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Key Points: 

 Natural layer-parallel fractures in the Posidonienschiefer of Germany were driven open by 

fluid overpressures related to hydrocarbon maturation. 

 Although these fractures lie at low angle to bedding, they propagated by steps that lie along 

bedding planes. 

 Compared to fracture propagation via creation of two parallel fracture walls, this type of 

fracturing generates more surface area, and so is more stable. 

 

 

Abstract 

 

Cores recovered from the Jurassic (Toarcian) Posidonienschiefer (Posidonia Shale) in the 

Lower Saxony Basin, Germany, contain calcite filled fractures (veins) at low angle to 

bedding. The veins preferentially form where the shale is both organic rich and thermally 

mature, supporting previous interpretations that the veins formed as hydraulic fractures in 

response to volumetric expansion of organic material during catagenesis. Despite the 

presence of hydrocarbons during fracturing, the calcite fill is fibrous and so the veins appear 

to have contained a mineral-saturated aqueous solution as they formed. The veins also 

contain myriad host-rock inclusions having sub-millimetric spacing. These inclusions are 

strands of host rock that were entrained as the veins grew by separating the host rock along 

bedding planes, rather than cutting across planes. The veins therefore produce significantly 

more surface area—by a factor of roughly five, for the size of veins observed—compared to 

an inclusion-free fracture of the same size. Analysis of vein geometry indicates that, with 

propagation, fracture surface area increases with fracture length raised to a power between 1 

and 2, assuming linear aperture-length scaling. As such, this type of fracture efficiently 

dissipates elastic strain energy as it lengthens, stabilizing propagation and precluding 

dynamic crack growth. The apparent separation of the host rock along bedding planes 
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suggests that the mechanical weakness of bedding planes is the cause of this inherently stable 

style of propagation. 

 

 

Plain Language Summary 

 

Natural fractures in rock give clues to how artificial fractures are likely to form and grow. 

This process is particularly important in shales, which have low permeability and tend to split 

along bedding planes. Shales therefore are often viewed as potential targets for top-seals, 

underneath which hydrocarbons may naturally accumulate, and CO2 or wastewater may be 

stored. The fracturability of shales limits their effectiveness as top seals. In this paper we 

document natural fractures that propagated in shales and were affected by the mechanical 

weakness of shale bedding planes. We present a theoretical argument that the tendency of 

fractures to follow bedding planes in shales stabilizes fracture propagation. We conclude that 

mechanical anisotropy makes shales better top seals than is generally assumed based on rock 

fracture strength alone.  

 

 

1 Introduction 

 

Hydraulic fracturing in shale is important for the sealing capacity of shale layers during 

natural (Petrie et al., 2014; Foschi et al., 2018) and artificial (Elkhoury et al., 2015) fluid-

expulsion events. The mechanical anisotropy of shale is evident from its fissility in hand 

samples, from abundant examples of layer-parallel natural fractures hosted in shales 

worldwide (Cobbold et al., 2013; Gale et al., 2014; Hooker et al., 2019), and from laboratory 
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experiments indicating that shale has a lower surface energy along bedding planes than across 

them (Chandler et al., 2016; Luo et al., 2018). This anisotropy could therefore guide fracture 

propagation into a layer-parallel orientation, improving the effective sealing capacity of 

shales. This process may be most pronounced for fluid-driven fractures, where high fluid 

pressures produce low effective stresses and theoretically low differential stresses, due to 

poroelastic stress coupling (Engelder & Fischer, 1994). Therefore, if imposed differential 

stresses, for example from tectonic loads, are small, then the relative importance of rock 

anisotropy is greater in determining the direction and extent of fracture propagation. 

 

However, in most cases it is not clear what the past loading conditions were that led to 

fracturing (Laubach et al., 2019). Subsurface fracturing is theoretically driven by decreases in 

effective compression (e.g., Gudmundsson, 2011). In shales, such stress changes may be 

related to tectonic strains (Pireh et al., 2015; Ghosh et al., 2018), fluid overpressures (Zhang 

et al., 2016; Meng et al., 2017), diagenetic reactions (Hooker et al., 2017a), exhumation 

(Engelder & Gross, 2018), or thermal stresses (English, 2012). Consequently, there is very 

little constraint on the relative importance of mechanical anisotropy, high fluid pressures, or 

high horizontal loads for the growth of layer-parallel fractures. Nor is it easy to assess how 

mechanical anisotropy affects the dynamics of crack propagation, because of poor constraints 

on how fracture opening and propagation affect the effective stresses in the vicinity of 

fractures, through their effects on fluid pressure (Olson, 2003; McDermott et al., 2013; 

Mohammadnejad & Khoei, 2013). 

 

The purpose of this paper is to examine the effects of shale anisotropy on natural hydraulic 

fractures. We take advantage of the circumstances regarding the formation of a particular set 

of fractures intersected by cores through the Lower Jurassic (Toarcian) Posidonienschiefer, in 
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the Lower Saxony Basin (LSB), Germany. New observations support a previous study 

(Jochum et al., 1995) suggesting that the fractures formed in response to fluid overpressures 

that arose from the maturation of organic matter. It is commonly interpreted that hydraulic 

fracturing in organic-rich shales forms veins and unmineralized mode 1 fractures as a direct 

result of volume change reactions during catagenesis, which have the effect of increasing 

local fluid pressures (e.g., Mandl & Harkness, 1987; Lash & Engelder, 2005). The four 

studied cores, from across the Posidonienschiefer in the LSB, are ideally located to test this 

hypothesis, because they represent a gradation in thermal maturity of the organic matter, from 

immature to highly mature, with vitrinite reflectance (VR) values from 0.5 to >3.   

 

Furthermore, the fibrous mineral fill of the studied veins preserves information about opening 

kinematics, allowing us to interpret how the veins grew. The present veins dip obliquely with 

respect to bedding, but fibrous calcite cement deposits show that the veins propagated in en 

échelon steps, each of which split the rock along bedding planes. Therefore these natural 

hydraulic fractures illustrate the stabilizing effect of bedding-plane weakness on hydraulic 

fracture propagation. 

 

 

2 Geologic Setting 

 

The LSB (Figure 1a) is part of the Central European Basin System, which began as a foreland 

basin to the Variscan orogeny (Betz et al., 1987). The breakup of Pangea in the Late Triassic 

and Early Jurassic brought rifting and increased accommodation in the LSB (Kockel et al., 

1994), primarily via extension along WNW striking normal faults (Betz et al., 1987). The 

Posidonienschiefer was deposited, at least in part, during the Toarcian Oceanic Anoxic Event 
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(T-OAE), a period of widespread anoxic–euxinic conditions in marginal marine 

environments across both hemispheres (Al-Suwaidi et al., 2016; Dickson et al., 2017; Them 

II et al., 2017), particularly in the northwest continental European Seaway, including the LSB 

(Jenkyns, 1988, 2010). High organic matter sequestration and associated high sedimentary 

total organic carbon (TOC) values formed in geo- and hydrographically restricted basins, 

under anoxic–euxinic water column conditions (Jenkyns, 1988).  

 

During the Late Jurassic and Early Cretaceous, relatively rapid subsidence in the LSB 

resulted in the preservation of a thick, lacustrine-marine succession (Bruns et al., 2013). The 

Alpine orogeny in the Late Cretaceous reactivated pre-existing normal faults in a reverse 

sense, producing inversion structures, such that exhumation was widespread and to greatest 

extent within grabens (Bruns et al., 2013).  

 

The localities of the cores used in this study lie within 200 km west of Hanover, Germany 

(Figure 1). The Posidonienschiefer in the studied cores lies at present-day depths between 

1200 and 3500 m (Table 1). Maximum (pre-inversion) burial depths were estimated from 

basin modeling by Bruns et al. (2013) and are reported in Table 1. Regional seismic data 

(Baldschun et al., 1996) imaged numerous faults, including major graben-bounding faults 

(Figure 1b) that were reactivated during basin inversion.  

 

The Lower Toarcian Posidonienschiefer in the LSB is informally referred to as the Lias 

Epsilon (e.g., Küspert, 1982), and is under- and overlain by the Lias Delta (Pliensbachian) 

and Lias Zeta (Upper Toarcian or Aalenian), respectively (Littke et al., 1991). The Lias 

Epsilon in the LSB is identified by its elevated TOC and calcite concentrations, such that its 

exact chronostratigraphic position may vary locally.  
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3 Methods 

 

Fractures were identified in core as any planar discontinuities containing minerals, 

slickensides, or organic matter as evidence of formation in the subsurface. Cores tend to 

break apart along bedding planes, and there are also occasional breaks at high angle to 

bedding, often with irregular (non-planar) attitudes. Breaks of any orientation that lack 

minerals or slickensides as evidence of formation in the subsurface are attributed to coring or 

handling, and ignored in this study. Fractures filled or mostly filled by cement are termed 

veins. Fracture size and position were measured from core photographs, with calibration from 

physical core observation using a hand lens. For opening-mode fractures, which lack 

evidence of significant shear displacement, kinematic aperture was recorded in the sense of 

Marrett et al. (1999) as the total distance between separated fracture walls, regardless of 

whether the intervening space contains minerals or porosity.  

 

This study focuses on calcite-filled veins, whose fibrous fill (see below) preserves mm-scale 

opening displacements. For such veins we therefore use the width of calcite cement to reflect 

the fracture kinematic aperture. This approach may underestimate the true original opening 

distance of veins if there were any collapse, pressure solution, or other processes that shrunk 

the veins after their formation. The approach may overestimate the true opening width if 

expansion during natural exhumation or coring and sampling occurred. However, the core- 

and petrographic-scale evidence presented below shows mostly intact veins without 

significant crystal or wall-rock deformation, except that due to the vein opening itself. 

Therefore, we estimate the error of our size measurements to be ±0.5 mm, based on our 

image pixel size. Fracture length was measured where two opposite fracture tips were 

preserved in core. Only small shear offsets were noted along fractures, as described below.  
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Cores were sampled for petrographic observation and geochemical analysis. Petrographic 

samples were cut into thin sections or polished core slabs. Samples were imaged using an FEI 

Quanta 650 scanning electron microscope at the Department of Earth Sciences, University of 

Oxford, using a 20 kV beam and 10 mm working distance. Crystallographic axes were 

mapped using an electron backscatter detector attached to the SEM. Total organic carbon 

(TOC) was quantified using a Rock Eval VI pyrolysis instrument, also at the Department of 

Earth Sciences, University of Oxford, following the methods in Behar et al. (2001). 

 

 

4 Results 

 

4.1 Lithology 

 

Cores 1–3 preserve approximately 50 m of gray-brown to black mudrock with intercalated, 

commonly nodular, limestones (Figure 2). The bottom 2–5 m of this interval in each core 

contains unfractured, homogeneous mudrock; above this interval limestones alternate with 

shale. The limestones have thicknesses of several cm to 1 – 2 dm, commonly with gradational 

boundaries and nodular (ellipsoidal) to tabular morphologies. Here, the term shale denotes 

mudrock having a distinct bedding-parallel fabric of varying clay, calcite and organic matter 

composition. The cores tend to break along the sedimentary fabric, and abundant calcite veins 

lie at low angle to the shale bedding orientation (Figure 3a). 
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The lowest preserved limestone layers in the studied intervals of each core are coincident 

with the onset of TOC-enrichment (Figure 2) at the base of the Posidonienschiefer. Elevated 

TOC values are generally below 2% in the Lias Delta (below the Posidonienschiefer) and 

commonly increase to 10–15% in the Lias Epsilon. Within the high-TOC interval, the organic 

carbon content is generally lower in the limestone intervals than in the shale intervals. 

Moving upsection, limestones become sparser and are progressively more laminated and less 

nodular over several meters. Here laminae denotes mm-scale layers that are compositionally 

distinct, primarily by their carbonate mineral content, such that limestone and shale laminae 

commonly alternate to form cm- to dm-scale composite sequences (Figure 3c). Calcareous 

laminae and TOC both diminish upward, and the change is generally gradual (Figure 2). Core 

4 preserves only the section from the top of the Posidonienschiefer down to the laminated 

interval. 

 

The major sedimentary mineral constituents of the shale layers (Figure 3b) are clay, 

dominantly illite with locally abundant kaolinite (30–60% total), quartz grains and cement 

(10–20%), calcite cement (5–20%), calcitic microfossils, dominantly coccoliths (up to 20%), 

dolomite rhombohedra (up to 20%), pyrite, which is generally framboidal but may be pore-

filling or -expanding (up to 20%), and apatite (up to 5%). TOC ranges from <1 to 18% 

(Figure 2). Laminated and nodular limestone layers contain greater abundances of calcite, 

both cements and fossils, relative to shale layers, generally at the expense of clay. The top of 

the organic-rich interval is sharp in Core 1, and more gradational in Cores 2 and 3, but within 

dark mudrock and not marked by any obvious lithological change in any core. Within the 

organic-rich section in the latter two cores, carbonate content is reflected in core color, with 

paler intervals richer in carbonate and poorer in organic matter and clay. 
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Shale layers within the high-TOC intervals in Cores 2 and 3 contain abundant layer-parallel 

calcite veins (Table 1). We have no TOC measurements from Core 4, but that core also has 

abundant veins in equivalent strata, using carbonate beds as correlation markers. Layer-

parallel calcite veins are absent in the limestone and calcareous shale layers, and in the low-

TOC mudstones of the Lias Delta, underlying the Posidonienschiefer. Shale layers containing 

layer-parallel veins are not compositionally laminated; however, the long axes of grains in 

these layers are strongly aligned in a horizontal attitude (Figure 3b, 4a).  

 

 

4.2 Calcite veins 

 

Layer-parallel vein morphologies vary by the angle of the face on which the vein is slabbed 

(observed). Because the cores are not oriented, the true orientation of any such face is 

unconstrained. However, individual veins observed on orthogonal cut faces commonly show 

a characteristic host-rock inclusion pattern on at least one such face. This pattern is a 

sigmoidal to parallelogram-shaped array of sub-millimetric vein segments, here termed 

veinlets (Figure 4a–d). The veinlets are thickest, vertically, near the center of the macroscopic 

vein and thinner toward the tips. Veinlets have close to constant horizontal thickness 

throughout the vein, and are separated by host-rock inclusions of near-constant, sub-

millimetric thickness, along each inclusion and across the vein. 

 

Vein walls generally make an angle of 10–20° from bedding. Away from the veins, the host-

rock grains lie parallel to bedding. Where host-rock is included within the veins, the grains lie 

parallel to the inclusion (Figure 5a,b). Core faces cut vertically but parallel to veinlets show 

host-rock inclusions in vertical, U-shaped, and V-shaped arrays (Figure 4d). 
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Veins are filled by fibrous calcite, with trace pyrite crystals. In some instances, vein-like 

cements are entirely made up of pyrite (Figure 4c–f). Calcite crystals are long compared to 

their width and emanate from a median line (Bons et al., 2012) near the center of veins. 

Median lines appear discrete at the core-sample scale (Figure 4c, 4d), but are revealed to 

consist of myriad blocky crystals with host-rock inclusions intervening in various orientations 

(Figure 5c). Median lines lie oblique to both the vein walls and to bedding. Median lines 

appear to intersect or merge with either vein wall at a point inward of either tip (Figure 4c, d). 

Within each veinlet, the median line is roughly equidistant from either wall only near the vein 

center. Toward the upper vein tip, the median line is offset toward the bottom vein wall 

(Figure 5a); toward the lower tip, the median line is offset toward the top vein wall. 

 

The longest dimension of the fibers is roughly perpendicular to the median line within each 

veinlet, and thus at an oblique angle to bedding. Fibers are rooted at the median lines within 

each veinlet (Figure 5). Away from the median lines, crystals become coarser and more 

equant, particularly toward the narrow ends of the sigmoidal veinlets. Electron backscatter 

diffraction mapping shows no crystallographic preferred orientation, either among crystals 

within the median line or among the fibers (Figure 5c).  

 

Vein kinematic aperture ranges from ~0.1 to 13 mm (average 2.7 mm, standard deviation 1.8 

mm). Veins do not appear to be associated with a significant microscopic-fracture population; 

no calcite veins were observed to be significantly thinner than the typical thickness of median 

lines, which is on the order of 0.1 mm (Figure 5b). The maximum tip-to-tip length we 

observed in core is 72 mm, owing to the 70 mm core width. The maximum aperture observed 

among small-length veins fully contained within core samples is 4 mm (Figure 6a). Among 
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these small veins there is a significant, positive correlation between kinematic aperture and 

length (p < 0.01 based on Pearson’s r for linear, exponential, and power-law best fits). The 

data are insufficient to interpret a linear or sub-linear (power law) relationship between 

aperture and length; neither linear nor sub-linear best-fit equations between vein length and 

aperture can be rejected using chi-squared tests.  

 

Consistent with a characteristic veinlet width, the number of veinlets per vein, measured from 

core observation, varies linearly with total vein length (Figure 6b). We observe 1.7 

veinlets/mm of vein length (standard deviation 0.2 veinlets/mm). We estimate the uncertainty 

in veinlet counting at 20%, based on subjectivity of host-rock-strand continuity (Figure 4,5). 

 

Overall layer-parallel vein abundance varies from 0.5 to 19 m-1 within the Lias Epsilon (high 

TOC) interval (Table 1). Core 1 has the lowest abundance of layer-parallel veins (Table 1). 

Core 2 has intermediate vein abundance, and Cores 3 and 4 have the highest vein abundance 

(Table 1). Moreover, analyzing Cores 2 and 3 individually, vein abundance correlates very 

closely with the TOC in the host rock (Figure 2). Layer parallel veins are virtually absent 

away from high-TOC intervals.  

 

 

4.3 Thermal maturity and depth of burial  

 

Rock Eval data (Figure 2, Table 1) are consistent with previous maximum paleodepth 

estimates based on vitrinite reflectance and other temperature indicators (Bruns et al., 2013) 

suggesting that thermal maturity varies considerably across the study area. Core 1 is 

immature and Cores 2 and 3 are considerably more mature, having hydrogen indices reduced 
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to nearly zero (Table 1). No thermal maturity data are available from Core 4, but its 

geographic proximity to Core 3 (Figure 1b) is consistent with a high thermal maturity as well.  

 

The distance between each core site and the closest seismically resolvable fault (Baldschun et 

al., 1996) is also illustrated in Figure 1b. These were interpreted as inverted normal faults 

separating regions of strongly disparate maximum burial (Bruns et al., 2013). The degree of 

exhumation for Cores 2, 3, and 4 is estimated to be on the order of 3000 m, based on modeled 

maximum burial depths (Bruns et al., 2013) and the present-day core interval depth (Table 1). 

These cores were drilled through the same basin-scale graben (Figure 1b); Core 2 was drilled 

closer to the southern margin, 10 km from the southern fault; Cores 3 and 4 were drilled close 

to the center, roughly 20 km from either fault. Core 1 is estimated to have undergone a much 

shallower maximum burial and exhumation of less than 100 m (Table 1); this core was drilled 

through the footwall of the normal fault bounding this graben to the north, at a distance of 

roughly 10 km from the fault (Figure 1). 

 

 

5 Discussion 

 

5.1 Hydrocarbon maturation as vein formation mechanism 

 

The observed intensity of veins within the high-TOC interval (Figure 2, Table 1) is not 

correlated to fault proximity. In previous studies, fracture intensity has been shown to 

increase near larger-scales structures such as buttress anticlines (e.g., Glen et al., 2005) and 

otherwise isolated faults (Laubach et al., 2014). Such fault-zone fractures are interpreted as a 

manifestation of progressive brittle strain during fault slip (Laubach et al., 2014; Ferrill et al., 
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2019). In the present cores, however, the veins are not systematically distributed around the 

seismically resolvable, graben-bounding faults, nor are there appreciable changes in bedding 

attitude within the fractured core intervals. We therefore find little evidence that the veins 

represent fault-zone damage. 

 

Rather, there is a strong correlation between organic matter, thermal maturity, and layer-

parallel fracturing (Figure 2, Table 1). Variation in maturity throughout the study area is 

thought to reflect variation in thermal exposure, and is likely linked to structural position: the 

WNW-striking normal faults produced a horst and graben architecture to the basin prior to 

inversion during the Late Cretaceous (Bruns et al., 2013), with downthrown fault blocks 

buried to a significantly greater depth than adjacent blocks. As organic rich rocks mature, the 

degree of conversion of the original kerogen to petroleum–bitumen products also increases. If 

the expulsion of the petroleum products had been hindered by the generally low permeability 

of the host source-rock, it is possible that the intensity of the hydraulic fracturing driven by 

the maturation process would also have increased (see Mandl & Harkness, 1987). A low-

permeability, generally closed fluid system is also consistent with previous laboratory studies 

of shales (Neuzil, 1994) and with the vein fills comprising minerals that are also abundant 

within the host rock (Hooker et al., 2017b). Our observations therefore support those of 

Jochum et al. (1995) that layer parallel veins were formed by volume increase and 

overpressure related to the maturation of organic matter; i.e. the veins are natural 

hydrofractures driven by catagenesis. 

 

 

5.2 Growth of sigmoidal veinlets 
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5.2.1 Antitaxial cementation  

 

In general, veins comprising a median line surrounded by continuous, fibrous fill that extends 

to the vein walls are interpreted to have filled antitaxially (Bons et al., 2012). That is, such 

veins originate as thin veins at the median line and then simultaneously widen and fill by 

adding cement at the vein-wall interface.  

 

Previous numerical models have recreated this antitaxial texture by assuming that crystals at 

the median line have random crystallographic orientations (Hilgers et al., 2001; Ankit et al., 

2015). These models then posit that cementation occurs by epitaxial overgrowth of these 

randomly oriented seed crystals, such that crystal growth passively fills in the space between 

the fiber tip and the vein wall. Accordingly, if the walls of a growing vein move apart slowly 

enough, each crystal will be able to grow fast enough to fill that ephemeral space, regardless 

of crystallographic orientation, and fibrous fill will result. In contrast, if the vein opening rate 

is faster, only those crystals having fast growth axes at high angle to the vein wall will keep 

up with the opening rate, and a coarser fill style will develop, which also has a 

crystallographically preferred orientation (Hilgers et al., 2001; Ankit et al., 2015; Lander & 

Laubach, 2015).  

 

The fibrous texture of the vein fill observed here, combined with the lack of crystallographic 

preferred orientation, therefore supports previous models of cement fill, where cementation 

was simultaneous with, and at the same rate as, vein opening. The vein opening rate was 

presumably a function of the vein driving stress, which in this case was the sum of the 

overburden and the internal hydrocarbon fluid pressure. 
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5.2.2 Nature of host-rock strands 

 

The veins include myriad strands of host rock. Two competing interpretations of these strands 

are that they are inclusions, which were incorporated into the veins during vein growth, or 

alternatively, that they are the result of fracturing of initially continuous calcite veins. We 

prefer the former interpretation, for two reasons. 

 

First, the long axes of grains within the host rock, away from fractures, tend to lie parallel to 

bedding, whereas within host-rock strands, grain long-axes are rotated toward parallel with 

the strands (Figure 5a,b). Thus it appears that the sedimentary fabric was rotated within tilted 

host-rock strands, as opposed to being cleft or truncated by veinlets, or sheared as a result of 

injection between veinlets. The rotation of the host-rock fabric is consistent with inclusion of 

host-rock between veinlets that grow against one another while propagating along, and not 

across, bedding planes. 

 

Second, the host-rock strands delineate the boundaries between calcite crystal domains that 

are undeformed and have contrasting textures and crystallographic axis orientations. Figure 

5c shows that fibers commonly terminate not against the outer vein wall but against host-rock 

inclusions between the median line and the outer wall. Within the tips of veinlets, outward of 

host-rock inclusions, the vein fill becomes coarser. If the veins were composed of continuous, 

fibrous calcite before introduction of host-rock strands, then we would expect general 

continuity of fibers on either side of those strands. Fibers could be rotated during a 

hypothetical shearing episode, but we see no significant deviation of the attitude of fibers 

throughout the veins. Nor do we see deformation of crystal lattices, which would be marked 

by changes of crystallographic orientation within individual crystals.  
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The absence of fibers within the narrow ends of the veinlets (Figure 5c) suggests that 

continued growth (opening and propagation) of the veinlets was filled by cements 

overgrowing progressively coarser substrates toward the veinlet tips. As with fibers, we 

might expect to see crystallographically parallel blocky crystals across host-rock strands, if 

those strands formed by the fracturing of previously continuous calcite crystals. And although 

some crystals on either side of strands have similar crystallographic orientations (Figure 5c), 

there are abundant examples of highly contrasting orientations across even relatively thin 

strands, judging by the inverse pole figure (color key, Figure 5c). This observation favors the 

interpretation that the host-rock strands were incorporated between originally distinct calcite 

crystals, rather than having been translated in among previously continuous calcite crystals.  

 

Networks of host-rock strands amid vein-like calcite aggregates are also present in cone-in-

cone structure (e.g., Cobbold et al., 2013). Analogous observations—namely, highly 

contrasting crystallographic orientations between undeformed crystals separated by thin host-

material strands—were used to argue for incorporation of host sediment (Maher et al., 2017) 

or host rock (Hooker & Cartwright, 2018) during cone-in-cone growth, and not afterward. 

 

 

 5.2.3 Growth reconstruction 

 

To understand how these veins formed, and the role of shale mechanical anisotropy in their 

development, we present a growth reconstruction model (Figure 7) that accounts for several 

key observations. These include (i) the antitaxial formation and (ii) syn-growth incorporation 

of host rock strands mentioned above, as well as (iii) positively correlated aperture and length 

(Figure 6), (iv) veinlets that propagate along bedding planes and not across them (Figure 5b), 
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(v) median lines that lie oblique to both bedding and the vein long dimension (Figure 4c,d), 

and (vi) a characteristic veinlet width, which does not systematically vary with position inside 

veins or with vein size (Figure 4). 

 

We interpret that veins in the Posidonienschiefer of the LSB initiated as single veinlets, 

which separated the host rock at a location now marked by the median line of the center-most 

veinlet (Figure 7). The initial veinlet widened and lengthened along the same bedding plane, 

filling with fibrous calcite as it grew. But, owing to non-parallelism between the applied 

stress field and the sedimentary fabric, the vein propagation direction was oblique to bedding. 

After some enlargement, rather than cutting across bedding planes, a new veinlet (veinlet 2 in 

Figure 7) formed near either tip of the original veinlet, beginning an en échelon array. 

 

The vein continued to lengthen in the same manner, with a new veinlet added at either tip 

once the preceding tip-veinlets reached a certain size. This addition of new veinlets resulted 

in a regular spacing of veinlets as the vein grew (Figure 7). The earlier-formed veinlets 

continued to widen as the veins grew; widening was accomplished by progressive separation 

of the host rock along bedding; i.e. by propagation such that the outer veinlet wall remained 

parallel to the sedimentary fabric, and such that the internal, dipping veinlet wall remained 

parallel to the sedimentary grain within the rotated host-rock strand. Note that the marker 

horizons in Figure 7 are continually entrained between the same veinlet pair as the vein 

grows.  

 

In order to illustrate the veinlet-scale growth of veins in Figure 7, we simplify the median line 

as a discrete surface through the center of the vein. SEM images (Figure 5a-c) show that the 

median line is actually a zone of microscopically blocky crystals having myriad tiny host-
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rock strands included among them. A subset of these inclusions extend to the outer vein wall, 

forming the veinlet boundaries. Marker horizons in the figure are drawn so as to conserve 

length, to bend within the vein’s host-rock inclusions, and to lie horizontal away from the 

vein. This approach illustrates the mixed kinematics (opening plus left-lateral shear, as 

drawn) inferred from the geometry of the crystals and host-rock inclusions. However, the true 

strain distribution around the veins is unclear, owing in part the to the homogeneity of the 

host sediment. The true displacement field around the veins is likely compensated, to a large 

extent, by nearby veins. 

 

We suggest that the veinlets in Figure 7 are longer and blade-shaped in the third dimension, 

into the page. This would account for the long, continuous shape of vein segments in 

orthogonal cut faces (Figure 3b, smaller fractures in Figure 3a, 4e-f). 

 

A potential alternative reconstruction-model might hold that each macroscopic vein formed 

by the initial development of an array of uncemented microfractures, which variably grew 

taller in a second phase of calcite precipitation-related expansion. However, this 

interpretation is belied by the fact that longer, thicker veins have veinlet widths and spacings 

similar to those of small veins (Figure 4, 6b). If this pattern emerged from en échelon arrays 

of tiny fractures of equal length, with overall array-length a linear function of the number of 

tiny fractures present, then the final aperture of each calcite vein would seem to have been 

predestined by the number of tiny fractures in the array. For example, suppose there are two 

arrays of microfractures, alike in all respects except one is formed of 50 fractures and is 30 

mm in total length, and the other is formed of 100 fractures and is 60 mm in total length. This 

alternative hypothesis would imply that once these arrays evolve into veins, the latter vein 

would have twice the final aperture of the former, because it had twice the initial length. In 
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contrast, by our model each vein grew by widening and adding new veinlets at its tips at 

regular intervals of growth, accounting for the observation of more veinlets within longer, 

thicker veins.  

 

 

5.3 Vein mechanics 

 

The interpretation of vein growth, detailed in the kinematic model outlined above, implies 

that weakness along the bedding fabric in shales can exert an important control on natural 

hydraulic fracture propagation. Ideally, opening-mode fractures propagate in a plane 

perpendicular to the minimum compressive stress direction (e.g., Cosgrove, 1995). Where 

this direction is misaligned with the pole to the bedding fabric, the fracture propagation path 

and total distance will reflect an energy minimization between the imposed stress field and 

the material weakness. Understanding this phenomenon will help to better predict the 

behavior of induced fractures in the subsurface. 

 

To quantify the mechanical effects of shale laminae on fracture propagation, we begin by 

using an approach based on linear elastic fracture mechanics. We posit that the propagation 

of the macroscopic veins is analogous to that of natural fractures, based on (i) the crack-like 

geometry of macroscopic veins; (ii) hooking, branching, and en échelon stepping 

relationships between macroscopic veins; (iii) the presence of median lines; (iv) vein crystal 

fibers that are mutually parallel among the many veinlets, and perpendicular to median lines; 

and (v) their inferred fluid-overpressure opening mechanism. 
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Within an elastic rock body, the energy available to propagate a fracture, by creating fracture 

surface area A, comes from the elastic strain energy U stored within the rock (Gudmundsson, 

2011). Neglecting energy losses in the form of heat, sound, or other kinetic forms, fracturing 

is the transformation of elastic strain energy into surface energy and any associated plastic 

deformation of the host. Assuming elastic behavior, the change in elastic strain energy as a 

result of fracture propagation (i.e., an increase in fracture surface area), is given by: 

 

ΔU = G ΔA       (1) 

 

where G = 2γ and γ is the surface energy of the rock. The factor of two accounts for fracture 

propagation creating two surfaces.  

 

Griffith (1920) derived the magnitude of U0, the amount of elastic strain energy diminished 

within an elastic body due to the presence of a fracture. The fracture is modeled as having an 

elliptical cross section whose half-length a is much larger than its half-aperture b; the fracture 

cuts a plate having infinite extent in the a-b plane and unit thickness. Assuming plane strain 

and uniaxial extension, the strain energy released from the unit-thickness plate is (e.g., 

Gudmundsson, 2011): 

 

U0 =  [σ2(1-v2)/2E] πa2      (2) 

 

where σ is the remote applied stress from uniaxial extension, v is Poisson’s ratio, and E is 

Young’s modulus. As such, ΔU increases with a2. Because the fracture surface area only 

increases linearly with a for opening-mode propagation, fracture propagation under a 
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constant load will progressively dissipate elastic strain energy faster than newly created 

surface area absorbs surface energy, and so propagation will accelerate unstably. 

 

Because the present fractures are actually arrays of veinlets, they generate considerably more 

surface area per unit increase in a. We can estimate dA/da by representing the veinlets as 

plane-strain fractures whose surface area, per unit thickness as in Griffith’s scenario, is 

 

Aveinlet = 2L       (3) 

 

where L is the length of a line transecting the macro-vein ellipse at a point along [-a, a] and 

lying at an angle θ (estimated at 70° for the calculations below) from the major axis (Figure 

8). These veinlets are spaced at a constant interval distance S along the ellipse. Equation 3 is 

a conservative estimation of the true surface area in that it ignores veinlet curvature in the a-b 

plane, but the under-estimation will be small where b/S is large. As stated above, S is 

observed to remain roughly constant through vein growth, so the degree of under-estimation 

should diminish with vein growth. The total A for a macroscopic calcite vein is the 

summation of Equation 3 across the vein: 

 

𝐴𝑣𝑒𝑖𝑛 = ∑ 𝐴𝑛
2𝑎/𝑆
𝑛=1       (4) 

 

Inspection of Figure 8 reveals that the increase in the total surface area (sum of all veinlet 

surfaces) with a depends on the aspect ratio (b/a) taken on by the vein as it grows. We 

assume that this relationship is linear or sublinear, based on veins of different final sizes, as 

preserved in cores. For linear or sublinear scaling b ∝ an (n ≤ 1), A increases with a1+n. As 

such, for linear b:a scaling, A increases with a2 (Figure 9). In such a case, even if the fracture 
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formed under a constant load, the dissipation of elastic strain energy as the fracture grew 

would be matched by the absorption of surface energy created by the fracture. 

 

For sublinear b:a scaling, increased surface creation during lengthening would not be 

sufficient to result in stable propagation under constant-load conditions, but would 

nevertheless generate more surface area, compared to the case of an ellipsoidal crack. The 

best-fit power law to the observed data (Figure 6a) indicates b scaling with a0.75—although 

the quality of this fit is statistically indistinguishable from that of the linear best-fit. 

 

We observe fractures having 2a as great as 72 mm; many veins are likely much longer but 

truncated by the core. At this observed length scale, and assuming linear b:a scaling, the 

observed veins have approximately five times as much surface area as an equivalently sized 

ellipsoidal fracture (Figure 9). 

 

 

5.4 Implications 

 

Natural hydraulic (fluid-pressure-driven) fractures probably do not propagate under constant 

loads. The source of pressurized fluid is finite, and fluid pressure probably cycled within 

fractures, transiently diminishing as fracture volume increased (Lacazette & Engelder, 1992). 

Therefore the driving stress for natural hydraulic fractures likely diminished over time, 

consistent with field evidence that fractures eventually arrest. This study documents a natural 

example wherein propagation along the mechanical anisotropy of shales resulted in excess 

fracture surface area with fracture growth. This result would have produced a stabilizing 

effect during fracture growth, as elastic strain energy was more quickly dissipated as surface 
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area, compared to the ideal case of two discrete fracture surfaces. We therefore conclude 

from this case study of the vein distribution, geometry, and structure in the 

Posidonienschiefer of the LSB, that excess surface area generation can serve as a potential 

stabilizer of natural hydraulic fracture propagation in shales. 

 

Artificial hydraulic fracturing must take into account fracture propagation, whether as a 

desired result in hydrocarbon exploration, or as a hazard in wastewater or CO2 storage. 

Laboratory studies of fracture propagation along bedding in shales suggest that the fracture 

toughness, which is proportional to the square root of surface energy, may be reduced to 

roughly half the value across bedding (Chandler et al., 2017; Luo et al., 2018). Pre-existing 

fractures are also planes of weakness that can deflect fracture paths (Lee et al., 2015). 

Sedimentary planes of weakness appear to be the reason for the stepwise propagation of the 

present veins. It remains to be seen under what conditions the stabilizing effect described 

above emerges during natural or artificial fracturing, but the necessary conditions would 

appear to include some mechanical anisotropy and a driving stress oriented oblique to it, 

promoting en échelon stepping across bedding planes. 

 

The formation of the present fractures is attributed to fluid overpressure. Structures that are 

similar, in that they contain fibrous mineral fill and, in some cases, abundant host-shale 

inclusions (e.g., “beef” and “cone-in-cone”) have also been attributed to fluid overpressures 

(Cobbold et al., 2013; Zanella et al., 2015; Zhang et al., 2016; Meng et al., 2017). In settings 

not conducive to calcite precipitation, this type of fracture propagation may be common, but 

simply not preserved. However, simultaneous calcite precipitation may have important 

effects on propagation. Olson (2003) suggested that hydraulic-fracture propagation might be 

stabilized by fracture lengthening being matched with narrowing in order to preserve fracture 
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volume, for cases in which infiltration of fluids is slow compared to fracture growth. In the 

case of fibrous veins, although there may be some small, transient fracture open space at the 

vein-wall interface (Hilgers et al., 2001), simultaneous cementation with fracture growth 

would prevent fracture closure, precluding closure as a potential stabilizing mechanism. 

 

 

6 Conclusions 

 

Layer-parallel calcite veins in the Posidonienschiefer of the Lower Saxony Basin, Germany, 

formed as natural hydraulic fractures in response to hydrocarbon maturation-related 

overpressure. The veins filled with calcite cement as they lengthened and widened. 

Macroscopically, they lie oblique to the shale bedding fabric; however, microscopic evidence 

shows that they propagated by stepping across bedding planes. In fact, essentially all fracture 

opening occurred along bedding planes. The fractures repeatedly entrained host-rock 

inclusions as they grew, creating excess surface area during growth, relative to the ideal case 

in which fractures make only two surfaces. This excess surface area generation would have 

produced a stabilizing effect, by which more elastic energy is consumed per unit increase in 

fracture length. Thus shale anisotropy could potentially stabilize hydraulic fracture 

propagation. 
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Table 1. Rock Eval data, fracture frequency, burial depths, and fault distances for Cores 1–4. Rock Eval data were not collected from Core 4. 

          

  

Hydrogen Index Oxygen Index 
    

 

Core Average Std. Dev. Average Std. Dev. 

Depth of high-
TOC interval 
(present day) 

(m) 

Estimated max 
burial depth * 

(m) 

Layer-parallel 
fractures per m, 

within high-
TOC interval 

Distance to nearest 
mapped fault (km)† 

 
1 589 155 21 36 1420-1453 1500 0.545 10.3 

 
2 2 2 19 11 1238-1266 4300 8.89 10.0 

 
3 3 4 13 4 3258-3290 6300 17.6 20.3 

 
4 

    

2584-2606** 5600 18.5 18.6 

          

 

*Based on basin model of Bruns et al. (2013) 
     

 

†Based on seismically detected faults (Baldschun et al., 1996) 
   

 

** 2606 m is the bottom of Core 4 
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Figure 1. (a) Map of the study area, modified from Kockel et al., 1994. (b) Schematic block 

diagram showing locations of cores in this study and subsurface faults, synthesized from 

Baldschun et al. (1996). Shaded layer shows approximate maximum paleodepth of the top of 

the Posidonienschiefer (layer thickness exaggerated). 
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Figure 2. Depths of layer-parallel, calcite-filled fractures and TOC versus depth, Cores 1 – 3. 

 

  



 

 
©2020 American Geophysical Union. All rights reserved.  

 

Figure 3. (a) Photograph, Core 3, depth 3281 m. White calcite veins and uncemented cracks 

form at low angle to sedimentary layering. (b) Backscattered electron image, Core 3, depth 

3280 m; cal: calcite; dol: dolomite; ill: illite; pyr: pyrite; qtz: quartz. Calcite grain is a ~50 

micron thick overgrowth over a ~30 micron tall (thick) fossil, at the bottom. (c) Core 3, depth 

3279 m. Laminated interval, showing mm-scale alternations of carbonate-rich (pale gray) and 

carbonate-poor (dark gray) intervals.  
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Figure 4. Photographs of layer-parallel fractures in cores. (a) Core 3, depth 3272 m. (b) 

Interpretation of (a). Calcite-filled veinlets in white. (c) Core 3, depth 3269 m. Note median 

line at an oblique angle to both bedding and vein walls. Pyrite cement has yellow hue. (d) 

Interpretation of geometries of calcite cements in (c). (e) Core 2, depth 1263 m. Core face is 

oblique to veinlets and roughly parallel to vein strike. Note pyrite in lower right. (f) 

Interpretation of geometries of calcite cements in (e). 
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Figure 5. Layer-parallel veins, Core 3, depth 3267 m. (a) Monochromatic 

cathodoluminescence image. IN – host-rock inclusion. ML – median line. An individual 

veinlet is outlined by dashed green line. (b) Backscattered electron image. White arrows in 

(a) and (b) indicate detrital grains with long axes parallel to layering. Note grains within host-

rock strands are rotated parallel to strands. (c) Electron backscatter diffraction map. Stars 

mark same location in (b) and (c). Pixel color corresponds to calcite crystallographic 

orientation, as shown in inverse pole figure (wedge diagram). Inset: Equal-area plot of calcite 

c-axes. 
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Figure 6. (a) Half-width versus half-length of layer-parallel calcite veins. (b) Number of 

veinlets versus total vein length. All measurements made at core scale. 
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Figure 7. Schematic of a composite calcite vein from the Posidonienschiefer. Parallelograms 

are veinlets. Numbers show sequence of initiation of each veinlet, and vein growth is 

symmetrical; numbers omitted on top half for clarity. Striped areas within veinlets are 

fibrous; white areas are blocky (compare to Figure 5c). Median line is dashed. Black 

semicircles show offset of original circles before formation of veinlets. Thin horizontal lines 

represent bedding planes; regions of closely spaced bedding planes illustrate the original 

stratigraphic thickness, based on the assumption that that thickness is conserved within the 

(rotated) inclusions in between veinlets. Wide bedding plane spacing is drawn so that both 

the bedding line-lengths and the total host-rock area are conserved. The true strain 

distribution around veins is unclear and is likely compensated, at least in part, by neighboring 

veins. 
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Figure 8. Representation of the surface area (per unit thickness into page) of an ideal, 

elliptical fracture versus that of an array of veinlets (parallel lines) that open along beddings 

planes and rotate the host rock to an angle θ with respect to the major axis. Variables from 

Equations 3 and 4 illustrated. 
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Figure 9. Increase in surface area, per unit thickness, with length, for an ellipsoidal crack 

(circles) and a vein comprising a series of veinlets (triangles). Note veinlet-array fracture 

surface area increases with the square of length, assuming linear aperture:length scaling. 

 

 


