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Abstract—Virtual network embedding arranges virtual net-
work services onto substrate network components. The perfor-
mance of embedding algorithms determines the effectiveness and
efficiency of a virtualized network, making it a critical part of the
network virtualization technology. To achieve better performance,
the algorithm needs to automatically detect the network status
which is complicated and changes in a time-varying manner,
and to dynamically provide solutions that can best fit the current
network status. However, most existing algorithms fail to provide
automatic embedding solutions in an acceptable running time.
In this paper, we combine deep reinforcement learning with
a novel neural network structure based on graph convolu-
tional networks, and propose a new and efficient algorithm for
automatic virtual network embedding. In addition, a parallel
reinforcement learning framework is used in training along
with a newly-designed multi-objective reward function, which
has proven beneficial to the proposed algorithm for automatic
embedding of virtual networks. Extensive simulation results
under different scenarios show that our algorithm achieves best
performance on most metrics compared with the existing state-
of-the-art solutions, with upto 39.6% and 70.6% improvement
on acceptance ratio and average revenue, respectively. Moreover,
the results also demonstrate that the proposed solution possesses
good robustness.

Index Terms—Network Virtualization, Virtual Network Em-
bedding, Reinforcement Learning, Graph Convolutional Network

I. INTRODUCTION

THE existing Internet architecture and management
schemes become increasingly powerless when facing the

growing pressure given by the emerging network services.
Many promising techniques have been proposed to tackle this
issue. Network virtualization is able to decouple the network
services from its underlying network hardware and allows
network users to program their own network services. With the
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useful technologies such as software defined network (SDN)
[24] [25] and network functions virtualization (NFV) [13]
[32] [5], network virtualization has become the main enabling
technology for the management of modern Internet.

By adopting network virtualization, traditional network
providers can act as two main roles. One is the service provider
(SP) who creates customized virtual networks (VNs) to form
end-to-end network services under various circumstances and
provides these services to users. The other one is the in-
frastructure provider (InP) who keeps substrate network (SN)
devices so that SPs can use them to host their services with
acceptable commercial cost. A good coordination of these
two roles can enhance the utility of physical network devices
and the commercial incoming of both SPs and InPs. Virtual
network embedding (VNE), which forms the embedding from
a VN, representing a nework service, to its corresponding
SN resources under given resource and service constraints,
is therefore an important and challenging task in network
virtualization for optimal network performance and resource
utilization.

However, the VNE problem is known to be NP-hard [45],
which means it is impossible to get exact solutions in a larger
network environment. To reduce the computational complexity
and running time, many heuristic methods have been applied
to VNE algorithms for suboptimal solutions. Fischer et al. [14]
investigated most existing algorithms and characterized them
in detailed categories. These algorithms have three common
drawbacks. First, the features and constraints for modelling are
manually designed, which are usually sparse and trivial, mak-
ing feature engineering inefficient and inflexible in problem
solving. Second, the optimization objectives explicitly focus
on a single metric or a simple combination of multiple metrics,
which only suit for highly specialized situations. Third, the
running time of these algorithms in large-scale networks is
still excessive despite of the introduction of heuristic methods.

In this paper, we propose a new VNE algorithm based
on deep reinforcement learning (DRL) technique to counter
existing shortcomings. DRL uses reinforcement learning (RL)
as learning architecture and deep learning techniques (e.g.,
multi-layer neural networks) as automatic feature extractor;
it has performed well on a set of complicated sequential
decision-making problems, such as the game of Go [34] and
adaptive video streaming [22]. In RL, an agent starts from
knowing nothing and gradually learns desirable behaviour
(e.g., optimal VNE strategy, in this paper) purely by probing
the external environment. When the agent gets the network
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status, it transforms the status to advanced features and
generates an action (e.g., an embedding decision from the
virtual network component to a certain substrate network
resource). The environment executes this action and returns
a reward signal to the agent. The reward signal, which differs
from the traditional optimizing objective, is not necessarily to
make performance maximization for current network status,
but can aim for better performance in the future. The agent
then uses the reward signal to dynamically improve its next
action generation. As the improvement iteratively goes on,
the agent finally converges to a strategy that maximizes
the cumulative reward in a long term without any explicit
objective functions and optimization targets. Once the agent
completes the training, it only needs a single step (i.e., a
forward computation of neural networks) to generate valid
embeddings through raw state inputs, which can reduce the
computational complexity while solving VNE problems. After
this approach, the procedure of (high-level) feature extraction
and the generation of embedding strategy can be handled
automatically by the trained learning model without much
human effort.

DL-based algorithms have been successfully used in many
data-driven problems such as image recognition [15] and text
classification [19] due to its powerful capability of automatic
feature extraction and the ability of utilizing hidden advanced
features. However, applying DRL techniques directly into
VNE problem solving is not yet trivial, but may face the
following challenges. First, the sampled experiences from the
external environment come slow as the environment status
usually takes some time to be probed by the agent. Second,
despite being widely used in processing regular data like
images and voice signals, traditional neural networks are
not suitable for irregular data such as network topologies.
To overcome these challenges, we adopt a well-known RL
framework which can apply parallel training, and use a novel
neural network structure to handle feature extraction in a
random graph topology. The main contributions of this paper
can be summarized as follows:

• This paper proposes a new and efficient algorithm for
automatic virtual network embedding based on deep rein-
forcement learning. In particular, a novel neural network
based on graph convolutional networks is adopted in
learning agent to automatically extract spatial features in
an irregular graph topology (i.e., the substrate network).
To the best of the authors’ knowledge, this approach of
feature extraction is the first time used in VNE problems.

• We use a popular parallel policy gradient training method
to guarantee the efficiency of sampling training experi-
ences and the robustness while optimizing the learning
agent. Validation tests show that when other settings
are identical, the parallel version of our algorithm can
converge more quickly in training episode and has an
advantage up to 5.8% over the single-processed version.

• A new reward function is precisely designed to match
multiple optimizing objectives in the VNE problem which
considers multiple factors including request acceptance,
long-term revenue, load balance and policy exploration,

leading to a better performance up to 6.3% comparing
with the VNE models with traditional reward functions.

• Extensive simulation experiments have been conducted
to validate the performance of the proposed solution.
The results show that the proposed VNE algorithms
with the above innovative designs can achieve up to
39.6% and 70.6% improvement on acceptance ratio and
average revenue, respectively, in comparison with the
existing state-of-the-art solutions. Moreover, the results
also demonstrate that the proposed solution possesses
good robustness, owing to different data distributions used
in training and testing phases.

The remaining of this paper is constructed as follows:
Section II describes the related work. Section III depicts the
VNE problem along with the essential network components.
The design and implementation of the VNE learning agent are
presented in Section IV. Section V compares the performance
of the proposed algorithm with the state-of-the-art ones, and
finally, Section VI concludes this study.

II. RELATED WORK

The VNE problem has been well discussed in the last
decade. The first academic document focusing on this problem
and its virtual network resource allocation counterpart is
presented in [1]. Since then, many VNE algorithms have
been proposed. Typically, the VNE problem can be formulated
as a mixed-integer programming (MIP) problem along with
predefined resource constraints. Chowdhury et al. [7] added
some location constraints to limit the maximum distance
between any two embedded virtual nodes and applied a round-
based relaxation method to transform the MIP-formulated
VNE problem into a linear programming (LP) problem for
gaining exact solutions. However, this approach suffered from
the requirement of excessive computational resources for a
linear programming solution. Shahriar et al. [33] proposed an
algorithm based on integer linear programming, which jointly
focused on the full resource utility and request survivability.
Although with a heuristic version that accelerates execution,
its running time is still unacceptable and needs to be further
reduced. Benkacem et al. [2] introduced a content delivery
network as a service (CDNaaS) platform and addressed virtual
slicing problem on the platform by formulating two MIP
problems and applying bargaining game theory to achieve
optimal tradeoff between cost efficiency and service quality.
This work is mainly to ensure the quality of content-based
service.

The majority of VNE algorithms use heuristic methods for
approximate solutions with acceptable time cost. Cheng et al.
[6] focused on topology-aware node ranking methods which
sort substrate nodes and virtual nodes using the rules inspired
by the Google’s Pagerank algorithm [29] and then use a “big-
to-big, small-to-small” matching strategy to embed virtual
nodes onto substrate nodes that have similar ranking positions.
However, the node ranking is fixed per network topology,
which means the embedding decisions are hard to be optimized
unless the ranking rules are changed. Soualah et al. [35] turned
the VNE problem into a coordination game based on the
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identical interest game in game theory. Each substrate node
is considered as a player that shares the same utility function
and tries to achieve a Nash Equilibrium for optimal embedding
solutions. However, this approach separates the node and link
embeddings as individual games and then nests them together;
it not only lacks the coordination between node and link
embedding decisions, but also harms time efficiency. Gong et
al. [16] addressed the VNE algorithm with a new cost metric
to perform a greedy-based load-balancing embedding strategy
among substrate nodes. However, the metric was defined with
a certain scenario and the performance will probably drop as
the environment changes. Lischka et al. [21] detected the iso-
morphic subgraph inside the substrate network and restricted
the maximum path length of an embedded virtual link to
accomplish the representing VNE topology embedding. This
algorithm is based on the subgraph isomorphism detection
which is also NP-hard, thus the time complexity still needs
to be optimized. Dehury et al. [10] proposed an algorithm
based on global and local fitness value functions to maximize
the resource utilization given that requests are dynamically
changing. However, to reduce the computational complexity,
this approach considered the candidate embeddings in a subset
rather than the full set of substrate nodes, resulting in the
limitation of performance.

There exist several VNE algorithms using metaheuristic
methods, as the VNE problem can be treated as a combina-
torial optimization problem with a large search space. Zhang
et al. [47] adopted particle swarm optimization as a stochastic
global optimizer where each particle (i.e., possible embedding
solution) iteratively made improvements following the embed-
ding cost function, and a global evolution procedure finally
took place to get a complete solution. Metaheuristic solutions
usually follow static improvement steps which are designed
manually by specialized human experiences; they are therefore
not flexible for optimizing and being applied to other VNE
scenarios. Yu et al. [44] adopted an evolutionary membrane
computing mechanism to perform embeddings in a parallel
manner. However, this approach was based on a sophisticated
encoding mechanism for virtual network components with a
manually-designed set of evolutionary rules, which causes the
model inflexible and lack of automation.

In conclusion, the exisiting algorithms have several main
drawbacks:
• The constraints, features and optimizing procedures in

problem solving are manually determined, which are
unchangeable throughout the running of algorithms. This
indicates a heavy workload and a narrow improvement
gap for optimization.

• Explicit objective functions and optimization targets may
harm the flexibility and robustness of VNE algorithms.
For example, embedding algorithms focusing on reducing
cost will prohibit the solutions that use long substrate
paths as virtual link embeddings and may cause perfor-
mance drop on acceptance ratio.

• The execution time to generate VNE solutions is yet to
be reduced. VNE is time-sensitive; if an algorithm cannot
finish under the computational constraints, the revenue
of service providers would be reduced, and the negative

effects would be placed on the quality-of-experience of
end users.

The RL framework has been proposed to solve decision-
making problems by automatically interacting between a
learning agent and an environment. At each time step t,
the learning agent gets the state st by observing the environ-
ment status and generates an action at following its internal
algorithms. The environment executes at , moves onto next
state st+1, and sends reward rt , which judges how good at is
doing back to the agent. The primary aim of an RL algorithm
is to maximize the estimation of discounted accumulative
reward: E[

∑∞
t=0 γ

trt ] instead of optimizing a manually defined
objective function, where γ ∈ (0, 1) is the discount factor that
balances instant return and long term reward. With proper
state, action and reward proposals, the VNE problem can fit
the RL framework well, which is shown in Fig. 1.

Fig. 1. The RL framework of a VNE problem.

Several papers in recent years explored the utilization of
RL techniques in VNE algorithms. Haeri and Trajkovic [18]
modelled the VNE problem as a Markov decision procedure
and picked the embedding actions using Monte-Carlo tree
search (MCTS) driven by a reward function based on the
difference between embedding cost and revenue. However,
MCTS needs to run a complete procedure for every single
embedding decision, thus it makes the algorithm time consum-
ing. In addition, the simple reward function is not enough for
representing a complicated VNE problem. Mijumbi et al. [26],
[27] managed the virtual network resource allocation using a
tabular Q-learning algorithm [36] and a typical fully-connected
neural network, using the percentage of free resources in
each substrate network node as input features. However, the
state and action of this algorithm are coarsely defined, which
limits the search space and may cause suboptimal solutions.
In addition, this work focused on dynamically adjusting the
resources that have already been used by embedded VNs,
which differs from the VNE problem that allocates substrate
network resources to VNs from scratch. Yao et al. [43] used a
1-dimensional convolution neural network to extract substrate
node features and trained the neural network by minimizing
the cross-entropy loss which used the current selected action
as a “correct label”. This approach only leveraged the spatial
information of network topology in a brief way and only
allocated one single filter for a substrate node. Yuan et al.
[46] used a Q-learning algorithm, designed a reward function
related to the effect of virtual link embedding and applied
unsupervised learning to update it. However, the features in
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the algorithm are manually obtained. Xiao et al. [41] used a
deep-RL based model to formulate the problem of automatic
deployment of service function chains and adopted a policy
gradient based method to improve the training efficiency
and convergence to optimality. Unfortunately, they did not
take spatial features into account. Sciancalepore et al. [31]
optimized on the joint of VNF orchestration and monitoring
process based on a Q-learning algorithm, while the solution re-
quires a huge complexity to solve the problem in an affordable
time. Wang et al. [38] adopted a deep RL algorithm to dynam-
ically allocate resources in 5G networks and achieve resource
efficiency and end-to-end reliability. However, this approach
did not take spatial features into account. Pham et al. [30]
managed VNF forwarding graph embedding problem using
deep deterministic policy gradient (DDPG) to fulfill resource
demands from virtual nodes and service quality of virtual links
(e.g., latency, loss rate, etc.). However, this approach used
many auxiliary variables to denote actions which burdened
the training process. Dolati et al. [11] converted an arbitrary
VNR to a specific image representation and adopted general
CNN for a DRL approach in solving VNE problems. The
authors made an assumption that networks are having grid-like
topologies to make the image representation easier to get, but
it is not true in many other situations (e.g., tree-like and star-
like topologies). Wang et al. [39] made a temporal-difference
learning approach towards VNE problem solving. However,
this approach used all possible states as the input of a neuron
network, which increases the computational complexity.

We summarize the related works mentioned above in Table
I. In addition, this journal paper is an extension of the previ-
ously published conference version [42]. The main extension
of this journal version is summarized below:
• We provide a more comprehensive investigation on recent

related VNE algorithms (published in 2019 and 2020),
especially DRL approaches (e.g., the VNE algorithms
based on DDPG, Temporal-Differential method, CNN-
based DRL algorithm, etc.).

• We provide more detailed derivation and illustration on
system modelling and add the pseudocode for algorithm
implementation of critical steps, facilitating the under-
standing of the model and make it easier to follow.

• We introduce new (and realistic) network topology and
new performance metrics (e.g., latency, node utilization
and link utilization) for performance evaluation, strength-
ening the robustness of the proposed algorithm.

• The comparison experiments and analysis are massively
expanded, such as using different neuron network struc-
tures, different reward functions, etc. The comparisons
of model convergence are added. All these new results
demonstrate the effectiveness of the proposed model
under different network configurations and working con-
ditions.

III. THE DESCRIPTION OF A VNE PROBLEM

In this section, we describe the VNE problem in mathemat-
ical language for a formal definition. Meanwhile, we discuss
some critical performance metrics and optimizing objectives

that are widely used for evaluating VNE algorithms. To make
the following descriptions easier to read, we denote some
major notations in Table II.

A. Substrate Networks

A substrate network can be treated as a weighted undirected
graph Gs = (Ns, Ls, An, Al), where Ns represents a collection
of substrate nodes and Ls refers to a set of substrate links. An

and Al are node attributes (e.g., CPU processing capability,
memory space and node reliability) and link attributes (e.g.,
bandwidth, latency and packet loss rate), respectively. For
the sake of illustration, in this paper we consider the CPU
processing capability of each substrate node as the node
attribute and the bandwidth of each substrate link as the link
attribute.

B. Virtual Network Requests

A virtual network can similarly be described as a weighted
undirected graph Gv = (Nv, Lv, Rn, Rl). Here, Nv and Lv are
the set of virtual nodes and links, while Rn and Rl denote
the virtual node and link requests for substrate resources,
respectively. A virtual network request (VNR) can therefore
be denoted as V NR = (Gv, ta, td), where ta and td are the
arrival and departure time of a VNR, respectively. When a
VNR is generated with a certain network topology and arrives
the substrate network at ta, it demands the substrate resources
characterized by Rn and Rl . If this demand can be satisfied by
the available resources in the substrate network, the VNR will
hold these substrate resources until td . If there is not enough
resource available or the embedding algorithm cannot work
out a solution, the VNR will be rejected or postponed.

C. The VNE Problem

The VNE problem can be defined as a mapping: M :
Gv(Nv, Lv) → G′s(N

′
s, L ′s) from Gv to a subgraph of Gs ,

where N ′s ⊂ Ns and L ′s ⊂ Ls . The mapping procedure can be
decomposed into two stages: 1) the node mapping procedure
for hosting virtual nodes on substrate nodes with sufficient
resources, and 2) the link mapping procedure for assigning
virtual links onto loop-free paths of the substrate network
which satisfy virtual link resource requests. It is worth noting
that virtual nodes from different VNRs may share the same
substrate node, and a virtual link can not only share substrate
links with other virtual links, but may also cross over multiple
substrate links that form a substrate path between source and
target nodes. In the crossing case, the substrate bandwidth
a virtual link actually takes is more than the resources it
initially demands, which is decided by the length of the
crossed substrate path. Fig. 2 shows an illustration of virtual
node sharing (blue node c and red node d) and link crossing
(the link between blue nodes a and b).

D. Optimization Objectives

The purpose of a VNE algorithm is to make efficient utility
of substrate network resources by performing smart VNR
embedding decisions over time. Several key metrics have
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TABLE I
THE SUMMARY OF RELATED WORKS

Author Methodology Features Spatial
Fea-
tures

Feature
Extrac-
tion

DRL
Usage

Problem Solving Time

Chowdhury et al. [7] MIP modelling and LP re-
laxation

CPU and bandwidth Yes No No Massive with larger net-
works.

Shahriar et al. [33] Integer LP formulation
with heuristic solver

mean substrate and virtual
path lengths

Yes No No Affordable

Dehury et al. [10] MIP formulation CPU, memory and band-
width

Yes No No Affordable

Lischka et al. [21] Isomorphic subgraph de-
tection

CPU and bandwidth No No No Affordable

Cheng et al. [6] Node ranking CPU and bandwidth No Yes No Affordable

Zhang et al. [47] A variant of discrete par-
ticle swarm optimization
algorithm

CPU, bandwidth and loca-
tion constraint

Yes No No Affordable

Soualah et al. [35] Game theory CPU and bandwidth No No No Extra time cost due to
nested games.

Benkacem et al. [2] Two integer LPs and bar-
gaining game theory

Paid cost and streaming
quality

Yes No No Affordable

Yu et al. [44] Dual parallel computation CPU and bandwidth Yes No No Affordable

Mijumbi et al. [26] Tabular Q-learning Resource allocation, link
delay and packet loss

Yes No No Not mentioned

Mijumbi et al. [27] 3-layer neuron network Resource allocation status Yes No No Costly due to a slow con-
vergence to optimal.

Haeri and Trajkovic [18] MCTS CPU and bandwidth No No No Costly due to search pro-
cedure.

Yao et al. [43] Deep RL approach CPU and bandwidth Yes No Yes Affordable.

Yuan et al. [46] Q-learning CPU and bandwidth Yes No No Affordable.

Sciancalepore et al. [31] Q-learning CPU and bandwidth Yes Yes No Costly due to huge solu-
tion complexity.

Xiao et al. [41] Deep RL and policy gra-
dient training

Throughput and operation
cost

No Yes Yes Not mentioned.

Wang et al. [38] Deep RL CPU, memory and band-
width

No Yes Yes Computational overhead
increases in larger scale
networks.

Pham et al. [30] DDPG CPU and quality of ser-
vice

No No Yes Not mentioned.

Dolati et al. [11] Deep RL CPU and bandwidth Yes Yes Yes Not mentioned.

Wang et al. [39] temporal difference CPU and quality of ser-
vice

No No Yes Not mentioned.

TABLE II
MAJOR NOTATIONS TO DESCRIBE A VNE PROBLEM

Notation Description

Ns The full collection of network nodes in substrate network.
N ′s The subset of Ns .
Ls The full collection of network links in a substrate network.
L′s The subset of Ls

An The node attributes (e.g., CPU processing capability, memory space and node reliability) of substrate
nodes.

Al The link attributes (e.g., bandwidth, latency and packet loss rate) of substrate links.
Nv The full collection of network nodes in a virtual network request.
Lv The full collection of network links in a virtual network request.
Rn The resource request of each virtual node corresponding to An .
Rl The resource request of each virtual link corresponding to Al .
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Fig. 2. A typical scene of virtual network embedding problem

been widely used for measuring the performance of a VNE
algorithm, and thus they are the main objectives, in this study,
a VNE algorithm will try to optimize.

1) Acceptance Ratio: The VNR acceptance ratio of the
substrate network at time T can be defined as:

AC Ratio(T) =
∑T

t=0 NUM V NR S∑T
t=0 NUM V NR

(1)

where NUM V NR S and NUM V NR are the number of
successful VNR embeddings and the number of total VNR
embeddings, respectively. A successful VNR means it can
be embedded immediately without any violation of resource
constraints. If a VNR cannot be embedded when it arrives,
it will be discarded and will be considered as a failure. The
embedding algorithm manages to have a high acceptance ratio
to fulfill network requests as many as possible.

2) Long-term Average Revenue: In the perspective of InPs,
the substrate network devices gain revenue in proportion to the
scale of requests from SPs. The more resources SPs demand,
the more infrastructure resources can be loaned out, and the
more profit will be made. Hence, the resource requests of
upcoming VNRs are related to the revenue, and therefore we
denote the revenue of a successful VNR embedding by its
resource demands, which is shown as:

Rev(Gv) =
∑

nv ∈Nv

CPU(nv) +
∑
lv ∈Lv

BW(lv) (2)

where CPU(nv) and BW(lv) are the CPU and bandwidth
requests from each virtual node and link in the virtual network
Gv , respectively. The two attributes are normalized with the
maximum to make the addition valid. The long-time average
revenue at time T can be decided by:

Rev(T) =
∑T

t=0 Rev(Gt
v)

T
(3)

where Gt
v denotes the revenue of successful VNR embedding

arrived at time t. A high long-term average revenue is desirable

since it represents a high resource utility, leading to a better
commercial profit.

3) Running Time: There is a common trade-off between
performance and running time for every algorithm, and the
approximate VNE solutions are usually preferable over exact
ones. In practice, a VNE algorithm needs to stay online and
processes VNRs in a time-critical manner since the VNRs may
represent real-time network services. Thus, the time efficiency
of VNE algorithms need to be guaranteed.

IV. THE SYSTEM MODELLING

In this section, we discuss the whole modelling procedure
from model input to output. We firstly describe how to define
critical RL elements in a VNE problem. Then, we present
the procedure that the learning agent generates actions from
scratch, including feature extraction, policy generation and
training method, where novel technologies are applied. Finally,
we discuss the implementation details.

A. Definition of RL Environment

There are three main components in an RL framework: state,
action and reward. In what follows, we will illustrate each one
in detail.

1) State Representation: The state representation in an RL
framework defines the information an agent can acquire from
the environment and serves as the raw input for the upcoming
feature extraction phase. In a VNE problem, a state is the
real-time representation of network status, which contains the
features shown in Table III.

The first five features subtracted from the substrate network
are the vectors with the length that is consistent with the
number of substrate nodes, and the following three features
come from the VNR which are scalars. The eight attributes are
the most relevant and well-accepted ones for a VNE problem
while keeping the model as concise as possible. Note that
link features are not included in the state representation. Link
features are possibly useful in solving VNE problems, but
the number of links is usually far more than that of nodes
in an arbitrary network topology. For the simplicity of state
representation and the efficiency of computing, instead of
explicitly using link features in the state representation, we
introduce an implicit way to exploit link information in the
following stages in Section IV-B1.

2) Action Definition: An action is a valid embedding
process that allocates virtual network requests onto a subset
of substrate network components. However, the number of
subgraphs of a network topology grows exponentially as the
node and link sizes increase. If we consider every possible
subgraph as embedding actions, the action space will be
computationally large and inconsistent per VNR, which is
not desirable for the RL framework. Thus, we decompose
a VNR embedding process into a sequence of virtual node
embeddings.

At every single step, the learning agent focuses on exactly
one virtual node from the current VNR, and it generates
a certain substrate node to host the virtual node. If the
substrate node keeps enough spare resource for this virtual
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TABLE III
THE NETWORK FEATURES USED FOR REPRESENTING A STATE

State Representations Description

S CPU Max The maximum of the CPU resources over all SN nodes.
S BW Max The max bandwidth of each substrate node. We define the bandwidth of a node as the sum of all links’

bandwidth that directly link to this node.
S CPU Free The amount of the CPU resources that are currently free on every substrate node.
S BW Free The bandwidth resources that are yet to be allocated on all substrate nodes.

Current Embedding The (partial) embedding result of the current VNR. Each substrate node is set to 1 if it hosts a virtual
node in the current VNR and 0 otherwise. This feature works as a mask to prevent virtual nodes in the
same VNR from sharing one substrate node, as most previous works did.

V CPU Request The number of virtual CPUs the current virtual node needs to fulfill its requirement.
V BW Request The total bandwidth the current virtual node demands according to the current VNR.

Pending V Nodes The number of unallocated virtual nodes in the current VNR.

node, the adjacent virtual links between this virtual node and
other already-embedded virtual nodes will be automatically
processed following a hybrid search procedure: for the two
substrate nodes that host one end of a virtual link respectively,
the agent will firstly try the shortest substrate path; if failed,
the agent will then search in a set of edge disjoint paths that
connect the two substrate nodes. This link embedding proce-
dure is a typical trade-off mechanism between performance
and efficiency. Fig. 3 shows how the hybrid search works
when embedding virtual links between node A and node D
with the shortest path (A− B −C − D) and edge-disjoint path
set ((A − B − C − D), (A − F − E − D)).

B C

F E

A D

(a)

B C

F E

A DAAA

(b)

B C

F E

A DAAA

(c)

Fig. 3. An example illustration for the hybrid search. (a) is a substrate
network, (b) is a link embedding between A and D using the shortest path,
and (c) is another link embedding using a path which is edge-disjoint with
the shortest path if the shortest path is full.

Comparing with the shortest path finding method, this
search procedure explores more candidate paths and thus
increases the possibility of successful embeddings. In addition,
this procedure reduces computational requirements than the
full search (e.g., breadth-first search), leading to better time
efficiency. If the current virtual node is the first node of the
corresponding VNR, there is no link to be processed after this
node is embedded and the hybrid search will not be executed.

The action space of a VNE problem is then represented as
the set of substrate nodes. Once the substrate network topology
is set, the shape of state representation and action space is also
fixed. With this definition of action space, the complete two-
stage embedding approach is shown in Algorithm 1.

3) Reward Description: Instead of following an explicit
objective function (e.g., linear programming) or a predefined
label (e.g., supervised machine learning) to optimize the
behaviour of an algorithm, an RL learning agent improves its
performance by constantly receiving reward function from the
external environment. Unlike other methods mentioned above,
the reward function is not a definitive indicator of “correct”

Algorithm 1 Virtual Network Embedding Procedure
Input:

The VNR topology Gv;
The substrate network topology Gs;
The already embedded virtual node list l;
The substrate node list s that hosts nodes in l;
The currently processing virtual node n;
The selected action (i.e. substrate node) a.

Output:
The embedding result of action a.

1: if S CPU Free[a] < V CPU Request[n] then
2: return ACT ION F AILED;
3: end if
4: Embed virtual node n onto substrate node a;
5: for i = 0; i < length(l); i + + do
6: if (l[i], n) ∈ EdgeSet(Gv) then
7: Find a substrate path p in Gs that links s[i] and

a following given search type: shortest-path, full or
hybrid;

8: for all substrate links e in path p do
9: if BW Free(e) < BW Request((l[i], n)) then

10: Undo all previous embedding actions and re-
lease all resource secured by the current VNR;

11: return ACT ION F AILED;
12: end if
13: end for
14: Embed virtual link (l[i], n) onto substrate path p;
15: end if
16: end for
17: return ACT ION SUCCESSFUL;

actions, but only tells the agent how good the current action
is doing relatively. To maximize the estimation of discounted
accumulative rewards, the agent may give up the actions with
the best current reward to get a better long-term performance.
Typically, a successful action (e.g., all virtual network compo-
nents are embedded without any resource constraint violation)
is treated to be good and returns a positive reward to enforce
the probability that the current action is selected. Otherwise,
a failed action (e.g., the remaining resource cannot fulfill the
VNR requirement or the execution is running out of time)
should be prevented, thus it will receive a negative reward to
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let the agent search alternative decisions. The reward function
steers the optimizing direction of an VNE algorithm, which is
carefully designed in section IV-C1.

B. Learning Algorithm

The learning agent is responsible for generating appropriate
policies which are the probability distribution over actions
with the raw inputs defined in Section IV-A1. To achieve this,
the agent needs to use input features efficiently, go through
various states and actions sufficiently, and optimize the policy
iteratively. Since the number of states are infinite (e.g., the
resource-related features are continuous real numbers) which
are impossible to record, an approximator based on neural
network with a set of trainable parameters is applied to manage
the feature extraction and the policy generation using raw
state inputs. To train these parameters of the approximator, a
policy gradient training algorithm [37] is adopted to improve
the embedding policy. In what follows, we introduce the most
critical techniques used in our learning agent. The architecture
of our learning algorithm is shown in Fig. 4.
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Fig. 4. The learning algorithm used in the proposed RL agent.

1) Feature Extraction: Convolutional neural network
(CNN) extracts advanced features automatically and has been
widely used in the fields including image and text processing.
A critical contribution made by CNN is that it uses the kernels
with different sizes to manage the spatial features in different
input scales. However, the typical object a CNN can deal with
is Euclidean (i.e., all input elements are ordered neatly in rows
and columns, as shown in Fig. 5a), which is not applicable for
an arbitrary network topology depicted in Fig. 5b.

In VNE solutions, the spatial features of an (irregular) sub-
strate network topology are critical. To manage spatial features
more effectively while preventing our model from accepting
excessive input features such as explicit link features, we need
an alternative approach. For auto feature extraction in non-
Euclidean domains, based on spectral graph theory [8], which
mainly uses the Laplacian matrix and orthogonal factorization
to characterize the spatial features of a certain graph topology,
the convolution on a graph topology is proposed by [9] and
has been used efficiently on semi-supervised learning as Graph

(a) (b)

Fig. 5. Examples of Euclidean and non-Euclidean graph. (a) is an Euclidean
graph (an image in pixel squares) and (b) is non-Euclidean (the ARPANET
topology).

Convolutional Network (GCN) [20]. The graph convolution
defines the Fourier transformation in an n-dimensional space,
which shares the idea with the traditional (function) Fourier
transform: a real-value function can be decomposed into a set
of functions that are orthogonal to each other. Similarly, a
vector in an n-dimensional space can also be represented as a
set of orthogonal vectors (which is called the orthogonal basis
of this space). Fig. 6 shows this intuition.

(a)

=

(b)

Fig. 6. The similar intuition of Fourier Transform of normal functions and
spatial vectors. (a) shows the decomposition of a square wave into a set of
orthogonal functions, while (b) depicts the decomposition of a 3-dimensional
vector into orthogonal basis vectors.

Assume a graph G has n nodes, and the features from each
node are gathered together as a feature vector x ∈ Rn. To ac-
quire the graph-specific orthogonal basis of this n-dimensional
space, one approach is to factorize the (normalized) Laplacian
matrix L of graph G since L is semi-definite. The eigenvectors
of L can therefore form an orthogonal basis U of the n-
dimensional space, and the Fourier transformation of the
vector x, represented by x̂, on graph G can be computed as:

x̂ = UT x (4)

The inverse Fourier transform is subsequently defined as:

x = Ux̂ (5)

With the convolution theorem [4] where the Fourier transform
of a convolution of two signals is the pointwise product of their
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Fourier transforms, the convolution of x and a convolution
kernel y on graph G can be stated as:

(x ∗ y)G = U((UT y) � (UT x)) (6)

where � is the element-wise Hadamard product. By adjusting
parameters in y, the convolution is able to output various re-
sults. For a better locality and spatial feature extraction, in our
implementation we set the kernel filter y =

∑K
k=0 αkΛ

k , where
αk is trainable parameters of kernel filters, and Λ ∈ Rn×n is a
diagonal matrix with the eigenvalues of L . With this kernel,
the final output of GCN is:

youtput = σ(

K∑
k=0

αkLk x) (7)

where σ is the activation function of the neural network.
The order index K indicates the locality, which means the
recognization field of a network node can reach the neigh-
bouring nodes up to K hops under this kernel. For a detailed
interpretation, the reader can refer to Section 2 in [9].

We therefore use a single layer GCN with an order index
of three to manage the automatic feature extraction on the
SN topology. If the order index is too small, the center node
will be short of adjacent feature information since it can only
recognize few neighbors. If it is set too large, all nodes in
a graph will have an unwillingly similar representation since
nearly every node is recognized and shared as neighbors no
matter how far the distance is. Meanwhile, as Equation 7
describes, a GCN with a higher order will increase the com-
putational overhead greatly. The filter size (i.e., the number of
extracted features from raw state input through GCN) is set
to 60, and each feature generated by a filter is a vector with
the length of Size(Ns). The original features from a VNR are
passed through a full connection layer separated from GCN.
The extracted features from a substrate network and a VNR
are merged together and form a matrix with a shape of (60,
Size(Ns)) as the final extracted features.

2) Policy Generation: A policy is the probability distribu-
tion over candidate actions under a certain state π : π(st, at ),
which shows the probability to perform an action at in st . We
firstly transform the extracted features into a single column
vector and pass it through a full connection layer to make
the output size consistent with the size of substrate network
nodes. The parameter size of the full connection layer is (60*
Size(Ns), Size(Ns)). To interpret the output as a probability
distribution, we adopt the well-known softmax layer [3] after
the output of the full connection layer. The softmax function
turns an arbitrary real vector into a vector with a range of (0,1)
on each index, which also has a sum of 1 without changing the
relative order in the previous vector. The learning agent now is
capable of selecting actions using this probability distribution.

It is worth noting that all resource-related features, defined
in Section IV-A1 and used in the state representation, are
normalized into [0, 1] interval, with the Max(S CPU Max)
and Max(S BW Max) as two benchmarks. If the feature
representations are not normalized, the output probability
distribution will be prone to extreme inputs and become hard
for optimization.

3) Parallel Policy Gradient Training: After the environ-
ment executes the action sampled from the policies generated
by the learning agent, the corresponding reward signal will
be sent back to the agent, and a single process of experience
sampling is completed. To optimize the policy and train the
network parameters using the sampled experience, we select
Asynchronous Advantage Actor-Critic (A3C) algorithm [28],
an improved version of actor-critic based policy gradient
method [37] which makes two major improvements. First,
it uses advantage f unction instead of the mere state-action
value function which can reduce the variance of training ex-
perience. Second, it adopts a “master-worker” parallel training
scheme to improve the sampling efficiency. Two networks are
constructed in this algorithm: the actor network (with a set of
parameters θ), which generates embedding policy πθ , and the
critic network (with a set of parameters θv), which generates
the estimation of values in different states Vπθ (st ; θv) and helps
compute the advantage function. Typically, these two networks
share a similar structure except for the output layer.

The traditional policy gradient method uses the following
gradient of accumulative discounted expected rewards:

OθEπθ [
∞∑
t=0

γtrt ] = Eπθ [Oθ logπθ (s, a)Qπθ (s, a)] (8)

where Qπθ (s, a) is the state-action value function that estimates
the expected long-term return of action a derived from policy
πθ under state s. However, the variance of Qπθ (s, a) is usually
high, making the training process unstable. In addition, if a
certain state is in a good position, the Q value will stay high
regardless of actions picked under this state, which means
the difference between actions is overlooked. Therefore, the
advantage function, which represents the difference between
the expected reward if we deterministically choose action a
and the average state value, can be computed as:

Aπθ (s, a) = Qπθ (s, a) − Vπθ (s) (9)

where Vπθ (s) is the state value function that estimates the
accumulative return under state s. The advantage function
indicates how better is the current action a from the “average
action” derived from the corresponding policy under a certain
state s, and the variance while training can be reduced without
changing the bias (Vπθ (s) has nothing to do with the selected
actions). Meanwhile, the difference among actions under the
same state is more significant. In practice with a given expe-
rience (st, at, rt, st+1), the estimation of Qπθ (s, a) is computed
as rt + γVπ

θ (st+1) based on Bellman Equation [36]. Now
Aπθ (s, a) is subsequently estimated as rt + γVπ

θ (st+1) −Vπθ (s)
and replaces Qπθ (s, a) in Equation 8.

With the help of advantage function, the update of actor
network can follow the policy gradient training method below:

θ ← θ + α
∑
t

Oθ logπθ (st, at )Aπθ (st, at ) + βOθH(πθ (·|st ))

(10)
where α is the learning rate, and πθ (·|st ) is the policy over all
the actions under state st . The gradient of the parameter set
θ indicates the direction to adjust the network parameters that
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increase the probability πθ (st, at ), and the advantage function
value (along with the learning rate) decides how far this step
should be taken by the learning agent through the gradient
direction. As the learning agent gradually experiences more
training episodes, it reinforces the action with better empirical
reward under certain states. Meanwhile, H(·) is the entropy
of the policy at each time step. This entropy term is used
as the regularization to encourage exploration and prevent
the algorithm from trapping into local optima by pushing the
policy to a more uniform distribution. The decaying parameter
β is set to be large at the beginning, and is gradually shrinking
during the training phase. In our implementation, β is set to
0.5 at the start of training and gradually shrinks by 50% in
every 10000 training episodes.

The critic network can also learn a better evaluation by
following the standard Temporal-Difference (TD) method [36]:

θv ← θv + α
′
∑
t

Oθv (rt + γVπ
θ (st+1; θv) − Vπ

θ (st ; θv))
2 (11)

where Vπ
θ (·; θv) is the estimation of a value function under a

certain state, and α′ is the learning rate of the critic network.
The intuition of standard TD method is to use the estimated
value function of next step instead of the true value function
(since the agent takes one more step in the environment, it
generally moves one step near the true value function) and
minimizes the square loss between the two steps.

The training from episodic experiences faces two main
challenges. First, the experience taken from the environment
usually comes slow, and the learning agent has to wait for the
environment to perform actions before training steps. Second,
the {st, at } pairs in one trajectory (i.e., starts from scratch
to a terminal state — succeed or fail) are highly correlated,
degrading the robustness and efficiency of the training pro-
cess. To overcome these shortcomings, A3C uses the parallel
training to speed up the training process while enhancing its
robustness. We use 24 worker agents to individually collect
{st, at, rt, st+1} experiences from their own environments and
send them to one central agent which is responsible for training
and updating network parameters when a sample trajectory
is completed. The 24 network environments are independent
when performing the training of embedding actions (i.e.,
the actions in one environment will not affect the resource
utilizations in other different environments). In other words,
it is similar with creating 24 copies of the network to get
more embedding experiences while training the policy. In
case of the realistic network applications where multiple
substrate network deployments are costly, we can investigate
the behaviors of VNRs (i.e., the frequency of request arrivals,
the distribution of resource requests, etc.) of realistic network
users and “mock” them in multiple simulation networks. For
this case, the simulation experiences help train the policy
together with realistic experiences. The simulation experiences
only affect in training episode or when the policy needs
to be updated. The trained policy will then be used online.
These 24 worker agents also share one same copy of actor-
critic network parameters acquired from the central agent. The
central agent collects the various experiences as a minibatch

from the worker agents and train the central network. Once
this minibatch finishes training, the network parameters are
updated and passed to all the worker agents for the next
collection step. The parallel training procedure is shown in
Algorithm 2 and Algorithm 3.

Algorithm 2 Parallel Training Algorithm - Master
1: Initialize the actor network and critic network;
2: Initialize the number of workers NUM WORKE RS;
3: for i in NUM WORKE RS do
4: Create a worker agent w[i] with a same copy of

actor network and critic network;
5: end for
6: while TRUE do
7: for i in NUM WORKE RS do
8: Collect the experiences generated by worker[i];
9: end for

10: Adjust the parameters in both actor network and
critic network using previously collected experiences
under policy gradient training method;

11: for i in NUM WORKE RS do
12: Push the newest version of actor network and

critic network to w[i];
13: end for
14: end while

Algorithm 3 Parallel Training Algorithm - Worker
1: Initialize the actor network and critic network;
2: Initialize the independent environment for VNE;
3: while TRUE do
4: Receive the parameters of the actor network and

critic network from master;
5: Sample a trajectory from the environment using the

copied network;
6: Send the trajectory as {st, at, rt, st+1} experience tuples

to master;
7: end while

By simultaneously activating multiple experience collectors,
the waiting delay of learning agent for experience sampling
has largely shortened. Besides, the cental agent uses the
experiences from independent sources, and therefore breaks
the correlation among state,action pairs in one trajectory.

C. Implementation

1) Reward Shaping: Generally, a return positive reward is
returned for a successful embedding and a negative one returns
vice versa. However, successful actions themselves may also
vary as they may lead to many possible state representations,
and thus make the long term accumulative rewards different.
To make the difference between “slightly good” and “really
good” actions, we need to design the reward function more
precisely. This procedure is called reward shaping.

To achieve high acceptance ratio, we should encourage
successful embedding actions. For an action that satisfies the
virtual resource requirement (i.e., the chosen substrate node
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has enough resources to host the current processing virtual
node), we set an initial reward of 100. Alternatively, we
set a reward of -100 for an action that cannot fulfill the
resource requirement. Recall from Section IV-A2 that we have
decomposed a VNR embedding into a sequence of virtual node
embedding actions, hence we add a discount factor to this part
of reward function. The reward due to the acceptance result is
therefore:

ra =
{

100γa at is successful
−100γa otherwise (12)

where γa is the discount factor that starts from (1/Size(Nv))

and gradually increases to 1 when the last node of a VNR
is in processing, and Size(Nv) means the node size of a VN
topology. For instance, if a VNR has 5 virtual nodes, then
γa = 0.2 for the first node, γa = 0.4 for the second, and so
on. This is because latter nodes have less embedding options
and available resources than former nodes, thus they are more
important and deserve a larger weight.

In addition, the learning agent needs not only to make
successful, but also cost-efficient actions. A better embedding
policy will consume less substrate resources (especially sub-
strate link resources, by making virtual links lay on shorter
substrate paths) when processing the same VNR. We therefore
add another factor into the reward function:

rc =
δ(revenue)
δ(cost)

(13)

where δ(revenue) and δ(cost) are the newly-added revenue
and cost due to the current action compared with the last step,
respectively. Obviously the cost is always no less than the
revenue, so this factor has a range of (0,1]. Even an action
only brings minor revenue (e.g. the resource demands of the
given VNR are little), there is also a possibility to generate a
large reward if it effectively reduces the consuming substrate
network resources.

Load balancing is also a critical feature in virtualized net-
works. To balance workload among substrate network nodes,
we encourage the learning agent to pick substrate nodes with
more spare resources. Thus, another factor reflecting this point
is added to the reward function:

rs =
S CPU Remaining[a]

S CPU Max[a]
(14)

where a is the selected action representing the corresponding
substrate node.

If the trained policy is trapped into a sub-optimal and
becomes more likely to keep its current decision, it will lose
the chance to further improve itself due to lack of exploration.
To address this issue while training, we should avoid the
embedding policy that repeatedly generates the same actions
and encourage the policy to move onto the actions that have
not been picked up in a while. Therefore, we use eligibility
trace for every action i at time step t:

egb tracet [i] =
{
γe(egb tracet−1[i] + 1) i == at

γeegb tracet−1[i] otherwise
(15)

where γe is the decay factor that shrinks the eligibility trace a
little in each time step, which is set to 0.99 in our implementa-
tion. This approach guarantees that frequently-picked actions
will receive constant inspiration and keep a high value in a
while, and unpicked actions will gradually decay to 0. We use
the eligibility trace as a divider in the reward function, making
the infrequently-picked actions more preferable.

Finally, the reward function of the action at is given as
follows:

Reward[at ] =
rarcrs

egb trace[at ] + ε
(16)

where ε is a small positive number to avoid the denominator
being zero.

2) Global Training Settings: A summary of the training set-
tings is presented in Table IV. We use a fixed setting of param-
eters to randomly generate VNRs for training the algorithm.
We notice that the features S CPU Max and S BW Max
remain the same once the substrate network is fixed, and
we only use them to determine the action our learning agent
made during the training phase, so we can subtract these two
features to reduce the model complexity. The whole network
architecture is implemented using Tensorflow [12]. The server
used for training has a 32-core CPU and a memory capacity
of 128GB.

TABLE IV
THE PARAMETER SETTINGS IN THE TRAINING PHASE

Parameter Name Parameter Value

Shape of the raw inputs from substrate network (3,Size(Ns ))
Shape of the raw inputs from VNR (3,1)
The learning rate of actor network 0.00025
The learning rate of critic network 0.0025

The resource requests of virtual nodes* [15,30]
The resource requests of virtual links* [15,30]

The node size of each VNR* [2,10]
The lifetime of each VNR* [2000,3000]

* All uniformly distributed.

V. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we first describe our evaluation environment,
and then compare the proposed algorithm with the state-of-the-
art VNE algorithms under various circumstances to show the
effectiveness and robustness of our algorithm. For the sake
of clarity of illustration, we name the proposed algorithm as
“A3C + GCN” in the following performance evaluation.

A. Evaluation Settings

To facilitate the comparison and evaluation of multiple
algorithms under the same platform, a VNE simulator is
implemented. We generate a random substrate network topol-
ogy following the Waxman random graph [40] using the
parameters α = 0.5 and β = 0.2; this approach of topology
generation has been commonly used in previous works [45]
[6]. Following this approach, a substrate network with 100
nodes and about 500 links is generated, which can represent
a medium-sized Internet service provider (ISP). The CPU and
bandwidth of the substrate network and links are uniformly
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distributed between 50 and 100 units. Following the previous
research [23], the VNRs are generated following a Poisson
process. As many previous works did, the expected arriving
rate is 4 VNRs per 100 time units. In addition, each VNR has
an exponentially distributed lifetime with an average of 500,
and each VNR’s node size is uniformly distributed from 2 to
10 virtual nodes. The initial virtual node and link resource
requests in a VNR are uniformly distributed from 0 to 30.
Each pair of virtual nodes has 50% chance to form a link. The
testing phase for each group of evaluation lasts 50,000 time
units, so there are about 2,000 VNRs per evaluation. These
basic evaluation settings are fixed except for three particular
ones: the arrival rate of VNRs, the distribution of virtual nodes
and link resource requests in a VNR, and the distribution
of each VNR’s node size. In the following subsections, we
separately change these three settings and form three different
test groups to evaluate various VNE scenarios.

In the testing phase, the learning agent only uses the actor
network to generate embedding policy and selects the action
with the highest probability from the set of substrate nodes
possessing enough node resources to host the current virtual
node. The agent we use for testing has been trained for nearly
72 hours and been experienced 70,000 episodes for training,
with approximately 1,680,000 different VNRs.

B. Comparable Algorithms and Evaluation Metrics

We select five algorithms including R-ViNE [7], D-ViNE
[7], GRC [16], MCVNE [18] and NodeRank [6], which
can cover most perspectives of the existing algorithms. We
use the public VNE simulator VNE-Sim [17] to collect the
performance of these algorithms. The description of each
algorithm is shown in Table V.

We use the three optimization objectives introduced in
Section III-D to compare among embedding algorithms under
different testing situations. Note that the resource metrics for
computing average revenues are normalized into (0,1] interval.

C. Arrival Rate Tests

For the first group of tests, we are interested in the ef-
fect of arrival rates of VNRs. The virtualized network faces
frequently-arriving VNRs at busy time and slowly-arriving
VNRs at non-busy time. We therefore change the arrival rate
of VNRs to mimic this changing situation, from an average of
4 arrivals per 100 time units to 20 arrivals with an increasing
step size by 2.

Fig. 7 shows the acceptance ratio and the long-term average
revenue of the total six algorithms, where our proposed
algorithm leads NodeRank, MCVNE, GRC, D-ViNE and R-
ViNE with a gap of 10.0%, 12.5%, 22.7%, 26.6% and 23.2%
on acceptance ratio, and 15.6%, 15.7%, 27.9%, 30.7% and
28.1% on average revenue. The results also show that when
the arrivals of VNRs are low, all the algorithms perform
quite well. However, as the arrival rate keeps increasing, our
algorithm (i.e., A3C+GCN) and the NodeRank algorithm keep
a relatively better performance, where A3C+GCN outperforms
NodeRank, and the performance of the other algorithms drops
quickly.

The average revenue rises at the first several tests and
then stays steady. This is because at the first several tests,
most VNRs are successfully satisfied with all algorithms, and
the increase in VNR arrival rate brings the expansion on
average revenue. After those tests, the drop of acceptance
ratio achieves a balance with the increase of revenue due
to the more densely-arrived VNRs. Different from the other
four algorithms, the drop trend of A3C+GCN and NodeRank
algorithms on acceptance ratio is not that severe, and thus the
balance constantly stays on the side of revenue increment.

Though our algorithm is slightly worse than MCVNE algo-
rithm at the beginning in acceptance ratio, it outperforms the
other algorithms in long-term average revenue. This implies
that our algorithm can perform better embedding quality and
make more efficient use of substrate resources.

D. Resource Request Tests

For the second group of tests, we observe the performance
of these six algorithms under various resource request modes.
Different network services have different modes of resource
requirements (e.g., computation-intensive and communication-
intensive tasks demand more node resource and link resources,
respectively). To simulate this situation, we change the node
and link resource request distribution from a [0,30] uniform
distribution to [0,100]. In each step, we rise the upper bound
by 10.

From the results shown in Fig. 8, we can compute the
advantage of our algorithm over NodeRank, MCVNE, GRC,
D-ViNE and R-ViNE, which are 29.4%, 1.8%, 34.1%, 23.6%
and 9.8% improvement on acceptanve ratio, and bring 29.1%,
2.8%, 36.5%, 22.5% and 12.7% more average revenue. We
also observe that all the algorithms suffer a huge loss on
acceptance ratio when the virtual resource requests keep
growing. As the resource request increases, the substrate
network components gradually become much harder to host
virtual network components since they are short of capacity
for allocation, and the former embedding policies which fits
VNRs with lower resource requests may not perform well.
Thus, the algorithms need to find alternative solutions where
candidate actions are limited due to the resource constraints,
following by inevitably more embedding failures.

In addition, the average revenue appears an “ascending-
descending” trend with the turning point at an upperbound
of 50 or 60 for most algorithms. Although the acceptance
ratio is decreasing, all the algorithms perform a relatively high
acceptance level on the first 4 or 5 tests. As the resource
requests increase test by test, the average revenue keeps rising.
But after then, the algorithms accelerate to fall down on
acceptance ratio, and the potential revenue increase brought
by the growth of resource requests fails to offset this effect,
bringing the total average revenue falls down.

Back to the comparison, we discover that our algorithm
again outperforms the other algorithms in a wide range of
different resource request distributions. It is worth noting that
when training the learning agent, we only use one resource
request distribution which is shown in Table IV. This means
our algorithm shows good robustness over different request
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TABLE V
THE EXISTING ALGORITHMS FOR COMPARISON

VNE Algorithm Description

D-ViNE [7] Use a deterministic rounding-based approach to attain a linear programming relaxation of the MIP that
corresponds to the VNE problem, aiming to minimize the cost of VNRs.

R-ViNE [7] Same as D-ViNE, except for its rounding approach which is randomly decided.

NodeRank [6] A node-ranking based algorithm that inspires from the intuition of Google’s PageRank algorithm.

GRC [16] A node-Ranking based algorithm that manages global resource capacity.

MCVNE [18] A reinforcement learning-based algorithm that uses Monte-Carlo MCTS to search the action space.
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Fig. 7. The testing results of different VNR arrival rates: (a) represents the acceptance ratio and (b) depicts the average revenue.
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Fig. 8. The testing results of various virtual resource requests: (a) represents the acceptance ratio and (b) depicts the average revenue.

situations. The performance of MCVNE is pretty close with
our algorithm in this test group.

E. Node Size Expansion Tests
For the third group of tests, we focus on the effect of VNR

sizes. Typically, group or enterprise users adopt larger network
services, and individual users utilize services with less virtual
nodes. Hence, to simulate various VNR sizes, we increase the
number of virtual nodes in a VNR from a uniform distribution
of [2,10] to [2,32], rising the upper bound by 2 in each step.

From the results shown in Fig. 9, our algorithm outperforms
NodeRank, MCVNE and GRC with an average of 36.4%,

22.0% and 39.6% on acceptance ratio, and 64.2%, 36.8%
and 70.6% on average revenue, respectively. It is obvious that
as the size of each VNR increases, the acceptance ratio of
each algorithm drops in some degree. This is because each
VNR must be successfully embedded as a whole; a bigger
VNR means more chances to fail in intermediate steps of
embedding. In addition, more nodes in a single VNR limit
the candidate action space since two virtual nodes in the same
VNR cannot share one particular substrate node, which is
mentioned in Section IV-A1.

The average revenue of NodeRank and GRC stays at a
relatively low level, comparing with the other two algorithms.
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Fig. 9. The results by changing the distribution of virtual node number in a VNR: (a) represents the acceptance ratio and (b) depicts the average revenue.

TABLE VI
THE AVERAGE RUNNING TIME OF A SUCCESSFUL EMBEDDING IN SECONDS

Arrival Rate Tests Resource Request Tests Node Size Expansion Tests

A3C+GCN 0.219 0.227 0.476

NodeRank 0.103 0.125 0.388

GRC 0.086 0.079 0.135

MCVNE 1.815 1.893 9.649

D-ViNE 23.778 21.488 -*

R-ViNE 22.181 21.925 -*

* Runs in excess of computing resource and unable to get a result.

This is potentially because that the acceptance ratio of NodeR-
ank and GRC drops quickly, reflecting their shortage when
processing VNRs with complex topologies. Our algorithm
reaches the highest performance again. Recall from Table I
that we only use a single distribution of VNR node size in
the training of our model, which reinforces the conclusion
that our algorithm is robust against different changes of VNR
topologies.

An interesting fact is that, unlike previous test results where
the advantages on acceptance ratio and average revenue are
quite similar, the advantage of our algorithm on average
revenue in this test group is much more obvious than that of
acceptance ratio. Though the computation of average revenue
over different works may vary, it follows the same procedure
in one particular paper, which makes the fact of comparison
more hard to explain. This is potentially because that VNRs
with fewer virtual nodes are easier to be embedded, and all
algorithms can perform well on them. But when VNRs are
with more nodes (and thus more links) which can provide
much more potential revenues, our algorithm shows a better
policy to accept them compared with the other algorithms,
leading to a larger revenue. Therefore, the boost of average
revenue becomes more significant than that of acceptance
ratio.

Note that this group of tests does not show the results of D-
ViNE and R-ViNE algorithms. We will discuss this in Section
V-F.

F. Average Running Time Statistics

The average running time describes the average time cost
that a VNE algorithm processes a complete VNR. The statis-
tics are shown in Table VI. This table indicates that our
algorithm, NodeRank and GRC run relatively faster, while
MCVNE, D-ViNE and R-ViNE take much longer time on
solving a VNE problem. The short running time of NodeRank
and GRC may possibly be because that these two algorithms
do not contain any space for modification following a static
greedy mechanism, which indicates that the embedding solu-
tion is fixed once the VNR and the SN topology are revealed
and no additional computation is required. However, this is
not desirable for achieving an efficiency-performance balance.

Changing the resource request of a VNR does not nec-
essarily burden the solving process, but adding more nodes
into a VNR definitely increases the computation complexity.
When the node size of a VNR increases (e.g., in the node
size expansion tests), the overall processing time of a single
VNR also rises since the steps for node embedding increases
(for the two-stage algorithms) or the constraints become more
complicated (for the MIP-based algorithms). Table VI does
not show the performances of D-ViNE and R-ViNE in node
size expansion tests since they cannot provide any results when
processing larger VNRs. Meanwhile, MCVNE receives a huge
slow down compared to the other test groups in the node size
expansion test.

Despite of not having the optimal running time, our algo-
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rithm still have an acceptable time efficiency while achieving
the best embedding performance.

G. Validation Tests

In this section, we evaluate how the improvement of our
model from existing RL-based works can enhance the per-
formance of VNE algorithms. We implement comparative
algorithms to train their own VNE models individually. The
comparative algorithms are shown in Table VII. These algo-
rithms along with our proposed algorithm use the same copy of
substrate networks and receive the identical VNRs for training.

1) Training Efficiency and Convergence: We first observe
their differences during the training phase. We construct a
set of VNRs for validation, with basic settings introduced in
Section V-A, and show the algorithm performance on this set
in every training episode (i.e., every 1000 VNRs in training)
to evaluate their training efficiencies. The results are shown in
Fig. 10(a).

The results show that all the algorithms improve their
performance during training, although multiple thrashings take
place. The thrashings on the validation set are mainly caused
by the change of model policies, which seek for exploration
during the training process. TR and NOEGB ascend faster
at the beginning, but our algorithm comes from the behind
and shows the best training performance in the latter stage.
A3C+GCN, TR and TAC finally converges to a relatively simi-
lar good policy under the judgement of the validation set, while
CNN is poorly performed. All the three “good” algorithms use
GCN as feature extractor, which enforces the assertion that
GCN is more applicable than traditional CNN in irregular
graph topologies. In addition, though with a slow start, our
algorithm quickest converges to a good policy, and the parallel
training mechanism which allows our agent adequately meet
various training samples is most likely to behave. In this group
of test, our algorithm receives the training samples nearly four
times more than the single-processed version in the same time.

2) Validation on Resource Request Tests: In the second
phase, we evaluate the acceptance ratio of the comparative
algorithms by the testing cases in Section V-D. The results are
depicted in Fig. 10(a). It has shown that our original algorithm
outperforms any other comparative versions in acceptance
ratio when facing various amount of resource requests with
an average advantage of 4.5%, 3.4%, 16.5% and 8.4% to
TR, TAC, CNN and NOEGB respectively. The testing results
have proved that the utilization of A3C training algorithm, the
feature extractor based on GCN, and the new design of reward
functions all play a role in boosting the VNE performance. In
particular, the performance of CNN remains the last position,
which shows that the use of GCN instead of traditional CNN
for feature extraction is a critical part of our algorithm.

H. Feasibility Study for the Model Under Additional Param-
eters

In this section, we conduct the experiments considering
additional substrate network topology, parameter and evalu-
ation metrics. The experimental results show the potential of

the proposed model to be applied in more complicated and
realistic network environments.

1) Additional Network Topology and Parameter: CSTNET
is a real network operator in China, with its network topology
connecting the institutes of Chinese Academy of Sciences.
The topology is depicted in Fig. 11(a). The red edges are
100Gb links, green ones have 10Gb bandwidth, orange links
are 2.5Gb and the black edges are 1Gb. The weights shown
on some edges are the average transmission latency in mil-
liseconds, while the edges without a weight value have the
default latency of 1 millisecond. We mock some random point-
to-point data transfer tasks; the source and target pairs are
randomly selected, the arrival rate and transfer time are the
same as the ones mentioned in Section V-A, and the data
transfer rate is uniformly distributed from 500Mbps to 3Gbps.
In addition, we add the average latency of each node (with
a similar manner as the definition of node bandwidth in the
second row of Table III) to our model and observe the average
transform latency between A3C+GCN and Noderank. The
results depicted in Fig. 11(b) show that our model obtains less
latency than the Noderank algorithm, which demonstrates the
feasibility of expanding our model with more relevant network
attributes.

2) Additional Metrics: In this section, we evaluate two
additional parameters, node resource utilization and link re-
source utilization. Their definitions are straightforward, i.e.,
the amount of node/link substrate resources which are used by
VNRs divided by the total amount of resources. We use the
test settings in Section V-C and investigate the node and link
utilizations among our approach and the five algorithms intro-
duced in Section V. The results shown in Fig. 12 demonstrate
that our algorithm reaches the best in these two parameters. In
addition, the trend is analogous with Fig. 9(b), which means
the resource utilization is highly related with revenue.

VI. CONCLUSION AND FUTURE WORK

In this paper, to solve the automic virtual network em-
bedding problem, we have adopted the state-of-the-art deep
reinforcement learning techniques. To speed up the training
procedure and generate the training experience more effi-
ciently, we have used A3C algorithm to train the policy
generation algorithm. Inside our learning agent, to extract
spatial features from raw state inputs more efficiently, we have
designed a single-layer, 3-order GCN instead of traditional
CNN. Meanwhile, we have defined the new reward function
using multiple objectives to guide the learning agent into
desirable behaviours. Extensive simulation results have shown
that our algorithm outperforms the previous typical and state-
of-the-art VNE algorithms by 1.8% to 39.6% (with an average
of 22.4%) on acceptance ratio and by 2.8% to 70.6% (with an
average of 30.2%) on average revenue with a fairly acceptable
running time. Moreover, the results have also demonstrated
that the proposed solution possesses good robustness, owing to
different data distributions used in training and testing phases.

In the future, we are planning to train our agent on a larger
SN topology (containing thousands of substrate nodes) and
larger VNRs (with hundreds of virtual nodes). We also intend



16 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XX XX

0 10000 20000 30000 40000 50000
Episodes of training

0.2

0.4

0.6

0.8

1.0
Ac

pt
 ra

tio
 o
n 
va

lid
at
io
n 
se

t
A3C+GCN
TR
TAC
CNN
NOEGB

(a)

30 40 50 60 70 80 90 100
The upper bound of resource requests

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
ce
pt
an
ce
 ra

tio

A3C+GCN
TR
TAC
CNN
NOEGB

(b)

Fig. 10. The results of validation tests: (a) represents the convergence trend while training and (b) depicts the acceptance ratio with varying resource requests
during the testing phase.

TABLE VII
THE COMPARATIVE ALGORITHMS FOR VALIDATION

VNE Algorithm Description

TR Uses a traditional reward function (the subtraction of VNE cost and reward which is used in [18]) to
manage the reward instead of the reward function discussed in Section IV-C1.

TAC The single-process version of A3C algorithm, which reduces the number of work agents to 1.

CNN Uses traditional node features and CNN architecture proposed by [43] to extract features and generate
policies.

NOEGB Uses reward function in Section IV-C1, except for the eligibility trace values, they are always set to 1.
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Fig. 11. The study of new topology and parameters, where (a) is the CSTNET topology and (b) is the latency test results under this topology.

to extend our model definition and training algorithms to sup-
port the following features: 1) the VNRs change dynamically
even they have already been embedded; 2) substrate nodes
and links may fail during embedding; 3) one virtual node
can be embedded over multiple substrate nodes. In addition,
we are preparing to perform tests on a real testbed based on
Openstack. Additionally, the link requests can be replaced by
a traffic matrix over pairwise virtual nodes, which also need
a new feature extraction mechanism.
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