulate their effect on ATs. Macrophages in vivo can 

become insensitive to insulin during obesity-induced insulin resistance272, and 

high insulin concentration in vitro (e.g. 100nM) for 48 hours is sufficient to induce 
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insulin resistance in macrophages273. Insulin resistance in macrophages, which 

demonstrate metabolic changes and reduced Akt2 phosphorylation, has been 

suggested to promote an M2-like phenotype272. Induction of an insulin resistant, 

pro-fibrotic M2-like macrophage phenotype at 100nM may at least partly explain 

the observed ‘U-shaped’ pattern of expression of pro-fibrotic genes in AT. 

 

PTP1B, an inhibitor of insulin signalling which can be induced by TNF-α274, also 

plays a role in the polarisation of macrophages by downregulating cytokine 

receptor signalling via JAK2 and tyrosine kinase 2 (TYK2) dephosphorylation, 

and so acting as a negative regulator of JAK/STAT-mediated inflammation275. 

PTP1B-mediated insulin resistance may have pushed mixed phenotype M (IFN-

γ + LPS) macrophages closer to a pro-fibrotic M2-like phenotype, which could 

explain the increased expression of pro-fibrotic genes at 100nM insulin. This is at 

odds with Tada Iida et al (2001), who report that insulin acts on THP-1 

macrophages in a concentration-dependent manner to upregulate mRNA 

expression of TNF-α through an extracellular kinase-dependent pathway257, 

implying that insulin influences macrophages to adopt a pro-inflammatory 

functional phenotype, rather than an anti-inflammatory, pro-fibrotic phenotype. 

   

The potential influence of insulin resistance in macrophages was not considered 

in this experimental design. Macrophages were not stimulated with insulin in the 

absence of OMAT, therefore it is not possible to deduce a direct effect on their 

insulin sensitivity or phenotype. A controlled experiment should be designed 

wherein differentiated macrophages are treated with insulin at a broad range of 

concentrations (e.g. 0.1nM, 0.5nM, 1nM, 5nM, 10nM, 50nM, 100nM), before 
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phenotypic markers and secreted proteins (e.g. TGF-β) are measured by ELISA 

or western blot. Flow cytometry should also be performed to better understand 

the phenotypic profile of individual cells after their exposure to insulin, as 

macrophages are capable of possessing a mixed phenotype144.  

 

 Insulin and M (IL-4) macrophages do not significantly 

modulate pro-fibrotic gene expression 

Expression of LOX and SPARC in OMAT was increased by co-culture with M (IL-

4) macrophages, therefore it was hypothesised that this effect may be enhanced 

by insulin. The addition of insulin at 1nM, 10nM and 100nM concentrations did 

not significantly modulate the expression of the pro-fibrotic genes analysed. In 

some genes, e.g. COL4A1, COL5A3, TGF-β, ELN and SPARC, the effect of 

insulin concentration on OMAT gene expression again resulted in a ‘U-shaped’ 

response curve, likely due to internalisation of insulin receptors as discussed 

above (section 5.3.3). The pro- or anti-inflammatory effects of insulin are not yet 

fully elucidated, with conflicting reports of its action276,277. These results suggest 

that insulin action in AT and macrophages warrants further investigation to clarify 

the mechanistic effects of hyperinsulinaemia and its role in AT dysfunction.   

 

Studies in human monocyte-like (U937) and rat adipocyte cell lines have shown 

that PMA, used during the differentiation of M (IL-4) and M (IL-10) cells, inhibits 

insulin binding and induces receptor internalisation278. Although THP-1 cells were 

only treated with PMA for a short time, this may in part explain why co-culture 

with insulin did not significantly modulate their effect on pro-fibrotic genes in AT. 
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 Insulin downregulates ELN expression in AT with 

undifferentiated THP-1 monocyte co-culture 

Co-culture of undifferentiated THP-1 monocytes with insulin and AT resulted in 

significant downregulation of ELN expression in the 10nM insulin condition 

relative to the vehicle control, potentially demonstrating the first stages of loss of 

elasticity, as has been observed in obese SCAT167. Following this, there was also 

some decreased expression in the 1nM and 100nM insulin conditions, although 

this did not reach statistical significance. In the case of the other pro-fibrotic genes 

analysed, insulin concentration did not induce significant changes in expression, 

however there was a slight tendency decrease in COL1A1, COL3A1, COL6A3 

and TGFβ1. 

 

Insulin is a potent growth factor, regulating growth and differentiation of cells279, 

therefore it is possible that culture with insulin at different concentrations may 

provide a stimulus to influence the function and phenotype of these 

undifferentiated macrophages. In an in vitro study using human hepatic cells, 

Iwasaki et al (2009) report that insulin initially exerts an anti-inflammatory effect 

on cells, but after 36 hours of chronic insulin exposure, mimicking the 

microenvironment of insulin resistance, pro-inflammatory effects were observed 

through the stimulated transcriptional activity of NFκB, a key transcription factor 

facilitating the expression of many genes associated with inflammation277. To 

clarify whether this is the case in our experimental model, it would be necessary 

to measure the accumulation of molecular mediators of inflammation and fibrosis 

(e.g. MCP-1 and TGF-β), secreted by both AT and macrophages into the media, 

at various time-points during the co-culture period using ELISA, or analyse cells 

by western blot. It may be of interest to explore whether there is a similar shift 
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from an anti-inflammatory/pro-fibrotic to pro-inflammatory microenvironment 

when macrophages are treated with insulin, measuring protein levels of secreted 

cytokines at different timepoints between 6h and 72h.  

 

 Summary 

There are conflicting reports regarding the role of insulin in AT inflammation and 

fibrosis, therefore it was unsurprising that insulin did not exert a pro-fibrotic effect 

as hypothesised, and instead may have a slight anti-fibrotic influence. After 

phenotypic analysis of differentiation showed discrete M1, M2a and M2c 

macrophage populations had not been achieved, the effect of macrophage 

phenotype along with insulin on the development of AT fibrosis became more 

difficult to define. The observed ‘U-shaped’ concentration-dependent effect was 

not initially anticipated, but appears to be explained upon reviewing the negative 

regulatory mechanisms involved in insulin signalling. It is clear that the role insulin 

may play in the development of fibrosis is more complex than initially thought, 

and requires further investigation. 
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Chapter 6: Discussion 

 

This study aimed to investigate how macrophages and hyperinsulinaemia, a 

hallmark of insulin resistance, contribute towards the development of AT fibrosis. 

The objective was to better define the influence of macrophages and their 

phenotype, along with insulin, on the expression of genes associated with fibrosis 

in OMAT. The response of THP-1 monocytes to in vitro differentiation was 

assessed, and the effect of polarised macrophages alone, and with insulin, on 

OMAT gene expression was analysed.  

 

 Main conclusions  

Analysis of macrophage markers showed differentiation of M (IL-4) macrophages 

induced a broadly M2-like phenotype as opposed to the expected M2a-like 

phenotype, however differentiation of M (IL-10) macrophages clearly did not 

induce an M2c-like macrophage. As previously discussed, cells may have 

become apoptotic during the differentiation period, however as apoptosis was not 

measured in this study, this cannot be assumed to be the cause of lower than 

expected gene expression. As such, conclusions about the role of M2c 

macrophages in AT fibrosis cannot be made based on the results of this study. If 

these data were replicated with viable macrophages shown to be of an M2c-like 

phenotype, this may call into question the consensus on the role of M2c 

macrophages in AT fibrosis.  

 

Much of the literature regarding the ‘wound-healing’ function of M2 macrophages 

implicates M2c macrophages as key inducers of AT fibrosis94,233 due to their 

reportedly strong secretion of TGF-β isoforms94. TGFβ-1 upregulates expression 
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of fibrous ECM proteins in AT15 by inducing a pro-fibrotic transcriptional 

programme via Smad signalling178,238, hence the hypothesis that genes 

associated with fibrosis would be more strongly upregulated by co-culture with 

M2c-like macrophages than with M1 or M2a-like macrophages.  

 

Of the differentiated macrophages, TGF-β was most strongly secreted by M (IFNγ 

+LPS) cells. Phenotypic analysis of M (IFNγ + LPS) macrophages suggests cells 

possessed a mixed M1/M2 phenotype. Considering mixed-phenotype 

macrophages are reported in vivo144,145, these cells may be more closely 

representative of human ATMs. M (IFNγ + LPS) macrophages were able to 

induce significant upregulation of FN1 in OMAT. This was attenuated by insulin, 

suggesting a protective anti-fibrotic role, which could be explained by the 

proposed pro-inflammatory effect of insulin188,257 pushing AT macrophages 

towards a more M1-like functional phenotype, and therefore reducing their 

secretion of TGF-β. Further experimentation and macrophage characterisation 

would be required to provide evidence for this. TGF-β signalling in AT could be 

more thoroughly investigated by quantifying phosphorylation of Smad2/3 

proteins, and expression of downstream targets such as PAI-1, which is 

transcriptionally regulated by TGF-β144,280. 

 

The findings of our study to some extent support a pro-fibrotic role for broadly 

M2-like macrophages, as molecular mediators of fibrosis LOX and SPARC were 

significantly upregulated in AT after co-culture with M (IL-4) macrophages. This 

pro-fibrotic view is supported by Spencer et al (2010), where stem-cell derived 

adipocytes cultured in M2 macrophage-conditioned medium expressed two fold 

higher levels of PAI-1 than adipocytes cultured in M1 macrophage-conditioned 
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medium144, indicating increased TGF-β signalling. It is important to note that 

Spencer et al do not publish supporting data validating the phenotype of their 

differentiated macrophages. The findings of our study highlight the importance of 

assessing the efficacy of macrophage differentiation, a step which is often 

overlooked in similar co-culture studies144,146.  

 

Insulin at physiologically relevant concentrations was shown to have slight anti-

fibrotic effects on macrophage-mediated gene upregulation in OMAT. The 

concentration-dependent effect of insulin was ‘U-shaped’, and this pattern was 

observed across various genes with all three macrophage types, and may be 

caused by feedback mechanisms inhibiting insulin signal propagation, including 

insulin receptor internalisation, in response to high concentrations of insulin.  

 

In future, conclusions about the role of macrophage subtypes and insulin in the 

development of AT fibrosis may only be made after considerable optimisation and 

revisions to experimental design.  

 

 Study strengths 

 AT explants 

A defining feature of this study was the use of human OMAT explants in culture, 

providing advantages over co-culture studies which use only mouse or human-

derived adipocytes144,146,184. Human explants allow for the physiological AT 

environment to be recreated more closely, and provide all of the cells of AT 

(including preadipocytes and endothelial cells of the SVF) in the correct 

proportions, enabling a greater and more physiologically accurate range of cell 



147 
 

interactions. The SVF, containing the preadipocyte cells, is responsible for the 

majority of expression of genes associated with fibrosis147,164, therefore using AT 

explants in macrophage co-culture is a more informative technique, rather than 

just adipocytes cultured with a conditioned medium, and is likely to provide a 

better picture of how macrophages and insulin influence the development of 

fibrosis in AT in vivo. 

 

Specific inclusion and exclusion criteria (detailed in section 2.2.1) were 

implemented when recruiting subjects to the study to limit confounding factors in 

the experiment. Metformin, a commonly prescribed anti-diabetic drug, has been 

found to attenuate fibrosis by inhibiting TGF-β1/Smad3 activation281,282 therefore 

patients undergoing treatment for T2DM were excluded. 

 

 Study limitations 

 Participants 

OMAT samples were obtained through routine gynaecological procedures (see 

section 2.2.1), therefore all participants were female. Although it is well 

established that AT deposition is strikingly different between males and females, 

differences in metabolism have not been well described283. As a result, it cannot 

be assumed that these results would be reproduced in male-derived explants. 

One important factor to note in an all-female cohort is the potential impact of the 

peri-menopausal or post-menopausal state on AT metabolism. The age of the 

subjects in this study varied from 42 to 64 and were likely to include individuals 

at various stages of menopause. There are reported differences in 



148 
 

subcutaneous284 and omental285 AT metabolism as a result of menopausal 

changes, raising the likelihood of variability in fibrosis development.  

 

The BMI of subjects covered a wide range, from 19.8 to 36.1, which may have 

impacted the in vitro transcriptomic indictors of fibrosis development and 

contributed to high variability of data. In AT from obese individuals, the 

percentage of macrophages with an M2 phenotype is shown to be almost five 

times higher than in lean individuals144, suggesting that AT from obese donors 

could already be inflamed and have high baseline levels of fibrosis or expression 

of pro-fibrotic genes. The addition of pro-fibrotic macrophages in vitro may have 

a limited influence if TGF-β signalling is already highly active. Of the six explants 

analysed, only two donors were of a healthy BMI – neither obese nor overweight. 

In future studies, an overweight or obese BMI could be considered exclusion 

criteria, however this would dramatically reduce the availability of donated OMAT. 

An alternative may be to assign donors into cohorts according to BMI and analyse 

data with reference to each cohort. This may reduce the variability of results and 

increase the significance of any findings.  

 

  Use of THP-1 monocyte line 

The practicalities of using THP-1 monocytes over primary cells were an important 

consideration during the design of this experiment. THP-1 cells did not require 

blood sample collection or cell isolation, as necessary to obtain primary PBMCs. 

THP-1 monocytes are derived from a single source so are genetically 

homogenous, and therefore their use simplifies the analysis and interpretation of 
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results, and should increase reproducibility and consistency between 

experiments.  

 

There are some limitations to using THP-1 monocytes, which are acute myeloid 

leukaemia-derived. Cancer cells undergo a metabolic switch, favouring anaerobic 

glycolysis (resulting in the production and secretion of lactate) over oxidative 

phosphorylation, even in the presence of adequate oxygen286. There is a clear 

link between glycolysis and inflammation, as monocytes with increased glucose 

consumption can demonstrate highly upregulated pyruvate kinase M2 (PKM2), 

which upregulates IL-6 and IL-1β via pSTAT3287. M2 macrophages utilise 

oxidative phosphorylation, whereas M1 macrophages favour glycolysis for ATP 

production. Glycolysis-derived metabolites fuel the pentose phosphate pathway, 

which increases amino acid synthesis and allows for additional protein 

synthesis288. This suggests a potentially increased capacity for protein secretion 

and extracellular signalling from leukaemia-derived THP-1 monocytes, compared 

to primary PBMCs, as well as a metabolic profile primed for pro-inflammatory 

macrophage differentiation, which may account for the challenges encountered 

during polarisation.  

 

When compared to PBMCs, key immuno-metabolic genes KYNU, IL6, IL10, 

CCL4 and IL1R2 are reduced or not expressed in THP-1 cells, suggesting 

responses to microenvironmental stimuli may differ289. In vitro cultured THP-1 

cells respond differently to the same stimulus when compared to PBMC-derived 

macrophages290, and behave differently under differentiation-inducing conditions, 

reportedly expressing M2c marker CD163 mRNA at a much lower level than 

PBMCs227. Although a study using donor-matched OMAT and differentiated 
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PBMCs may more closely represent biological conditions in vivo, the logistical 

limitations and time constraints of blood and tissue collection prevented this, 

along with the added ethical complexity of performing a blood collection 

procedure. 

 

 Optimisation experiments 

Insufficient optimisation of cell culture protocols and experimental design is one 

of the biggest limitations associated with this study (see section 7 for optimisation 

data). Thorough optimisation and validation of THP-1 differentiation was critical 

for the generation of good quality, meaningful data. Differentiation was optimised 

over three separate experiments where n=2, therefore no statistical test could be 

applied. An accurate consensus on the outcome of macrophage differentiation 

cannot confidently be drawn based on such a small dataset. These experiments 

should have been continued up to at least n=3 independent identical experiments 

before progressing to a larger scale study, especially as successful macrophage 

differentiation underpinned the whole study. As discussed in this chapter, RNA 

analysis of cell surface markers was inappropriately employed to validate 

differentiation. 

 

A pilot co-culture experiment was performed, however the collected OMAT 

explant was not analysed, as the experiment was used to review the seeding 

density and sustained differentiation of THP-1 monocytes. In the final analysis 

(Figure 19), the phenotype of M (IL-4) and M (IL-10) cells had not been clearly 

defined, yet protocols were considered sufficiently optimised to progress to a 

larger study using precious human tissue. Despite choosing to quantify RNA 
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expression, the timepoint for this analysis was not optimised with regards to the 

chosen genes, and was simply chosen based on work by Spencer et al (2010)144. 

A comprehensive discussion of how optimisation should be performed is included 

in 6.4.  

 

 Determination of macrophage phenotypes  

The methods used to determine the phenotype of differentiated macrophages 

present significant limitations. qRT-PCR was used to assess how strongly 

differentiated macrophages upregulated expression of their respective cell 

surface markers. Performing this analysis at the RNA level was wholly 

inappropriate due to regulation of post-transcriptional, post-translational and 

membrane trafficking processes. RNA levels of surface markers may not 

correspond with presented proteins on the cell surface, and the timepoint at which 

RNA was obtained is likely to be critically important for the presence of gene 

transcripts. Flow cytometry should have been used, and would have allowed for 

assessment of phenotypic heterogeneity within the differentiated cell population. 

RNA analysis could have provided valuable phenotyping information, had genes 

indicating functional macrophage characteristics (e.g. pro- and anti-inflammatory 

cytokines) been analysed. 

 

Macrophage-secreted proteins suggesting functional phenotype were analysed 

by ELISA. The accuracy of any ELISA interpretation is reliant on construction of 

a standard curve, therefore a high r2 value (>0.95) is critical for good quality data. 

One ELISA plate for detection of IL-10 could not be included in the dataset 

because the standard curve r2 value was too low, therefore only three 
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experiments were analysed for this protein. Unfortunately, standard deviations 

were very high, likely because insufficient optimisation of macrophage 

differentiation led to poor reproducibility and consistency across independent 

experiments. For example, considerable variability may have arisen from 

differences in attachment rate or viability of differentiating macrophages, which 

was not controlled for. 

 

Detection of OLR-1 relies on membrane shedding, therefore production of the 

protein may not directly correlate with secretion. Analysing secreted proteins in 

cell culture medium was only used for determining macrophage phenotype after 

differentiation treatment, as the co-culture experimental design did not include a 

macrophage-insulin condition. This control should have been included, and the 

lack of data regarding how insulin influences macrophage phenotype severely 

limited the interpretation of data collected in this study.  

 

 OMAT and macrophage co-culture 

Despite providing the benefits of an ex vivo tissue system for co-culture, AT 

explants present unique challenges, as the cellular composition will vary between 

subjects. Although weighed to 250±20mg before co-culture, explants will contain 

adipocytes, preadipocytes and resident macrophages in different numbers. Gene 

expression was calculated relative to the expression of housekeeping genes, so 

should normalise any effect caused by differing cell numbers. Macrophages were 

seeded consistently at a density of 4x106 per well, meaning that the same number 

of macrophages may have exhibited a larger effect on AT gene expression if 

there were fewer adipocytes (or preadipocytes) present. As a result, explants with 
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fewer cells may give an exaggerated impression of the effect of macrophages on 

fibrotic gene expression. 

 

The supraphysiological quantity of macrophages should reduce the effects of any 

tissue-resident macrophages, but these endogenous cells may still contribute 

towards high variability of gene expression between subjects. Due to AT 

heterogeneity, there may also be small differences between explants obtained 

from the same donor, leading to inconsistency within experimental duplicates as 

well as control explants. This heterogeneity was observed during tissue 

processing, as some areas of OMAT were more heavily vascularised or fibrotic 

than others. The most prominent areas of fibrosis and vasculature were removed, 

but some inherent variation of tissue morphology will inevitably remain. 

 

The quantity of macrophages in the co-culture medium depended on their 

differentiation. 4x106 THP-1 cells per well were initially seeded in suspension and 

their differentiation medium was removed after 48h, on the assumption that 

macrophages would adhere during differentiation. A significant number of 

suspended cells would have been removed had culture conditions failed to 

effectively induce differentiation. As a result, macrophage number will have 

inevitably varied between culture conditions and individual experiments, 

potentially precluding the detection of a macrophage-induced effect on OMAT, 

and introducing yet more variability. This issue should have been identified and 

rectified during optimisation, as differentiated macrophages could have been re-

seeded at the correct cell density and allowed to attach for 24 hours before co-

culture set up. Their viability in response to differentiation stimuli, particularly 
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inflammatory IFNγ and LPS228, should have been considered and could have 

been investigated using a simple alamarBlue assay. 

 

Another point of variation in AT explants is the production and secretion of 

adipokines, such as adiponectin, which may differ between explants. Adiponectin 

is reported to promote polarisation towards an M2 macrophage phenotype in 

human PBMCs, and be capable of inducing M1-to-M2 transdifferentiation291,292, 

so could influence the phenotype of differentiated macrophages in co-culture. As 

a result, AT gene expression in the studied participants may be influenced. Had 

experimental design been more carefully considered, an aliquot of macrophages 

could have been collected, stained, fixed and analysed by flow cytometry to 

answer this question.  

 

LPS induces an M1 phenotype in macrophages via TLR4 receptor activation and 

stimulation of pro-inflammatory signalling pathways, however there is evidence 

that some FFAs behave as ligands for these receptors, and play a role in the 

development of insulin resistance in obesity140. Processing AT explants into 

500µm3 pieces caused significant lysis of adipocytes and allowed lipid to escape. 

During set-up of the co-culture experiments, the amount of lipid appeared to vary 

between samples of different subjects, as some explants were distinctly more 

‘oily’ than others. This may have resulted in uncontrolled activation of 

macrophage TLR4 receptors, promoting an M1, pro-inflammatory phenotype. 

Such exposure to high levels of FFAs does not accurately represent conditions 

in vivo, and again it is not possible to retrospectively measure the potential effect 

of this on macrophage phenotype by appropriate means, such as flow cytometry. 
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Although the co-culture assay was carried out at n=10, due to limited time and 

resources only 6 explants were analysed. In future, analysis of these samples 

could increase the significance of findings, however with such a flawed 

experimental design, this is unlikely to be a good use of resources.  

 

Insulin treatment was not optimised by any means. Chosen concentrations were 

loosely based on Kos et al (2009)177, but the complexity of insulin signalling was 

not appreciated, and negative regulation of insulin signalling in response to high 

insulin concentration was not considered. The potential for inducing insulin 

resistance in macrophages in vitro by treating with such high concentrations of 

insulin was also not recognised, and may have introduced a confounding variable 

preventing meaningful interpretation of results. Another fundamental flaw was 

that a simple readout for validating insulin signalling in AT or macrophages, e.g. 

western blot of IRS-1 tyrosine phosphorylation or flow cytometric detection of 

externalised insulin receptor, was not included, hampering results interpretation.  

 

 RNA analysis of pro-fibrotic genes 

Analysis of gene expression by RNA was the sole readout for this experiment 

examining fibrosis. Fundamentally, fibrosis occurs at the extra-cellular protein 

level, with much opportunity for post-transcriptional and post-translational 

regulation. mRNA and protein abundance only partially correlate293, therefore 

RNA analysis alone does not provide sufficient information to make conclusions 

about the development of fibrosis. For example, TGF-β is synthesised in inactive 

precursor form and must undergo proteolytic processing into its bioactive form294. 

This additional level of processing further reduces the likelihood that RNA levels 
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of TGF-β correlate with the abundance of the active protein. In combination with 

techniques analysing protein production and secretion however, RNA analysis 

can be a useful tool to help build a clearer picture of biological processes and 

their regulation. 

 

A 48 hour timepoint was chosen based on a previous co-culture study144 where 

gene expression of cytokines in macrophages was analysed. This was not 

optimised, and it was not considered that different genes may be expressed at 

different timepoints in the development of fibrosis. A comprehensive literature 

review suggests that 24 hours is a more appropriate timepoint to analyse 

molecular mediators of fibrosis (e.g. CTGF and TSP-1)146. Previous work by Kos 

et al (2009) even demonstrates an insulin-induced SPARC protein increase after 

24 hours, suggesting 48 hours may be too late to detect RNA upregulation. In 

designing analysis timepoints for such an experiment, it is critical to understand 

and consider the sequence of events involved in gene expression, from 

transcription, RNA processing and export, to translation, protein maturation and 

finally secretion.  

 

Insulin may act in a post-transcriptional manner to influence fibrosis184, therefore 

it is inappropriate to analyse its effect on matrix components at only the RNA 

level. Were comprehensive literature searches performed, and insulin treatment 

optimised, the experimental design could have included analysis of the matrix 

processing enzymes targeted by insulin, such as PCOLCE184.  
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 Summary 

Numerous fundamental flaws in experimental design severely hampered the 

interpretation of results obtained in this study. Appropriate optimisation would 

have highlighted these and informed refinements to the study design, preventing 

wasted time and resources. Human tissue samples were generously donated by 

patients undergoing surgery, therefore researchers had a moral obligation to 

conduct well-planned studies generating meaningful data, with potential for a 

wider impact in the field.  
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 Further work  

The following work should be carried out to generate good quality publishable 

data, addressing the original goals of this study and enabling conclusions to be 

drawn. 

 

 Optimisation of macrophage differentiation and phenotypic 

classification 

The methodology used in published studies requiring macrophage differentiation 

varies greatly. This study used all cytokines at a concentration of 20ng/ml to 

induce differentiation, as per methods used by Spencer et al (2010) and Finlin et 

al (2013)144,146, however Mia et al (2014) purport to achieve strong M1 

differentiation in PBMC-derived macrophages using IFNγ at 20ng/ml and LPS at 

50ng/ml, over just 24h. By contrast, Porcheray et al (2005) used all cytokines at 

10ng/ml to stimulate cell differentiation over four days218.  

 

To optimise macrophage differentiation, a range of cell treatment times should be 

tested and could include 24, 48, 72 and 96 hours. The concentration of cytokines 

used to induce differentiation could be altered and increased. Increasing LPS 

concentration to 50ng/ml may, in addition to IFNγ, provide a strong enough 

stimulus to push monocytes closer towards an M1-like phenotype, limiting 

expression of M2c marker CD163 and secretion of TGF-β. Alternatively, or in 

addition, pro-inflammatory TNF-α could be used to enhance differentiation into 

an pro-inflammatory phenotype94. Macrophage viability must be assessed during 

optimisation of differentiation protocols. 
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Genin et al (2015) and Chanput et al (2013) used IFNγ and LPS to differentiate 

THP-1 monocytes into M1 macrophages, but also used PMA to induce initial 

‘monocyte-to-macrophage’ differentiation before polarisation. Genin et al used 

PMA at 150nM for 24h before an additional 24h of control medium228, whereas 

Chanput et al (2013) obtained a ‘macrophage-like state’ by treating cells with 

100ng/ml for 48h225. Our study exposed cells to 5nM PMA for only five minutes 

during M (IL-4) and M (IL-10) differentiation, as per methods published by 

Spencer144. Inclusion of a ‘monocyte-to-macrophage’ step may enhance 

differentiation into a defined pro-inflammatory M1-like phenotype.  

 

A combination of IL-4, IL-10 and TGF-β could be used to upregulate IL-10 

secretion229. TGF-β in isolation has been reported to be a potent inducer of 

CD206 expression218,295 and downregulator of CD163218, suggesting it could be 

utilised to promote differentiation into M2 (or more specifically, M2a)-like 

macrophages in culture. As IL-13 is an established inducer of M2a expression94 

and thought to act on macrophages via the same signalling pathway as IL-4296, 

incorporating it into the M2a differentiation condition may induce a more M2a-like 

phenotype94. 

 

Macrophage differentiation should be validated using flow cytometry for cell 

surface markers, and would ideally include CD80 (monocyte marker), CD68 (pan-

macrophage marker), CD86 (M1 marker), CD206 (pan-M2 marker),  and CD163 

(M2c marker). M1 macrophages are expected to be 

CD68+CD80+CD86highCD206lowCD163low, whereas M2a and M2c macrophages 

are expected to be CD68+CD80-CD86lowCD206highCD163low and CD68+CD80-

CD86lowCD206highCD163low respectively94,297. In practical terms, the number of 
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markers analysed simultaneously may need to be reduced due to fluorophore 

spectral overlap, therefore CD68 and CD80 could be removed. Critically, a 

marker of cell viability should be used to identify dead cells, allowing 

differentiation protocols to be modified to address cell mortality if required.  

 

Additional differentiation markers could be used to help give a more complete 

picture of macrophage polarisation. Co-stimulatory molecules CD40 and CD80, 

as well as CD274 which encodes the programmed death-ligand 1, are present on 

the surface of antigen presenting cells, and may better detect if macrophages are 

M1-like157,229,234. As subtypes of M2 macrophages are still relatively poorly 

defined, it is difficult to identify undisputed markers which allow for confident 

characterisation of M2a or M2c macrophage subtypes in vitro. The use of CD163 

as an M2c marker is contested, as Barros et al (2013) believe it to be expressed 

by macrophages not of the M2 phenotype298. In addition, Lech et al (2012) 

controversially claim M2a cells are the primary pro-fibrotic macrophage 

phenotype, able to secrete TGF, CTGF and ECM molecules299. For these 

reasons, it is imperative to also classify AT macrophages in accordance with their 

functional characteristics and activation, as suggested by Murray et al (2014)300.  

 

ELISA should be used to quantify IL-1β, IL-6, TNF-α, IL-10 and TGF-β secretion 

from macrophages, with M1 macrophage supernatant expected to be IL-1βhighIL-

6highTNFhighIL-10lowTGF-βlow, M2a supernatant IL-1βlowIL-6lowTNFαlowIL-

10intermediateTGF-βlow and M2c supernatant IL-1βlowIL-6lowTNFαlowIL-10highTGF-

βhigh 94,229. RNA analysis should also be performed to assess genetic upregulation 

of these secreted products.  
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 Optimisation of co-culture conditions 

Following optimisation and validation of macrophage differentiation, conditions 

for AT/macrophage co-culture must be optimised. Should fresh human AT 

samples be scarce, preliminary optimisation experiments may be performed on 

culture-expanded human preadipocyte cells, or murine cell line 3T3-L1.  

 

Differentiated macrophages should be trypsinised and seeded at the optimised 

density and co-cultured with AT on hanging cell culture inserts. Ideally, AT donors 

would have a healthy range BMI. The co-culture should be initially performed as 

a time course, with preliminary timepoints of 24, 36, and 48 hours. Cells/AT 

explants should be collected and aliquoted for RNA and protein analysis.  

 

Initial AT protein analysis by western blot could focus on detection of type I, III, 

IV, V and VI collagens, fibronectin and elastin, and may also include targets of 

TGF-β and insulin signalling e.g. pSmad2/3 and pIRS-1, allowing insulin 

concentration to be optimised. RNA analysis could centre around detection of 

molecular mediators of fibrosis, such as LOX, SPARC, CTGF144,301, and TSP-

1302–304. Critically, AT should be collected and processed for a hydroxyproline 

assay, a molecule essential for collagen helix stabilisation and indicative of 

mature collagen deposition. Timepoint optimisation for this particular assay is 

imperative and may require a significantly longer co-culture period, allowing for 

expression, processing, secretion and assembly of fibril-forming collagen. The 

number of genes and proteins of interest and timepoints analysed should be 

refined based on the results obtained. Should co-culture data suggest increased 

AT fibrosis after co-culture with M2c-like macrophages, a TGF-β receptor inhibitor 
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(SB505124146) condition could be added to determine specificity to TGF-β 

signalling. 

 

 Effect of insulin on macrophage phenotype 

The effect of insulin on macrophages is controversial, as there are claims of pro- 

and anti-inflammatory effects. Ghanim et al (2001, 2008) report that insulin exerts 

a potently anti-inflammatory effect on human blood mononuclear cells in 

vitro189,305. Brundage et al (2008) determine that THP-1-derived macrophages 

stimulated with LPS increased TNF-α and IL-6 secretion after treatment with 

100nM insulin, therefore exerting a pro-inflammatory effect on macrophages306.  

 

Essentially, AT-free insulin and differentiated macrophage control conditions 

must be included for analysis of any pro-fibrotic or pro-inflammatory effect on 

macrophage phenotype. As macrophage-secreted products could not be 

analysed from co-culture medium, pro- and anti-inflammatory cytokines (e.g. IL-

6, IL-1β, TNF-α, IL-10, TGF-β) may be detected at the RNA or protein level. After 

co-culture, an additional aliquot of macrophages could be collected from each 

condition for cell surface marker analysis by flow cytometry, to determine if 

transdifferentiation from an M1-like to M2-like cell or vice versa139,218 has taken 

place in response to insulin or AT-derived signals. These data may later inform 

understanding of AT fibrosis phenotypes. 
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 Future perspectives 

 Macrophage classification 

Murray and colleagues (2014) discuss the issues and controversy surrounding 

activation and nomenclature of macrophages in vitro. They specifically highlight 

a lack of common consensus regarding macrophage classification, with different 

groups choosing to adopt various terms to describe phenotypes300. The restrictive 

and outdated nature of the existing terms, based on a limited set of ligands, no 

longer accurately reflect the complexity of macrophage phenotype and 

activation142. 

 

To allow direct comparisons to be drawn between studies, it would be pertinent 

to publish a standardised protocol for macrophage differentiation into polarised 

populations, named according to the activation stimuli, e.g. M(IL-10), or M(IL-4), 

as directed by Murray et al (2014). They also suggest a consensus is needed to 

standardise macrophage characterisation300, enabling better interpretation of 

studies such as this, where macrophage phenotype cannot be discretely 

described. In the context of this study, accurate differentiation and phenotyping 

of macrophages is essential to determine how macrophages of pro- and anti-

inflammatory phenotypes modulate AT fibrosis on their own and as a result of 

interactions with insulin.  
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 Final conclusions 

This study used AT-macrophage co-culture with insulin with the aim to 

demonstrate the importance of polarised macrophages in the development of 

fibrosis in AT, and how this may be differentially modulated by hyperinsulinaemic 

conditions. The results suggest that M (IL-4) macrophages may play a role in 

upregulating molecular mediators of fibrosis LOX and SPARC in OMAT, and M 

(IFNγ+LPS) macrophages, which differentiation analysis suggests possess a 

mixed M1/M2 phenotype, may increase OMAT FN1 expression. Insulin appeared 

to reduce expression of some pro-fibrotic genes in OMAT and M (IFNγ+LPS) 

macrophage co-culture at 1nM and 10nM concentrations, but not at the 

supraphysiological 100nM condition. A lack of strongly increased TGF-β or IL-10 

secretion from M (IL-10) macrophages indicated these cells were not functionally 

M2c-like, therefore the effect of M2c macrophages remains unclear. 

 

Numerous fundamental flaws in experimental design and a lack of optimisation 

introduced inherent variability and various other confounding factors to this study, 

precluding scientifically robust conclusions from being drawn. Experiments would 

need to be thoroughly optimised and repeated with the changes recommended 

in section 6.4 to truly assess the roles of polarised macrophages and 

hyperinsulinaemia on the development of fibrosis in AT, as well as the direct 

effect of insulin levels on macrophage phenotypes.  
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Appendix 1 

 

 Optimisation experiments 

 THP-1 differentiation 

Methods for THP-1 differentiation were adapted and optimised by Dr E Pastel 

based on methodology published by Spencer et al (2010)144. Initial 

experimentation used THP-1 monocytes at a density of 1x106 cells in 2ml of 

serum-free 2mM L-glutamine enriched RPMI media per well of a 6 well plate 

(105,000 cells/cm2), with M1 differentiation molecules LPS and IFN-γ at 20ng/ml 

and 20ng/ml respectively. For M2a and M2c differentiation, cells were initially 

treated with 5nM PMA in the same composition of RPMI for 5 minutes at room 

temperature, before seeding in 1% penicillin-streptomycin, serum-free RPMI with 

20ng/ml IL-4 or 20ng/ml IL-10 for M2a and M2c differentiation respectively. 

Duplicate cultures were incubated overnight at 37°C, before RNA was extracted 

and qRT-PCR performed in triplicate to indicate differentiation relative to an 

untreated THP-1 control.  

 

RNA pellets were observed to be very small after extraction, therefore an 

increased number of cells per well was considered necessary to obtain more 

nucleic acid in future experiments. Reverse transcription was carried out using 

SuperScript™ VILO™ cDNA Synthesis Kit (Invitrogen). qPCR was carried out 

using TaqMan probes for CD68 (pan macrophage marker), CD86 (M1 marker), 

CD206 (pan M2 marker) and CD150 (M2c marker) transcripts. 
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Figure 17: First optimisation test. 2-ΔΔCt values from M (IFNγ + LPS), M (IL-4) and 

M (IL-10) cells, normalised to and compared with untreated THP-1 control. 

Markers of differentiation: CD68, pan-macrophage marker (A), CD86, M1 marker 

(B), CD206, mannose receptor, a pan-M2 marker (C) and CD150, also known as 

SLAMF1, an M2c macrophage marker (D). Data represented as mean fold 

change ±SD, n=2 technical replicates in a single experiment. 
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Results (Figure 17) showed all cells after culture, including undifferentiated cells, 

expressed comparable levels of pan-macrophage marker CD68 (Figure 17A), 

whereas the M1 marker CD86 (Figure 17B) was most highly expressed in M 

(IFNγ + LPS) cells (2.26±0.068 fold change). M2 marker CD206 (Figure 17C), 

was most highly expressed in PMA treated cells (1.603±0.15 and 1.541±0.29-fold 

change for M (IL-4) and M (IL-10) cells respectively), but sample size (n=2) was 

too small to determine significance. M (IL-10) cells expressed CD150 with a 

2.18±0.175-fold increase (Figure 17D) from the control, but M (IFNγ + LPS) 

treated cells showed a 1.95±0.088-fold increase. Combined with CD206 

expression, Dr Pastel concluded that a differentiation can still be made between 

M2a-like and M2c-like cells, and that these data suggested an extended cell 

differentiation time may increase differentiation.  



168 
 

 

Figure 18: Second optimisation test. 2-ΔΔCt values from M (IFNγ + LPS), M (IL-4) 

and M (IL-10) cells, normalised to and compared with the untreated THP-1 

control. Markers of differentiation: CD68, pan-macrophage marker (A), CD86 (B), 

CD206 (C), and CD150 (D). Data represented as mean fold change ±SD, n=2 

technical replicates in a single experiment.  

 

In the second round of optimisation, cells were seeded at 2x106 cells/well 

(210,500 cells/cm2), PMA incubation was carried out at 37°C, and cells were 

cultured for 48h (as opposed to 24h). This led to higher CD86 expression (Figure 
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18B)  from M (IFN-γ + LPS) cells (3.89±0.13 fold increase) and increased CD206 

expression (Figure 18C) in PMA-treated cells (mean 3.453±0.12 and 3.057±0.33 

fold increases for M (IL-4) and M (IL-10) cells respectively), suggesting that a 

longer culture period and more physiologically-matched PMA incubation 

temperature helped increase differentiation. 

 

 AT/THP-1 co-culture  

After optimisation of the differentiation protocol, Dr E Pastel performed a pilot co-

culture experiment with human OMAT. The processed explant, (250±20mg per 

well) was cultured with differentiated THP-1 cells (2x106 cells/well) for 48 hours 

at 37°C, 5% CO2, in media supplemented with insulin at various concentrations 

(vehicle, 1nM, 10nM, and 100nM). Supernatant and adherent macrophages were 

collected, along with all pieces of AT, and stored in Ambion TRI Reagent® 

Solution at -80°C. RNA was extracted from macrophages collected from control 

wells (without AT explants or insulin) to determine if dedifferentiation and taken 

place after an additional 48 hours with normal culture medium. THP-1, M (IFN-γ 

+ LPS), M (IL-4) and M (IL-10) conditions were assessed in technical duplicates 

(one experiment), and RNA concentration was found to be low in all samples, i.e. 

<100ng/ml. For the THP-1 condition, RNA levels were particularly low – only one 

well yielded enough RNA to perform reverse transcription. Dr Pastel concluded 

that undifferentiated cells would be less adherent to the culture wells, and so 

fewer cells would have been collected. In response to this, cells would be seeded 

at 4x106 cells/well in future experiments to increase RNA yield. 
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When qRT-PCR was performed on differentiated macrophages, all conditions 

showed elevated expression of CD68 relative to the undifferentiated control 

(Figure 19A), suggesting a macrophage-like phenotype. M (IFNγ + LPS) cells 

upregulated CD86 (Figure 19B) and showed a mean 9.229±1.56-fold increase 

relative to the control. M (IL-4) cells did not upregulate pan M2 marker CD206 

(Figure 19C), but M (IL-10) cells showed a 3.2±0.69-fold increase, and M2c 

marker CD150 (Figure 19D) was decreased in M (IL-4) and M (IL-10) 

differentiated cells (0.485±0.002 and 0.42±0.09-fold change respectively). In light 

of this, a second TaqMan probe for CD163, reportedly another marker of M2c 

phenotype233, was acquired to use in the main experiment. 
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Figure 19: Macrophage differentiation after pilot study. 2-ΔΔCt values from M (IFNγ 

+ LPS), M (IL-4) and M (IL-10) cells, normalised to and compared with the 

untreated THP-1 control. Markers of differentiation: CD68, pan-macrophage 

marker (A), CD86, M1 marker (B), CD206, mannose receptor, a pan-M2 marker 

(C) and CD150, an M2c macrophage marker (D). Data represented as mean fold 

change ±SD, n=2 technical replicates in a single experiment.   
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 Housekeeping gene selection 

18S, PPIA and TBP were validated by Dr E Pastel as housekeeping genes for 

analysing THP-1 differentiation. All four genes were expressed consistently 

across control and treated cells (Figure 20), giving a stable baseline upon which 

to normalise all other data. 18S, PPIA and TBP were selected for use when 

quantifying cell differentiation. 

 

 

Figure 20: Expression of housekeeping genes in differentiated 

macrophages. Stability of housekeeping genes 18S, PPIA and TBP was 

assessed across all four macrophage differentiation conditions. All three 

genes appear stable. 
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Appendix 2 

 

  RNA concentration and quality in AT samples 

 

  

Patient Macrophages Insulin Sample no. Volume (µl) Concentration (ng/µl) 260/280 260/230

2 - TB1779 ᴓM N/A 1 35 274.9 1.92 1.54

2 37 202.3 1.91 1.97

1nM 3 40 270.9 1.91 1.52

4 37 256.8 1.9 1.89

10nM 5 33 257.5 1.87 1.89

6 30 274.9 1.89 2.08

100nM 7 40 238.7 1.9 1.78

8 40 272.5 1.9 1.7

M2c N/A 3 30 195 1.93 0.94

4 30 260.1 1.88 1.97

1nM 5 30 143.5 1.82 2.03

6 30 293.1 1.92 1.84

10nM 7 30 205.5 1.91 1.66

8 37 148.6 1.9 1.97

100nM 9 34 224.3 1.93 1.1

10 14 256.9 1.89 0.75

M1 N/A 3 20 222 1.83 1.91

4 30 264.3 1.9 1.88

1nM 5 34 197 1.91 1.78

6 31 216.1 1.9 1.92

10nM 7 30 275.6 1.9 1.24

8 30 213 1.86 1.94

100nM 9 30 275.6 1.9 1.86

10 30 238.6 1.9 1.8

M2a N/A 3

4 33 222 1.86 2.1

1nM 5 20 251 1.85 1.97

6 32 254.3 1.89 1.92

10nM 7 30 214.3 1.84 2.19

8 30 282.1 1.91 1.77

100nM 9 30 187.3 1.89 1.09

10 35 222.8 1.91 1.84

M0 N/A 3 38 171.9 1.86 2.15

4 36 280 1.9 1.71

1nM 5 30 283.8 1.9 1.81

6 30 279.5 1.89 1.78

10nM 7 31 249.6 1.9 1.69

8 31 277 1.91 0.74

100nM 9 30 179.4 1.89 1.66

10 32 299.4 1.92 1.78

Sample contaminated
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Patient Macrophages Insulin Sample no. Volume (µl) Concentration (ng/µl) 260/280 260/230

4 - TB1781 ᴓM N/A 1 21 170.7 1.85 2.09

2 30 153.1 1.96 0.95

1nM 3 30 228.2 1.91 1.11

4 30 114.5 1.92 1

10nM 5 30 171.2 1.81 1.95

6 30 141.2 1.91 1.07

100nM 7 30 250.6 1.9 2.15

8 30 188.9 1.96 1.62

M2c N/A 3 30 190.2 1.93 1.11

4 25 204.8 1.91 1.06

1nM 5 30 135.9 1.83 1.9

6 25 141.5 2 1.68

10nM 7 30 198.1 1.9 2

8 25 201.2 1.96 1.54

100nM 9 30 260.3 1.92 1.61

10 30 208.1 1.91 2.06

M1 N/A 3 40 253.2 1.94 2.07

4 41 293.5 1.88 1.81

1nM 5 38 245.3 1.92 2.01

6 35 203.4 1.94 1.8

10nM 7 37 239.9 1.93 1.81

8 30 291.8 1.92 2.02

100nM 9 35 297.3 1.92 2.05

10 37 299.2 1.95 1.87

M2a N/A 3 30 255.4 1.9 2.14

4 30 269.1 1.92 2.26

1nM 5 34 240.9 1.92 2.11

6 30 257.9 1.95 1.81

10nM 7 35 257.7 1.93 1.88

8 30 254.2 1.92 1.85

100nM 9 36 244.9 1.96 1.66

10 38 262.6 1.88 1.93

M0 N/A 3 35 246.2 1.95 1.88

4 30 279.8 1.93 1.87

1nM 5 30 245.8 1.9 1.96

6 30 174.1 1.88 2.2

10nM 7 34 210.5 1.94 1.58

8 30 264.8 1.94 0.78

100nM 9 30 297.8 1.92 2.13

10 30 286.1 1.95 1.99
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Patient Macrophages Insulin Sample no. Volume (µl) Concentration (ng/µl) 260/280 260/230

5 - TB1782 ᴓM N/A 1 31 262.4 1.95 1.83

2 37 255.4 1.95 1.32

1nM 3 33 243.1 1.95 1.72

4 34 254.2 1.95 1.63

10nM 5 34 276 1.96 1.89

6 34 263.6 1.95 1.62

100nM 7 34 289.1 1.94 2.05

8 31 246.9 1.92 1.84

M2c N/A 3 30 257.2 1.92 2.08

4 30 279.7 2 1.24

1nM 5 32 293.9 1.97 1.9

6 30 280.5 1.97 1.82

10nM 7 31 264.8 1.95 1.77

8 35 235.2 1.94 1.82

100nM 9 30 289.7 1.97 1.47

10 35 233.8 1.92 2.09

M1 N/A 3 20 274.9 1.95 1.94

4 32 228.8 1.94 1.94

1nM 5 30 292 1.95 1.94

6 30 297 1.92 2.14

10nM 7 34 236.6 1.96 1.88

8 30 299.6 1.95 1.94

100nM 9 35 245 1.97 1.87

10 30 217.9 1.95 1.71

M2a N/A 3 34 269.4 1.95 1.83

4 32 200.7 1.94 1.85

1nM 5 34 246.6 1.94 2.08

6 32 198.3 1.96 1.68

10nM 7 31 271 1.95 1.94

8 28 256.7 1.93 1.75

100nM 9 30 270.4 2.02 2.1

10 30 295.9 1.94 1.41

M0 N/A 3 31 228.7 1.96 2.23

4 31 295.8 1.94 1.84

1nM 5 35 291.8 1.99 1.86

6 35 291.3 1.93 1.83

10nM 7 30 292.1 1.94 2.22

8 30 287.9 1.97 1.25

100nM 9 30 271.4 1.94 2.24

10 12 58.58 1.93 1.08
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Patient Macrophages Insulin Sample no. Volume (µl) Concentration (ng/µl) 260/280 260/230

6 - TB1783 ᴓM N/A 1 130 272.6 1.96 2.1

2 160 136.5 2 2.12

1nM 3 130 241.7 1.98 2.16

4 110 277.3 1.93 1.93

10nM 5 110 296.8 2 2.17

6 110 299.6 2 2.09

100nM 7 160 263.1 2.07 2.12

8 160 255.9 2.05 2.14

M2c N/A 3 120 240.7 1.97 2.16

4 130 237.9 2 2.19

1nM 5 130 292 1.95 2.14

6 110 295.7 2 2.05

10nM 7 140 268.3 1.99 2.15

8 160 276.4 1.99 2.08

100nM 9 170 232.6 1.99 2.11

10 150 261.1 1.96 2.16

M1 N/A 3

4 160 235.9 1.97 2.17

1nM 5 160 272.6 2.02 2.25

6 120 277.9 1.99 2.19

10nM 7 120 271.4 2.01 2.04

8 150 278.9 2.06 2.21

100nM 9 140 270.7 1.99 2.1

10 170 260.2 2.04 2.08

M2a N/A 3 190 191.2 1.98 2.1

4 160 209.2 1.97 2.16

1nM 5 160 223.5 2.02 2.11

6 140 208.2 1.94 2.05

10nM 7 140 258.8 2.02 2.17

8 150 249.6 1.98 2.13

100nM 9 160 239.8 2.05 2.13

10 160 264 2.01 2.13

M0 N/A 3 90 257.9 2.01 2.31

4 80 259.9 1.92 2.07

1nM 5 100 260.3 1.95 2.21

6 80 285.2 1.99 2.18

10nM 7 80 266.2 1.91 2.07

8 90 268.3 1.97 2.21

100nM 9 90 270.3 1.98 2.09

10 100 279.1 1.88 2.18

Sample lost
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Patient Macrophages Insulin Sample no. Volume (µl) Concentration (ng/µl) 260/280 260/230

7 - TB1784 ᴓM N/A 1 140 183 2.02 2.05

2 80 168.7 1.92 1.43

1nM 3 90 266.7 193 2.18

4 90 183.9 2.04 2.05

10nM 5 90 265.4 1.96 2.17

6 100 297.5 2.07 2.2

100nM 7 170 151.2 2.02 2.18

8 170 191.2 1.99 2.09

M2c N/A 3 90 245 1.96 2.07

4 120 243.9 2 2.12

1nM 5 100 284.1 2.03 2.15

6 130 270.5 2.1 2.01

10nM 7 160 177.1 2.01 2.2

8 110 263.5 1.99 2.02

100nM 9 100 249.3 1.93 2.07

10 120 266.6 2.03 2.18

M1 N/A 3 70 220.8 1.93 2.01

4 130 290.7 2.08 2.1

1nM 5 90 221.4 1.98 1.98

6 160 253.2 1.98 2.06

10nM 7 100 170.9 1.89 2.05

8 100 249.3 2.01 2.22

100nM 9 70 246.1 1.91 2.05

10 100 268 2.06 2.18

M2a N/A 3 120 230.5 1.99 2.12

4 100 234.1 1.98 2.13

1nM 5 110 254.3 1.97 1.98

6 100 280.3 2.02 2.07

10nM 7 110 280.6 2.03 1.51

8 80 286.6 2.12 2.18

100nM 9 160 249 2.01 2.08

10 140 207.6 1.99 2.18

M0 N/A 3 120 265.8 2.02 2.09

4 110 261.7 2.02 2.09

1nM 5 120 276.7 2.04 1.98

6 110 280.5 2.11 2.05

10nM 7 140 297.1 2.03 2.14

8 80 255.3 1.95 2.09

100nM 9 130 244.8 1.83 1.72

10 40 271.9 1.89 2.12
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Patient Macrophages Insulin Sample no. Volume (µl) Concentration (ng/µl) 260/280 260/230

9 - TB1786 ᴓM N/A 1 35 276.7 1.94 2.12

2 30 279.1 2.06 0.79

1nM 3 30 209.3 1.94 1.76

4 30 288.3 2 1.63

10nM 5 35 249.8 1.92 2.25

6 30 234.1 1.97 1.8

100nM 7 30 243.5 1.89 2.2

8 30 292.5 1.94 2.12

M2c N/A 3 30 177.9 1.95 1.63

4 30 118.9 1.85 2.45

1nM 5 30 192.5 1.89 2.14

6 30 177.2 1.86 2.41

10nM 7 30 238.6 1.9 2.33

8 45 279.5 1.93 2.26

100nM 9 30 237.9 1.98 1.81

10 30 199.3 1.98 1.81

M1 N/A 3 44 191.7 1.91 2.39

4 30 331 1.94 2.37

1nM 5 38 241.5 1.91 2.22

6 30 286.3 1.92 2.29

10nM 7 30 285.3 1.91 2.34

8 31 266.6 1.87 2.18

100nM 9 30 283.9 1.92 2.31

10 30 254.7 1.92 2.19

M2a N/A 3 38 201 1.95 1.93

4 30 258.8 1.92 1.8

1nM 5 30 289.2 1.9 2.3

6 37 267.3 1.92 2.28

10nM 7 33 268 1.9 2.18

8 30 285.5 1.91 2.39

100nM 9 60 233.6 1.88 2.21

10 38 256.4 1.91 2.33

M0 N/A 3 30 174.1 1.84 2.41

4 30 194.8 1.88 2.02

1nM 5 30 162.4 1.87 2.29

6 30 133.9 1.83 2.07

10nM 7 30 180.5 1.88 2.18

8 30 147.2 1.86 2.59

100nM 9 30 188.7 1.84 2.17

10 30 177.9 1.88 2.44
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